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Oceanic internal waves can be decomposed into an infinite set of modes, and the dominant
internal mode 1 waves have been extensively investigated. Although mode 2 waves have
been observed, they have not received comparable attention, especially the generation
mechanisms. In this work, we examine the generation of mode 2 internal waves by the
interaction of mode 1 waves with topography. We use a coupled linear long wave theory
with mode coupling through topography, combined with evolution using a Korteweg-de
Vries model, to predict the mode 2 wave amplitude, in an ideal three-layer fluid model, a
smooth density stratification and in two realistic oceanic settings. We find that the mode
2 wave amplitude is usually much smaller than the incident mode 1 wave amplitude
and is quite sensitive to the pycnocline thickness, topographic slope and background
stratification.
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1. Introduction

Internal waves propagate beneath the fluid surface, with their largest vertical ampli-
tudes occurring in the interior, and are a ubiquitous phenomenon in the ocean. One of the
first observations of internal waves was reported by Helland-Hansen and Nansen (1909)
more than a century ago, and they indicated these kinds of “puzzling wave” are irregular,
and can appear randomly in the ocean. Oceanic internal solitary waves typically have
much longer time scales and larger amplitudes than the analogous surface waves because
of the much smaller density difference across the pycnocline than across the air-water
interface. Here the pycnocline is the diffuse boundary between the upper lighter fluid, and
the lower heavier fluid. Internal solitary waves are commonly observed in the coastal zone,
and on a theoretical level, can be decomposed into an infinite set of vertical modes. Here
the terminology “mode” refers to the modal function describing the vertical structure.
Mode 1 waves have the fastest phase speed and the simplest modal structure, typically
a single maximum located at or near the pycnocline. Mode 2 waves are the next fastest,
with a phase speed usually around one third that of mode 1, and have a modal structure
with two extrema. Note that the modal structure here refers to the vertical particle
displacement, and in general, the vertical structure for the density and velocity fields
may be quite different. There are two different forms of mode 1 internal solitary waves,
depression and elevation waves, with the isopycnal displaced downward and upward,
respectively. For mode 2 waves, the corresponding wave shapes are called convex when
the upper (lower) isopycnal is displaced upward (downward), and are called concave when
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the upper (lower) isopycnal is displaced downward (upward). Usually, observed mode 1
waves are depression waves when the near-surface isopycnal is displaced downwards.

Both mode 1 and mode 2 internal solitary waves have been observed. Liu et al.
(1998) identified and documented the dispersion and polarity change processes of the
depression waves propagating shoreward from synthetic aperture radar (SAR) images,
while Klymak and Moum (2003) and Moum and Smyth (2006) describe internal solitary
waves of elevation from field observation. Both mode 1 and mode 2 waves were recorded
by Farmer and Smith (1980) in Knight Inlet, showing mode 2 waves tended to occur
in summer and mode 1 waves in winter. In contrast, Yang et al. (2009) found mode 2
internal solitary waves more active in winter than in summer in the northern South China
Sea, while mode 1 waves occurred in the opposite case. Mode 2 waves propagating with
a mode 1 wave tail were documented by Farmer and Smith (1980); Shroyer et al. (2010),
and Akylas and Grimshaw (1992) gave a theoretical explanation for this phenomenon.
Yang et al. (2009) and Liu et al. (2013) observed mode 2 internal solitary waves appeared
after mode 1 internal solitary waves, suggesting that the mode 2 waves were related to
the mode 1 waves. A convex-type mode 2 internal solitary wave was found by Ramp et al.
(2012) on the northern Heng-Chun Ridge. There have been several laboratory studies
of mode 2 solitary waves, and we mention the recent studies by Terletska et al. (2016)
and Deepwell et al. (2017) of the interaction of a mode 2 solitary wave with a step and
a narrow ridge respectively. Mode 1 waves are much more common, and this may be
because mode 2 waves do not propagate over such large distances as mode 1 waves,
see Yang et al. (2004, 2009, 2010); Shroyer et al. (2010); Ramp et al. (2012). Helfrich
and Melville (2006) provided an overview of internal solitary waves while Lamb (2014)
reviewed the instabilities of internal waves.

Internal mode 1 waves are typically generated by barotropic tidal flow over topo-
graphic features, see Gerkema (2001); Zhao and Alford (2006); Akylas et al. (2007);
Grimshaw and Helfrich (2018), although a few other generation mechanisms have also
been suggested. Akylas and Grimshaw (1992); Shroyer et al. (2010) and Yuan et al.
(2018) show that a co-propagating mode 1 wave train can be generated by a mode 2 wave,
with energy transfer from the higher mode to the lower mode. Although mode 1 waves
have been extensively investigated, the less observed mode 2 waves have not received
equivalent attention and research, and especially their generation mechanisms are not
as well understood, see Yang et al. (2009). Nevertheless, some potential mechanisms for
the generation of mode 2 waves have been proposed. An experimental and theoretical
study by Helfrich and Melville (1986) found that the instability of a shoaling mode 1
wave may lead to the generation of a mode 2 wave. Vlasenko and Hutter (2001) found
that a reflected and transmitted mode 2 wave may emerge when a mode 1 wave interacts
with a localised sill. Mode 2 waves can also be produced at the head of gravity intrusions
in laboratory studies, see Maxworthy (1980) and Mehta et al. (2002). Lamb and Warn-
Varnas (2015) did detailed studies on shoaling internal solitary waves in the South China
Sea under different background environment, with a mode 2 wave being generated at
small-scale features in the bathymetry. Liang et al. (2018) found that mode 2 waves may
arise when an initial mode 1 waves propagate into a horizontally varying stratification
regime, and Liang and Li (2018) indicated from field observations that a convex internal
solitary wave may be generated by a shoaling semidiurnal mode 2 internal tide.

In this paper, we are concerned with the possible generation of a mode 2 wave as
a mode 1 wave propagates shoreward from deep water, over the continental slope into
shallow water. Figure 1, (from Liu et al. (2013)), shows an observed mode 2 wave after
the passing of a mode 1 solitary wave, that was probably generated on the continental
shelf break near Dong-sha Island. For this purpose we use the linear long wave theory
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FIGURE 1. Temperature data (°C') showing a small mode-two wave with an amplitude of 30 m
at the mooring station on May 24, 2009, [Liu et al. (2013)].

developed by Griffiths and Grimshaw (2007) which describes the topographic coupling
of a full set of linear long wave modes. That theory was essentially developed to describe
the generation of the internal tide by the flow of the barotropic tide over topography, but
is adapted here to describe the generation of a mode 2 wave as a mode 1 wave propagates
over variable depth. Once the mode 2 wave is formed, we use the KdV equation (2.1) to
follow its evolution over the continental slope and shelf.

In section 2 we describe the theoretical formulation, the well-known KdV equation in
section 2.1 and then in section 2.2 the linear long wave theory, adapted from Griffiths
and Grimshaw (2007) to describe the generation of a mode 2 wave by a mode 1 wave
propagating over topography, limited here to weak slopes. Then in section 3 we apply
this theory to a three-layer fluid, for both a “thin” and a “thick” middle layer, with
different topographic gradients. In section 4 we consider the application of the theory to
a smooth density stratification with a diffuse pycnocline. Then in section 5 we consider
two oceanic cases where mode 2 waves have been observed. We conclude in section 6.

2. Theoretical formulation
2.1. Korteweg-de Vries equation

For a single mode it is customary to invoke the Korteweg-de Vries (KdV) equation
for the propagation of weakly nonlinear long internal waves over variable topography. In
standard notation for a fluid of depth h(x) it is expressed as

0A 0A 1 0Q 0A 0%A
— — 4+ ——cA A—+4+6—=0 2.1
ot Tor Tag o T e T T 1)
see Grimshaw (1981), and the reviews Helfrich and Melville (2006); Grimshaw (2007)
and Grimshaw et al. (2010). Here ¢ = A(z,t)¢(z; h) is the leading order expression for
the vertical particle displacement. The modal function ¢(z;h) is determined by, using
the Boussinesq approximation and in the absence of a background shear flow,
9’¢ N? g 9po
— +—50¢=0 =0 =0,—h N?=-2_—. 2.2
5z T 2 ?=0, ¢=0, 2=0-h(z), 0 02 (2.2)
Here po(z) is the background density field. This modal equation determines the modal
function ¢(z; h) and the linear long wave speed c(h) where the h-dependence is paramet-
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ric, since it is assumed that the depth h(z) is slowly varying. The coefficients in (2.1) are
given by

Ip=3c[° L po(92)3dz (2.3)
15=c[° W P09 dz, (2.4)
I—ZthpO ) dz, Q=~cI. (2.5)

In general, the modal equation (2.2) determines an infinite set of modes. As discussed
above, usually only mode 1, ¢; with the fastest linear phase speed c¢; is considered.
Then the KdV equation (2.1) describes the evolution of the amplitude of this mode. But
importantly we note that the same KdV equation (2.1) can be used for a mode 2 wave,
with coefficients determined by (2.3, 2.4, 2.5) using the mode 2 modal function.

2.2. Linear long wave theory

While the KdV equation (2.1) describes the long-time evolution of a single mode
over variable topography, linear long wave theory suffices as a first step to describe the
generation of a mode 2 wave as a mode 1 wave moves over topography. Here we adapt
the theory of Griffiths and Grimshaw (2007) which used linear long wave theory to
decompose the wave field into a sum of vertical modes, noting that the full set of modal
functions defined by (2.2) are complete. For our present purpose, we use a reduction of
that theory restricted to just two modes, mode 1 and mode 2, in the expectation based
on observations that any higher modes will have very small amplitudes. Note that in a
three-layer fluid model, in the Boussinesq and rigid lid approximation, this is fomally
exact. Then the wave field is given by

n=2

¢= Z An($7t)¢n(z; h) )

n=1

U= ZA (z,t)cn(h 3¢na(j h) , (2.6)

8n h
p= ,OOZA z,t)c (ba(j)

Here (, u, p are the vertical particle displacement, the horizontal velocity and the dynamic
pressure respectively. The vertical velocity is w = 9¢/0t and the density perturbation
is p = N?(/g . From Griffiths and Grimshaw (2007) (see equation (24)) the linear long
wave coupling between modes 1 and 2 with linear long wave speeds c; 2 is given by, for
slowly-varying h(x),

LU 00, 00U, e
2 o2 912 oz oz’ ’
i82U2 _ 0%Us _ %% (2.8)
c3 o2 922~ 9z 0z '
2 8)\1 8/\2 1/2 4 861 862 1/2 1 1
— R — — = — - 5 . 2.
T nlen ) Tg-alheg ) Mt =g @29

As noted above, this is a reduction from the full set in equation (24) of Griffiths and
Grimshaw (2007) by restriction to just two modes, and retention of only the leading order
topographic coupling terms when h(z) is slowly varying; that is, terms such as 9?h /92 or
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(Oh/0x)? are omitted on the basis that the internal wave wavelengths we are considering
here are much shorter than the topographic scale. The theory of Griffiths and Grimshaw
(2007) was developed for the horizontal velocity field in the form w = Udy(z;h)/0z,
whereas in the usual KdV theory described above by (2.6) the theory is developed for
the vertical particle displacement A¢(z;h), where the modal function ¢ o« ¢. In the
absence of a background shear flow, these are related by, temporarily omitting the modal
index,

w=U2 a2l ) = Ke), K= L=

c
0z 0z Ie  Q° (2.10)

Hence we find that
U =(cQ)?A, (2.11)

where @, I are the linear magnification and normalisation factors in the usual KdV theory,
see (2.5). Note that Ic > 0,Qc > 0 from (2.5) so these expressions hold for both ¢ > 0
and ¢ < 0.

The linear phase speeds ¢; o are obtained from the modal equation (2.2) for the modal
function ¢,.(z; k), here indexed with the mode number,

¢
022
These satisfy the orthogonality conditions

0
091 0¢s
/,h P52 o2 dz=0,

0 3(151 2 0 8(152 2
/7h po(g) dZ—Il, /;hpo(g) dZ—IQ

In (2.9) OA1/Oh, DNy /Oh, Dcy /Oh, Oca /Oh, denote derivatives with respect to h. Formally
they can be found by differentiating (2.12) with respect to h, so that
n 8¢r

N2¢’I”7 (ZBT’:Oa 2:07 ¢r: az 5 szh, (2.14)

+A\N2¢, =0, ¢.=0, 2z=0,—h, r=12. (2.12)

(2.13)

O\,
Ooh

82,

022 + ATNQ(’ZBT =

where <ZA)T denotes the derivative of ¢, with respect to h. Equation (2.14) is an inhomo-
geneous version of the modal equation, and a regular solution requires a compatibility

condition,
A’I" 0 T s
6611 /_h(a;l )de:—(agsz )2(z = —h). (2.15)
Thus 0A,/0h and hence dc, /Oh can be found directly from the modal function, without
any need for explicit differentiation with respect to h. Note especially that d\,./0h < 0
and so A, increases as h decreases, that is ¢, decreases as h decreases, which holds for all
density stratification and depth profiles. Thus the coupling coefficient 7 in (2.9) is always
well-defined (since A1 < A2) and v < 0. These expressions hold for general slowly-varying
h(z) but we shall now suppose henceforth that there is the usual oceanic situation that
h — hgp as * — oo with hy > h,. Specifically, we will suppose that h = hy, for z < 0,
and h = h, for x > L > 0.

Since we are assuming that h(x) is slowly varying, for each mode we use the change of
variables,

T:/ oy, (2.16)
0 C
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U _ U U 10U ou,
o2 0X2' 9x ¢ 90X 9T’

) ) ) ) (2.17)
aiU:l(aU_A'_QaU_;’_aU)_i%(aiU_FaiU)
0x2 2 0X?2 0XoT  0T? 30T 09X  or’
Hence in each modal equation, the operator
l@QUiazUiiz 0?U 7i82U+i@(87U+87U) (2.18)
c2 ot2  Ox? c20X0T c20T? 3oT°0X  oT’ '

Using the transformation (2.11) and neglecting the slowly-varying second and third terms
on the right-hand side,
1 0°U 0%U 2 9°B
E o o2 BARoXoT’
This is for a right-going wave. A left-going wave is found by replacing ¢ with —¢ in the
definition of X in (2.16).
Hence the coupled system (2.7, 2.8) can be expressed as

B=QY?A, U=cY/*B. (2.19)

?B; _ ~ey*ey/* Oh 9B,

_ on 2.20
8X16'T1 2 8T1 6X1 ’ ( )
9*By _701/20%/2@8B1 (2.21)

0X,0T, 2 9TL, 90X,y '

Here (X;,T;),i = 1,2 are the pair (X,T) in (2.16) with ¢ replaced with ¢; respectively.
Note that although the pairs (X1, T1) and (Xs, Tz) are different, they are not independent,
see the discussion below. In the absence of any coupling terms, equations (2.20, 2.21) yield
the linear adiabatic law that B; = B1(X;) and By = By(X2) where X; is the phase X
in (2.16). More generally we can add a KdV extension for each mode, that is

0B 0B 0B 0°B 1 1)

ar Tor TPax e VT e AT a (2.22)

after applying the transformations (2.16) to the KdV equation (2.1), and p, § are defined
by (2.3, 2.4).
As noted above the pair X, T are different for the two modes, that is

T1:/ i, Xi1=T1—t, T2:/ j» Xo=Tr—1t. (223)
0 C1 0 C2

However, there are only two independent variables, (z, t) and hence these pairs are related.
In particular, Ty = T3 (x), T = T»(x) are each functions of x alone, and hence are related
as follows,

T / T /
ta(TY) / / *eo(T3) /
To(Ty) = T T (1T5) = TS . 2.24
2(Th) / ey v amd D)= 0 gy AT (2:24)

Note that the origin for 71,75 is placed at £ = 0, so that in the deep water z < 0 before
the slope 77 < 0,75 < 0. Further we can write

Xy = Xo(T1,t) = To(Ty) —t, Xy = X1(Ta,t) = Tu(Ty) — t, (2.25)

expressing Xs 1 in terms of T 2,t. Then on eliminating ¢, we can express X as a function
of X1,T7 and likewise X7 as a function of X5, T5.

X2 :Xl +T2(T1)*T1, X1 :X2+T1(T2)*T2. (226)

In the sequel it is useful to note that in the deep water z < 0 before the shelf, these
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expressions take a particularly simple form, since in x < 0, ¢z/c; = R < 1 is a constant.
Then from (2.24, 2.25, 2.26), in < 0

T;
©<0, T(Ty)=RT»<O0, TQ(Tl)zﬁl<o, (2.27)
T 1
£B<0, X1:RT27t:X2+(R71)TQ, Xgiﬁft:X1+(E71)T1(228)

Similar simple forms hold on the shelf > L where again the ratio ¢o/c; is a constant.

2.3.  Generation of a mode 2 wave

In the presence of coupling we can only apply the transformation (2.16) to one of the
two modes. Here, noting that the coupling terms are small, proportional to % = é%,
we consider the case of a mode 1 wave, possibly obeying a KdV equation (2.22), and
generating a small mode 2 wave over the slope. In this situation, the coupling term
representing the back effect of mode 2 on mode 1 can be ignored, and we assume that
the mode 1 wave satisfies the KdV equation (2.22) evaluated with mode 1 coefficients,

0B 0B 03By

I B 22
o, T Pax, Y axe

=0. (2.29)

Then using the transformation (2.16), the mode 2 equation (2.8) becomes a forced
equation, which when expressed in the coordinates (X7, 7T;) becomes,

2 2 92

c] — 5, 0°Bs C1y1/2 7 Oh 0B;
~{= —_—— 2.30
{ c3c2 } 0Xx? {02} 20Ty 90Xy’ (2.30)

82B2 8h 881 C1 1/2 C%
L A A={ —2 . 2.31
X3 Tor ox, ! {02} c%—c%7 (2:31)

A particular solution is
_Oh [~ / /
ng(Xth) = —’}/7 Bl(XlaTl)Xma (232)
Ty Jx,

where we have imposed the boundary condition that there are no waves ahead of the
forcing B, wave, that is By, — 0 as X; — 00. By, has a phase X, the same as By and
hence is slaved to mode 1, and propagates with the same speed as the forcing wave By,
that is ¢; to leading order in the forcing wave amplitude. Note that since here 7 < 0,
Oh/0T1 < 0, Bap will have the opposite orientation to Bi, that is, it will be wave of
elevation or depression, according as B is a wave of depression or elevation. Further if
B is localised with respect to the phase X, then Bs, has the structure of a shelf which
extends to X; — —oo for each fixed T;. However, because of the factor 0h/0T; in By,
(2.32) this particular solution can only be non-zero in the region where 0h/9T) # 0, that
is, the slope region 0 < T7 < L say. This implies that this slaved wave cannot propagate
past 71 = L, and once the forcing wave B; has passed into the shallow water 77 > L,
this slaved wave becomes stationary, and depends only on 77. This stationary form can
be found by letting X; — —oo in (2.32) to give

_Oh -
BQS;,“t(Tﬁ = _’YaiTlMl, My = / Bi(X1,Th)dX7, (2.33)

where M is the “mass” of the forcing By wave.
To this particular solution we can add any free solution of the homogeneous solution
for mode 2, which has a phase X5 (that is X in (2.16) with ¢ = ¢2). To leading order

— 00
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this is just Boy = F(X5) where F(-) is an arbitrary function, and depends on X, only.
Hence the complete general solution for By for right-going waves is

BaX1, ) = B0, 1) + F(Xa) =~ [~ BUX{ T X+ F(XD) . (230)
where we note that X5 can be expressed in terms of Xy, T} through (2.26). To determine
the functional form of F'(-), we recall that Oh/0T) # 0 only over the slope region and in
particular 0h /9Ty = 0 for Ty < 0 (x < 0). We suppose that initially there is only a mode
1 wave in the deep water 77 < 0 (z < 0, and so we can impose the initial condition that
for t < 0 the mode 1 wave is in the deep water and there is no mode 2 wave, By = 0.
From (2.23), at t =0, Xy =Ty = fom dx/cy and X1 =T} = fox dx/cy, where we recall
that T and T5 are functionally related through (2.24). We can now determine F'(X3) as
t — 0 from

_Oh [

F(T2) :’YaiTl .

Bl (jvl7 X{) dX{ , where T1 = T1 (Tg) y (235)
from (2.24). Thus the free solution is given by replacing T5 in (2.35) by Xa,

(oo}

BQf(XQ) = F(XQ) = ’7%/71 Bl(ThX{) dX{ y where now T1 = Tl(XQ) . (236)

1
The full solution (2.34) is the sum of By, (2.32) and By (2.36).

This free mode 2 wave (2.36) is the main item of interest. If By is localised and so Bay,
has the structure of a shelf, then By inherits some aspects of this shelf structure, and
under KdV dynamics this shelf will develop into an undular bore. Importantly, however,
because of the pre-factor Oh/0T1, Ty = T1(X2), By is a localised function of X5, defined
only over the range 0 < T7(X3) < L, and propagates with a speed ¢y (in & — ¢ space)
without change of form. In particular it will continue to propagate beyond x > L after
the particular solution has become stationary with the form (2.33).

Note that (2.26) can be used to express X5 in terms of X;,7) and so we can express
Bs¢ as a function of X;,7;. This is needed for plotting By, Bo¢ and the sum By as
functions of X; = T; — ¢t for several fixed values of T} (that is, a time series at several
fixed locations), or as functions of T; for fixed values of ¢. Importantly, for the free
wave component Byy, Xo = X(X1,T7) from (2.26) and varies over the whole range
—00 < Xo < o0o. Thus in the functional relationship 77 (X2) in (2.36) where X5 has
replaced T in T1(T%) (2.24), the full range of —oco < Ty < oo is needed. In particular we
recall from (2.27) that in the range —oo < Ty < 0, T3 = RT» and so

—00 < X <0, Tl(XQ):RXQZRTl—t:RX1+(1—R)T1 (237)

From (2.36), Boy = 0 for T7(X2) < 0, which using (2.37) is the regime RT; < t, where
we recall that R = ¢3/c1 in the deep water, Ty < 0.
For instance suppose that B; is a KdV solitary wave asymptotic solution of (2.29),
oP .
By = asech®(K(X) — P(TV)), 50 =V = %a —AMK?, a=ago'/?,  (2.38)
1

where o = |v1|/A1 normalized so that o = 1 in the deep water before the slope. We set
P =0 at T; = 0 so that the solitary wave enters the slope at * = 0 when ¢ = 0. Then
the particular solution (2.32) becomes

_0Oh a

BZp(leTl) = *787711?

{1 — tanh (K(X, — P(T)))}, (2.39)
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where we remind that all the coefficients and parameters in (2.39) are functions of 77,
In particular, My = 2a/K (2.33). The free solution (2.36) becomes

_0h a
~on K
Here on the right hand side, we use (2.24) to find 77 (73) and then replace T with Xo.

In general, we will need to use interpolation to obtain the expressions (2.24) and hence
the key functional relationship T} (X5) where X5 has replaced Ts. However a useful guide
to the outcome is obtained by using the approximation that the ratio co/c; = R is
a constant, not only on x < 0, but also in > 0. Indeed it transpires that in the
applications we examine this as quite a good approximation. Then from (2.27, 2.28) we
obtain the explicit analytical form T7(Xs2) = RXo = RX;+(1—R)Ty = T1 — Rt, showing
as expected that this free wave propagates with speed Rc; = ¢ in & — t space.

Bay(Xs) {1 — tanh (K(Ty — P(T1))}. (2.40)

3. Application: three-layer fluid model

There have been several theoretical studies of mode 2 internal solitary waves using a
three-layer fluid model. Yang et al. (2010) examined the characteristics of mode 2 internal
solitary wave types in an ideal three-layer fluid system, using the KdV solitary wave
solutions. They found that the middle layer thickness played a key role in determining
whether the waves were of convex or concave type, and used this analysis to interpret
some observations of mode 2 waves in the northern South China Sea. The study by Yuan
et al. (2018) shows the evolution of mode 2 internal solitary waves over a slope-shelf
topography in a three-layer fluid model, based on a variable-coefficient KdV equation
and also simulations using the MITgem (Massachusetts Institute of Technology general
circulation model), a 3D primitive equation model, with fully nonlinear, non-hydrostatic
terms, see Marshall et al. (1997a,b). Here we consider a three-layer fluid model, as
described by Yuan et al. (2018) for a different purpose, adapted here for the interaction
of a mode 1 solitary wave with topography resulting in the generation of a mode 2 wave.
Note, the MITgecm simulation uses a smoothed three-layer stratification and not the
discrete three-layer fluid model described here.

The background density field is given by,

po(2) = (p2+Ap)H(—2z—h1—he)+peH(—2z—h1)H(z4+h1+ha)+(p2—Ap)H(z+h1), (3.1)

where hy, ho and hz are the thickness of the three layers from top to bottom, respectively,
h = hy + ho + h3. Note that, the pycnocline depths k1 and ho are fixed in this three-layer
fluid model, but hs varies, because the total depth h = h(z) = hy + ho + hs(z) varies over
the slope. po is the density of the middle layer and Ap is the density difference across
each interface. #(-) is the Heaviside function. Since N2 = 0 in each layer, the modal
function is given by from (2.2),

p=-Ci—, —h <2<0,
hy

z+hy + ho z+h

=C - C
¢ 1 h2 2 h2 )
z+h
hs
Note that ¢ = C7 at the upper interface z = —hy, and ¢ = C5 at the lower interface
z = —hy — hs. The continuity of pressure across each interface is ensured by the jump

—h1—he <2< —hq, (3.2)

¢ =Cs

—hgzg—hl—hg.
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conditions c2[¢.]T + g'¢ =0, ¢’ = gAp/p2,

2 _ . =
ACG ) - 9Gi=0,
L o (3.3)
2 Vo, =
A+ ) -3 ) -9 G =0,
AR S VS RC IRt
A= =G+ ) TG ) ek (3.4)

The signs F correspond to mode 1 and mode 2 respectively, so that, as required ¢; > cs.
It then follows that

Cl 2 1 02 1 2 1 hg 1

— =R=H+(H"+1)2 —=—=—H+(H"+1)2 H = ———). (3.5
- w0k, - (4D, H= 20— 0 (35)
The solution is normalised by max [|¢|] = 1, so that max [|Cy],|C2|] = 1. For mode 1,

C1 2 > 0 and either the maximum of |¢(z)| occurs at the upper interface if H > 0, hy > ha,
1 =C; > Cy > 0, or at the lower interface if H < 0,h; < hz, 1 = Cy > C;. For
mode 2, C1C2 < 0 and the maximum of |¢(z)| occurs at the lower interface if H > 0,
1=C5 >0>C; > —1, or at the upper interface if H < 0,1 =Cy >0 > Cy > —1. Thus
if a mode 2 wave is a wave of elevation, then this corresponds to a convex wave if the
maximum of |¢(z)| occurs at the upper interface, H < 0,h; < hsz, but corresponds to a
concave wave if the maximum of |¢(z)| occurs at the lower interface, H > 0,h; > hs.
This description is reversed if it is a wave of depression, which then corresponds to a
concave wave if the maximum of |¢(z)| occurs at the upper interface, H < 0, h; < hs,
but corresponds to a convex wave if the maximum of |¢(z)| occurs at the lower interface,
H > 0,hy > h3. Note that from (3.4)

;O H

9on h2{ SEESyIe (36)

As required, OA/Oh < 0 for both modes. Also, in our main case of interest when hy < hg,
so that H < 0, 9A\1/0h < OAy/0h < 0. From (2.9)

ha

2h2(H2+ 1) (87)

Y=
For fixed hq, hs, |y] = 0 as ho — 0, that is, the coupling of the modes becomes smaller
as the middle layer becomes thinner.
The KdV coefficients u,d in (2.22) are given by

3 PORY:
In= 302{—0— + = 02 (C1 = Co)

T I (33)

15— 1{02’”?2 c?h?’;:h? 0102%}, (3.9)

GGG (G- G

It is well known that if g3 > 0(< 0) then mode 1 solitary waves are waves of elevation
(depression). However, if s > 0(< 0) implying that mode 2 solitary waves are waves of
elevation (depression), then this corresponds to a convex or a concave wave depending
on the location of the maximum of |¢| as described above.

We have now obtained explicit expressions for all the coefficients and parameters in
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FIGURE 2. Right panel: the stratification at the start point of the slope-shelf region in the
three-layer fluid model. Top: density profile and buoyancy frequency represented by N?(s™2);
bottom: modal function for mode 2. Left and middle panel: the set-up of the three-layer fluid
model with depth given by (3.11) and the coefficients of the KdV equation (2.1) for mode 1
and mode 2 waves. The middle layer thickness is 40 m in the left panel, and 80m in the middle
panel. From top to bottom the panels show the layer depths (dotted and dash-dotted lines) and
total depth (solid lines), the phase speeds ¢1,2 in units m s7! and the nonlinear coefficients 1,2
, the dispersive coefficients d; 2 and the linear magnification factor Q1,2 (2.3, 2.4, 2.5) in units
of s71,m3s! and 1, respectively.

the mode 2 slaved wave (2.39) and the mode 2 free wave (2.40), and so proceed with two
examples.

3.1. Illustrative examples

Now, given a suitable expression for the depth profile h(z), and a choice for layer
depths hq, ho, we can proceed to plot these as a function of x at a set of increasing times
t. We set

h(z) = 425 — 75tanh (1- 10~ %), (3.11)
which represents a smooth transition from deep water depth of 500 m to a shallow water
depth 350 m. Note that the origin of x is at mid-slope here rather than at the bottom of
the slope as in the theoretical development in section 2. Hence all expressions there should
have a corresponding translation of the z-origin. The layer depths are set at hy = 120m
and we will show two cases for hy = 40m and ho = 80m. For these settings h3 varies
from 340m,300m in the deep water to 190 m, 150 m in the shallow water, and in both
cases h1 < hz throughout, so that the pycnocline remains “near-surface” throughout. The
setup is shown in figure 2. For the mode 1 solitary wave (2.38) the coefficients p1, d1, Q1
can now be calculated from (3.8, 3.9, 3.10, 2.5) and are also shown in figure 2. Hence
we can find the transformed coefficients vy, A1 in (2.22). Coefficients for mode 2 waves
can also be obtained similarly. We set the initial solitary wave amplitude in (2.38) as
agp = —b5m, noting that for the present parameter settings p; < 0 over the whole slope
and so there is no polarity change. In figure 3 we show the expressions 7, 9h/0T; and
the solitary wave parameters a, K as functions of T7.
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FIGURE 3. Parameters of the particular (2.39) and free (2.40) solutions in the three-layer fluid
set-up (3.11) with different middle layer thicknesses (left panel: ho = 40m and right panel:
ha = 80m). The expressions 7,0h/0T; in units m ™', ms™! respectively, and the parameters
a, K of the mode 1 solitary wave (2.38) in units m, m ™! respectively.
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FIGURE 4. Plots of the slaved wave (2.39) and the free wave (2.40) as time increases. From top
to bottom, they are spatial plots for each fixed ¢, with ¢ varying from 0 to 40000 seconds. The
depth is given by (3.11) and the left and right panels correspond to middle layer thickness of
40m and 80m respectively.
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FIGURE 5. Plots of the evolution of the free mode 2 wave under KdV dynamics (3.12) with the
initial condition (3.13). From top to bottom, the distances from the initial point are 0 km, 25
km, 50 km, respectively. The depth is given by (3.11) and the left and right panels correspond
to middle layer thickness of 40 m and 80 m respectively.

Figure 4 shows the evolution of the slaved wave (2.39) and the free wave (2.40). As
expected, initially the free mode 2 wave and the slaved mode 2 wave are formed with
the same amplitude and shape. The slaved wave then propagates with speed c¢; and
increases in amplitude until the forcing mode 1 wave reaches the shallow water, when it
is arrested and reaches its final steady state (2.33). In contrast the free wave propagates
with speed ¢y unchanged in form and eventually passes the forced wave and enters the
shallow water. Note that with the present parameters, the slaved wave is one of elevation,
while the free wave is one of depression. The most striking feature of these simulations
is that the amplitudes are four times larger for the “thick” pycnocline case (ho = 80m)
than in the “thin” pycnocline case (hy = 40m). This can be directly attributed to
the four-fold increase in 4 (figure 3), which in turn is due mainly to the difference in
Oca/Oh, although the change in ¢y with h is hardly perceptible from the plot. In general,
the final amplitude of the slaved wave is determined from the maximum value of the
product —2%(0h /0T )a/ K, which depend only on z. In the “thick” pycnocline case the
peak amplitude is approximately 0.06 m, which is 1.2% of the forcing wave amplitude. In
contrast, the free wave amplitude which does not change with time, is determined from
(2.40) by its value at t = 0, when Xo = Ty and Ty = T (7). Assuming that KL > 1
(in these simulations KL is order 10), this can be estimated approximately from the
minimum value of the product 4(0h/0T1)a/K over a restricted range where KTj is
order unity. In the “thick” pycnocline case the free wave amplitude is approximately
—0.03 m, about one half the amplitude of the slaved wave and 0.6% of the forcing wave
amplitude. In terms of ocean applications these may seem to be rather small, and possibly
unobservable, but we remark that this is a linear theory, and the complete solution
scales with the magnitude of the forcing amplitude ag/Kjy, that is with aé/ % a four-fold
increase in ag to —20m would increase the response by a factor of 2. More pertinently,
the percentage estimates remain in place when the forcing amplitude is increased, so that
for instance a very large amplitude mode 1 wave with ag = 100m can be expected to
produce an observable free mode 2 wave of amplitude approximately 1.5m. Further we
note that the free wave amplitude will increase as the topographic slope is increased.
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FIGURE 6. As in figure 2 except that the depth profile is now (3.14) with a steeper gradient.

Next we consider the evolution of the free mode 2 wave under KdV dynamics, using
the KdV equation (2.22) here evaluated with mode 2 coefficients,

OB, OBy &° By
—_— Bo— 4+ X—= =0. 3.12
o7 + vy 23X2+ 26X‘23 (3.12)
The initial condition is taken from (2.40),
Bo(Ty = 0) = Bos(Xs). (3.13)

Note that T5, X5 have a different meaning in this context. Figure 5 shows the evolution
according to KdV dynamics (3.12). In both cases of a “thin” or “thick” pycnocline,
2 > 0 (unlike 1 < 0) and the initial condition (3.13) is negative. Note that we show the
amplitude By (here and throughout), whereas the physical amplitude is Ay = BaQ5 1/2
(2.19) and so will differ in magnitude (see figure 3 for how Q2 varies). The dynamics is
unaffected by the transformation. We see the emergence of a depression rarefaction wave
followed by an undular bore, which is consistent with the results in Yuan et al. (2018).
Note that although the initial amplitude (3.13) is smaller in the “thin” pycnocline case
than in the “thick” pycnocline case, the initial value of Ky determined from (2.38) is larger
(figure 3) due to the larger initial value of 11/ (figure 2). This leads to the outcome that
the waves in the “thin” and “thick” pycnocline cases have comparable length scales. Also
note that uo is larger and do is smaller in the “thin” pycnocline case compared to the
“thick” pycnocline case. This slightly stronger intrinsic nonlinearity, measured by ps/da,
tends to counteract somewhat the smaller initial amplitude in the “thin” pycnocline case
compared to the “thick” pycnocline case.

3.2. Dependence of wave amplitude on slope

Expressions (2.39, 2.40) show that the mode 2 wave amplitudes are proportional to
the topographic slope 0h/0z expressed there as Oh/0T) = ¢10h/0x. In order to examine
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FIGURE 7. As in figure 3 except that the depth profile is now (3.14) with a steeper gradient.

this further, we set up another three-layer model, where the only difference from (3.11)
is in the topographic gradient, which is now 5 times larger,

h(z) = 425 — 75tanh (5 - 10~ %x) . (3.14)

The water depth again ranges from 500m to 350 m, with the same layer depth distri-
bution, top layer (h; = 120m), middle layer (hy = 40,80 m) depth, and lower layer hs,
which varies from 340 m, 300m in the deep water to 190 m, 150 m in the shallow water,
as above. The rate of change for h is however 5 times larger than that in the previous
case. Similarly, we again set the initial solitary wave amplitude as ag = —5m and there
is again no polarity change throughout.

Figure 6 shows the depth variation and the KdV coefficients for both mode 1 and mode
2 waves. The ranges for each coefficient are the same as those in figure 2, and only the
rate of change is different, which is 5 times higher than those in more “gentle” slope case.
figure 7 shows parameters 0h/0T1, 7, a and K. Note that the maximum |0h/0T}] is 5
times larger, up to 0.05 compared to the former 0.01.

Figure 8 shows the evolution Bsy, Boy and their summation By which is similar to
the previous case, and also with a 4 times larger amplitude for the “thick (hg = 80m)”
pycnocline case than in the “thin (he = 40m)” pycnocline case due to the increase in 7.
The much more striking phenomenon is that, the amplitudes in this “steep” slope case
are 5 times larger compared to the “gentle” slope case for both the “thin” and “thick”
pycnocline cases. For example, in the “thick” pycnocline case, the peak amplitude for
the slaved wave is around 0.3m and —0.12m for the free wave, while in the “gentle”
slope case, they are 0.06 m and —0.03m, respectively. The same relationships occur
for the “thin” pycnocline case. This feature is caused by the larger value of |0h/0T}|
when the slope is steeper. The slaved and free wave amplitudes are proportional to
F3(Oh/O0T1)a/K, and the slope gradient affects the ranges of Oh/9T;, but not those
of 4, a and K. Hence, the wave amplitudes are sensitive to the topographic gradient,
and change in proportion to the bottom slope changes. In both cases, under the KdV
dynamics (see figure 9), the waves form a much stronger rarefaction wave following by
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an undular bore during their evolution due to the larger initial amplitude, even though
the magnitudes of s are almost the same as those in the “gentle” slope case.

4. Application: smooth density stratification

As a complement to the three-layer model (3.1) of the previous section, here we
examine a case when the background density stratification is smooth and given by either
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FI1GURE 10. The background environment profiles at the mid-point in the slope-shelf region
for the smooth-stratification fluid case. (a) density stratification po; (b) buoyancy frequency
represented by N?; (c) modal function ¢ for mode 2. Legends “thin-g” and “thick-g” are the
“thin” and “thick” pycnocline cases with the “gentle” slope (3.11); “thin-s” and “thick-s” are
the “thin” and “thick” pycnocline cases with the “steep” slope (3.14).

a representation of either a “thin” (4.1) or a “thick” (4.2) diffuse pycnocline respectively,

po(2) = p2 + Aptanh (1-107* - (2 + 150)), (4.1)

po(z) = p2 + Aptanh (51072 - (2 + 150)), (4.2)

There is a superficial resemblance to the three-layer fluid that the density varies from
p2 — Ap in the upper fluid to ps + Ap in the lower fluid, with a value of py in the middle
at z = —150m. But there is an essential difference that here the buoyancy frequency
N has a single maximum at z = —150m, whereas for the three-layer fluid there is a
maximum (formally infinite) at the upper interface z = —hy and at the lower interface
z = —hy — ho. In the numerical calculations which follow, we set p, = 1025 kgm 2 and
Ap = 1kgm=3. The bottom topography is the same as in section 3, where (3.11) for a
“gentle” and (3.14) for a “steep” slope gradient variation respectively. We now examine
the mode 2 wave generation in four cases, analogous to those in the previous section,
that is, a “thin” or “thick” pycnocline with a “gentle” or “steep” slope gradient.

Figure 10 shows the background environment profiles for these four cases. These profiles
are extracted from the middle point of the slope-shelf region, where the total depths are
identical, and so the results are same (at this point) no matter whether the slope is
“gentle” or “steep”. Also, the thickness of the middle layer (treated here as the width
of N? around its maximum value) is approximately doubled in the “thick” pycnocline
case compared to the “thin” pycnocline case, with similar values to the three-layer fluid
case where ho = 80m in the “thick” case and ho = 40m in the “thin” case. But, note,
that the calculated modal function ¢(z) has the opposite polarity to the modal function
of the three-layer fluid, with a maximum of |¢(z)| at the lower interface, even although
the estimated h; < hg as in the three-layer fluid. This can be attributed to the weak but
non-zero stratification in the upper and lower layers.

Figure 11 shows the coefficients of the KdV equation (2.1) for mode 1 and mode 2
waves under this smooth-stratification case. Panels (a, b) are for the “gentle” slope (3.11)
with (a) “thin” and (b) “thick” middle layer thickness respectively; while panels(c, d) are
for the “steep” slope (3.14) with (¢) “thin” and (d) “thick” pycnoclines. Overall, these
results are consistent with those in figure 2 and 6 for the three-layer cases. However,
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FIGURE 11. The coefficients of the KdV equation (2.1) for mode 1 and mode 2 waves for the

smooth-stratification case. From top to bottom: the phase speeds c1,2 (m s~ '), the nonlinear

coefficients p1,2 (571), the dispersive coefficients d1,2 (m3 sil) and the linear magnification

factor Q1,2, respectively. Panel (a) is the case with “gentle” slope and “thin” middle pycnocline
thickness (“thin-g”); (b) “gentle” slope and “thick” middle pycnocline thickness (“thick-g”); (c)
“steep” slope and “thin” middle pycnocline thickness (“thin-s”); (d) “steep” slope and “thick”
middle pycnocline thickness (“thick-s”).

importantly the mode 2 phase speed cs is only one half of that in the three-layer fluid
case, and the nonlinear coefficients po have the opposite sign due to the afore-mentioned
opposite polarity of the modal function, see figure 10 panel (c).

Figure 12 shows the parameters of the particular (2.39) and free (2.40) waves in these
four different cases. Comparing with the analogous figures 3 and 7 for the three-layer
fluid, we see that Oh/JT}, a and K are almost in the same range and variation trend,
but 4 is 10 times smaller than that in the three-layer fluid system. The reason is that the
mode 2 phase speed co is much smaller than that in the three-layer fluid case, although
¢y is comparable, see (2.9, 2.31). Figure 13 shows the plots of the slaved and free waves
as time increases in these different conditions. Here panels (a, b, c,d) are the results in
the corresponding four cases in figure 12. Comparing with figure 4 and 8, we see that
the mode 2 wave evolution in this smooth-stratification case is qualitatively consistent
with that in the three-layer fluid case. But the generated slaved and free mode 2 wave
amplitudes are now 10 times smaller, corresponding to the smaller coefficient ¥ in figure
12. Figure 14 shows the evolution of the free mode 2 wave under KdV dynamics (3.12)
and is now quite different from the results in the three-layer fluid system, see figure 5
and 9. The reason is that now the nonlinear coefficient us < 0 and so solitary waves have
the same sign as the initial condition for the free mode 2 wave. Hence wave fission occurs
instead of formation of a rarefaction wave with a trailing undular bore. The initial free
mode 2 wave is convex here for this smooth-stratification case, whereas in the three-layer
case, the initial free mode 2 wave is concave.

We find that here, as in the three-layer fluid case, the generated mode 2 wave amplitude
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FIGURE 13. Plots of the slaved wave (2.39) and the free wave (2.40) as time increases for the
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Note the horizontal axis labels for panels (c,d) are the same as (a, b), but shown part.



20 Z. Liu, R. Grimshaw and E. Johnson

<104 (@) <103 <103 (© «103 (@
0 0 0 0
-5 \ / 2 -2
7o -4 \// P V N \/
15k 10 %107 6110 -10{x 10
0 0 0 0
-5 2 -2
B,.-10 \/ Y \/ -4 V N V
2f 15h10% %107 610 410410
0 0 0 0
-5 2 -2
15 6 10
2 2

2 0 2 2 0 2 2 0 2 - 0
X x10° X x10° X x10° X x10°

FIGURE 14. Plots of the evolution of the free mode 2 wave under KdV dynamics (3.12) with the
initial condition (3.13) for the smmoth stratification case. From top to bottom, the distances
from the initial point are 0 km, 25 km, 50 km, respectively. Panels (a,b, c,d) are for the same
conditions as in figure 11.

is mainly associated with the pycnocline thickness and the slope gradient. The mode
2 wave amplitudes in panels (b,d) are around 4 times larger than in panels (a,c),
respectively, which is the square the difference of the pycnocline thickness; also, the
amplitudes in panels (¢,d) are around 4 times larger than in panels (a,b), respectively,
close to the slope gradient discrepancy. These outcomes are consistent with those using
the three-layer fluid of section 3. We conclude that the pycnocline thickness and the
bottom topography gradient can be expected to play important roles in the magnitude
of the generated mode 2 wave amplitude. But as noted the smooth-stratification case
reduces 5 due to the smaller ratio ca/c; and hence reduces the generated amplitudes,
indicating that sharp interfaces induce stronger mode 2 waves.

5. Application: ocean examples

In this section, we examine two oceanic cases, the New Jersey continental shelf (Shroyer
et al. (2010)) and the South China Sea (Liu et al. (2013)), where mode 2 waves have
been reported. In both these regions, internal solitary waves (both mode 1 and mode 2)
occur frequently and in situ data is available. In particular the mode 2 wave recorded
by Liu et al. (2013), see figure 1, seems likely to have been generated by mode 1 waves,
under the mechanism discussed here. The generation mechanism of the mode 2 waves
documented by Shroyer et al. (2010) may be related to frontal intrusions or tidal forcing
near the shelf break and may not be due to a mode 1 wave interaction with topography.
However the mechanism for the generation of the mode 2 waves is not settled and so
the clear in situ data of Shroyer et al. (2010) allows us to test the present analysis as an
alternative mechanism for mode 2 wave generation on the New Jersey continental shelf.

5.1. New Jersey continental shelf

Mode 1 and mode 2 nonlinear internal waves were documented by Shroyer et al. (2011)
and Shroyer et al. (2010) through both mooring and ship-tracked records obtained over
New Jersey continental shelf in the summer of 2006, during the Office of Naval Research’s
Nonlinear Internal Wave Initiative-Shallow Water '06 experiment (NLIWI-SW06). The
nonlinear internal waves had a typical amplitude of —8m during most time of the
observation month, but the displacement could exceed —15m over some periods of that
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FIGURE 15. The background environment profiles for the New Jersey continental shelf case.
(a) The depth h(m) along the slope-shelf region xz(km), see (5.1); (b) density stratification
po(kg/m?®); (c) buoyancy frequency represented by N?2(s™2); (d) velocity uo(m/s); and (e)
calculated vertical structure ¢ (in unit of 1); as shown in Shroyer et al. (2010) figure 4 and 5.
Here 3a, 3b, 3¢ represent the first, second and third profiling series for Wave Jasmine documented
by Shroyer et al. (2010).

month. One mode 2 wave train was detected during NLIWI-SW06 by shipboard records,
and was referred to as Wave Jasmine, due to a naming convention for ship-tracked waves,
see Shroyer et al. (2010). This mode 2 wave train (Wave Jasmine) was documented by
three detailed profiling periods (denoted as 3a, 3b, 3¢ here, in order to be consistent with
Shroyer et al. (2010), who showed these three profiles in figure 3a, 3b, 3¢). The first and
second profiling series consisted of three mode 2 waves, while the third transect only had
two mode 2 waves with a small mode 1 wave tail. The amplitudes of these waves were
defined by taking the sum of a half of the maximum density displacement above and
below the pycnocline, and was near 4m in the first and third periods and 3m in the
second transect. The average wave speed obtained from the ship record measurements
was around 0.48ms—!, which was slightly larger than the mode 2 linear phase speed
calculated from the modal equation that showed an increase from 0.4 ms~! to 0.46 ms™1!,
under the effects of background shear.

The depth variation along the wave propagation path was not given, but we can
estimate this from the density profiles at the three profiling points (100 m, 90 m, 85m)
and then set it to be

h(z) = 92.5 — 7.5tanh (3 - 10 32) , (5.1)

(see figure 15). The slope variation here is very smooth and gentle, as the depth changes
from 100m to 85m over a horizontal distance greater than 3 km. This may not be very
realistic and may lead to inconsistent predicted wave amplitude in comparison to the
observed mode 2 wave amplitude, recalling that we have found the mode 2 amplitude is
sensitive to the topographic gradient. We extracted the data generated of the background
density and currents (see figure 15) at the above three ship-tracked profiling periods
(3a, 3b, 3¢) from Shroyer et al. (2010) figure 4, and then calculated the buoyancy frequency
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FIGURE 16. (left) The KdV coefficients (c, i, 9, Q) for mode 1 and mode 2 solitary waves and
(right) parameters (%,0h/0T1, a, K) for the New Jersey continental shelf case.

and the modal function (note our solution is normalised by maz[¢] = 1), see figure 15,
which is consistent with the results in figure 4 (b) and figure 5 in Shroyer et al. (2010).

Figure 16 shows the KdV coefficients ¢, u, §, @ calculated from (2.2, 2.3, 2.4, 2.5) for
mode 1 and mode 2 solitary waves (left panel) and parameters 4, 0h/0T1, a, K with
respect to T3 for linear theory (right panel). Both ¢; and co decrease along the transect,
with ranges 1.03 — 0.98 ms~! and 0.43 — 0.36 ms~!, respectively. The variation trend of
co is slightly smaller than and opposite to the theoretical results of Shroyer et al. (2010)
(0.4 — 0.46ms~1). Here p; and o are negative over the slope indicatory no polarity
change and that only a depression mode 1 wave and convex mode 2 wave can exist. From
the right panel, we can see that the mode 1 initial solitary wave amplitude is ag = —10m
and we recall that the amplitudes for both the slaved and free wave are related to the
magnitude of +2%(0h/dT1)a/K, which is O(—2).

Figure 17 shows the mode 2 wave evolution both from the linear theory (left panel)
and the KdV model (right panel). The slaved wave mode 2 and the free wave mode 2 with
amplitude around —0.05m travel with speed ¢; and cy, respectively. The slaved wave,
which has a wider shape than the free wave, stops when the forcing mode 1 wave reaches
around the mid-shelf, where the depth has become shallower. The KdV dynamics then
show that the initially convex mode 2 free wave grows slightly from —0.05m to —0.08 m
during the propagation, and then begin to show signs of fission. The simulation with
the KdV model is consistent with the observed wave evolution by Shroyer et al. (2010),
although the observed trailing mode 1 wave tail is beyond the scope of this KdV model.
The predicted mode 2 wave amplitude (—0.05m) from our linear theory is however
very different from the observed mode 2 amplitude of —3 m. This would imply that the
observed mode 2 waves in this region are not generated from a mode 1 wave incident on
the topography and is consistent with the comments in Shroyer et al. (2010), who suggest
that in this case the mode 2 waves may have been generated by a density intrusion.
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FIGURE 17. Mode 2 wave evolution in the New Jersey continental shelf case. The left panel is
for the linear theory and the right panel is the mode 2 free wave evolution based on the KdV
theory.

5.2. South China Sea

Although mode 2 internal solitary waves are less often observed in comparison to mode
1 waves, they were documented by Yang et al. (2009) on the continental shelf of the
northern South China Sea both in summer and winter, with notable seasonal difference.
They showed mode 2 waves were less active in summer than in winter ( mode 1 waves
in contrast to mode 2), with smaller amplitude and longer time scales, and 90% of the
recorded mode 2 waves appeared after mode 1 internal solitary waves in summer. In
winter 72% arose without mode 1 waves. These observations suggest that the generation
mechanisms of mode 2 waves have a seasonal difference, and may be associated with
mode 1 waves in summer.

A short intensive field experiment to search for mode 2 waves was made near Dong-
sha Island in the northeastern South China Sea in May 2009, and a mode 2 wave with
amplitude 30 m was observed following a large mode 1 wave of amplitude 120 m. Due to
the lack of CTD (Conductivity-Temperature-Depth) data during this field observation,
the background oceanographic conditions were obtained from a joint hydrographic survey
in May 2006 which covered a larger area containing the location where the above mode
2 wave were documented. Three CTD stations S13,.514, 515, across the shelf break in
the middle of this survey area were chosen for the parametric study of mode 2 waves in
Liu et al. (2013). Here we use the same name 513,514, 515 to represent the environment
parameter information of these three stations.

Liu et al. (2013) show the background stratification at these three equally spaced CTD
stations (S13, S14, S15), spanning 1° of longitude, which covered 55 km. The depth at
each station was recorded as 1100 m, 650 m and 320 m, and so we set the depth to be

h(x) = 715 — 390 tanh (2.8 - 10~ °2) , (5.2)

see figure 18. Again this depth may not represent the actual depth, and hence affect
our predicted wave amplitudes. Similarly, we extracted the data of background density
(po) from Fig. 15 in Liu et al. (2013) and then calculated the buoyancy frequency (N?)
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FIGURE 18. The background environment profiles for the South China Sea case. (a) The depth
h(m) along the slope-shelf region x(km), see (5.2); (b) density stratification po(kg/m?); (c,d)
buoyancy frequency represented by N?(s2), (d) is the enlarged view for the top 200m; and
(e) modal function ¢ (in unit of 1); as shown in Liu et al. (2013) figure 15. Here 513,514, S15
represent three different CTD stations during the joint hydrographic survey in May 2006, Liu
et al. (2013).
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FIGURE 19. (left) The KdV coefficients (c, i, 8, Q) for mode 1 and mode 2 solitary waves and
(right) parameters (¥, 9h/0T1, a, K) for the South China Sea case.

and modal function (¢) as in the New Jersey case. From figure 18, we see the buoyancy
frequency is consistent with that shown in Fig. 15 in Liu et al. (2013), and the modal
function plot shows that the depth of the largest displacements becomes shallower along
the wave path.

The KdV coefficients for mode 1 and mode 2 waves and the parameters of our linear
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FIGURE 20. Mode 2 wave evolution for the South China Sea case. The left panel is for the
linear theory and the right panel is mode 2 free wave evolution based on the KdV theory.

theory are calculated as the case above, but without the background current and are
shown in figure 19. Both mode 1 and mode 2 linear long wave phase speed ¢; and cg
have the same magnitude and variation trend compared to the results in Table 3 in Liu
et al. (2013), and ¢y is about half of ¢;. The nonlinear coefficients p; and ug (from the
background density field shown in figure 18) differ from their results. The pycnocline is not
“near surface” along the whole transect, and p; < 0 throughout, implying a depression
mode 1 wave. The coefficient py changes sign from negative to positive along the transect,
while throughout the modal function has its maximum at the lower interface. Thus for
the mode 2 wave evolution, the wave is convex at first and then evolves into a concave
form. The left panel shows parameters of our linear theory, setting the initial mode 1
wave amplitude ag = —120m, and we see that the mode 2 wave amplitude depends on
+25(0h/0T1)a/K and is of order unit. Similarly, the slope is even smoother and gentler
than it in the case above, with the largest variation dh/90T; smaller than —0.02.

Figure 20 shows the mode 2 wave evolution from the linear theory (left panel) and the
KdV model (right panel). The slaved mode 2 wave of the linear theory evolves with a
speed ¢ unchanged in form until the forcing mode 1 wave reaches the shallow water. The
free mode 2 wave with amplitude around 2m travels with speed ¢y with a steep front
initially but then the rear part accelerates and the wave shape becomes more symmetric.
The KdV dynamics show that the initially convex mode 2 free wave grows slightly during
propagation, but then at the change of polarity forms a depression rarefaction wave with
a trailing undular bore. The mode 2 wave amplitude predicted here (—2m) is ten times
smaller than the observed one (—30m) in South China Sea by Liu et al. (2013). A
partial explanation may follow by recalling that the wave amplitude in this linear theory
depends on the gradient of the slope. The resolution of the in situ topographic data here
is quite rough, with 55 km increments, and hence may not resolve the steeper gradients.
Furthermore, the amplitude reported by Liu et al. (2013) was estimated from temperature
data, which may not necessarily be the same as the wave amplitude defined here based
on the normalised modal function. Finally, we note that the background density profile
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we have used in figure 18, taken from Liu et al. (2013), is at a different time from their
observation of the mode 2 wave.

6. Discussion

In this paper, we have examined the possible generation of mode 2 waves by the
interaction of mode 1 waves with topography, as a mode 1 wave propagates shoreward
over the continental slope, from deep water into shallow water, using an adaptation of
the general theory of Griffiths and Grimshaw (2007). This leads to a coupled linear long
wave theory, with mode coupling by topography. Once the mode 2 wave has formed its
evolution is followed with a Korteweg-de Vries model. In this linear long wave theory, the
important general outcome has two components, a slaved component moving with the
speed of the mode 1 wave, and a free component moving at the mode 2 speed which is
generated on the continental slope, We simulated in detail the mode 2 wave generation
and evolution both in an ideal three-layer fluid system, a diffuse pycnocline case, and in
two realistic oceanic cases, the New Jersey continental shelf and South China Sea.

In the ideal three-layer cases presented in section 3, the depth changes from 500m
to 350 m with different middle layer thicknesses and slope variation rates. Under the
coupled linear theory, the slaved mode 2 wave and the free mode 2 wave initially with
the same wave amplitude and shape, travel with speeds c¢; and co, respectively. Then the
slaved wave increases in amplitude until the forcing mode 1 wave reaches the shallow
water, where the slaved mode 2 wave is arrested and forms its final steady state. The
free mode 2 wave travels with unchanged shape and eventually passes the slaved wave to
the shallow water. The most marked characteristic is that the mode 2 wave amplitude
is larger when the pycnocine is thicker. For example, both the slaved and free wave
amplitudes are four times bigger in the “thick” pycnocline case (ho = 80m) than in the
“thin” pycnocline case (hy = 40m). We set the initial solitary wave amplitude to be
ag = —5m, but in the “thick” pycnocline case, the peak slaved wave amplitude is only
0.06 m (1.2%) and the free wave amplitude —0.03m (0.6%). Then we enlarged the slope
variation rate to be five times larger to test the dependence of wave amplitude on it, but
kept all the other parameters the same. We found that the amplitudes in this “steep”
slope case are about 5 times larger compared to those in the “gentle” slope case both for
the “thin” and “thick” pycnocline cases, with the peak slaved amplitude 0.3 m and the
free wave amplitude —0.12m in the “thick” pycnonline. Under KdV dynamics, the initial
depression solitary wave forms a depression rarefaction wave with a following undular
bore in all cases.

In the diffuse pycnocline case, presented in section 4, we chose parameters to mimic
the three-layer fluid cases, and found overall qualitative agreement. But an important
difference emerged in that the speed ratio co/c; was much smaller, thus reducing the key
parameter 7 and hence considerably reducing the mode 2 wave amplitudes. This illus-
trates the importance of the underlying density stratification especially in determining
the ratio cg/cq. Another difference emerged here in that the sign of the mode 2 modal
function was opposite to that in the three-layer fluid case, with the consequence that
under the KdV dynamics, the initial depression wave fissioned. Figure 21 is a summary
of the cases for both the three-layer fluid model (section 3) and the smooth density
stratification (section 4) model, showing the predicted generated maximum mode 2 wave
amplitudes using the present linear long wave theory.

In section 5, we then tested two realistic oceanic cases, the New Jersey continental
shelf and the South China Sea, where both mode 1 and mode 2 internal solitary waves
have been documented. The former case reported by Shroyer et al. (2010) mentions that
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the generation mechanism of the mode 2 waves is unclear, while the latter case is related
to the mode 1 wave evolution (Liu et al. (2013)). Here we use the background density
stratification in these two domains, and apply the coupled linear long wave theory and the
KdV model. We have to estimate the depth, however from the limited recorded profiling
points and so cannot get the accurate depth variation along the wave transects. We find
in the New Jersey case, that the predicted mode 2 wave amplitude (—0.05m) from our
linear theory is very different from the observation (—3m), which means the documented
mode 2 waves in this region is probably not generated by a mode 1 wave incident on the
topography, consistent the comments of Shroyer et al. (2010). In the South China Sea
case, the KAV dynamics reveal that the initially convex mode 2 free wave grows slightly
during propagation but then changes polarity to become a concave wave. The predicted
mode 2 wave amplitude (—2m) is 10 times smaller than the recorded one (—30m) by
Liu et al. (2013), but there are some factors which may explain this: the amplitude is
very sensitive to the slope gradient, and a highly resolved depth is not available; our
definition of the wave amplitude may not be the same as in Liu et al. (2013); and the
only accessible background density stratification we use is at a different time from the
observed mode 2 wave.

Nevertheless, we contend that the present quite simple linear mode coupling model can
form a basis for interpreting observed mode 2 waves over the continental slope. Indeed,
this mechanism can be expected to operate in all cases when a mode 1 wave moves over
topography. Because the predicted mode 2 amplitude is proportional to the topographic
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slope, see (2.40), the mode 2 wave amplitude will usually be small, and difficult to observe.
This may help to explain why observations of mode 2 waves are rare compared to those
of mode 1. This theory also suggests scenarios when the mode 2 wave amplitude could
be enhanced. As discussed in section 3.2, sharp changes in the topography will lead to
larger mode 2 amplitudes. The present linear long wave theory, and the KdV extension,
require that the topographic slope be small, and in particular that the wavelengths
involved be much shorter than the topographic length scales. Typical internal solitary
wave wavelengths are order 500 — 1000 m and this is much shorter than the width of
the continental slope. Nevertheless in section 3.2 we have pointed to the enhancement of
the mode 2 wave generation when the topographic slope is increased. Hence, in a recent
paper Liu et al. (2019) we have examined the converse situation when the wavelengths
are much greater than the topographic scale, in the limit when the topography appears
as a step. As expected, this leads to a considerable enhancement of the mode 2 wave
amplitudes.

Expression (2.40) shows that the coefficient 7 (2.9, 2.31), is proportional to (A; —A2) 72,
where A\ 2 = cl_g Thus if the underlying density stratification is such that the linear
phase speeds c1, ¢ are close, then the mode 2 amplitude will be larger. For the three-
layer fluid system of section 3, expression (3.4) shows that

1 1 4

9= h)’ = (- = 3+ 1o (6.1)
2

hi  hs
Hence strong stratification measured by a larger ¢’, or nearly equal upper and lower
layer depths, hy =~ hg, with a large middle depth ho, will tend to increase 4 and so
enhance the mode 2 wave amplitude. Conversely we note that the diffuse pycnocline case
of section 4 reduced the ratio c¢3/c¢; and this led to a reduced mode 2 wave amplitude.
This implies that the combination of a near-surface and a near-bottom pycnoclines, with
strong stratification is a scenario favouring the generation of mode 2 waves. However,
this parameter will not be so relevant for the generation of mode 2 waves by other means,
such as lock release or density intrusion, when the role of the mode 1 wave is absent.
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