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ABSTRACT 

Alzheimer’s disease (AD) has a long preclinical stage characterised by the accumulation 

of brain pathology, which is estimated to begin several decades before the onset of 

symptoms. A significant proportion of older adults harbour such pathology, although 

many of them may not develop dementia during their lifetimes. Growing evidence 

suggests that subtle cognitive decline occurs during this preclinical period, but many 

unanswered questions remain about the nature and timing of changes in different 

cognitive domains, and associations with life-course predictors.  

This thesis is based on data from Insight 46, a neuroimaging sub-study of the MRC 

National Survey of Health and Development (the British 1946 birth cohort). In this 

population-based sample of 502 adults aged ~70 years, cognitive performance was 

assessed using standard and novel tests, and associations were investigated between 

cognition, life-course predictors, genetic risk factors for AD and brain pathologies, with a 

particular focus on -amyloid.   

The key finding was that participants with elevated levels of -amyloid showed poorer 

performance across a range of cognitive domains – some of which have received little 

attention in previous studies – including non-verbal reasoning, intra-individual variability 

in reaction time, visuomotor integration and memory. Other important results include: 

independent effects of childhood cognitive ability, educational attainment and adult 

socioeconomic position on later-life cognition; an association between white matter 

pathology and slower processing speed; associations between larger whole brain 

volume and faster performance on several diverse timed measures; and evidence that 

APOE-ε4 carriers may be advantaged on tests of short-term memory after accounting 

for the detrimental effect of -amyloid. 

These results have implications for the interpretation of cognitive data measured in later 

life, and for the use of cognitive assessments to detect and track subtle cognitive decline 

in clinical trials that seek to delay or prevent the onset of AD dementia. 
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IMPACT STATEMENT 

This thesis is based on data from Insight 46, a neuroimaging study of 502 members of 

the MRC National Survey of Health and Development (NSHD, the British 1946 birth 

cohort). All participants were born during the same week in March 1946 and have been 

studied ever since, with a rich dataset of measures of physical and mental health, 

cognition and lifestyle. As the NSHD is the world’s longest continuously-running birth 

cohort study, it is a unique resource for the scientific community and its outputs have had 

a substantial influence on health policy, and will continue to do so. With participants now 

in their early 70s, this is an ideal time to investigate the emergence of neurodegenerative 

diseases, as participants are predominantly cognitively healthy but a significant 

proportion are expected to show evidence of accumulating brain pathologies. This study 

focuses on β-amyloid pathology, which is critical to the development of Alzheimer’s 

disease (AD), the most common cause of dementia. As the prevalence of this 

devastating disease continues to rise rapidly, there is a pressing need for better 

understanding of its early preclinical stage – the stage during which future disease-

modifying treatments are most likely to be effective. In particular there is a need for 

greater insight into the nature and timing of the earliest subtle changes in cognition, and 

how these changes can best be measured. 

One of the main aims of this thesis was to investigate whether subtle differences in 

cognition could be detected between individuals with and without β-amyloid pathology 

(measured by β-amyloid positron emission tomography (PET) imaging). The results 

provide novel evidence that such differences are indeed detectable in cognitively-normal 

70-year-olds across a variety of cognitive domains, including non-verbal reasoning, 

consistency of reaction time, visuomotor integration and memory. This has implications 

for our understanding of the earliest cognitive changes associated with AD, as the 

dominant narrative is that memory is the earliest domain to be affected, whereas these 

results suggest that other cognitive domains may also see very early changes. The 

results may also influence the design of future clinical trials, as sensitive cognitive tests 

are required to judge the effectiveness of potential disease-modifying treatments, and 

some of the novel computerised cognitive tests described here may be good candidates 

for outcome measures in such trials. 

The results also showed that childhood cognitive ability, educational attainment and 

socioeconomic position each have independent effects on cognitive performance at age 

70. This is consistent with previous reports that education and other cognitively-

stimulating activities have an influence on cognitive trajectories across adulthood, and 

may have implications for public health efforts to reduce risk of later-life cognitive decline. 
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Dissemination of results to the research community is in progress and will continue 

through publication in scientific journals and presentation at international conferences, 

and public engagement activities will allow research outputs to be shared more widely. 

Data-sharing agreements are in place so that other researchers can request Insight 46 

data to investigate their own research questions. 
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SD = standard deviation 

SEP = socioeconomic position 

SUVR = standard uptake volume ratio 

UCL = University College London 

WAIS-R = Wechsler Adult Intelligence Scale - Revised  
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WASI = Wechsler Abbreviated Scale of Intelligence  

WMHV = white matter hyperintensity volume 

WMS-R = Wechsler Memory Scale - Revised 
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1. INTRODUCTION 
 

1.1. Alzheimer’s Disease  

There are 50 million people living with dementia globally (World Health Organization, 

2019). In addition to the incalculable human impact, the economic cost is staggering – in 

the UK alone the estimated current cost is £26 billion per year, and this is projected to 

more than double by 2040 (Prince et al., 2014). The most common cause of dementia is 

Alzheimer’s disease (AD), accounting for about two-thirds of cases (ARUK Dementia 

Statistics Hub).  

AD was first described in 1907 by Alois Alzheimer, a psychiatrist in Frankfurt, who 

reported memory loss, paranoia and disorientation in his patient Auguste D. After her 

death he produced a detailed characterisation of the neurofibrillary tangles he observed 

in her neurons, and described aggregations of a “peculiar substance” we now know to 

be β-amyloid, hereafter referred to as Aβ (Ryan, Rossor and Fox, 2015). These 

pathological hallmarks – extracellular β-amyloid plaques and intracellular neurofibrillary 

tangles containing hyperphosphorylated tau – are the basis for histopathological 

diagnosis of AD today, and are accompanied by atrophy (loss of neuronal cells) in 

selective brain regions which mainly correspond to the clinical presentation of symptoms. 

A typical presentation is characterised by progressive memory impairment and 

disorientation, corresponding to medial temporal lobe atrophy (Braak and Braak, 1991), 

but a variety of atypical non-amnestic presentations occur (Jones and Thompson, 2017). 

As the disease progresses and atrophy spreads, the cognitive and functional impairment 

becomes more global. While post-mortem confirmation of pathology is still the gold 

standard for a definitive diagnosis, new technologies have emerged which allow 

detection of Aβ, tau pathology and neurodegeneration in vivo. These innovations have 

made it possible to study the progression of pathological changes, and revealed that 

these changes begin around 20-30 years before the onset of symptoms, with Aβ 

pathology being the first to accumulate (Jack et al., 2013; Palmqvist et al., 2018). This 

period of pathological changes in the absence of symptoms is referred to as the 

preclinical stage of AD, and is discussed in greater detail later (section 2.2). 

The causes of AD on an individual level are poorly understood, apart from for a very 

small minority of patients who carry autosomal dominant mutations for familial 

Alzheimer’s disease (FAD), accounting for less than 1% of cases of AD (Bateman et al., 

2010). For sporadic AD, the biggest known risk factor is age: 95% of people living with 

dementia in the UK are over the age of 65, and the prevalence rises steadily in older 
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age, reaching about 40% among those aged 95 and above (Prince et al., 2014). Other 

risk factors include the APOE gene, which is discussed later (section 2.6.1) and lifestyle 

factors such as smoking, hypertension and obesity (Norton et al., 2014). 

There are currently no disease-modifying treatments available for AD and the field has 

suffered from a series of disappointing failures from clinical trials of drugs that have 

targeted Aβ pathology. 

 

 

1.2. Preclinical Alzheimer’s Disease  

As AD has such a long preclinical window, this may be the most beneficial time to provide 

disease-modifying therapies. While some secondary prevention trials (i.e. targeting 

asymptomatic individuals with evidence of Aβ deposition) are already underway, many 

important questions remain. We still lack understanding of the timing and sequence of 

the pathological changes that occur, influences on their progression, and factors 

affecting how and when this leads to cognitive decline – especially on an individual level. 

Over the last decade, much effort has been directed towards creating standardised 

criteria for defining preclinical AD. These criteria are designed to serve as a framework 

for research, with the ultimate aim of providing an evidence base for designing 

appropriate and successful clinical trials in this population. These criteria are discussed 

in more detail in section 2.2. 

Although individuals with preclinical AD are, by definition, cognitively normal, there is 

increasing evidence that subtle changes in cognition can be detected during this period 

(see section 2.3). A key research question is how these changes relate to the preclinical 

disease process and how they can best be measured. Sensitive cognitive tests are 

crucial for identifying individuals at risk of AD and for use as outcome measures in clinical 

trials. Indeed, the US Food and Drug Administration have recently approved cognition 

as a sole end-point for such trials, where previously they required evidence of functional 

improvement as well – a requirement clearly unworkable for a population with no 

functional impairment (Kozauer and Katz, 2013). In addition, using sensitive cognitive 

tests in observational studies could increase our understanding of the factors which 

affect an individual’s risk of cognitive decline – such as demographic factors, physical 

and mental health – which could inform interventions to reduce risk. 
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1.3. The MRC National Survey of Health and Development 

My PhD project sits within the Insight 46 study, a neuroimaging sub-study of the MRC 

National Survey of Health and Development (NSHD, also known as the British 1946 Birth 

Cohort). The NSHD was established in 1946 to address concerns about infant and 

maternal health, specifically why the national fertility rate was falling and whether this 

could be attributed to the quality and cost of obstetric and midwifery services. Ninety-one 

percent of all mothers who gave birth in England, Scotland and Wales during one week 

in 1946 (n = 13687) were interviewed at their 8-week check-up and the findings were 

influential in designing maternity services within the new NHS. 5362 babies from this 

sample were enrolled to form the original NSHD cohort, stratified by socioeconomic 

position in order to investigate the effects of social inequality (Wadsworth et al., 2006).  

Between 1946 and 2015 there have been 24 data collection waves, focussing initially on 

childhood development and educational attainment, then shifting to physical and mental 

health, lifestyle and cognition across adulthood. Further details on the cognitive 

measures – of particular relevance to this thesis – are provided in section 3.2.1. The 

results of the NSHD have had a substantial impact on policy, including influencing the 

debate about comprehensive education and social mobility, providing pivotal evidence 

that smoking during pregnancy is harmful, and drawing attention to the unfolding obesity 

crisis (Pearson, 2016). High rates of participation have been maintained through the use 

of home visits for data collection and by keeping in regular contact with study members 

(Stafford et al., 2013; Kuh et al., 2016). At the most recent data collection wave in 2014-

2015, the target sample was 2816 study members, i.e. 52% of the original cohort. The 

remainder were no longer active for the following reasons: died (18%), permanently 

withdrawn (12%), living abroad (11%), lost to follow-up (7%) (Kuh et al., 2016).  

The NSHD is the world’s longest continuously-running birth cohort and aims to become 

a complete cradle-to-grave study. With participants now entering their eighth decade, the 

cohort provides a unique opportunity for understanding neurodegeneration in the context 

of ageing, and the complex factors and interactions that influence its progression. 

 

1.4. Insight 46  

Insight 46 is a neuroscience sub-study of the NSHD, run jointly by the Dementia 

Research Centre and the MRC Lifelong Health and Ageing Unit (both at University 

College London). Combining intensive cognitive and clinical assessment with collection 

of neuroimaging, blood and genetic biomarkers, Insight 46 aims to identify investigate 

life-course and genetic influences on brain health and cognition, with a particular focus 
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on AD. This will provide a critical evidence base for future therapeutic trials in the 

preclinical stage of AD. As the study members were aged ~70 at the time of recruitment 

into Insight 46, the prevalence of dementia was expected to be low – around 3% (Prince 

et al., 2014) – but a sizeable minority of participants were expected to be in the preclinical 

stages of AD, with meta-analytical data suggesting significant Aβ pathology in around 

15-25% of individuals at this age (Jansen et al., 2015).  

Participants recruited to Insight 46 were invited to University College London (UCL) for 

assessments at two time-points with an interval of approximately two years. Data 

collection included cognitive tests, clinical history and examination, Aβ positron emission 

tomography (PET), brain magnetic resonance imaging (MRI), and other biomarker and 

genetic measures. Further details on recruitment and data collection are provided in 

sections 3.1and 3.2 and in the protocol paper (Lane et al., 2017). Baseline assessments 

were conducted between May 2015 and January 2018. Follow-up assessments began 

in January 2018 and will be completed around the summer of 2020. 

 

1.5. Scope of PhD 

My research focuses on analysing the cognitive data collected during the baseline Insight 

46 assessments, with the ultimate aim of understanding more about subtle cognitive 

changes that may be associated with preclinical AD pathology, in particular Aβ plaques. 

The following chapter introduces the background to the unanswered questions in this 

field, reviews the relevant literature, and leads to a statement of my specific research 

questions and hypotheses. 
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2. BACKGROUND AND RESEARCH QUESTIONS 
 

2.1. Rationale 

Research into the relationship between preclinical AD pathology and changes in 

cognition is based on the understanding that individuals do not suddenly become 

cognitively impaired, but rather there is a gradual process of cognitive decline, during 

which time cognitive performance initially remains within the normal range. Jessen et al. 

produced a figure to illustrate this, which I have used as a basis for structuring my review 

of the literature (Figure 2-1): I have annotated the figure with the letters A-D to highlight 

four important questions, which are explained below.  

 

 

Figure 2-1. The course of cognitive decline through preclinical AD to dementia  

The questions for my literature review are indicated by the labels A to D – see text for a full 
explanation. This figure is reprinted from Jessen et al. (2014) with permission from Elsevier. (The 
letters A to D are my own addition.) Jessen et al. designed this figure to draw attention to the 
concept of Subjective Cognitive Decline (SCD), which describes the phenomenon of some older 
adults reporting concerns about declining memory and cognition, despite showing no evidence of 
any objective cognitive impairment. My research focuses on objective measures of cognition, so 
SCD is not discussed further. 
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A – What is preclinical AD? To investigate whether the cognitive tests used in Insight 

46 can detect subtle cognitive decline in the preclinical stage of AD, preclinical AD must 

be defined. The main scope of this question is to review the development of criteria for 

defining preclinical AD in clinical and pathological terms, as well as to review evidence 

relevant to the application of these criteria to the Insight 46 cohort, such as the 

prevalence of preclinical AD at age ~70 years. However, as becomes clear from the 

debates and controversies surrounding these criteria, this question also has a more 

philosophical dimension relating to classification of disease in apparently asymptomatic 

individuals. This question is reviewed in section 2.2. 

B – What is the evidence that subtle cognitive changes are detectable in preclinical 

AD? Cognitive impairment can be defined as the point when a participant’s cognition is 

below the normal range for their age, sex and education. This is represented in Figure 

2-1 by the vertical line labelled “Impairment on a cognitive test” which intersects the 

cognitive trajectory (smooth purple line) at the point where it drops out of the green 

shaded area. But there is evidence that cognition begins to decline among so-called 

cognitively-normal individuals who are in the preclinical stage of AD, before reaching the 

point of impairment, as indicated by the vertical line labelled “Onset of decline in cognitive 

performance”. In aiming to detect and measure subtle cognitive changes in preclinical 

AD, the Insight 46 cognitive battery is targeting the region between these two vertical 

lines. Evidence from previous studies with similar aims is reviewed in section 2.3.  

C – Which predictors of individual differences in cognitive performance are most 

important to account for? Some of the variation between individuals in terms of 

cognitive performance can be explained by factors such as age and education. These 

factors need to be accounted for in order to define the normal range of cognitive 

performance for a certain population (represented in Figure 2-1 by the green band). 

Accounting for this predictable variation between individuals should increase the 

sensitivity of cognitive tests to detect subtle cognitive changes associated with preclinical 

AD within this normal range. This question is reviewed in section 2.4.  

D – Which cognitive measures are most sensitive to subtle cognitive decline in 

preclinical AD? In Figure 2-1, the vertical line labelled ‘Onset of decline in cognitive 

performance’ illustrates the point at which subtle cognitive decline becomes detectable, 

even though performance is still within the normal range. With more sensitive cognitive 

measures, this vertical line could move to the left as subtle differences could be detected 

earlier. Some approaches to enhancing the sensitivity of cognitive measures are 

reviewed in section 2.5. 
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These four questions are now reviewed in the following four sub-sections. Each sub-

section ends with a summary of the implications for my research. 

 

2.2. What is preclinical AD? 

 

2.2.1. Development of research criteria for preclinical AD 

As mentioned in section 1.1, the advent of technologies to measure in vivo biomarkers 

of AD pathology has led to a reconceptualization of AD as a continuum with a long 

preclinical stage. Efforts to create standardised biomarker-based criteria for preclinical 

AD have been led by two main groups: the International Working Group for New 

Research Criteria for the Diagnosis of AD (IWG) and the US National Institute on Aging 

– Alzheimer’s Association (NIA-AA). The evolution of these criteria over the last ten years 

reflects the progress that has been made in understanding the biology of AD, the new 

biomarker measures that have become available, and the ongoing debates about how 

the disease should be conceptualised. A chronological summary of the various iterations 

of the IWG and NIA-AA criteria for preclinical AD is provided in Table 2-1. It is important 

to note that both sets of criteria have been conceived as frameworks for research and 

are not recommended for use in clinical practice.  

All the biomarkers currently included in criteria for preclinical AD are derived from 

neuroimaging or cerebrospinal fluid sampling. Blood-based biomarkers for AD are in 

development but require further work (Zetterberg, 2019) and are not discussed further. 

Technical details about the biomarkers referred to in Table 2-1, and their relative 

advantages and disadvantages, are not discussed here, but further details are provided 

in section 3.2.2 for the biomarker measures that are used in the analyses presented in 

this thesis.  
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The impact of biomarkers on conceptualisation of AD is immediately obvious from Table 

2-1, as it can be seen that the IWG’s 2007 diagnostic framework was the first to require 

the presence of one or more abnormal biomarkers in addition to evidence of an episodic 

memory impairment for a diagnosis of AD (Dubois et al., 2007), and by 2018 the 

influential NIA-AA criteria have now removed clinical symptoms from the framework 

completely. 

It can be seen from Table 2-1 that both the IWG and NIA-AA have arrived at a very 

similar definition of AD, stating that it begins when there is evidence of both tau and Aβ 

pathology. One key area of difference has been around the classification of cognitively-

normal individuals who show only evidence of Aβ pathology (but normal tau). The 

influential NIA-AA 2011 criteria designated these individuals as being in Stage 1 of 

preclinical AD, whereas all iterations of the IWG criteria have opted for the more cautious 

designation of “Asymptomatic at risk for AD”. However, the gap between these two 

positions has been narrowed by the updated NIA-AA 2018 criteria, as such individuals 

are now referred to as showing “preclinical Alzheimer’s pathologic change” and the label 

of “preclinical AD” is reserved for those with evidence of both Aβ and tau pathology (as 

in the IWG criteria). Another important difference is the classification of cognitively-

normal individuals who show only evidence of tau pathology (but normal Aβ). IWG 

includes these individuals in their “Asymptomatic at risk for AD” category whereas NIA-

AA considers such individuals to show “Non-Alzheimer’s pathologic change”. 

It is no coincidence that these differences relate to the earliest stages of pathologic 

change in cognitively-normal individuals, as the earliest stages are obviously particularly 

challenging to characterise, and are the focus of the most contentious ongoing debates 

within AD research. Major issues include 1) to what extent the amyloid hypothesis should 

remain the dominant model of AD and how it may be integrated with other models; 2) 

the significance of terminology. These issues are discussed in the following sub-sections, 

with a focus on those which are most relevant to the investigation of associations 

between biomarkers of Aβ pathology and cognition in Insight 46. As the NIA-AA 2018 

criteria are the most recent and most influential, the current debates and discussions 

focus more on them. 

 

2.2.1.1. Dominance of the amyloid hypothesis 

The amyloid hypothesis contends that the accumulation of Aβ plaques between neurons 

– arising from an imbalance between the production and clearance of β-amyloid – is the 

primary cause of AD. This hypothesis has dominated the field for the last 25 years 

(Selkoe and Hardy, 2016). Pivotal evidence for the amyloid hypothesis came from the 
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discovery of the genetic mutations causing FAD, all of which are in the amyloid precursor 

protein (APP) or the presenilin genes (PSEN1 and PSEN2) involved in generating Aβ. 

These mutations result in over-production of Aβ, and a similar phenomenon is seen in 

Down’s Syndrome due to the duplication of chromosome 21 which contains the APP 

gene. Further compelling evidence for the amyloid hypothesis will not be described in 

detail here, but includes 1) the observation that accumulation of Aβ pathology begins 

several years before the appearance of tau pathology and neurodegeneration (Bateman 

et al., 2012; Jack et al., 2013; Pletnikova et al., 2018); 2) the well-documented neuronal 

toxicity of Aβ in animal studies (Selkoe and Hardy, 2016); 3) evidence that the APOE-ε4 

allele – the biggest risk factor for AD after age (see section 2.6.1) – impairs clearance of 

Aβ (Selkoe and Hardy, 2016).  

Criticism of the amyloid hypothesis is rooted in the universal failure of drug trials targeting 

Aβ in patients with AD or mild cognitive impairment (MCI). Some argue that the amyloid 

hypothesis is too linear and simplistic (e.g. Edmonds et al., 2015), and the time has come 

– or indeed is long overdue – to embrace other models of AD. Proposed alternatives will 

not be discussed here, but some examples are listed to illustrate the complexity and 

diversity of models of AD, and to highlight the contrast with the apparent simplicity of the 

IWG and NIA-AA criteria, which are firmly based on the amyloid hypothesis: 1) systems-

based models that focus on the wider consequences of pathology for brain systems such 

as cholinergic deficits (Tang, Lutz and Xing, 2018) and the effects of these “systems 

failures” on diverse clinical symptoms such as cognition, sleep and depression (Medina 

et al., 2017); 2) cellular models which focus on the complex cellular alterations which 

underline the long preclinical phase (De Strooper and Karran, 2016); 3) holistic 

approaches that focus on the biological mechanisms of diverse risk factors for AD such 

as ageing, genetics and lifestyle (Morris, Clark and Vissel, 2018); 4) the vascular 

hypothesis which focuses on vascular dysfunction including changes to the integrity of 

the blood-brain barrier and cerebral blood flow (de la Torre, 2018; Sweeney et al., 2019); 

5) the calcium hypothesis which focuses on the consequences of alterations to neuronal 

calcium signalling (Alzheimer’s Association Calcium Hypothesis Workgroup, 2017); 6) 

the neuroinflammation hypothesis which focuses on dysfunction of microglial cells 

(Heneka et al., 2015). 

This decision to focus on AD pathology in isolation from other processes and systems 

causes some to question the validity of the criteria in real life, and also raises concerns 

that the dominance of these criteria may divert research effort away from other potentially 

fruitful areas (McCleery et al., 2018, 2019; Louie, 2019).  
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2.2.1.2. Significance of terminology 

The criteria for preclinical AD raise an immediate issue about terminology. As noted 

earlier, the term “preclinical AD” does not have the same meaning in the IWG and NIA-

AA criteria, and it can be seen in Table 2-1 that both groups have evolved their definition 

of this term over the last few years. Consequently, the literature on preclinical AD shows 

a lack of consistency, with the terms “preclinical”, “prodromal”, “presymptomatic” and “at-

risk asymptomatic” being used with overlapping but non-equivalent meanings by 

different authors. “Prodromal” is usually applied to cover the period immediately 

preceding the onset of dementia, when patients might meet criteria for MCI (e.g. Visser 

et al., 2012), whereas “preclinical” generally covers the cognitively-normal stage before 

this. Although both sets of criteria now require evidence of both Aβ and tau pathology for 

a classification of preclinical AD, the fact that that NIA-AA 2011 criteria required only 

evidence of Aβ pathology has resulted in numerous studies describing a “preclinical AD” 

group based purely on elevated levels of amyloid (e.g. Dang et al., 2018; Harrington et 

al., 2018; Slot et al., 2018). The term has also been used by some authors to describe 

APOE-ε4 homozygotes (Caselli et al., 2014) or individuals with MCI (Kirova et al., 2015).  

The issue of terminology is important because of concerns about the consequences of 

labelling people with “preclinical Alzheimer’s Disease”. While the criteria are explicitly for 

research purposes only, it has been argued that they will inevitably filter through into 

clinical practice, which could result in a significant proportion of older adults being 

diagnosed with preclinical AD, even though many of them may never go on to develop 

clinical symptoms (Boenink, 2018; McCleery et al., 2018, 2019; Morris, Clark and Vissel, 

2018). This would raise a number of ethical, societal and economic issues, especially 

given the current dearth of evidence-based treatment or management options available 

to individuals meeting the criteria. Some of the authors behind the NIA-AA criteria have 

pointed out that there is not the same concern over the terms “precancerous lesion” or 

“pre-diabetes”, arguing that the unease over the term “preclinical AD” reflects the 

continued fear and stigma surrounding dementia, as well as the fact that progression 

from preclinical AD to dementia cannot currently be predicted with any accuracy on an 

individual level (Sperling, Mormino and Johnson, 2014). The prospect of causing 

significant anxiety to otherwise healthy people is concerning, and its implications are 

hard to predict (Stites, Milne and Karlawish, 2018).  

Another contentious issue of terminology is raised by the definition of “Alzheimer’s 

disease” in the NIA-AA criteria. The authors make clear that their usage of this term is 

purely biological and implies nothing about clinical symptoms. Although they provide 

alternative terminology to describe the clinical presentation of AD – either “AD with 

dementia” for individuals meeting the biomarker criteria or “Alzheimer’s clinical 
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syndrome” for individuals with unknown biomarker profiles – critics argue that the 

common usage of the term AD (as a descriptor for the clinical symptoms) is likely to 

persist, so it would be more appropriate to create a new term for the biological entity or 

simply use the A/T/N categories (Louie, 2019; McCleery et al., 2019). In addition, it is 

important to remember that most clinics around the world do not have the resources to 

investigate biomarkers. Also, the value of a broad commonly-understood term in public 

perception should not be underestimated as it underpins efforts to raise awareness and 

support patients and carers.  

While attending a feedback session on the proposed NIA-AA 2018 criteria at the 

Alzheimer’s Association International Conference 2017, I observed that the debates 

around terminology were marked by a strength of feeling that stems from the 

fundamental nature of the issues raised. It may be informative to note that these issues 

are rooted in a wider question that has received much attention from philosophers of 

science, namely “What is disease?”. The extensive literature on this question will not be 

reviewed here, but some points of interest are listed below to indicate why the 

controversies surrounding criteria for preclinical AD have no easy resolution. 

i) The identification of AD pathology in a substantial proportion of older adults 

raises the issue of the blurred boundary between ageing and disease. If such 

pathology is common, then to what extent can it be considered distinct from 

so-called “normal” ageing (Lock, 2013)?   

ii) Related to this, gerontologists debate the question of whether there is such a 

thing as “healthy ageing” or whether senescence (biological ageing) itself 

should be considered as a disease process (Bulterijs et al., 2015; Gladyshev 

and Gladyshev, 2016; Janac, Clarke and Gems, 2017). 

iii) This debate follows from the fact that it has proved impossible to agree on a 

definition of disease. No theory can draw a meaningful distinction between 

diseases and other states of sub-optimal health (e.g. injury, disability, 

malnutrition, frailty) (Murphy, 2015) or account satisfactorily for 

presymptomatic disease (Broadbent, 2014). Competing concepts of disease 

broadly fall into naturalist and constructivist camps, which disagree in 

essence over whether diseases exist in nature or are constructed based on 

human normative judgements (Murphy, 2015). 

iv) As illustrated by the concerns around of the NIA-AA criteria, these abstract 

concepts have potentially far-reaching implications for the way individuals 

view their health and identity, and the priorities of medical research, treatment 

and care (Nordenfelt, 2007). 
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2.2.2. Expected prevalence of preclinical AD in Insight 46 

A significant proportion of cognitively-normal older adults meet criteria for preclinical AD, 

with one meta-analysis putting the figure at 22% (Parnetti et al., 2019). The increasing 

accumulation of brain pathology throughout older age is well-documented. For example, 

one study estimated that the prevalence of Aβ pathology increases from 10% at age 50 

to 44% at age 90 (Jansen et al., 2015), and another study based on the ATN biomarker 

framework (see Table 2-1) found that more than 90% of people have at least one 

abnormal biomarker by the age of 85 (Jack et al., 2017). Previous studies provide a basis 

for estimating the expected prevalence of preclinical AD in Insight 46 participants (aged 

~70 years at the time of recruitment) and the estimated risk of progression to cognitive 

impairment. 

Based on a meta-analysis of nearly 3000 cognitively-normal older adults who underwent 

either Aβ-PET or cerebrospinal fluid (CSF) sampling, the prevalence of Aβ pathology at 

age 70 is around 15-25% (Jansen et al., 2015). Consistent with this, in a more recent 

population sample of 322 70-year-olds from Sweden who underwent CSF sampling, 23% 

had evidence of Aβ pathology (Kern et al., 2018). The prevalence of preclinical AD in the 

Swedish sample was 10%, according to IWG 2016 and NIA-AA 2018 criteria, meaning 

that less than half of individuals with Aβ pathology also showed evidence of tau 

pathology. 

According to a meta-analysis of studies investigating risk of progression to MCI or 

dementia in older adults, over intervals ranging from 1.3 to 10.4 years, the estimated risk 

of progression for those with Aβ pathology alone was 20%, whereas the risk for those 

with both Aβ and tau pathology was 38% (Parnetti et al., 2019). A study of participants 

(n=599) in the Australian Imaging Biomarkers and Lifestyle (AIBL) study found a similar 

result, with an 18% risk of progression for Aβ+ participants over 8 years (measures of 

tau were not available) (Dang et al., 2018). These studies suggest that the risk of 

progression is low to moderate over a timescale of up to 10 years, and therefore it may 

be expected that many older adults with Aβ pathology will not develop symptoms in their 

lifetime. A recent study of cognitively-normal older adults stratified by sex and biomarkers 

of preclinical AD produced the following estimates of lifetime risk of AD dementia for 70-

year-olds: females with no AD pathology = 17%; males with no AD pathology = 11%; 

females with Aβ pathology only = 27%; males with Aβ pathology only = 20%; females 

with Aβ pathology and neurodegeneration = 39%; males with Aβ pathology and 

neurodegeneration = 31% (Brookmeyer and Abdalla, 2018).  
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2.2.3. Implications for my research 

The Insight 46 protocol includes Aβ-PET but does not include a measure of tau 

pathology, so current criteria for preclinical AD cannot be fully applied. When data 

collection and analysis began, it may have seemed reasonable to follow other studies in 

defining a “preclinical AD group” based on Aβ pathology alone, as per the NIA-AA 2011 

criteria. However, with the publication of the updated 2018 criteria it has becomes clearer 

that this term is not justified according to current consensus. Therefore Insight 46 

participants whose Aβ pathology is above normal levels will simply be referred to as Aβ+. 

The term suggested for Aβ+ in the NIA-AA 2018 criteria – “preclinical Alzheimer’s 

pathologic change” – would not add additional clarity in this context, because it implies 

that tau pathology is absent, whereas in fact it is unknown. The same argument applies 

to the “asymptomatic at-risk” label favoured by the IWG group, which has the additional 

disadvantage of being a potential misnomer in the context of my aim to detect subtle 

cognitive changes. The concerns discussed in section 2.2.1.2 about the significance of 

terminology provide a further reason to stick to the simple descriptor of Aβ+, rather than 

applying disease terminology to healthy individuals. 

However, preclinical AD remains the consensus term to describe the research area that 

my project focuses on, and, according to current understanding, Aβ pathology plays a 

critical – if not primary – role in the development of AD dementia. Therefore, if Aβ+ 

participants show cognitive differences from Aβ- participants in Insight 46, it will be 

reasonable to draw qualified conclusions about early cognitive changes in the preclinical 

AD continuum. 

 

 

2.3.  What is the evidence that subtle cognitive decline is detectable 

in preclinical AD? 

As discussed above, the current criteria for preclinical AD are purely biological, but there 

is intense interest in understanding their relationship to cognitive decline. Being able to 

detect and track the earliest changes in cognition is of prime importance to clinical trials 

that seek to reduce the risk of conversion to MCI or dementia in individuals who are 

accumulating AD pathology. 

Studies that have compared cognitive performance in older adults with and without 

preclinical AD pathology are reviewed below. This review only considers objective 

cognitive measures; there are reports that preclinical AD pathology may also be 

associated with subjective cognitive decline (Jessen et al., 2014)  and subtle changes in 
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behaviour (Caselli et al., 2018), but these are not discussed. Another important evidence-

base relevant to subtle cognitive decline in preclinical AD comes from studies of 

presymptomatic FAD mutation carriers (e.g. Wang et al., 2015), which are not reviewed 

here, but such studies are considered in subsequent chapters where relevant to specific 

tasks in the Insight 46 cognitive battery.  

This section provides a general overview of the relationship between preclinical AD 

pathology and cognition, but does not discuss specific cognitive domains and tests. For 

the cognitive domains tested in Insight 46, more detailed discussions of the current 

evidence for pathology-related changes are provided in the introductions to the relevant 

chapters (4 to 8). As the Insight 46 cognitive battery was already in place before my 

involvement with the study, this review was not undertaken to inform the selection of 

cognitive tests, but rather to establish the consistency and magnitude of Aβ-related 

effects on cognition reported in other studies.  

The evidence for differences in cognition between cognitively-normal older adults with 

and without preclinical AD pathology was comprehensively evaluated in 2017 in a 

systematic review (Mortamais et al., 2017) and two meta-analyses (Baker et al., 2017; 

Duke Han et al., 2017). The findings of these three publications are summarised first, 

followed by a discussion of studies published between 2017 and April 2019.  

 

2.3.1. Summary of systematic reviews and meta-analyses of cognitive 

changes in preclinical AD 

Mortamais et al. (2017) summarised evidence of associations between cognition and the 

following three biomarker measures: structural brain changes, functional brain changes 

and amyloid burden. Most of the included studies did not claim to define a “preclinical 

AD” group, but investigated populations who were “at risk” of clinical AD due to the 

presence of the APOE-ε4 allele, amyloid deposition, or other markers of 

neurodegeneration such as hippocampal atrophy. The authors concluded that cross-

sectional studies generally have not observed associations between cognition and 

biomarkers of preclinical AD, although there were some positive results for episodic 

memory tests. However, they found more consistent evidence for associations between 

cognitive decline and amyloid burden in longitudinal studies with follow-ups of at least 2 

years, particularly for tests of episodic memory and for global cognitive composites.  

Baker et al. (2017) conducted a more focused meta-analysis of the effect of Aβ pathology 

on cognition in cognitively-normal older adults, as an update to a previous meta-analysis 

(Hedden et al., 2013). They concluded that in cross-sectional studies (n = 30) there was 
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evidence that Aβ+ groups showed small impairments (standardised effect sizes in the 

range d = 0.15 to 0.32) in global cognition, visuospatial function, processing speed, 

episodic memory and executive function. In longitudinal studies (n = 14) there was 

evidence that Aβ+ groups showed small to moderate cognitive decline (standardised 

effect sizes in the range d = 0.24 to 0.30) in episodic memory, visuospatial function, 

semantic memory and global cognition. Effect sizes were moderated by type of Aβ 

measure (PET or CSF), type of analysis, inclusion of covariates, and exclusion criteria 

used. 

Duke Han et al. (2017) conducted a similar meta-analysis of 61 cross-sectional studies 

comparing cognitive performance of Aβ+ and Aβ- cognitively-normal older adults 

(classified using PET or CSF), and concluded that Aβ+ individuals showed evidence of 

small impairments in global cognitive function, memory, language, visuospatial ability, 

processing speed, attention, working memory and executive functions (standardised 

effect sizes in the range d = 0.04 to 0.20). They conducted a second meta-analysis of a 

subset of studies comparing Aβ+ individuals with and without tau pathology or 

neurodegeneration (corresponding to Stages 1 and 2 of the NIA-AA 2011 criteria – see 

Table 2-1) and concluded that Aβ+ individuals with tau pathology or neurodegeneration 

were more impaired on memory measures than those without the additional pathology 

(d = 0.46). 

 

2.3.2. Studies published between 2017 and April 2019  

Between 2017 and April 2019, I appraised new publications in the field on a weekly basis. 

Some key themes from studies published during this period are highlighted below. 

Further studies have reported results consistent with the conclusions of the reviews 

discussed above, namely that cross-sectional differences in cognition between Aβ+ and 

Aβ- individuals are small and not observed in all studies, but Aβ+ individuals are 

consistently observed to show faster cognitive decline (Donohue, Sperling, et al., 2017; 

Harrington, Lim, Ames, Hassenstab, Laws, et al., 2017; Mormino et al., 2017; Baker et 

al., 2018; Rabin et al., 2018). Several studies have replicated the finding of Duke Han et 

al. that the poorest cognition and greatest cognitive decline is seen in Aβ+ individuals 

who have additional tau pathology and/or neurodegeneration (Soldan et al., 2016; Bilgel 

et al., 2018; Ho and Nation, 2018; Sperling et al., 2018). 

However, several studies have provided evidence that even sub-threshold amounts of 

Aβ pathology (below the cut-off for Aβ+) may have a detectable effect on cognition. One 

approach to studying sub-threshold Aβ pathology is to identify “amyloid accumulators” – 
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initially Aβ- individuals whose Aβ levels are rising at repeated assessments. Three 

separate cohorts of amyloid accumulators have shown evidence of declining memory 

(but not executive function) (Farrell et al., 2018; Landau et al., 2018; Leal et al., 2018), 

even in middle-aged adults (Farrell et al., 2018). Grothe et al. (2017) found similar results 

with an alternative approach that does not require longitudinal assessment: they 

developed a 4-stage model of Aβ deposition based its pattern of progressive 

accumulation in different brain regions and found an association between higher stage 

and poorer episodic memory (but not executive function) in cognitively-normal older 

adults. They noted that the staging system accounts for sub-threshold amyloid 

accumulation, as most individuals in stages 1 and 2 would be classified as Aβ-. A third 

approach is to investigate associations between cognition and a continuous measure of 

Aβ, the standard uptake volume ratio derived from Aβ-PET (SUVR, see section 3.2.2). 

In a study of 1164 cognitively-normal adults aged 50-95 years, Knopman et al. (2018) 

reported that higher SUVR was associated with lower scores on a global cognitive 

composite across its full range, including at values below the cut-point for Aβ+. Similarly, 

in a study of adults aged 40-89, Farrell et al. (2017) reported that higher SUVR predicted 

greater cognitive decline over 4 years and was a better predictor than the dichotomous 

Aβ+/ Aβ- classification.  

Taken together, these results suggest that subtle cognitive changes begin very early, 

decades before the onset of dementia. Indeed, recent preliminary estimates from the 

large Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that memory decline 

may begin about 20 years before dementia, at around the same time as amyloid 

accumulation reaches the threshold for positivity (which is about 10 years after changes 

are seen in CSF markers of Aβ and tau) (Palmqvist et al., 2018). However, it is important 

to remember that these memory declines are likely to be so subtle that they would initially 

have little or no impact on daily life; a recent analysis of nearly 3000 cognitively-normal 

individuals concluded that it is not until age 70 that Aβ+ individuals are more likely to 

have a low score (defined as below the 10th percentile) on verbal memory tests, 10 to 15 

years after the onset of Aβ+ (Jansen et al., 2018). 

  

2.3.3. Implications for my research 

The above evidence suggests that subtle cognitive decline is detectable in cognitively-

normal people with biomarker evidence of Aβ pathology. There is solid basis for the 

hypothesis that Aβ+ Insight 46 participants may have poorer cognitive performance at 

baseline, but previous cross-sectional studies have reported mixed results, so there is a 

need for greater understanding about the magnitude and nature of Aβ-related effects on 
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cognition. The evidence suggests that early changes may be detectable in multiple 

cognitive domains, with episodic memory receiving the most attention, but there is a need 

for better characterisation of the profile of subtle impairments that may emerge. 

Given recent evidence that sub-threshold Aβ pathology may have detectable effects on 

cognition, I decided to use the continuous measure of Aβ (SUVR) in my analyses as well 

as the dichotomous Aβ+/ Aβ- classification (see section 3.2.2). 

 

 

2.4. Which predictors of individual differences in cognitive 

performance are most important to account for? 

As mentioned in section 2.1, accounting for factors associated with predictable variation 

in cognition between individuals should make it easier to detect subtle cognitive 

differences that may be associated with preclinical AD pathology. Three of the most 

obvious – age, sex and education – are highlighted in Figure 2-1, and discussed briefly 

below. As extensive research has been conducted on predictors of cognitive function 

across the life-course in the NSHD, Insight 46 has the advantage of being able to account 

for predictable variation in the cognitive performance of its participants; a summary of 

these key predictors follows in section 2.4.2. 

 

2.4.1. Factors that have been shown to predict cognitive performance in 

other samples of older adults 

This section contains some brief comments on the effects of age, sex and education on 

cognition in older adults. For each of the cognitive tests used within Insight 46, more 

detailed summaries of the literature on sex differences, ageing effects, and associations 

with education can be found in the introductions to the relevant chapters (4 to 8).  

Most cognitive functions decline with age – notably memory, attention, processing speed 

and executive functioning – although there is considerable variability between individuals 

and some aspects of cognition are generally improved or maintained with age, such as 

semantic knowledge and procedural skills (Glisky, 2007). The association between age 

and accumulation of AD pathology means that these two factors can confound each 

other in analyses if not accounted for. For example, several studies have reported that 

the estimation of ageing effects on cognition in older adults is substantially reduced when 

accounting for brain pathology, particularly for measures of memory, although stronger 

ageing effects on executive function remain (Hassenstab et al., 2016; Hedden et al., 
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2016; Harrington, Lim, Ames, Hassenstab, Rainey-Smith, et al., 2017; Hohman et al., 

2017; Harrington et al., 2018). 

Sex differences in cognition are a widely-researched and somewhat controversial topic. 

The commonly-held view is that males tend to perform better on spatial tasks and women 

on verbal tasks, although this is a simplification of a complex picture (Andreano and 

Cahill, 2009). Reports of superior verbal memory in women and superior visuospatial 

abilities in men are discussed in Chapters 4 and 5 respectively, in the context of verbal 

and visual memory tasks used in Insight 46. However, it is important to note here that 

sex differences in cognition are of particular interest to the field of Alzheimer’s research 

because women are disproportionately affected by the disease, making up 65% of those 

living with dementia (Prince et al., 2014). Whether or not this can be fully explained by 

women’s longer life expectancy has not yet been conclusively established (Medeiros and 

Silva, 2019). There is evidence of sex differences in the relationships between risk 

factors and the development of dementia, including APOE-ε4 (Neu et al., 2017), lifestyle 

factors (Norton et al., 2014; Xu et al., 2015; Podcasy and Epperson, 2016), and 

childhood intelligence (Snowdon et al., 1996; Whalley et al., 2000; McGurn et al., 2008; 

Russ et al., 2017; Huang et al., 2018).  

Associations between education and cognitive performance are widely observed across 

the life-span. For example, the US Alzheimer’s Disease Centers’ program has provided 

normative data for over 3000 clinically-normal older adults (~60-90 years) on cognitive 

tests that are widely-used in Alzheimer’s research, showing that more years of education 

predicted better performance on all tests (Weintraub et al., 2009; Shirk et al., 2011). 

Similarly, a study of over 7000 adults with normal cognition or MCI (age range ~40-90 

years) found a verbal memory advantage for those with higher education (Jansen et al., 

2018). The degree to which educational attainment reflects cognitive ability is a matter 

of ongoing debate (see below), but it is clear that accounting for some measure of prior 

cognitive ability is important when seeking to identify subtle cognitive impairment or 

decline associated with preclinical AD. This may be particularly necessary when studying 

individuals with a high baseline level of cognitive ability, because they may experience 

significant decline over a long period before their performance falls below the normal 

range for their age (Rentz et al., 2004, 2007). 

 

2.4.2. Factors that have been shown to predict cognitive performance 

across adulthood in the NSHD cohort 

Cognition has been assessed throughout childhood and adulthood in the NSHD. Details 

of the cognitive measures collected at different time-points are provided in section 3.2.1. 
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Measures of childhood cognitive ability have proved consistently predictive of cognition 

in middle age and later life (Richards and Sacker, 2003; Richards et al., 2004, 2019; 

Davis et al., 2017; Philippou et al., 2018) as well as a range of physical health parameters 

such as grip strength, standing balance and chair rise speed (Kuh et al., 2009; Cooper, 

Richards and Kuh, 2017), healthy dietary choice and exercise (Richards, Stephen and 

Mishra, 2010; Philippou et al., 2018), and mental health outcomes (Koike et al., 2017). 

Path models of cognition at ages 53 and 69 in the NSHD have shown that childhood 

cognitive ability has both direct and indirect effects on later-life cognition, with the indirect 

effects coming from its associations with educational attainment and adult 

socioeconomic position (defined according to occupational complexity), which are 

themselves predictors of cognition (Richards and Sacker, 2003; Richards et al., 2019). 

Importantly, educational attainment and adult socioeconomic position also showed 

independent effects on later-life cognition at both ages, unaccounted for by childhood 

cognitive ability. Childhood cognitive ability, educational attainment and adult 

socioeconomic position were all partly explained by mother’s educational attainment and 

father’s socioeconomic position, but neither of these two variables showed a direct path 

to the later-life cognitive measures (Richards and Sacker, 2003; Richards et al., 2019). 

The finding of an independent effect of education on later-life cognition makes an 

important contribution to the debate about the extent to which general cognitive ability, 

or IQ, determines cognitive function throughout life, suggesting that education has a 

causal influence on subsequent cognition (Richards and Sacker, 2011). This issue is 

covered in more depth when discussing the results of my analyses (see Chapter 10). 

 

2.4.3. Implications for my research 

One of the key advantages of Insight 46 is that participants were all born during the same 

week, so the problem of disentangling the effects of age and brain pathology is 

essentially avoided. However, because there is a range in “age at assessment” due to 

data collection being carried out over 2.6 years (see section 3.6), potential ageing effects 

cannot be ruled out so should still be accounted for.  

Insight 46 also has a unique advantage afforded by the availability of the life-course 

factors discussed above (childhood cognitive ability, educational attainment and adult 

socioeconomic position): predictable variation in cognition can be accounted for much 

more robustly than in most other studies which use educational attainment as a proxy 

for prior cognitive ability. This should increase the sensitivity of the cognitive measures 

to detect subtle differences that may be associated with Aβ pathology, as well as 

providing an opportunity to investigate and quantify the effects of childhood cognitive 
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ability, educational attainment and adult socioeconomic position on cognitive measures 

that are widely-used in research studies and clinical trials in preclinical AD. 

 

2.5. Which cognitive measures are most sensitive to subtle 

cognitive decline in preclinical AD? 

When the Insight 46 cognitive battery was designed, two approaches for improving the 

sensitivity of cognitive measures were adopted: 1) cognitive composites; 2) 

computerised tests with fine-grained outcome measures. A brief background to these 

two approaches is provided below.  

 

2.5.1. Cognitive composites 

A cognitive composite is a single score formed by combining scores from multiple 

cognitive tests. Cognitive composites are being used as outcome measures in several 

current clinical trials in preclinical AD (Weintraub et al., 2018) and the US Food and Drug 

Administration has recently indicated openness to cognitive composite end-points 

(Kozauer and Katz, 2013). The rationale for their use in this context is that they may be 

sensitive to cognitive decline when effects are too small to be detectable on individual 

tests; several studies have demonstrated that composites are particularly sensitivity to 

cognitive decline in cognitively-normal individuals meeting criteria for preclinical AD (e.g. 

(Ayutyanont et al., 2014; Langbaum et al., 2014; Mormino et al., 2017). In the context of 

clinical trials, an advantage of using a cognitive composite as a single outcome measure 

(rather than multiple cognitive outcomes) is that it reduces the likelihood of type 1 errors 

due to multiple comparisons (Ayutyanont et al., 2014; Langbaum et al., 2014; Jonaitis et 

al., 2019).  

There are two main approaches to composites – either to design them based on a priori 

hypotheses about which cognitive domains are affected earliest in the disease process 

(e.g. Donohue et al., 2014; Lim, Snyder, et al., 2016; Soldan et al., 2016; Bateman et al., 

2017; van Bergen et al., 2018; Wang et al., 2018) or to derive them empirically from 

cognitive data (e.g. (Ayutyanont et al., 2014; Langbaum et al., 2014; Donohue, Sun, et 

al., 2017). 

Further details of a widely-used composite – the Preclinical Alzheimer Cognitive 

Composite (PACC, (Donohue et al., 2014)) – are provided in Chapter 4, along with a 

discussion of evidence for its sensitivity to subtle cognitive decline in preclinical AD. 
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2.5.2. Computerised tests 

Computerised tests offer scope to generate a range of precise outcome measures such 

as reaction times in milliseconds. Other advantages of computerised tests are ease of 

scoring, greater standardisation between testers, and the potential for presentation of 

items to be adapted automatically according to a participant’s performance (Silverberg 

et al., 2011). Computerised assessments offer the potential for remote testing, which can 

be of great value in studies seeking to screen or recruit large numbers of people, such 

as the PROTECT study which aims to administer repeated online cognitive assessments 

to at least 50,000 older adults over ten years (http://www.protectstudy.org.uk). It also 

allows the measurement of cognitive function in real-world environments (Sliwinski et al., 

2018).  

Even for relatively simple tasks where responses could be scored manually, 

computerised administration can provide additional information on the process by which 

an individual completes a task. For example, eye-tracking measures could be recorded 

during a visual recognition task (Bott et al., 2018), or a digital pen could reveal 

organisational strategies for completing a drawing task (Davis et al., 2014). Evidence 

suggests that the earliest stages of cognitive decline are characterised by the adoption 

of compensatory strategies (Jessen et al., 2014), so these kind of ‘process measures’ 

are potentially useful for detecting individuals who may be working harder or thinking 

longer to achieve the same result, perhaps before showing more overt decline (Davis et 

al., 2014).  

The field of cognitive assessment in preclinical AD is increasingly moving towards using 

computerised assessments for the reasons mentioned above (Silverberg et al., 2011; 

Rentz et al., 2013; Ritchie et al., 2017; Hassenstab et al., 2018). 

 

2.5.3. Implications for my research 

Given that cognitive composites and computerised assessments are increasingly being 

used in preclinical AD research, it is important to evaluate how these measures compare 

to individual scores from standard paper-and-pencil cognitive tests in Insight 46. This 

should contribute to the evidence base on the most sensitive cognitive measures to use 

as outcomes in clinical trials. 

 

 

http://www.protectstudy.org.uk/
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2.6. Other influences on cognitive decline 

It is important to be aware that other brain pathologies influence cognitive performance, 

as well as Aβ pathology. The rich dataset of biomarker and genetic measures collected 

in Insight 46 provides the opportunity to investigate some of these other pathologies and 

genetic risk factors. My aim in including some of these variables in my models of 

cognitive performance was partly to increase the sensitivity of my analyses to the effects 

of Aβ by accounting for potential confounding effects of other variables, but also to 

generate new evidence about their associations with cognition. The three variables that 

are explored throughout this thesis are APOE-ε4, whole brain volume and global white 

matter hyperintensity volume (WMHV). As these variables are not the primary focus of 

my research, I have not conducted a comprehensive review of evidence for their 

associations with cognition, but some introductory comments are provided below. 

 

2.6.1. APOE-ε4 

The strongest genetic risk-factor for sporadic AD is the apolipoprotein gene (APOE), 

which occurs in three different alleles: ε2, ε3 and ε4. Each person has 2 copies, with the 

most common combination being ε3/ε3 (60% of the population (Alzheimer’s Society, 

2016a)). The ε4 allele is associated with increased lifetime risk of developing AD in a 

dose-dependent manner: ε4-heterozygotes have a fourfold increase in risk, and ε4-

homozygotes have a tenfold increase in risk (compared to ε3-homozygotes) (Alzheimer’s 

Society, 2016a). The mechanism for this increased risk is understood to relate to reduced 

clearance of Aβ in APOE-ε4 carriers, resulting in accumulation of a higher burden of Aβ 

plaques (Kline, 2012). Among older adults, APOE-ε4 carriers are around twice as likely 

as non-carriers to be Aβ+, with around 50% of ε4 carriers aged ~50-90 years estimated 

to be Aβ+ (Rowe et al., 2007; Jack et al., 2017). 

The interactions between APOE-ε4 and Aβ on cognition are yet to be fully understood. 

Many studies investigating associations between APOE-ε4 and cognition have not 

included measures of Aβ, making it impossible to know whether Aβ may account for 

cognitive deficits observed in ε4-carriers, although evidence for such deficits is mixed 

(see O’Donoghue et al. (2018) for a review). Several studies that were able to account 

for Aβ have reported that Aβ- ε4-carriers seem to experience normal cognitive aging, 

suggesting that Aβ is necessary for memory decline (Lim, Laws, et al., 2016; Lim et al., 

2018). However, there is evidence that Aβ and APOE-ε4 may interact such that clinically-

normal Aβ+ ε4-carriers experience faster memory decline than Aβ+ non-carriers 

(Mormino et al., 2014; Lim et al., 2015) and have a higher risk of progression to MCI or 

dementia (Dang et al., 2018). 
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Beneficial effects of APOE-ε4 have also been reported, particularly during youth, with 

growing evidence that APOE-ε4 is associated with a diverse range of survival 

advantages including resistance to certain infections, increased fertility, increased fitness 

in infancy and slightly superiority in some aspects of cognition (Duke Han and Bondi, 

2008; Zetterberg et al., 2009; Tuminello and Duke Han, 2011; Smith, Ashford and 

Perfetti, 2019). This is an example of antagonistic pleiotropy – the principle that some 

genes have both beneficial and detrimental effects, with the detrimental effects generally 

manifesting after reproductive age (Austad and Hoffman, 2018). However, the putative 

beneficial effects of APOE-ε4 on cognition in earlier life are controversial and the 

literature has not yet reached a consensus (see reviews in (Tuminello and Duke Han, 

2011; O’Donoghue et al., 2018)). 

 

2.6.2. White matter hyperintensity volume (WMHV) 

White matter hyperintensities are commonly seen on brain MRI scans of older adults and 

reflect lesions caused by cerebral small vessel disease (Prins and Scheltens, 2015). 

White matter lesions are considered to be the primary pathology of vascular dementia – 

the second most common type of dementia after AD (Alzheimer’s Society, 2018) – but 

are also commonly seen in patients with AD (Prins and Scheltens, 2015; Alosco et al., 

2018). Greater WMHV in cognitively-normal older people is associated with increased 

risk of dementia (Debette and Markus, 2010; Payton et al., 2018) and with decline in 

cognition, particularly processing speed and executive function, although the 

associations with cognition generally appear to be weak (Gunning-Dixon and Raz, 2000; 

De Groot et al., 2002; Oosterman et al., 2004; Prins et al., 2005; van Dijk et al., 2008; 

Prins and Scheltens, 2015; Kaskikallio et al., 2019). 

 

2.6.3. Whole brain volume 

Loss of brain volume, or atrophy, occurs gradually with age, but accelerated atrophy is 

a feature of neurodegenerative diseases that tracks closely with the progression of 

symptoms (Fox and Schott, 2004). Accelerated atrophy typically occurs relatively late in 

the AD pathological continuum, some years after accumulation of Aβ and tau pathology 

(Jack et al., 2013). Therefore, evidence of significant atrophy is not expected among 

Insight 46 participants as they are at an age when those who are destined to develop 

dementia are still likely to be many years from symptoms (Prince et al., 2014).  

Aside from atrophy, another area of interest is whether brain volume is associated with 

cognitive ability at younger ages. This possibility has received attention in the long-
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running debate about the neural basis for differences in intelligence (McDaniel, 2005), 

and two recent studies of large samples of young adults have reported that larger brain 

volume is weakly associated with better cognition, notably in terms of faster processing 

speed (Magistro et al., 2015; Takeuchi et al., 2017). 

 

 

2.7. Research Questions and Hypotheses 

 

2.7.1. Research Questions 

My research sought to address three broad questions: 

i) What are the patterns of performance on each cognitive test?  

If the cognitive tests used in Insight 46 are to have future application as markers 

of preclinical AD, it is important to confirm that the tasks work appropriately in this 

age group (e.g. are there any floor or ceiling effects?) and to describe the normal 

range of performance. As the computerised tests have several different 

conditions (e.g. easier and harder levels) and outcomes, (e.g. speed and 

accuracy), identifying key outcome measures that may be particularly sensitive 

to subtle cognitive decline requires an understanding of patterns of performance 

across the various aspects of each task, such as “Is there a trade-off between 

speed and accuracy?” or “To what extent is memory recall affected by the number 

of items to be remembered?”. 

 

ii) What are the relationships between demographic and life-course predictors 

and performance on the cognitive tests? 

As discussed in section 2.4, I sought to understand more about predictors of 

cognitive performance at age ~70 by investigating the effects of childhood 

cognitive ability, education, adult socioeconomic position, age at assessment, 

and sex. As well as aiming to generate novel evidence about predictors of 

performance on the specific cognitive tests used in Insight 46, the purpose of this 

was to be able to account for predictable variation between individuals, which 

may increase the sensitivity of the tests to detecting subtle cognitive changes 

associated with brain pathology.  
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iii) What are the relationships between biomarkers and genetic risk factors for 

AD and performance on the cognitive tests?  

As discussed in section 2.6, I aimed to investigate whether the following 

measures were associated with cognitive performance: Aβ pathology 

(dichotomous amyloid status and continuous SUVR), whole brain volume, global 

WMHV and APOE-ε4. 

 

2.7.2. Hypotheses 

Overarching hypotheses are listed below. Specific hypotheses for each cognitive test are 

stated in the relevant chapters (4-8): 

 

i) Higher childhood cognitive ability, educational attainment and adult 

socioeconomic position will show independent associations with better cognitive 

performance. 

ii) As the sample size of Insight 46 (n = 502) is large for a neuropsychological study, 

subtle sex differences in cognition will be detectable. 

iii) Participants with elevated Aβ deposition will show evidence of subtle cognitive 

deficits.  

iv) WMHV and whole brain volume will show evidence of weak associations with 

cognition, particularly processing speed.  

v) Composite and computerised measures will be more sensitive to brain pathology 

than standard paper-and-pencil cognitive tests. 

Given the mixed evidence for effects of APOE-ε4 on cognition independent of Aβ (see 

2.6.1), I did not make an overarching hypothesis about the effects of APOE-ε4, but I 

made a specific hypothesis for one of the cognitive tasks where previous studies have 

reported an effect (see Chapter 5). 
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3. GENERAL METHODOLOGY 
 

3.1. Recruitment and data collection 

The target sample for Insight 46 was NSHD participants who had a specific set of life-

course data available including attendance at a clinic visit at age 60-64, at least one 

measure of childhood cognition, and various measures of physical health and lifestyle 

during adulthood – full details have been published in the protocol paper (Lane et al., 

2017). Additionally, participants were required to be willing to attend a clinic-based visit 

at UCL and to have no contraindications to MRI or PET, such as severe claustrophobia, 

or metal within the body (e.g. pacemakers and intracranial clips). Participants were sent 

an invitation by post and then screened by telephone if interested. A recruitment flow-

chart is provided in Figure 3-1 and further details have been published (Lane et al., 2017; 

James et al., 2018). 

502 participants were recruited to Insight 46 and attended a baseline assessment 

between May 2015 and January 2018. Ethical approval for Insight 46 was granted by the 

National Research Ethics Service (NRES) Committee London (14/LO/1173). All 

participants gave written informed consent.  

The study protocol included: cognitive tests; a clinical interview with a neurologist; a 

structured physical and neurological examination; assessment of visual, auditory and 

olfactory function; self-administered questionnaires measuring subjective cognitive 

decline, anxiety, dental health, handedness and sleep; collection of blood and urine for 

clinical and genetic biomarker identification; neuroimaging comprising simultaneous 

acquisition of β-amyloid PET and MRI data. Each participant had an informant who 

completed the AD8 interview, a brief screening tool for dementia (Galvin et al., 2005). 

Further details are provided in section 3.2 and in the protocol paper (Lane et al., 2017). 

While all assessments were typically completed on one day, 62 participants had to have 

their scans rescheduled for a later date, with a median interval of 49 days (IQR = 26 – 

77; range = 1 – 216). For the purpose of calculating age at assessment, the date of 

cognitive testing was used. 
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Figure 3-1. Flowchart of recruitment and data acquisition 

The specific dataset refers to a set of life-course data which formed the original criteria for 
Insight 46 eligibility – see text for further details. To reach our target sample size, these criteria 
were relaxed to remove the requirement for a previous measure of lung function, smoking or 
physical exercise, enabling recruitment of a further 62 individuals. Details of the biomarker 
measures are provided in section 3.2.2. 

a In most cases, this was due to erroneous segmentation of vascular abnormalities such as 
stroke or demyelination. 

FLAIR = fluid attenuated inversion recovery MRI; MR = magnetic resonance; PET = positron 
emission tomography  

Active sample at 
age 69               

n = 2689 

Available specific 
dataset                    

n = 1322 

Willing to attend 
London-based clinic 

n = 779 

Invited for study 
participation            

n = 841  

Attended 
research centre                         

n = 502 

Completed 
scan                 

n = 471 

No scan  

n = 31 

Did not attend 
research centre          

n = 339 

Unknown 
willingness   

n = 302 

Not willing to attend 
London-based clinic     

n = 241 

Incomplete 
dataset               

n = 1367 

n=62 

Complete 
biomarker data    

n = 445 

Failed acquisition of PET data n=8 
MR images failed quality control n=3 

FLAIR images failed quality control n=2 

White matter segmentation failure 
a
 n=11 

No APOE data available n=2 

Claustrophobia n=25 
PET/MRI incompatibility issues n=4 

Recent illness n=1 
Withdrawal before being rescheduled n=1 

Incomplete 
biomarker data     

n = 57 

Refusals n=204 
Temporary refusals n=28 

Not eligible n=69 
Non-response n=12 
Deaths notified n=3 

Cancelled visits n=23 
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3.2. Materials and measures 

 

3.2.1. Cognitive Battery 

As my research focuses on the cognitive data, the methods for its collection, processing 

and analysis are described in detail in this section.  

The cognitive battery was designed to have the following characteristics: 1) to be 

complementary to prior NSHD cognitive assessments, the most recent of which included 

the Addenbrooke’s Cognitive Examination III (Hsieh et al., 2013), a word-list learning 

task and a timed letter search task (Silverwood et al., 2014); 2) to have a total duration 

of less than 90 minutes; 3) to include standardised cognitive tests to allow results to be 

compared with normative data; 4) to include experimental computerised cognitive tests 

that might be more sensitive to subtle cognitive decline; 5) to be informed by a review of 

protocols and results of current large-scale initiatives and clinical trials in preclinical AD 

(including the A4 trial (Sperling et al., 2014) and the Alzheimer’s Prevention Initiative 

(Reiman et al., 2011)).  

An overview of the cognitive tests in the Insight 46 battery is provided in Table 3-1. Four 

of these tests are standardised clinical neuropsychological tests that have been widely 

used in studies of preclinical AD and the others are more novel tests. To facilitate 

comparison of the Insight 46 battery with the cognitive tests administered previously in 

NSHD, I compiled a table which was included in the Insight 46 protocol paper (Lane et 

al., 2017); an updated copy is included here which contains more citations of recent 

relevant publications (Table 3-2).  

The order of tests within the Insight 46 cognitive battery was designed to allow for the 

necessary delay times between the various recall trials of the memory tests (Table 3-3).  

Chapters 4 to 9 of this thesis present my work analysing and interpreting the results of 

these cognitive tests, with the exception of the Instructionless Eyetracking and Irrelevant 

Distractor tests. These two tests were only performed on sub-samples of the Insight 46 

cohort because the Irrelevant Distractor test was dropped from the battery and replaced 

by the Instructionless Eyetracking test in February 2017 (mid-way through data 

collection). This change was made because many participants found the Irrelevant 

Distractor test very difficult due to its fast presentation speed: 3% of participants declined 

to attempt the task after struggling with the practice, and 48% of those who attempted it 

had error rates of greater than or equal to 50% (the level that would be achieved by 

chance) in at least one part of the task. Therefore, in view of the fact that the task was 
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unpopular with participants and seemed unlikely to yield informative results, I decided 

along with my supervisors to remove it. The Instructionless Eyetracking test was chosen 

as a replacement based on evidence that eye movement patterns may reveal early 

changes in  memory, attention, visuospatial and executive processes (Pereira et al., 

2014; Primativo et al., 2017)  Data from the Instructionless Eyetracking test have not yet 

been analysed. These two tests are not discussed further in this thesis. 
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Table 3-3. Order and timings of the Insight 46 cognitive battery 

Cognitive test Mean duration (minutes) 

Circle-tracing pre-exposure 8 

Logical Memory Immediate Recall 2 

Matrix Reasoning 10 

Instructionless Eyetracking (or Irrelevant Distractor for 
participants tested before 08/02/17) 

13 

Logical Memory Delayed Recall 1 

FNAME-12 trials 1 and 2 8 

Choice Reaction Time and Response Inhibition 10 

FNAME-12 trial 3 3 

Digit-Symbol Substitution 3 

“What was where?” 10 

Circle-tracing and Serial Subtraction 10 

FNAME-12 trial 4 4 

 

Note: mean durations are based on a sample of 51 participants who all completed the Irrelevant 
Distractor test 

 

 

3.2.2. Biomarker measures and genetic risk factors 

Full details of biomarker measures collected in Insight 46 are provided in the protocol 

paper (Lane et al., 2017). Details are provided below for only those variables which I 

have used in subsequent analyses.  

β-amyloid PET and MRI data were collected simultaneously during a 60-minute scanning 

session on a Biograph m MR 3 T PET/MRI scanner (Siemens Healthcare, Erlangen), 

with intravenous injection of a β-amyloid PET ligand, 370 MBq florbetapir F18 (Amyvid). 

Aβ deposition was quantified using a global Standard Uptake Volume Ratio (SUVR), 

using 10 minutes of static steady state Florbetapir data ~50 mins post-injection. The 

SUVR was calculated from a cortical grey matter composite (composed of frontal, 
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temporal, parietal, and cingulate regions), with a reference region of eroded subcortical 

white matter. Aβ-PET attenuation correction was performed using pseudo-CT correction. 

Due to technical issues, only console attenuation correction was available for 26 

participants. For these participants a pseudo-CT corrected value was imputed based on 

their console value.  

A cut-point for Aβ positivity was determined using a mixture model to define two 

Gaussians, and using the 99th percentile of the lower (Aβ negative) Gaussian, at SUVR 

> 0.6104. This gives a dichotomous variable of amyloid status: Aβ+ (elevated levels of 

β-amyloid) or Aβ- (normal levels of β-amyloid). 

Volumetric T1-weighted and FLAIR (fluid attenuated inversion recovery) MR images 

underwent visual quality control, before being processed using automated pipelines 

(Lane et al., 2017). Whole brain volume was generated from high resolution 3D T1-

weighted MRI using automated segmentation with manual editing (Leung et al., 2011). 

Total intracranial volume (TIV) was calculated using statistical parametric mapping 

(SPM) software (SPM12; http://www.fil.ion.ucl.ac.uk/spm) (Malone et al., 2015). Global 

white matter hyperintensity volume (WMHV) was generated from T1-weighted and 

FLAIR MRI using Bayesian Model Selection (BaMoS), an automated segmentation 

algorithm based on a multivariate Gaussian mixture model (Sudre et al., 2015), followed 

by visual quality control, generating a global WMHV including subcortical grey matter but 

excluding infratentorial regions. 

APOE genotyping was conducted at LGC, Hoddesdon UK. For the analyses presented 

in this thesis, participants were classified into two categories based on the presence of 

the APOE-ε4 allele: ε4-carriers and non-carriers. 

 

 

3.2.3. Major neurological and psychiatric conditions 

Participants were coded as having a major neurological or psychiatric condition 

according to the criteria in Table 3-4. Participants not meeting any of these criteria are 

hereafter referred to as cognitively normal and represent a sample who might be 

considered eligible for a clinical trial of cognitively healthy individuals, free from possible 

confounding comorbidities. This does not imply that all participants with a major 

neurological or psychiatric condition necessarily had a measurable cognitive impairment.  

http://www.fil.ion.ucl.ac.uk/spm
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Table 3-4. Criteria for major neurological or psychiatric conditions 

 

 

 

3.2.4. Life-course data 

As discussed in sections 2.4.2 and 2.4.3, three key predictors of life-time cognition 

among NSHD participants are childhood cognitive ability, educational attainment and 

adult socioeconomic position. These variables are defined as follows, using definitions 

used in many previous analyses from the NHSD (e.g. Richards and Sacker (2003); 

Rawle et al. (2018)). 

Childhood cognitive ability was measured at age 8 using four tests of verbal and non-

verbal ability devised by the National Foundation for Education Research (Pigeon, 1964) 

(see Table 3-2). The sum of scores from these four tests was standardised into a z-score 

representing overall cognitive ability. If these data were missing, the standardised score 

 Clinical evidence of dementia, Parkinson’s disease and other neurodegenerative 

disorder 

 Psychiatric disorder requiring anti-psychotic medication 

 Depression requiring electroconvulsive shock therapy 

 Epilepsy requiring active treatment 

 Radiological evidence of traumatic brain injury or major neurosurgery 

 Clinical diagnosis or radiological features of multiple sclerosis  

 Clinical diagnosis of stroke, or radiological evidence of cortical ischaemia or 

haemorrhage consistent with previous cortical stroke  

 Radiological evidence of possible brain malignancy 

 Mild cognitive impairment (MCI) defined as follows, based on published criteria 

(Petersen et al., 2013):   

o No clinical evidence of dementia  

o AND participant concern regarding their cognition (memory or cognitive 

difficulties more than other people the same age, or if they felt they would 

seek medical attention regarding their difficulties) and/or informant 

concern regarding the participant’s cognition (AD8 score ≥ 2)  

o AND objective evidence of either an amnestic (Logical Memory delayed 

recall ≥ 1.5 SD below the mean) and/or non-amnestic deficit (Digit-

Symbol Substitution score ≥ 1.5 SD below the mean). These cognitive 

tests were chosen for defining a cognitive deficit on the basis of their 

normal distribution across the entire cohort. 
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from the tests at age 11 was used (or if this was missing, the standardised score from 

the tests at age 15). Note that these scores were standardised for the full cohort 

(N=5362) rather than the Insight 46 sample. 

Educational attainment was recorded at age 26. Highest educational or training 

qualification achieved was classified using the Burnham scale (Department of Education 

and Science, 1972) and grouped into five categories: no qualification, below O-levels 

(vocational), O-levels and equivalents, A-levels and equivalents, higher education 

(degree and equivalents). 

Adult socioeconomic position (SEP) was derived from participants’ own occupation 

at age 53, or earlier if this was missing. Occupations were coded according to the UK 

Registrar General’s Standard’s Occupational Classification, then classified into six 

categories: unskilled, partly skilled, skilled manual, skilled non-manual, intermediate, 

professional. 

 

 

3.3. Completion rates and reasons for missing data 

Completion rates for the biomarker measures and reasons for missing biomarker data 

are shown in Figure 3-1.  

Figure 3-2 shows completion rates for cognitive assessments and Table 3-5 gives the 

reasons for missing cognitive data.  
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Figure 3-2. Venn diagram of completion rates for Insight 46 cognitive tests  

As shown here, 470 out of 502 participants completed all of the cognitive tests. There were no 

missing data for the Logical Memory, MMSE, Matrix Reasoning and Choice Reaction Time tests, 

but all other tests had some missing data. 
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Table 3-5. Reasons for missing cognitive data 

Cognitive test Reason for missing data 
Number of 
participants 

Circle-tracing 

Technical problems 11 

Participant unable due to tremor in hands 3 

Participant declined to complete task 4 

Lack of time* 1 

Response Inhibition Data file not saved 1 

“What was where?” 

Not administered due to technical problems  10 

Participant started the task but declined to 
complete it 

1 

Participant had recently had hand surgery 
and could not operate the touchscreen 

1 

Lack of time* 4 

FNAME-12 

Technical problems 1 

Data from this task are partially missing – the 
fourth trial was administered in place of the 
third trial, because the time elapsed since the 
second trial was already 30 minutes.* 

1 

Digit-Symbol Participant declined to attempt this task 1 

 
* Three participants took longer than usual to complete tasks due to neurological conditions 
affecting cognition. The reason for the fourth participant who ran out of time is unknown. 
 
 

 

3.4. Processing of cognitive data 

Test scores collected on paper (MMSE, Matrix Reasoning, Logical Memory, Digit-

Symbol, FNAME-12) were inputted into XNAT, a customised web-based database 

(www.xnat.org). XNAT was also used to record reasons for any missing data. After 

consultation with the various authors of the computerised cognitive tests, I wrote 

programmes in Stata v15 (StataCorp, 2017) to clean the data and generate the outcome 

variables of interest, described in the relevant chapters (4 to 9).  

  

http://www.xnat.org/
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3.5. Data analysis 

Chapters 4 to 8 report the results of the cognitive tests administered to Insight 46 

participants. In each chapter, analyses are split into two parts. Part 1 addresses the first 

and second research questions posed in section 2.7, namely “What are the patterns of 

performance on each cognitive test?” and “What are the relationships between 

demographic and life-course predictors and performance on the cognitive tests?”. Part 2 

addresses the third research question posed in section 2.7, namely “What are the 

relationships between biomarkers and genetic risk factors for AD and performance on 

the cognitive tests?”. My approach to these analyses is described below in sections 3.5.1 

and 3.5.2, followed by an explanation of the statistical models for the computerised tests 

(section 3.5.3).  

 

All analyses were conducted in Stata v15 (StataCorp, 2017). Results were considered 

statistically significant if the chance of a false positive finding was below 0.05. 

 

3.5.1. Patterns and predictors of performance 

Most of the computerised cognitive tests generate trial-by-trial outcome data (e.g. 

reaction time for each individual response). In order to explore patterns of performance 

in as much detail as possible, these trial-by-trial data were used rather than summary 

scores, and relationships between different task outcomes (e.g. speed and accuracy) 

were explored. 

For analyses investigating the effects of demographic and life-course predictors on 

cognition, all participants were included. The rationale for including all participants (rather 

than excluding those with a major neurological or psychiatric condition) was to be able 

to describe the predictors of cognition in as representative a sample as possible. 

Neurological and psychiatric conditions are not uncommon among older people, and 

their inclusion takes advantage of a key strength of Insight 46: it is a population-based 

sample, likely to be more representative of the general population than most studies in 

ageing and AD research (see section 10.3.1 for a discussion of the representativeness 

of Insight 46 and comparison with other studies). However, as many neurological and 

psychiatric conditions affect cognition, it is important to account for these effects which 

may confound the effects of other predictors (for example, a lifelong condition affecting 

cognition is likely to be associated with lower childhood cognitive ability and educational 

attainment). Therefore, a dichotomous factor coding for the presence of a major 

neurological or psychiatric condition (yes vs. no) was included in all analyses. While the 

different neurological and psychiatric conditions are associated with different profiles of 
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cognitive impairment, it was not appropriate to compare one condition against another 

due to the very small numbers of participants with each condition (see section 3.6). 

Multivariate models were used since I was interested in determining the independent 

effects of each predictor (e.g. the effect of educational attainment accounting for 

childhood cognitive ability and all other predictors). Predictors in the models were sex, 

age at assessment, childhood cognitive ability, education, adult socioeconomic position 

and presence of a neurological or psychiatric condition. (See section 3.2.4 for definitions 

of variables.)  Education was treated as a continuous variable with values of 1 to 5 

corresponding to the five categories defined in section 3.2.4. Similarly, adult 

socioeconomic position was treated as a continuous variable with values of 1 to 6. 

 

3.5.2. Associations with biomarkers and APOE-ε4 

The second analysis section of each chapter investigates associations between 

cognitive performance and the following biomarkers measures: Aβ pathology, whole 

brain volume, WMHV and APOE-ε4. (See sections 2.6 and 3.2.2 for background and 

definitions of these measures). In terms of Aβ pathology, I chose to focus primarily on 

amyloid status (Aβ+ vs. Aβ-), since it identifies those whose Aβ burden is abnormal and 

is integral to standard criteria for preclinical AD (see section 2.2). However, I also reran 

all analyses using SUVR, the continuous measure of Aβ burden, instead of dichotomous 

amyloid status, in recognition of the fact that the cut-point for Aβ+ is arbitrary and sub-

threshold accumulation of Aβ may have an impact on cognition (see section 2.3.3). To 

check whether associations between SUVR and cognition were sensitive to the inclusion 

of the imputed SUVR values (see section 3.2.2), these analyses were additionally rerun 

excluding the 26 participants with imputed data. 

Participants meeting criteria for major neurological or psychiatric conditions (see section 

3.2.3) were excluded from these analyses, as the aim was to investigate whether the 

cognitive tests may be sensitive to pathology in cognitively-normal individuals. The 

cognitively-normal sub-sample represents a non-demented, non-MCI population free 

from known possible confounding comorbidities, who might be considered eligible for a 

clinical trial targeting preclinical AD.  

Since I was interested in determining the relative contributions of each biomarker to the 

cognitive outcome measures, and I know that they are not necessarily independent, 

multivariate models were used so that the reported effects of each biomarker are 

adjusted for all the others. The models also included the factors tested in the first section 
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(sex, age at assessment, childhood cognitive ability, education and adult socioeconomic 

position).  

 

3.5.2.1. Selection of summary outcome variables 

As the computerised tests are complex with many trials and various different conditions 

and outcomes, I aimed to identify a few summary outcomes for each test that capture 

the key aspects of performance. Reducing the data to a small number of summary 

outcomes is desirable as it allows me to describe associations between biomarkers and 

participants’ overall pattern of performance (as opposed to their trial-by-trial 

performance) and enables key outcomes to be compared across the different cognitive 

tests in the Insight 46 battery in a standardised manner. It is important to be able to 

compare the magnitude of subtle cognitive deficits associated with Aβ pathology across 

different cognitive tasks and domains, as this may deepen our understanding of the 

nature and timing of cognitive decline associated with accumulation of pathology – this 

is addressed in Chapter 9. Some of the computerised tests have obvious summary 

outcomes, such as mean RT, but for other tests the most meaningful summary outcome 

depends on the pattern of results across different conditions of the task, such as 

discrepancies in performance between easy and hard conditions. In choosing summary 

outcomes, I prioritised those which showed promise in sensitivity to Aβ pathology.  

 

3.5.3. Statistical models 

 
3.5.3.1. Computerised cognitive tests 

I reviewed the statistical approaches of previous studies that have used the 

computerised cognitive tests in the Insight 46 battery and discussed the various models 

with Jennifer Nicholas (study statistician) in order to decide on the best approach for 

modelling the outcomes of each test. As each computerised task contains various 

different conditions, there are repeated measures on each participant, so models must 

account for the fact that repeated measures within a participant are likely to be 

correlated.  

Some previous papers on the “What was where?” and Circle-tracing tasks chose to use 

repeated measures analysis of variance (ANOVA) where each participant was given a 

mean score for each condition and these mean scores were entered into the model (e.g. 

(Pertzov et al., 2012, 2015; Vaportzis et al., 2015b). Other analyses have used 

Generalised Estimating Equations (GEE), which are similar to standard regression but 



65 
 

enable repeated measures to be accounted for by specifying an appropriate correlation 

structure (see below), and using robust standard errors to account for the fact that the 

assumed correlation structure may not be entirely accurate (e.g. (Say et al., 2011)). 

Disadvantages of the ANOVA approach are that information is lost by the reduction of 

data to mean scores, particularly information about within-participant variability, and it is 

heavily reliant on the assumption that the outcome is normally distributed. In contrast, 

GEE models allow analysis of the full trial-by-trial data (e.g. reaction times for every 

individual response) and are also more flexible, being able to accommodate different 

distributions of outcome variables, so I chose to adopt a GEE approach. 

For continuous outcomes (e.g. reaction time), GEE linear models were used with an 

exchangeable correlation structure, which assumes that each response is equally likely 

to be correlated with each other response within-subject. For continuous outcomes with 

skewed distributions, appropriate transformations were first applied so that the data more 

closely approximated the normal distribution (e.g. log-transformation of reaction time 

data). For dichotomous outcomes (e.g. correct vs. incorrect response), GEE logistic 

models were used with an independent correlation structure. The GEE method accounts 

for the fact that the assumption of this correlation structure is likely to be violated (as 

repeated responses within-participant are likely to be correlated rather than totally 

independent) by estimating the within-participant correlations and using this to calculate 

adjusted estimates of the p values and confidence intervals.  

 
3.5.3.2. Paper-and-pencil cognitive tests and summary scores 

For analyses of the paper-and-pencil tests or the summary outcome variables from the 

computerised tests (see section 3.5.2.1), each participant had a single score, so 

repeated measures were not an issue. Where the distribution of these scores 

approximated to the normal distribution, linear regression was performed. Examination 

of residuals was performed to check model fits. For outcomes with skewed distributions, 

appropriate transformations were considered (e.g. log-transformation or square-root 

transformation). For outcomes where a transformation was not appropriate but skew was 

still a concern, bootstrapping was used to produce bias-corrected and accelerated 95% 

confidence intervals from 2000 replications. For outcomes that were derived from 

multiple binary responses (e.g. percentage of correct responses across a task where 

each response was either correct or incorrect), GEE logistic regression was performed 

as above.  
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3.5.3.3. Consideration of correction for multiple comparisons and 

multicollinearity of predictors 

Although each model contained several predictors (e.g. sex, education, amyloid status), 

corrections for multiple comparisons were not applied. This was felt to be appropriate 

because my analyses were testing specific hypotheses about the effects of each 

predictor based on the literature, with the purpose of replicating and extending previous 

findings. The assumption underlying the practice of correcting for multiple comparisons 

is that the first explanation for non-null findings is chance, which may lead to errors of 

interpretation (Rothman, 1990). Correction for multiple comparisons is appropriate in 

scenarios where the result will be used to justify a decision with significant impact (e.g. 

in a clinical trial with multiple primary outcome measures where a drug may be licensed 

based on a positive effect on any one outcome measure) or when a large exploratory 

analysis is conducted without prior hypotheses (e.g. a genome-wide association study 

where thousands of genes are compared and it is statistically likely that numerous false 

positives would be detected). Where significant results are detected in this thesis, they 

are interpreted cautiously with reference to previous literature.  

Models were not checked for multicollinearity through variance inflation factors, but this 

was not felt to be a concern as correlations between the predictors were modest at most. 

For example, Spearman’s correlations between childhood cognitive ability, education 

and adult socioeconomic position are as follows: childhood cognitive ability and 

education ρ = 0.50, p < 0.0001; education and adult socioeconomic position ρ = 0.51, 

p < 0.0001; childhood cognitive ability and adult socioeconomic position ρ = 0.29, 

p < 0.0001. 

 

3.6. Participant Characteristics 

Forty-nine out of 502 participants met criteria for a neurological or psychiatric condition 

(see section 3.2.3), leaving 453 participants classified as cognitively-normal. Prevalence 

of each neurological or psychiatric condition is shown in Table 3-6. 

 



67 
 

Table 3-6. Numbers of Insight 46 participants with different neurological and 
psychiatric conditions 

Disorder N 

Dementia 3 

Parkinson’s disease or other neurodegenerative disorder 5 

Psychiatric disorder requiring anti-psychotic medication 2 

Depression requiring electroconvulsive shock therapy 2 

Epilepsy requiring active treatment 7 

Traumatic brain injury or major neurosurgery 2 

Multiple sclerosis 3 

Cortical stroke 18 

Brain malignancy 1 

Mild cognitive impairment (MCI) 11 

 

Note: although 49 participants met criteria for neurological or psychiatric conditions, the 
numbers in this table add up to 54 because some participants had more than one condition. 

 

As detailed in Figure 3-1, 445 participants had complete biomarker data. Of these, 406 

were classified as cognitively-normal. Of these, 18.3% were classified as Aβ+, which is 

around the expected prevalence for this age (Jansen et al., 2015). 

Table 3-7 shows the participant characteristics for the full sample (n = 502, used for the 

first section of analyses in Chapters 4 to 8) and the sub-sample of cognitively-normal 

participants with complete biomarker data, stratified by amyloid status (n = 406, used for 

the second section of analyses in Chapters 4 to 8). 

Chi-square, t-tests and rank-sum tests were used as appropriate to test whether the Aβ+ 

and Aβ- groups differed in their characteristics. As expected, Aβ+ were more likely to be 

APOE-ε4 carriers (χ2 = 41.6, p < 0.0001) but there was no evidence of statistically 

significant differences in any other characteristics (sex: χ2 = 0.52, p = 0.47; age at 

assessment: t = 0.33, p = 0.74; education: z = 0.73, p = 0.47; childhood cognitive ability: 

t = -0.35, p = 0.72; adult socioeconomic position: z = -1.31, p = 0.19; WMHV: z = -0.68, 

p = 0.50, whole brain volume: t = -0.61, p = 0.54).   



68 
 

Table 3-7. Participant characteristics  

 
All participants 

Cognitively-normal a participants 
with complete biomarker data 

 Aβ+ Aβ- 

N 502 74 332 

Sex: % female 49 46 51 

Age at assessment:  
mean, SD, (range) 

70.7, 0.68 
(69.2 to 71.8) 

70.6, 0.66 
(69.4 to 71.8) 

70.6, 0.70 
(69.2 to 71.8) 

Educational attainment: %    

None 15.5 17.6 15.4 

Below O-levels (vocational)  5.2 6.8 4.2 

O-levels or equivalent 24.9 25.7 26.2 

A-levels or equivalent 35.7 32.4 35.2 

Degree or equivalent 18.7 17.6 19.0 

Childhood cognitive ability 
(z-score) b :  
mean, SD, (range) 

0.39, 0.74 
(-1.60 to 2.50) 

0.44, 0.74 
(-1.37, 2.50) 

0.41, 0.74 
(-1.59 to 2.47) 

Adult SEP: %    

Unskilled 1.0 1.4 0.6 

Partly skilled 4.8 2.7 5.4 

Skilled manual 9.4 9.5 9.3 

Skilled non-manual 21.3 16.2 22.0 

Intermediate 52.2 55.4 51.8 

Professional 11.4 14.9 10.8 

SUVR: median, IQR, (range) 0.55, 0.51 to 0.58 
(0.45 to 0.87) c 

0.67, 0.64 to 0.71 
(0.61 to 0.87) 

0.53, 0.51 to 0.56 
(0.47 to 0.61) 

WMHV (ml):  
median, IQR, (range) 

3.1, 1.6 to 6.8 
(0.3 to 33.7) d 

3.3, 1.8 to 6.8 
(0.3 to 33.7) 

2.9, 1.5 to 6.4 
(0.3 to 32.8) 

Whole brain volume (ml): 
mean, SD, (range) 

1100, 99 
(819 to 1494) e 

1118, 103 
(819 to 1326) 

1098, 97 
(860 to 1494) 

APOE genotype: % 
f g   

ε4-carriers 29.6 60.8 22.9 

non-carriers 70.4 39.1 77.1 
 

a Defined as the absence of major neurological or psychiatric conditions (see section 3.2.3); b Z-scores for 
childhood cognitive ability were based on the full NSHD cohort of N=5362, so the mean for Insight 46 
participants indicates that they had higher childhood cognitive ability on average than their peers not 
recruited to this sub-study. c n=462 due to missing data; d n=455 due to missing data; e n=468 due to missing 
data; f n=500 due to missing data. g The full breakdown of APOE genotypes was as follows: 14% ε2/ε3, 2% 
ε2/ε4, 56% ε3/ε3, 25% ε3/ε4, 3% ε4/ε4.  

Aβ = β-amyloid; IQR = interquartile range; SD = standard deviation; SEP = socioeconomic position; SUVR 
= standard uptake volume ratio. WMHV = white matter hyperintensity volume.  
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4. STANDARD COGNITIVE TESTS 

 

This chapter focuses on the paper-and-pencil cognitive tests within the Insight 46 

cognitive battery. A paper based on this chapter has been accepted for publication in 

Neurology (Lu et al., 2019). 

 

4.1. Introduction 

 

Emerging evidence that subtle cognitive decline begins in the preclinical phase of AD 

has led to efforts to develop sensitive cognitive measures to detect and track this decline. 

One such measure is the Preclinical Alzheimer Cognitive Composite (PACC), composed 

of four cognitive tests which measure global cognition, episodic memory and executive 

function (Donohue et al., 2014). It is the primary outcome measure in the A4 trial 

(Donohue et al., 2014), the first clinical trial in Aβ+ cognitively-normal older adults. 

Several variations of the PACC have been tested (Sperling et al., 2014; Lim, Snyder, et 

al., 2016; Donohue, Sperling, et al., 2017; Donohue, Sun, et al., 2017; Mormino et al., 

2017; Papp et al., 2017; Merluzzi et al., 2019) and a revised version is under 

development (Hassenstab et al., 2017). The standard cognitive tests included in the 

Insight 46 battery (see section 3.2.1) were chosen to allow computation of the PACC, 

complemented by a test of non-verbal reasoning (WASI Matrix Reasoning) that was 

chosen for its similarity to aspects of the cognitive tests completed in childhood. 

Cognitively-normal Aβ+ older adults have shown faster decline on the PACC than Aβ- 

individuals, over intervals of around 3 years (Donohue, Sperling, et al., 2017; Mormino 

et al., 2017). However there are mixed results when comparing Aβ groups at baseline, 

with some studies finding lower PACC scores in Aβ+ participants (Donohue, Sperling, et 

al., 2017) but some finding no difference (Donohue et al., 2014; Burnham et al., 2016; 

Soldan et al., 2016; Buckley et al., 2017; Mormino et al., 2017; Rabin et al., 2018). One 

reason for this could be that cross-sectional analyses struggle to account for the wide 

variation that exists between individuals in terms of their overall cognitive abilities 

(beyond adjusting for age, sex and educational attainment), whereas longitudinal 

analyses account for this variation by effectively using each participant as their own 

control. The better we can account for predictable variation between individuals at 

baseline, the greater the likelihood that outcomes such as the PACC will be sensitive 

enough to detect differences in cognition associated with preclinical disease pathology, 

if such differences exist.  
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Insight 46 is uniquely placed to address this, since data are available on participants’ 

cognition since childhood. While it is well-established that higher educational attainment 

is associated with better performance on most cognitive tests in older age (Weintraub et 

al., 2009; Shirk et al., 2011; Gaertner et al., 2018; Jansen et al., 2018), the life-course 

determinants of performance on the PACC are unknown, and the effects of childhood 

cognitive ability and adult socioeconomic position on PACC score have never been 

investigated before. 

There is also a need to understand more about possible sex differences on the PACC. 

As discussed in section 2.4.1, women are at greater risk of AD (although this may be 

explained by greater longevity) but the relevance of sex differences to the detection of 

subtle cognitive decline in preclinical AD is unclear. There is consistent evidence that 

women tend to perform slightly better than men on the Digit-Symbol Substitution test of 

processing speed included within the PACC (Royer, 1978; Roivainen, 2011; Gaertner et 

al., 2018) as well as on tests of verbal memory (Andreano and Cahill, 2009). Normative 

data for over 3000 cognitively-normal older adults reported an advantage for women on 

three of the four sub-tests included within the PACC (Digit-Symbol Substitution, Mini 

Mental State Examination, and Logical Memory story recall – see section 4.2.1 below for 

description of sub-tests), although the authors concluded that the differences are small 

and may not have clinical relevance (Weintraub et al., 2009). 

Consistent with the approach outlined in section 3.5, I aimed first to characterise the 

performance of Insight 46 participants on the paper-and-pencil cognitive tests including 

the PACC with respect to sex, childhood cognitive ability, education and adult 

socioeconomic position. I then explored whether cognitive performance was influenced 

by amyloid status, whole brain volume, white matter hyperintensity volume (WMHV), and 

genetic risk for AD (APOE-ε4).  

 

4.2. Methods 

 

4.2.1. Stimuli and Procedure 

 

The original PACC (Donohue et al., 2014) is composed of four cognitive tests – the Mini 

Mental State Examination (MMSE) (Folstein, Folstein and McHugh, 1975), Logical 

Memory IIa from the Wechsler Memory Scale Logical Memory (Wechsler, 1987), Digit-

Symbol Substitution test from the Wechsler Adult Intelligence Scale-Revised (Wechsler, 

1981), and the Free and Cued Selective Reminding Test (FCSRT) (Grober et al., 2008). 
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We replaced the FCSRT with the 12-item Face-Name test (FNAME-12) (Papp et al., 

2014), to avoid potential overlap with a similar word-learning memory test administered 

to the NSHD cohort at multiple time-points throughout adulthood (Rawle et al., 2018). 

FNAME-12 is similar to FCSRT in terms of being an episodic memory test of immediate 

and delayed recall, is moderately correlated with FCSRT free recall scores (Papp et al., 

2014) and is also relatively challenging for cognitively-normal populations. Two previous 

studies have reported that FNAME is sensitive to Aβ deposition (Rentz et al., 2011; 

Sanabria et al., 2018). 

Participants also completed the Matrix Reasoning test from the Wechsler Abbreviated 

Scale of Intelligence (Wechsler, 1999) – a measure that was chosen for its similarity to 

aspects of the cognitive tests completed in childhood. 

The MMSE is a 30-point composite screening tool for cognitive impairment which is 

widely used within clinical practice. 

Digit-Symbol Substitution is an index of executive function and psychomotor speed. 

The score is the number of items completed correctly within 90 seconds. 

Logical Memory IIa assesses free recall of a short story, which the participant is asked 

to recall immediately and after a delay of approximately 20 minutes. The exact delay 

duration is recorded so that it can be accounted for in analyses, as it may affect 

performance (Montgomery et al., 2017). 

The Face-Name test (FNAME-12) assesses associative memory for face-name and 

face-occupation pairs. Two versions exist: FNAME-12A and FNAME12-B. This study 

used FNAME-12A. Participants are shown 12 unfamiliar face-name and face-occupation 

pairs (e.g. “Sarah, Reporter”), with 8 seconds to study each one. They are then 

presented with each face and asked to recall the associated name and occupation. This 

process is repeated with a second learning phase and a second recall test. After a ~10-

minute delay they are again shown each face and asked to recall the names and 

occupations (the third recall test). After a ~30-minute delay participants are shown 12 

sets of three faces and asked to identify each previously learned face from the two 

distractors (facial recognition) and to recall the name and occupation (the fourth recall 

test). If they cannot recall the name and/or occupation, they are asked to select the 

correct answer from three options comprising: the correct answer, a distractor (a 

name/occupation that belongs with a different face in the set), and a name/occupation 

that did not feature in the set. The summary outcomes are FN-N (total names recalled, 

max. 48), FN-O (total occupations recalled, max. 48) and FNAME-total (FN-N + FN-O, 

max. 96) – these outcomes are based on the four recall tests. Precise administration 
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times were recorded for a sample of 50 participants to check that the delay times 

conformed to expectations: the mean delay times were 10.0 mins and 35.5 mins.  

The Matrix Reasoning test assesses non-verbal reasoning, an aspect of fluid 

intelligence. Participants are shown a matrix of geometric shapes and are required to 

select the missing piece from five options. There are 32 matrices, graded in difficulty, 

and the test is discontinued when participants make four consecutive errors (or four 

errors within five consecutive items), as specified in the manual (Wechsler, 1999). 

The four components of our version of the PACC were: MMSE total score, Logical 

Memory delayed recall score, Digit-Symbol Substitution score and FNAME-total. 

Following the method described in previous studies (Lim, Snyder, et al., 2016; Buckley 

et al., 2017; Mormino et al., 2017; Papp et al., 2017; Rabin et al., 2018), the four 

components were converted into z-scores based on the full Insight 46 sample, and then 

averaged. A higher PACC score indicates better performance. Two participants did not 

complete the FNAME test and one did not complete the Digit-Symbol Substitution test 

(see section 3.3). For these three participants, their PACC score was the average of the 

z-scores for the three tests they completed. This is consistent with a previous study which 

required at least 2 out of the 4 components to be present (Soldan et al., 2016). Excluding 

these three people did not change any of the results. 

 

4.2.2. Participants 

 

Out of 502 participants, 499 completed all cognitive tests and three were missing one 

test score as mentioned above (see section 3.3 for reasons for missing data). Participant 

characteristics are reported in section 3.6.  

 

 

4.3. Patterns and predictors of performance  

 

4.3.1. Statistical Analyses 

 

To investigate the relationship between cognitive outcomes and demographic factors, all 

participants were included (n=502), as explained in section 3.5. Raw scores from each 

cognitive test were standardised to z-scores based on the full Insight 46 sample to allow 
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comparison of effect sizes across different cognitive tests. Multivariable linear regression 

models were run where the outcome was the z-score on a particular cognitive test and 

the predictors were sex, age at assessment, childhood cognitive ability, education, adult 

socioeconomic position and presence of a neurological or psychiatric condition (including 

MCI). For outcomes with skewed distributions (MMSE and Matrix Reasoning), 

bootstrapping was used to produce bias-corrected and accelerated 95% CIs from 2000 

replications. For the Logical Memory delayed recall score, the model contained an 

additional factor of delay duration (time elapsed between the immediate and delayed 

recall). Mean delay duration was 24.6 minutes (SD = 4.66) and there was no evidence 

that this was associated with performance (regression coefficient = -0.006, 95% CIs -

0.024 to 0.012, p = 0.53), but it was included in the models as per standard practice. 

 

4.3.2. Results  

 

Descriptive statistics for each test are given in Table 4-1.  

On average, Insight 46 participants performed at the expected level for their age on the 

MMSE, Digit Symbol and Logical Memory tests, according to normative data (Shirk et 

al., 2011). On the Matrix Reasoning test, their performance (mean = 24) was above the 

expected level based on normative data (sample mean for 70- to 74-year-olds is 16 

(Wechsler, 1999)) but comparable to a sample of healthy older adults recruited by 

Washington University (mean = 24 (Emery, Hale and Myerson, 2008)). To date, only two 

studies have published FNAME-12 data (Papp et al., 2014; Kormas et al., 2018) and 

Insight 46 means are higher than these. 

  



74 
 

Table 4-1. Descriptive statistics for the standard cognitive tests 

 

a n=501 due to missing data. b n=500 due to missing data.  

FN-N = names recalled; FN-O = occupations recalled; PACC = Preclinical Alzheimer Cognitive 
Composite

 
mean SD median range 

MMSE (max. 30) 29.3 1.0 30 22, 30 

Matrix Reasoning (max. 32) 24.0 4.9 25 4, 32 

Digit-Symbol a (max. 93) 47.6 10.4 48 19, 82 

Logical Memory: Immediate (max. 25) 12.8 3.5 13 4, 22 

                               Delayed (max. 25) 11.5 3.7 12 0, 23 

FNAME-12 b: FN-N (max. 48) 27.0 11.7 28 0, 47 

                      FN-O (max. 48) 38.2 8.0 40 1, 48 

                      Total (max. 96) 65.3 18.3 67 3, 95 

                      Facial Recognition (max. 12) 12.0 0.2 12 9, 12 

                      Names recognition (max. 12) 10.3 1.8 11 3, 12 

                      Occupations recognition 
                      (max. 12) 

11.6 0.9 12 4, 12 

PACC (mean of z-scores) -0.00 0.73 0.07 -3.49, 1.72 
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Results of the multivariable regression models exploring associations with demographic 

and life-course predictors are reported in Table 4-2. On average, participants with 

neurological or psychiatric conditions (including MCI) scored significantly lower on all 

tests (Table 4-2). The analyses were rerun excluding the participants with MCI to check 

that these differences could not be explained by circularity in the definition of MCI (since 

low scores on the Logical Memory or Digit-Symbol Substitution tests formed part of the 

MCI criteria); the results were unchanged except that the differences were no longer 

statistically significant on MMSE and Matrix Reasoning. 

Females scored significantly higher than males on all measures except Matrix Reasoning 

(Table 4-2); the greatest difference was on the FNAME-12, particularly in recalling 

names.  

As expected across this narrow age range (2.6 years – reflecting the time it took to collect 

the data, since participants were all born in the same week) there was no evidence of 

age effects on cognition, except on the Matrix Reasoning test where older age was 

associated with slightly poorer performance (Table 4-2).  

Higher childhood cognitive ability was associated with better performance on every 

cognitive outcome (Table 4-2, Figure 4-1). Higher educational attainment and higher 

adult socioeconomic position were independently positively associated with the majority 

of cognitive outcome measures, including the PACC. Higher educational attainment 

showed a notable positive association with the Matrix Reasoning task. 

All these effects were maintained when excluding participants with neurological or 

psychiatric conditions, except that the following two associations were directionally but 

no longer statistically significant: Logical Memory Delayed and adult socioeconomic 

position (p=0.073); FNAME FN-O and education (p=0.12).  
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Figure 4-1. Preclinical Alzheimer Cognitive Composite (PACC) score against 
childhood cognitive ability   

Scatter plot shows the raw data, colour-coded by clinical group. Alzheimer’s disease dementia is 
distinguished from other neurological or psychiatric conditions for interest. The blue line is the line 
of best fit from the multivariable regression model (adjusted for sex, age at assessment, 
education, adult socioeconomic position and presence of neurological or psychiatric conditions), 
and the navy lines are its 95% confidence intervals. For an explanation of the childhood cognitive 
ability variable, see section 3.2.4. 

 

 

4.4. Associations with biomarkers and APOE-ε4  

 

4.4.1. Statistical Analyses 

 

Following the format laid out in 3.5, the second part of this chapter aims to investigate 

associations between performance on the standard cognitive tests and biomarkers of AD 

in cognitively-normal participants for whom complete biomarker data are available. The 

number of participants meeting these criteria was 406 (see section 3.3). 

The z-score on a particular cognitive test was the outcome and amyloid status, whole 

brain volume, WMHV and APOE genotype were included as predictors in multivariable 

regression models to examine the effects of each biomarker adjusted for all the others. 
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To adjust for the correlation between whole brain volume and head size, total intracranial 

volume was included in all models, as were the demographic and life-course factors 

investigated in the first analysis (sex, age at assessment, childhood cognitive ability, 

education and adult socioeconomic position). Interactions were investigated between 

amyloid status and brain volume, and amyloid status and WMHV. 

The models were additionally rerun replacing dichotomised amyloid status with a 

continuous measure of Aβ (SUVR) to test whether increasing Aβ deposition was 

associated with differences in performance. To check whether associations between 

SUVR and cognition were sensitive to the inclusion of the imputed SUVR values (see 

section 3.2.2), the analyses were rerun excluding the 26 participants with imputed data. 

 

4.4.2. Results  

 

Results of the multivariable regression models are reported in Table 4-3. Results for 

the demographic and life-course factors (sex, age at assessment, childhood cognitive 

ability, education and adult socioeconomic position) are not reported as they are 

essentially unchanged from the first analysis section (4.3.2).    

On average, Aβ+ participants scored lower than Aβ- participants on every cognitive 

measure (Table 4-3, Figure 4-2). The unadjusted differences were only statistically 

significant for the MMSE and Matrix Reasoning (Figure 4-2A), but in the multivariable 

model adjusting for demographic, life-course and biomarker factors, the differences were 

also statistically significant for Logical Memory immediate recall and PACC (Figure 4-2B, 

Table 4-3). 

Replacing dichotomised amyloid status with the continuous SUVR revealed weak 

associations between higher SUVR and poorer performance on MMSE (regression 

coefficient -1.21, 95% CIs -2.39 to -0.10), Logical Memory immediate recall (regression 

coefficient -1.87, 95% CIs -3.22 to -0.52) and PACC (regression coefficient -1.09, 95% 

CIs -1.90 to -0.29). Similar trends were observed on the other tests but did not reach 

statistical significance. These results were unchanged when the analyses were rerun 

excluding the 26 participants with imputed SUVR data. 

The only outcome which showed an association with whole brain volume was Digit-

Symbol Substitution, where larger whole brain volume was associated with better 

performance (Table 4-3). 

Digit-Symbol Substitution and PACC showed associations with WMHV, where higher 

WMHV was associated with poorer performance (Table 4-3). 
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On average, APOE-ε4 carriers performed better than non-carriers on Logical Memory 

immediate recall (after adjustment for the detrimental effect of Aβ and all other 

confounders). There was a trend in the same direction on Logical Memory Delayed recall 

(p = 0.06) (Table 4-3).  

There was no evidence of interactions between amyloid status and whole brain volume, 

or amyloid status and WMHV. 
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Figure 4-2. Performance of β-amyloid positive and β-amyloid negative individuals 
on the standard cognitive tests: means and 95% confidence intervals 

A = unadjusted means; B = adjusted means predicted from the multivariable regression models 
(adjusted for age at assessment, sex, childhood cognitive ability, education, adult socioeconomic 
position, whole brain volume, total intracranial volume, white matter hyperintensity volume and 
APOE genotype). Asterisks indicate statistically significant differences (p < 0.05). 
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4.5. Discussion 

 

4.5.1. Summary 

 

In this large population-based sample of older adults of approximately the same age, I 

investigated predictors of performance on a range of cognitive measures including the 

Preclinical Alzheimer Cognitive Composite (PACC). The key findings are that childhood 

cognitive ability was strongly associated with all cognitive scores, significant sex 

differences in cognition were observed, and Aβ positivity and white matter hyperintensity 

volumes (WMHV) were associated with lower PACC scores among cognitively-normal 

participants. These results are discussed in the following sub-sections. For a discussion 

of strengths and limitations that apply to all the analyses presented in this thesis, such 

as considerations relating to the generalisability of the sample, see Chapter 10. 

 

4.5.2. Demographic and life-course predictors 

 

4.5.2.1. Associations with childhood cognitive ability, education and adult 

socioeconomic position  

Childhood cognitive ability was consistently an important predictor with a notable effect 

on every cognitive outcome. My finding that educational attainment and adult 

socioeconomic position were associated with many cognitive outcomes, independent of 

childhood cognition, is consistent with previous NSHD analyses which have shown that 

these factors are only moderately correlated and all have direct and indirect influences 

on cognition across the life-course ((Richards and Sacker, 2003; Richards et al., 2019) 

– see section 2.4.2). It is also consistent with evidence that education and occupational 

attainment may have protective effects on later life cognition (Stern, 2012). This is 

discussed in more detail in Chapter 10, as similar effects were found on other cognitive 

tests that feature in later chapters. 

 

4.5.2.2. Sex differences 

The finding of an advantage for women on the sub-tests of the PACC is consistent with 

previous studies (Weintraub et al., 2009; Shirk et al., 2011; Gaertner et al., 2018; Jansen 

et al., 2018). The effect size of sex on PACC score was large enough to be potentially 

clinically meaningful (0.4 SD), suggesting that accounting for sex differences on the 
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PACC may be important. As the FNAME test was the component where females had the 

greatest advantage, versions of the PACC which include a different memory test may be 

less susceptible to sex differences. However, sex differences have also been reported 

on the FCSRT (the test used in the original PACC, which we replaced with FNAME) 

(Mura et al., 2017). Sex differences are discussed further in Chapter 10. 

 

4.5.2.3. Associations with age 

The interpretation of the association observed between older age at assessment and 

lower Matrix Reasoning score is unclear. While scores on this test are known to decline 

with age (Wechsler, 1999; Bugg et al., 2006; Emery, Hale and Myerson, 2008), the effect 

size of the association in Insight 46 (-0.17 z-score units) equates to -0.83 points on the 

test per year, which is incompatible with the much lower rate of decline across adulthood 

reported by others (Wechsler, 1999; Emery, Hale and Myerson, 2008). I considered the 

possibility that associations between age and cognition in Insight 46 could be explained 

by recruitment bias – this is discussed in Chapter 10.  

 

4.5.3. Associations with biomarkers and APOE-ε4 

 

In cognitively-normal participants (i.e. excluding those who fulfilled dementia or MCI 

criteria and those with another neurological or psychiatric condition), Aβ positivity was 

associated with poorer performance on the PACC. Statistically significant differences 

were also observed on several individual tests assessing a range of cognitive domains: 

memory (Logical Memory Immediate), non-verbal reasoning (Matrix Reasoning), and a 

global measure of cognitive state (MMSE). Previous studies have tended not to find a 

difference in PACC score between Aβ+ and Aβ- individuals at baseline, with differences 

only emerging after longitudinal assessment (Donohue et al., 2014; Burnham et al., 

2016; Soldan et al., 2016; Buckley et al., 2017; Mormino et al., 2017; Rabin et al., 2018), 

although a difference at baseline has been reported before in a sample where the Aβ+ 

group were slightly older and less educated than the Aβ- group (Donohue, Sperling, et 

al., 2017). These results add to accumulating evidence for subtle cognitive differences 

associated with Aβ deposition, even at an age when those who are destined to develop 

dementia are still likely to be many years from symptoms (Prince et al., 2014). 

In cognitively-normal participants with a generally low burden of white matter disease, I 

also found an independent association between WMHV and PACC score which, to my 

knowledge, has not been reported before. This suggests that the PACC may be a 
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sensitive, rather than a specific, marker of cerebral pathology – an important 

consideration for clinical trials.  

Controlling for childhood cognitive ability, education and adult socioeconomic position, 

as well as other brain pathologies and APOE genotype, enabled detection of a difference 

in PACC score between Aβ+ and Aβ- participants, whereas the unadjusted group 

difference was not statistically significant. This may be partially explained by negative 

confounding effects, whereby one or more factors that predicted higher PACC score also 

had weak positive associations with Aβ positivity. This was indeed the case for childhood 

cognitive ability and adult socioeconomic position, which were slightly higher in Aβ+ 

individuals (although differences were not statistically significant). Such differences may 

well be due to chance but can suppress the association between Aβ and cognition when 

not adjusted for. Another factor may have been that adjustment for these variables 

reduced the unexplained residual variance in PACC score, thus increasing the ability to 

detect smaller differences between the groups. Combined together, the demographic, 

life-course and biomarker factors accounted for one third of the variance in PACC score 

among cognitively-normal participants. 

Fluid intelligence measures themselves are not usually considered candidates for 

detecting subtle cognitive decline in preclinical AD, so my finding that Aβ positivity was 

associated with poorer performance on the Matrix Reasoning test, to a greater degree 

than the PACC, (accounting for childhood cognitive ability etc.) is interesting. It is 

consistent with evidence that non-verbal IQ declines early in presymptomatic FAD 

mutation carriers (Fox et al., 1998). As a high-level test involving multiple domains 

(including visuoperceptual, working memory, and executive function), Matrix Reasoning 

is rather different to the tests comprising the PACC, and its potential as a marker of 

cognitive decline merits further investigation.  

The Digit-Symbol test was the single test most sensitive to overall brain health, showing 

associations with WMHV and whole brain volume in cognitively-normal participants, and 

being the task on which participants with neurological or psychiatric conditions were most 

disadvantaged. Negative effects of WMHV on processing speed are well established, 

consistent with subcortical damage (Gunning-Dixon and Raz, 2000; Oosterman et al., 

2004; Prins et al., 2005; van Dijk et al., 2008; Prins and Scheltens, 2015). The Digit-

Symbol task may be particularly sensitive to brain pathologies because good 

performance on this task requires multiple cognitive functions, including visuomotor 

skills, executive functioning, working memory and attention, hence people with an 

impairment in any one of these areas might perform badly (Jaeger, 2018). The fact that 

the Digit-Symbol task is timed may also contribute to its sensitivity at detecting small 

differences in performance. 
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The finding that APOE-ε4 carriers showed evidence of better short-term memory on the 

Logical Memory immediate recall test – a measure on which Aβ positivity was associated 

with poorer performance – is consistent with the model of antagonistic pleiotropy 

discussed in section 2.6.1, whereby APOE-ε4 may have both beneficial and detrimental 

effects. This is discussed in greater detail in Chapter 10.  

 

4.5.4. Comments on the Face-Name Associative Memory Exam 

(FNAME-12) 

 

Few studies have published results of the FNAME test. Two previous studies found a 

sex difference on FNAME which was reduced in older adults (Alegret et al., 2015) and 

attenuated in postmenopausal women (Rentz et al., 2017). Here, I found a significant 

sex difference in 70-year-olds. It has been argued that one potential benefit of the 

FNAME test is, in contrast to many other memory tests, its reported lack of association 

with education (Kormas et al., 2018), although this has been contradicted in one study 

(Papp et al., 2014). In the current study which benefits from prospective collection over 

the life course, I found that childhood cognitive ability, education and adult 

socioeconomic position were all significant predictors of FNAME scores.  

A recent consensus statement on recommended outcomes in preclinical AD from the 

European Prevention of Alzheimer’s Dementia project (EPAD) raised concerns about a 

ceiling effect on this task in healthy populations, recommending the use of the “Favorites 

test”, a refinement of FNAME designed to reduce the ceiling effect by pairing faces with 

unrelated words (Ritchie et al., 2017). These results from Insight 46 suggest that 

FNAME-12 is sufficiently challenging for 70-year-olds, despite scores on the occupations 

sub-scale being somewhat skewed towards the top end. Indeed, for some participants 

who particularly struggled with recalling names and required encouragement, the 16-

item FNAME might have been stressful. 

Two previous studies reported an association between Aβ deposition and FNAME 

performance, specifically on the FN-N outcome (recall for names) (Rentz et al., 2011; 

Sanabria et al., 2018). While my results followed this trend, differences between Aβ+ 

and Aβ- participants did not reach statistical significance, and the FN-N outcome did not 

appear more sensitive than FN-O (recall for occupations) or FNAME-total. 
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4.5.5. Conclusions 

 

In summary, these data show that childhood cognitive ability, education and adult 

socioeconomic position all independently influence cognitive performance at age 70, 

which has implications both for the interpretation and analysis of cognitive data 

measured in later life. These results provide evidence that the PACC can be used to 

detect subtle cross-sectional differences in cognition associated with Aβ deposition and 

white matter disease in cognitively-normal older adults at an age where dementia 

prevalence is very low.  
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5. “WHAT WAS WHERE?” VISUAL SHORT-TERM MEMORY 

BINDING 
 

5.1. Introduction 

 

Visual memory binding describes the ability to integrate multiple features of an object in 

memory, such as colour and shape, or object and location. This vital aspect of both short- 

and long-term memory is reported to be impaired in AD at an early stage (Parra et al., 

2009, 2010, 2011, 2017; Fernández et al., 2018). Furthermore, evidence from studies of 

presymptomatic carriers of mutations causing familial Alzheimer’s disease (FAD) 

suggests that subtle deficits in visual memory binding may be one of the earliest 

detectable changes in cognition in the preclinical stage of AD (Parra et al., 2010, 2011, 

2015; Liang et al., 2016). A recent review concluded that although memory generally 

declines with age, a specific deficit in binding is not seen in healthy ageing once this 

general decline is accounted for (Schneegans and Bays, 2019), which strengthens the 

case for investigating the potential of memory binding tasks as specific markers for early 

change associated with AD pathology. 

The study by Liang et al. (2016) used the “What was where?” task, a computerised visual 

short-term memory binding task that requires participants to recall the identity and 

location of objects (Pertzov et al., 2012, 2013, 2015). One notable feature of this task is 

that it incorporates memory for locations as a continuous analogue measure (the 

distance between the location reported by the participant and the true location), in 

contrast to most memory measures which are made up of binary responses (correct vs. 

incorrect). This approach is based on a recognition that failure to recall an item correctly 

does not mean that its representation in memory has been entirely lost, and this may 

make the localisation measure particularly sensitive to small differences in performance 

(Pertzov et al., 2013; Ma, Husain and Bays, 2014). In the “What was where?” task, a 

‘binding error’ is captured when a participant correctly recalls the identity of an object but 

mislocalises it to the location of a different object held in memory. Liang et al. (2016) 

reported that presymptomatic FAD mutation carriers tended to make more binding errors 

than controls, despite having unimpaired memory for objects and locations.  

While it is well-established that the hippocampus plays a key role in associative learning 

and memory (Mayes, Montaldi and Migo, 2007), the role of medial temporal lobe 

structures in visual short-term memory binding is still subject to debate (Parra et al., 

2009, 2010; Koen et al., 2017; Liang et al., 2017; Parra, 2017; Schneegans and Bays, 

2019). However, three separate studies using the “What was where?” task have reported 

results suggestive of hippocampal involvement in visual short-term memory binding. 
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Liang et al. found that smaller hippocampal volume was associated with increased 

binding errors in presymptomatic mutation carriers, but hippocampal volume was not 

associated with object or location recall (Liang et al., 2016). Two other studies of patients 

with medial temporal lobe damage due to voltage-gated potassium channel complex 

antibody-associated limbic encephalitis (Pertzov et al., 2013), and patients who had 

undergone anterior temporal lobectomy for treatment of pharmacoresistant epilepsy 

(Zokaei, Nour, et al., 2019) both reported that the patients had intact memory for object 

identity and location but a deficit in binding. 

The “What was where?” task has also provided evidence of interesting effects of the 

APOE-ε4 allele on short-term memory. In two studies comparing the performance of ε4-

carriers and non-carriers – one in middle-aged adults (mean age 45.7) and one in older 

adults (mean age 68.8) – an apparent advantage for APOE-ε4 carriers was observed in 

terms of more accurate recall for object locations after delays of a few seconds (Zokaei 

et al., 2017; Zokaei, Čepukaitytė, et al., 2019). In the older adults, this was in contrast to 

a long-term memory task where APOE-ε4 carriers had poorer recall for locations after a 

delay of about 20 minutes compared to non-carriers (Zokaei, Čepukaitytė, et al., 2019), 

a finding which is suggestive of subtle memory decline associated with preclinical AD, 

although no biomarker data were available in this study. The authors proposed two 

possible explanations for the apparent beneficial effect of APOE-ε4 on short-term 

localisation memory: (1) that it could reflect compensatory mechanisms whereby there 

may be increased activation in frontal and parietal regions that are not directly affected 

by prodromal AD pathology but are implicated in attention and short-term memory; (2) 

that it could reflect phenotypical effects of the APOE-ε4 allele whereby the ε4 allele may 

have some beneficial effects in earlier life which could explain its survival in the 

population (the principle of antagonistic pleiotropy, discussed in section 2.6.1). As the 

Insight 46 protocol includes both APOE genotyping and amyloid-PET imaging, this 

provides an opportunity to investigate potential independent effects of APOE-ε4 and β-

amyloid pathology on the “What was where?” task in more detail.  

In terms of factors that may predict between-subject differences in performance on the 

“What was where?” task, one study (n = 66) tested for sex differences and found none 

(Zokaei, Čepukaitytė, et al., 2019), although another (n = 60) reported that the beneficial 

effect of APOE-ε4 described above was specific to males (Zokaei et al., 2017). No 

studies so far have examined the effects of childhood cognitive ability, educational 

attainment, or socioeconomic position. Accounting for potential effects of these 

predictors may increase the sensitivity of “What was where?” outcomes to subtle effects 

of APOE-ε4 and β-amyloid pathology. 
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Following the structure of the previous chapter, the aims of this study were firstly to 

understand patterns of performance on the “What was where?” task and characterise 

associations between task performance and demographic and life-course predictors, 

and secondly to investigate associations between performance and biomarkers of brain 

pathologies among cognitively-normal participants.  

 

 

5.2. Methods 

 

5.2.1. Stimuli and Procedure 
 

The stimuli and procedure of the ‘What was where?’ task have been described in detail 

in previous papers (Pertzov et al., 2012, 2013, 2015; Liang et al., 2016). The participant 

was seated in front of a DELL Optiplex 9030 all-in-one touchscreen computer. The 

dimensions of the screen were 51.2 x 28.7 cm and the approximate distance from the 

subject’s eyes to the centre of the screen was 58 cm. 

The procedure for the “What was where?” task is presented in Figure 5-1. In each trial, 

one or three fractals were displayed on the screen in random locations, presented on a 

black background. Participants were asked to look at the fractals and to try to remember 

their identities and locations.  

1-fractal trials are referred to as ‘low load’ and 3-fractal trials are referred to as ‘high load’. 

The low load trials were displayed for 1 second whereas the high load trials were 

displayed for 3 seconds to allow time for encoding. This was followed by a blank screen 

for either a short or long delay (1 or 4 seconds), and then a test array appeared in which 

two fractals were displayed along the vertical meridian. One of these fractals had 

appeared in the memory array on the previous screen (the target) and the other was a 

foil or distractor. Participants were instructed to touch the fractal that they remembered 

seeing and drag it to the location where they think it was originally presented (Figure 

5-1). There was no time-limit for reporting the location – the tester pressed the space bar 

to initiate the next trial when the participant was ready. 

Previous studies using the “What was where?” task have administered at least 100 trials 

(Pertzov et al., 2012, 2013, 2015; Liang et al., 2016; Zokaei et al., 2017; Zokaei, 

Čepukaitytė, et al., 2019), but for Insight 46 a shortened version was used containing 24 

trials: 4 low load and 20 high load. Within each load condition, trials were equally likely 

to have a short or long delay. Therefore, there were four possible combinations of load 
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and delay (2 x low load with short delay; 2 x low load with long delay; 10 x high load with 

short delay; 10 x high load with long delay). The experiment was preceded by 4 practice 

trials – one of each of the load x delay combinations, and the tester ensured that the 

participant understood the task before continuing. 

All fractals including the foils were drawn from a pool of 60 fractals that were used across 

the experiment (rendered using http://sprott.physics.wisc.edu/fractals.htm, see Figure 

A1 in the Appendix). 

The locations of the fractals were generated in a pseudo-randomised manner by a 

MATLAB script (MathWorks, Inc). The script imposed the following restrictions which are 

necessary to allow analysis of localisation error which is a key outcome of this task: 

fractals were always at least 9o away from each other to avoid crowding and to ensure 

that there was a clear zone of 4.5o around each fractal which is necessary for the 

calculation of swap errors (see below), and fractals were at least 6.5o from the centre of 

the screen and 3.9o from the edges. The 24 trials were the same for all participants (i.e. 

the same fractals were presented in the same locations) but the trials were presented in 

a random order for each participant. The reason for using a random order is to avoid the 

results being confounded by practice effects on the one hand (familiarity with the 

procedure could cause performance to improve throughout the task) and by interference 

effects on the other hand (as fractals appear more than once during the task, the foil in 

the test array could be recognised from a previous trial, which could increase the 

likelihood of errors in object identification throughout the task). 

http://sprott.physics.wisc.edu/fractals.htm
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Figure 5-1. The “What was where?” task  

Figure reprinted from Liang et al. (2016) under the terms of the Creative Commons Attribution 
License (CC BY). 

 

 

5.2.2. Outcome Variables 
 

Memory for object identification was defined as the percentage of trials in which the 

participant chose the correct fractal from the test array (Figure 5-2).  

Memory for object location was defined in two different ways. The first, gross 

localisation error, is the distance between the centre of the target in the location 

reported by the participant and its true location in the original memory array, measured 

in degrees of visual angle (Figure 5-2B). The second definition takes account of the fact 

that, in high load trials, participants may mislocalise the target to the location of a different 

(unprobed) object from the memory array (i.e. they make a swap error – see definition 

below). In this situation the gross localisation error could be very large. The nearest item 

control measure of localisation error accounts for this by subtracting out the effect of 

swap errors: it is defined as the distance between the location reported by the participant 

and the closest of the three original locations from the memory array (Figure 5-2C). 
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Localisation error was only analysed in trials where the participant identified the correct 

fractal.  

A swap error occurs when a participant correctly identifies the target fractal but they 

swap its location of the target with the location of another object (Figure 5-2C). If the 

target is positioned within 4.5o of the location of a different object from the memory array, 

this is counted as a swap error. 4.5o was used as the threshold to ensure that a location 

could not be attributed to more than one object, as objects were always at least 9o apart. 

Note that in the low load condition it is not possible to make a swap error as there is only 

one fractal in the memory array. For each participant, the percentage of swap errors (out 

of the number of trials in which they identified the correct fractal) was calculated. It is 

possible that swap errors could occur by chance, a possibility which is discussed and 

tested in section 5.3.2.3. 

 

 

 

 

 

Figure 5-2. Outcome measures on the “What was where?” task   

Figure reprinted from Liang et al. (2016) under the terms of the Creative Commons Attribution 
License (CC BY). Green circles indicate the original location of the target fractal; red circles 
indicate the original locations of non-target fractals; blue line indicates measured localisation 
error. (A) Object identification: the participant is required to select the fractal that they remember 
seeing. (B) Gross localisation error is measured from the location reported by the participant to 
the original location of the target fractal. (C) ‘Nearest item control’ localisation error is measured 
from the location reported by the participant to the location of the closest fractal. If the reported 
location is within 4.5o of the location of a non-target fractal, this is considered to be a swap error. 
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5.2.3. Hypotheses 

 

Based on the literature discussed in section 4.1, I hypothesised that cognitively-normal 

Aβ+ participants would make a greater number of swap errors than Aβ- participants, 

indicating a subtle deficit in memory binding. 

I also aimed to test the hypotheses that APOE-ε4 carriers would perform better than non-

carriers on localisation memory, and that smaller hippocampal volume would be 

associated with an increased number of swap errors. 

 

5.2.4. Participants 

 

486 participants completed the “What was where?” experiment (see section 3.3). 

Participant characteristics are reported in section 3.6.  

 

5.2.5. Data Processing  
 

Each participant’s raw data file was processed using a MATLAB script which generated 

a score for each outcome variable in each of the four conditions (low load with short 

delay; low load with long delay; high load with short delay; high load with long delay).  

Six participants had one trial where the software did not record whether they selected 

the correct or incorrect fractal. I corresponded with Yoni Pertzov, the creator of the test, 

and he concluded that this was likely to be caused by the participant touching the screen 

exactly midway between the two fractals. These six individual trials were excluded and 

the mean scores for the relevant conditions were recalculated.  

One previous study excluded participants who had an object identification accuracy of 

less than 70%, to ensure that interpretations were not made based on performance at 

chance level (Liang et al., 2016). Thirty-six participants had an overall identification rate 

of less than 70%, of whom one performed below the 50% chance level with a score of 

46%. This participant was classified as cognitively normal (see section 3.2.3 for criteria). 

I decided not to exclude any participants from analysis based on their identification rate 

because other studies in healthy participants have not employed such exclusion criteria 

(Pertzov et al., 2012, 2015) whereas the study by Liang et al. included patients with 

symptomatic FAD, so adopting a 70% threshold was a way of excluding individuals with 

significant memory impairment whose data were not been pertinent to the research 

question (Liang et al., 2016). 
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5.3. Patterns and predictors of performance  
 

5.3.1. Statistical Analyses 

 

Analysis of identification used a GEE logistic regression model for the odds of correctly 

identifying the fractal, with an independent correlation structure and robust standard 

errors to allow for the correlation between repeated measures of the same participant. 

The outcome was number of correct identifications, which was treated as a proportion of 

the total number of trials in each condition (2 x low load with short delay; 2 x low load 

with long delay; 10 x high load with short delay; 10 x high load with long delay). For the 

6 participants who had a trial excluded during the data cleaning process (see 5.2.5), the 

total number of trials in each condition was reduced accordingly. Results are expressed 

as odds ratios for ease of interpretation  

Regression models were fitted for the localisation error variables (gross error and 

‘nearest item control’) using GEE assuming a normal distribution for the dependent 

variable and an identity link (as with standard linear regression), but including an 

exchangeable correlation structure and robust standard errors. Localisation errors were 

first log-transformed as the distributions were positively skewed. 

Analysis of swap errors was carried out using the absolute measure rather than the 

corrected measures (see sections 5.2.2 and 5.3.2.3). The corrected measures are strict 

as they are based on the upper limit of swap errors that could be explained by chance, 

so they are more suitable for checking the validity of the absolute measures by 

confirming that the results cannot be explained by chance (see section 5.3.2.3). The 

absolute measure is more appropriate for cases in which performance of different 

participants is compared. A GEE logistic regression model was used for the odds of 

making a swap error, with an independent correlation structure and robust standard 

errors. The outcome was number of swap errors, which was treated as a proportion of 

the number of trials in which the participant identified the correct fractal in each condition 

(high load with short delay; high load with long delay). Results are expressed as odds 

ratios for ease of interpretation.  

Factors in the regression models were load (low vs. high), delay (short vs. long), age at 

assessment, sex, childhood cognitive ability, education, adult socioeconomic position 

and presence of a neurological or psychiatric condition (yes vs. no). 

As previous studies have found an interaction between load and delay whereby the 

detrimental effect of long delay was disproportionately greater when the load was high 
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(Pertzov et al., 2012, 2015), I tested for such an interaction on the identification and 

localisation outcomes. (This is not applicable to swap errors since swap errors cannot 

be made in the low load condition.) 

Previous studies have reported interactions between load and between-subjects 

predictors (such as clinical group, age at assessment, sex or APOE genotype). For 

example, Pertzov et al. found that patients with medial temporal lobe damage had 

disproportionately poorer localisation in the high load condition compared to controls 

(2013), and older adults had disproportionately poorer identification and localisation in 

the high load condition compared to younger adults (2015). Similarly, interactions 

between delay and between-subjects predictors have been reported; for example, 

Zokaei et al. (2017) reported that the detrimental effect of a longer delay on localisation 

performance was reduced in APOE-ε4 carriers compared to non-carriers. To investigate 

whether similar interaction effects were present among Insight 46 participants, I tested 

for interactions between load (low vs. high) and between-subject predictors (age, sex, 

childhood cognitive ability, adult socioeconomic position and presence of a neurological 

or psychiatric condition), and between delay (short vs. long) and between-subject 

predictors. 

 

 

5.3.2. Results  

 

Descriptive statistics for the three outcome measures are shown in Table 5-1. Results of 

the multivariable regression models for the three primary outcomes are given in Table 

5-2. In addition, results of statistically significant interactions are reported in the text.  
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Table 5-1. Descriptive statistics for the “What was where?” task   

 

* In the low load condition, Nearest Item Control is the same as Gross Localisation Error 
because there is only one fractal so no swap errors can be made. IQR = interquartile range.  

  Low load High load 

  Short delay Long delay  Short delay Long delay 

Identification  
(% correct) 

Median 100 100 80 80 

IQR 100 - 100 100 - 100 70 - 90 70 - 90 

Range 50 – 100 0 – 100 40 – 100 30 – 100 

Gross 
Localisation 
Error  
(degrees of visual 
angle) 

Median 2.05 2.38 7.65 7.36 

IQR 1.42 – 2.73 1.73 – 3.14 5.47 – 9.84 5.90 – 9.54 

Range 0.12 – 20.84 0.28 – 14.36 0.79 – 20.68 2.33 – 20.57 

“Nearest Item 
Control” 
Localisation 
Error  
(degrees of visual 
angle) * 

Median 2.05 2.38 3.09 3.43 

IQR 1.42 – 2.73 1.73 – 3.14 2.54 – 3.86 2.88 – 4.09 

Range 0.12 – 20.84 0.28 – 14.36 0.79 – 8.41 1.54 – 7.96 

Swap errors (%) 

Median 

N/A 

17 17 

IQR 11 - 29 11 - 29 

Range 0 – 100 0 – 75 
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Table 5-2. Associations between demographic and life-course predictors and 
“What was where?” outcomes (n = 486) 

 

 

Predictor 

Identification: 

odds ratio and 

95% 

confidence 

intervals 

Localisation error 
(degrees of visual angle, 

log-transformed): 
coefficient and 95% CIs 

Swap errors: 

odds ratio and 

95% 

confidence 

intervals 
Gross error 

Nearest Item 
Control 

High load  
(low load as 
reference) 

0.23* 
(0.18, 0.30) 

1.23* 
(1.19, 1.27) 

0.44* 
(0.40, 0.47) 

N/A 

Long delay 
(short delay as 
reference) 

0.96 
(0.90, 1.05) 

0.09* 
(0.06, 0.13) 

0.13* 
(0.11, 0.16) 

1.00 
(0.90, 1.12) 

Sex 
(female as 
reference) 

0.90 
(0.80, 1.00) 

-0.12* 
(-0.17, -0.06) 

-0.12* 
(-0.17, -0.07) 

1.03 
(0.91, 1.17) 

Age at 
assessment 
(per year) 

0.95 
(0.86, 1.04) 

-0.01 
(-0.04, 0.01) 

-0.01 
(-0.05, 0.03) 

1.01 
(0.92, 1.11) 

Childhood 
cognitive 
ability  
(per z-score) 

1.20* 
(1.11, 1.31) 

-0.02 
(-0.06, 0.03) 

-0.00 
(-0.05, 0.04) 

0.90 
(0.81, 1.00) 

Education (per 
category) a 

0.98 
(0.93, 1.03) 

-0.01 
(-0.04, 0.01) 

-0.02 
(-0.04, 0.01) 

0.99 
(0.94, 1.06) 

Adult SEP 
(per category) a 

1.04 
(0.98, 1.11) 

-0.02 
(-0.04, 0.01) 

-0.01 
(-0.04, 0.02) 

1.01 
(0.94, 1.07) 

Neurological 
or psychiatric 
condition b 
(cognitively-
normal as 
reference) 

0.95 
(0.80, 1.13) 

0.10 
(0.01, 0.20) 

0.08 
(-0.01, 0.17) 

1.12 
(0.90, 1.38) 

 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. 
Multivariable regression models were used so each association is independent of all others. 
a See section 3.2.4 for definition of categories;  b See section 3.2.3 for definitions. 
 
CI = confidence interval; SEP = socioeconomic position 
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5.3.2.1. Load and delay 

 

5.3.2.1.1. Identification 

As expected, identification performance was poorer in the high load condition compared 

to the low load condition (Table 5-1, Table 5-2, Figure 5-3). In contrast to previous studies 

that have reported poorer identification after a long delay than a short delay (Pertzov et 

al., 2012, 2015; Zokaei et al., 2017), there was no statistically significant effect of delay 

on identification performance (Table 5-2, Figure 5-3). However, there was an interaction 

between load and delay, whereby the long delay had a more detrimental effect on 

identification performance in the low load condition, compared to the high load condition 

(OR = 7.27, 95% CIs 4.22 to 12.51, p < 0.0001, Figure 5-3). This is contrary to previous 

studies which reported that the long delay had a disproportionately greater effect when 

there were more items to be remembered (Pertzov et al., 2015; Zokaei et al., 2017). 

 

 

Figure 5-3. Identification performance on the “What was where?” task, by load and 
delay: means and 95% confidence intervals 

Markers show unadjusted means and error bars show 95% confidence intervals. This figure 

illustrates that, although delay did not have a statistically significant effect overall, there was an 

interaction between load and delay. 
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5.3.2.1.2. Localisation error 

As expected, localisation error was greater in the high load condition than the low load 

condition (Table 5-1, Table 5-2, Figure 5-4). This applied to the ‘nearest item control’ 

measure as well as the gross error measure, showing that the increased localisation 

error in the high load condition cannot be explained by swap errors. Also, as expected, 

localisation error was greater after a long delay compared to a short delay, both on the 

gross error measure and on the ‘nearest item control’ measure (Table 5-2, Figure 5-4).  

In contrast to previous studies that have reported that the detrimental effect of a longer 

delay was exaggerated when there were more items to be remembered (Pertzov et al., 

2012, 2015; Zokaei et al., 2017), there was a significant interaction between load and 

delay in the opposite direction, such that the detrimental effect of a long delay was slightly 

reduced in the high load condition compared to the low load condition, on both the gross 

localisation error (regression coefficient = -0.15, 95% CIs -0.23 to -0.08, p < 0.0001) and 

‘nearest item control’ measure (regression coefficient = -0.07, 95% CIs -0.14 to -0.01, 

p = 0.018). However, the interaction effect appears minimal on visual inspection, as the 

lines are almost parallel (Figure 5-4). 
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Figure 5-4. Localisation error on the “What was where?” task, by load and delay: 
means and 95% confidence intervals 

Markers show unadjusted means and error bars show 95% confidence intervals. ‘Nearest item 

control’ accounts for the impact of swap errors – see section 5.2.2 for full definitions. (Note that 

swap errors cannot be made in the low load condition as there is only one fractal, so no ‘nearest 

item control’ is necessary.)   

 

 

5.3.2.1.3. Swap errors 

Delay had no significant effect on the proportion of swap errors (Table 5-2), in contrast 

to a previous study where healthy participants made more swap errors in the long delay 

condition (Pertzov et al., 2012). 
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5.3.2.2. Demographic and life-course predictors 

 

5.3.2.2.1. Childhood cognitive ability, education and adult 

socioeconomic position 

Higher childhood cognitive ability was associated with better identification performance 

(Table 5-2, Figure 5-5). There was evidence that this effect was exaggerated in the long 

delay condition compared to the short delay (OR = 1.14, 95% CIs 1.01 to 1.30, p = 0.037). 

There was no evidence of a statistically significant association between childhood 

cognitive ability and localisation error, either in the gross error measure nor the ‘nearest 

item control’ measure (Table 5-2). Participants with higher childhood cognitive ability 

tended to make fewer swap errors (Table 5-2, Figure 5-6).  

 

 

Figure 5-5. Association between childhood cognitive ability and identification 
memory on the “What was where?” task 

Solid line represents prediction from the multivariate regression model, adjusted for sex, age at 

assessment, education, adult socioeconomic position and presence of a neurological or 

psychiatric condition. Shaded area represents 95% confidence intervals. Markers show each 

participant’s identification rate across the experiment as a whole (combined across the different 

conditions of load and delay). For an explanation of the childhood cognitive ability variable, see 

section 3.2.4. 
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Figure 5-6. Association between childhood cognitive ability and swap errors on 
the “What was where?” task 

Solid line represents prediction from the multivariate regression model, adjusted for sex, age at 

assessment, education, adult socioeconomic position and presence of a neurological or 

psychiatric condition. Shaded area represents 95% confidence intervals. Markers show each 

participant’s swap error rate across the experiment as a whole (as a percentage of trials on which 

they identified the correct fractal). For an explanation of the childhood cognitive ability variable, 

see section 3.2.4. 

 

Educational attainment and adult socioeconomic position did not show evidence of 

associations with performance on any outcome measure (Table 5-2). 

 

5.3.2.2.2. Sex differences 

Males had slightly poorer identification memory than females on average, having 10% 

lower odds of identify the correct fractal (Table 5-2). However, males made smaller 

localisation errors than females on average, both in the gross measure (unadjusted 

means: 4.93o vs. 5.39o) and ‘nearest item control’ (unadjusted means: 2.78o vs. 3.10o) 

(Table 5-2). There was evidence that this sex difference was reduced in the high load 

condition compared to the low load condition (gross error: interaction coefficient = 0.09, 

95% CIs 0.01 to 0.18, p = 0.034; nearest item control: interaction coefficient = 0.09, 95% 

CIs 0.02 to 0.16, p = 0.012) and in the long delay condition compared the short delay 
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condition (gross error: interaction coefficient = 0.13, 95% CIs 0.05 to 0.20, p = 0.13; 

nearest item control: interaction coefficient = 0.09, 95% CIs 0.03 to 0.15, p = 0.004). The 

untransformed results for males and females are illustrated in Figure 5-7 for the ‘nearest 

item control’ measure, as an aid to the interpretation of these interaction effects. Overall, 

these results indicate that males tended to report the location of objects more accurately 

than females when the memory demands were easier, whereas sex differences were 

reduced when the memory demands were harder. 

There was no sex difference in the proportion of swap errors (Table 5-2). 

 

 

Figure 5-7. ‘Nearest Item Control’ localisation error on the “What was where?” task 
for males and females, by load and delay 

Markers show unadjusted means and error bars show 95% confidence intervals. 

 

 

5.3.2.2.3. Age at assessment 

Age did not show evidence of associations with performance on any outcome measure 

(Table 5-2). 



104 
 

 

5.3.2.2.4. Neurological and psychiatric conditions 

Participants with neurological and psychiatric conditions made slightly larger gross 

localisation errors than cognitively-normal participants, although this did not reach 

statistical significance in the ‘nearest item control’ measure (p = 0.067) (Table 5-2). There 

was no evidence that participants with neurological and psychiatric conditions differed 

from cognitively-normal participants in terms of identification performance or swap errors 

(Table 5-2). 

 

 

5.3.2.3. Exploration of swap errors 

It is possible that swap errors could occur by chance – firstly the participant could guess 

the correct object by chance and secondly they could localise it to the location of a non-

target fractal by chance. To account for this, three measures were calculated to estimate 

the proportion of swap errors that may be expected due to chance for each participant, 

using the methods set out in previous studies (Pertzov et al., 2012, 2013). As there was 

no evidence of an effect of delay on the proportion of swap errors (see section 5.3.2.1.3), 

this was done based on each participant’s overall proportion of swap errors across the 

short and long delay conditions. 

Swap errors due to chance identification. If a participant could not remember the 

identity of the object and guessed it correctly by chance, but their memory for the 

locations of the objects was intact, they would be expected to localise the object around 

one of the three remembered locations. Therefore, in one third of cases they would be 

expected to localise it to the target location and in two thirds of cases they would be 

expected to localise it to one of the two non-target locations, which would be recorded 

as a swap error. Therefore, the upper limit of the number of swap errors that may be 

expected due to guessing the identity of the object correctly by chance can be calculated 

by multiplying each participant’s number of identification errors by two thirds. This gives 

a number of “swap errors due to chance identification”.  

Swap errors due to chance localisation. For every trial on which a swap error was 

observed, the probability that the swap error was obtained by chance despite the 

locations having been forgotten can be estimated by simulating all possible locations 

(using steps of 1o) that the target could have been placed with the same amplitude of 

error, and then calculating the proportion of these locations that would be classified as a 
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swap error (Figure 5-8). Combining these probabilities across all the trials gives a 

number of “swap errors due to chance localisation” for each participant. 

Swap errors due to chance identification and localisation can be calculated by 

combining the two measures described above. This represents the strictest upper limit 

of swap errors that could be expected due to chance. 

 

  

 

 

 

 

 

 

 

Figure 5-8. Swap errors on the “What was where?” task 

Dashed green circles indicate the original location of the target fractal, dashed red circles indicate 
the original locations of non-target fractals. The left-hand image shows the location reported by 
the participant in this example. The right-hand image shows all potential locations that the fractal 
could be placed by chance, assuming the same amplitude. Blue lines are drawn to locations that 
would not be classified as a swap error, and orange lines are drawn to locations that would be 
classified as a swap error (i.e. within 4.5o of a non-target location). Therefore, the probability of 
obtaining this swap error by chance equals the number of orange lines divided by the total number 
of orange and blue lines. Reprinted from Pertzov et al. (2013) under the terms of the Creative 
Commons Attribution License (CC BY-NC 3.0).  

 

The mean and SD for the various swap error measures were as follows: observed swap 

errors = 20 ± 11%; swap errors expected due to chance identification = 9 ± 6%; swap 

errors expected due to chance localisation = 2 ± 2%; swap errors expected due to chance 

identification and localisation = 11 ± 6%. 

Paired sample t-tests were used to test the hypothesis that the observed proportion of 

swap errors was significantly greater than the proportion of swap errors expected due to 

chance. This hypothesis was supported (swap errors due to chance identification: t(485) 

= 26.5, p < 0.0001; swap errors due to chance localisation t(485) = 36.2, p < 0.0001; 

swap errors due to chance identification and localisation t(485) = 24.4, p < 0.0001). 

These results confirm that when participants did not remember the correct location of the 

target fractal, they did not report a random location but tended to mislocalise it around 

the locations of the other two fractals. 
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5.4. Associations with biomarkers and APOE-ε4 
 

Following the format laid out in section 3.5, the second part of this chapter aims to 

investigate associations between performance on the “What was where?” task and 

biomarkers of AD in cognitively-normal participants for whom complete biomarker data 

are available. The number of participants meeting these criteria who also had usable 

data from the “What was where?” task was 398 (see section 3.3). 

As explained in section 3.5.2.1, I wanted to derive some summary scores that capture 

the key aspects of performance on each task, to use for comparing results across the 

different cognitive tests in the Insight 46 battery (see Chapter 9). For the “What was 

where?” task I calculated the following three summary outcomes for each participant: 

i) Identification, defined as the percentage of trials on which the correct fractal 

was selected (out of 24 trials). This is a measure of memory for the identity of 

objects. 

ii) Mean ‘nearest item control’ localisation error, defined as above (see section 

5.2.2). The scores were log-transformed to more closely approximate the normal 

distribution. I chose the ‘nearest item control’ measure over the gross error 

measure (see section 5.2.2) because the gross error measure is heavily 

influenced by swap errors, whereas ‘nearest item control’ is a purer measure of 

memory for the location of objects. 

iii) Swap errors, defined as the percentage of trials on which a swap error was made 

(see definition in section 5.2.2). This is a measure of ‘misbinding’ of objects and 

locations in memory.  

Combining outcomes across the different conditions of load (low vs. high) and delay 

(short vs. long) was justified because my hypotheses about associations between AD 

pathology and “What was where?” outcome measures (see section 5.2.3) were general 

rather than specific to certain conditions. 

For each of the three summary outcomes, I tested for associations with the same 

biomarkers as in the previous chapter (see section 3.5.2). I also tested for associations 

between “What was where?” outcomes and hippocampal volume, in order to test the 

hypothesis that smaller hippocampal volume would be associated with increased swap 

errors. Hippocampal volume was generated using the Similarity and Truth Estimation 

for Propagated Segmentations (STEPS) automated segmentation method with 

appropriate manual editing (Cardoso et al., 2013). 
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5.4.1. Statistical Analyses 

 

As before, identification was analysed using a GEE logistic regression model for the 

odds of correctly identifying the fractal with an independent correlation structure and 

robust standard errors. The outcome was number of correct identifications, which was 

treated as a proportion of the total number of trials (24 for most people, but 23 for the 6 

participants who had a trial excluded during the data cleaning process – see 5.2.5). 

Results are expressed as odds ratios for ease of interpretation. 

Mean ‘nearest item control’ localisation error was analysed using a linear regression 

model. 

As before, a GEE logistic regression model was used for the odds of making a swap 

error, with an independent correlation structure and robust standard errors. The outcome 

was number of swap errors, which was treated as a proportion of the number of trials in 

which the participant identified the correct fractal. Results are expressed as odds ratios 

for ease of interpretation.  

All models included predictors of amyloid status (positive vs. negative), whole brain 

volume, WMHV and APOE genotype (ε4-carrier vs. non-carrier). To adjust for the 

correlation between whole brain volume and head size, total intracranial volume (TIV) 

was included in all models, as were the demographic factors investigated in section 6.3 

(sex, age at assessment, childhood cognitive ability, education and adult socioeconomic 

position).  

The models were additionally rerun replacing dichotomised amyloid status with SUVR to 

test whether increasing Aβ deposition was associated with differences in performance. 

To check whether associations between SUVR and cognition were sensitive to the 

inclusion of the imputed SUVR values (see section 3.2.2), the analyses were rerun 

excluding the 26 participants with imputed SUVR data. 

To test for associations between “What was where?” outcomes and hippocampal volume 

(total volume of left plus right hippocampus), I reran the above models with covariates of 

hippocampal volume, sex, age at assessment, childhood cognitive ability, education, 

adult socioeconomic position and total intracranial volume. 
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5.4.2. Results  
 

Results of the regression models for the three outcomes are reported in Table 5-3. 

Results for the demographic and life-course factors (sex, age at assessment, childhood 

cognitive ability, education and adult socioeconomic position) are not reported as they 

are essentially unchanged from the first analysis section (5.3.2). 

 

Table 5-3. Associations between biomarkers and “What was where?” outcomes 
in cognitively-normal participants (n = 398) 

Predictor 
Identification: 
odds ratio and 

95% CIs 

Mean “Nearest Item 
Control” localisation 

error  
(degrees of visual angle,  

log-transformed): 
coefficient and 95% CIs 

Swap errors: 
odds ratio and 

95% CIs 

β-amyloid status  
(negative as reference) 

0.84 
(0.72, 0.97) 

0.03 
(-0.04, 0.09) 

0.93 
(0.77, 1.14) 

WMHV (per 10 ml) 
1.01 

(0.92, 1.11) 
-0.00 

(-0.04, 0.04) 
0.97 

(0.88, 1.08) 

Whole brain volume  
(per 10 ml) 

1.01 
(0.99, 1.02) 

-0.00 
(-0.01, 0.00) 

1.00 
(0.98, 1.02) 

APOE-ε4 
(non-carriers as 
reference) 

1.15 
(1.01, 1.31) 

-0.07 
(-0.13, -0.02) 

1.01 
(0.87, 1.17) 

 

Multivariable regression models were used so each association is independent of all others. In 
addition to the predictors listed, models also included sex, age at assessment, childhood cognitive 
ability, adult socioeconomic position, and total intracranial volume. 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01.  

CI = confidence interval; WMHV = white matter hyperintensity volume 

 

On average, Aβ+ participants had slightly poorer identification memory than Aβ- 

participants (adjusted means from the multivariable regression model: 80% vs. 83% 

correct) (Table 5-3). There was no evidence of statistically significant differences 

between the amyloid groups in terms of localisation error or swap errors (Table 5-3). As 

an aid to interpretation, the unadjusted untransformed means are quoted as follows: 

‘nearest item control’ localisation error: Aβ+ = 3.19o; Aβ- = 3.21o; swap errors: Aβ+ = 

18.9%; Aβ- = 20.0%. 

When rerunning the models replacing dichotomous amyloid status with continuous 

SUVR, there were no statistically significant associations between SUVR and any of the 
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“What was where?” outcome variables (Identification: Odds ratio = 0.55, 95% CIs 0.23 

to 1.32, p = 0.18; Localisation error: regression coefficient = 0.08, 95% CIs -0.28 to 0.43, 

p = 0.67; Swap errors: Odds ratio = 0.73, 95% CIs 0.22 to 2.36, p = 0.59). These results 

were unchanged in a sensitivity analysis excluding the individuals with imputed SUVR 

values (see section 3.2.2).  

Although the raw unadjusted scores for object identification were slightly lower in APOE-

ε4-carriers compared to non-carriers (ε4-carriers = 82% correct; non-carriers = 84% 

correct), ε4-carriers were found to perform better than non-carriers on this measure after 

adjustment for amyloid status and all other covariates (Table 5-3). As the effect of APOE-

ε4 worked in the opposite direction to the effect of Aβ, this means that the best-

performing group were Aβ- ε4-carriers, and the worst-performing group were Aβ+ non-

carriers (Figure 5-9).  

 

 

Figure 5-9. Identification performance on the “What was where?” task by amyloid 
status and APOE genotype: means and 95% confidence intervals 

Markers show unadjusted means and error bars show 95% confidence intervals.  

 

APOE-ε4 carriers also had better localisation memory than non-carriers on average 

(Table 5-3), with a regression coefficient equivalent to -0.25 SD. A t-test using the raw 

unadjusted localisation error scores confirmed that this group difference was statistically 
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significant without adjusting for any other covariates (ε4-carriers = 3.0o error; non-carriers 

= 3.3o error, t(396) = 2.50, p = 0.013). As a previous study using the “What was where?” 

task reported that the beneficial effect of APOE-ε4 on localisation memory was only 

present in males (Zokaei et al., 2017), I tested for an interaction between sex and APOE 

genotype: there was no evidence of such an interaction (interaction coefficient = 0.02, 

95% CIs -0.08 to 0.13, p = 0.67).  

Whole brain volume and WMHV did not have any statistically significant effects on any 

of the “What was where?” outcomes (Table 5-3).  

There was no evidence of associations between hippocampal volume and any “What 

was where?” outcomes (Identification: OR = 1.00 per additional ml, 95% CIs 0.91 to 1.11, 

p = 0.93; Localisation error: -0.02, 95% CIs -0.06 to 0.03, p = 0.45; Swap errors: OR = 

1.06, 95% CIs 0.94 to 1.19, p = 0.38). 

 

 

5.5. Discussion 
 

5.5.1. Summary 
 

The “What was where?” task measured memory for the identity and location of objects, 

and binding of these two features in memory. Subtle sex differences were observed for 

the first time on this task, with females performing better on the identification measure 

but males performing better on the localisation measure. Higher childhood cognitive 

ability was associated with better memory for the identity of objects and fewer binding 

errors. The results did not support the hypothesis that cognitively-normal Aβ+ 

participants would show subtle binding deficits, but there was evidence that Aβ+ 

participants had slightly poorer memory for object identity. As predicted, APOE-ε4 

appeared to have a beneficial effect on memory for locations, and a beneficial effect on 

memory for object identity was also observed. There was no evidence to support the 

hypothesis of an association between hippocampal volume and memory binding. 

 

5.5.2. Patterns of performance 
 

Performance on the three outcomes (identification, localisation and binding) was broadly 

similar to previous studies that have used this task in healthy adults (Pertzov et al., 2012, 

2015; Zokaei et al., 2017; Zokaei, Čepukaitytė, et al., 2019). Neither a ceiling nor a floor 
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effect was observed in terms of identification rate (mean = 83%; SD = 8.9) and the 

percentage of swap errors (mean = 20%) was in line with previous studies (Pertzov et 

al., 2012, 2015). 

Unexpectedly, the length of the delay before participants were asked to report the identity 

and location of the fractal had little impact on their performance. There was no evidence 

of a statistically significant effect of delay duration on identification, although localisation 

performance was a little poorer after the longer delay as expected. Furthermore, this 

study did not observe the expected interactions between load and delay, whereby the 

detrimental effects of a long delay on identification and localisation were expected to be 

disproportionately greater when there were more items to be remembered (high load) 

compared to the low load condition (Pertzov et al., 2012, 2015; Zokaei et al., 2017). One 

possible explanation for this could derive from the way that this shortened version of the 

task was adapted from the original version. The 24 trials in this version were randomly 

selected from the 100 trials in the original task, and it is possible that the ‘short delay’ 

and ‘long delay’ trials could have ended up unbalanced in terms of difficulty. Anecdotally 

the difficulty of individual trials can vary depending on the features of the fractals such 

as their relative salience, similarity and positions (for example, if the target and foil 

fractals in the test array happen to contain similar colours, it may be more difficult to 

choose between them). This variability in the appearance of the fractals is inherent to 

the task and is impossible to fully control for. Also, as 24 trials is a small number 

compared to many neuropsychology tests, the signal-to-noise ratio may not have been 

good enough to measure these effects. 

 

5.5.3. Demographic and life-course predictors 
 

5.5.3.1. Associations with childhood cognitive ability, education and adult 

socioeconomic position 

Higher childhood cognitive ability was associated with better memory for the identity of 

objects and fewer ‘misbinding’ errors. It is interesting that localisation memory did not 

show evidence of an association with childhood cognitive ability, especially given that 

the continuous nature of this measure (as opposed to a discrete correct vs. incorrect 

recall measure) makes it sensitive to small differences in performance (Pertzov et al., 

2013). I would speculate that the adoption of encoding strategies may possibly be 

relevant here; anecdotally, I observed that participants sometimes commented on trying 

out different encoding strategies for remembering the identity of the objects, for example 

“I tried to give the shapes a name in my head” or “I tried to remember the colours”, and 
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sometimes remarked on whether or not such strategies had been successful. I do not 

recall any participants commenting on strategies for remembering the locations and I 

would argue that the range of possible strategies for remembering precise locations on 

a blank screen may be more limited. I would speculate that the greater potential for 

adopting a range of strategies to encode object identities may be of relevance in 

explaining why the identification memory measure appears to be more related to general 

cognitive ability, as it introduces an element of problem-solving into the task, creating 

potential for participants to generate and adapt strategies throughout the task. Although 

fractal stimuli were used to reduce the likelihood of verbal encoding, it is interesting to 

note that such strategies are effectively an attempt to introduce a verbal memory 

component into the task (i.e. encoding the names of colours or shapes), allowing the 

object identities to be more easily rehearsed during the delay interval. 

Given that previous studies have reported the ‘swap error’ measure to be a sensitive and 

specific measure of memory binding impairment in individuals with presymptomatic FAD 

(Liang et al., 2016) and patients with medial temporal lobe damage (Pertzov et al., 2013; 

Zokaei, Nour, et al., 2019), the novel association reported here between higher childhood 

cognitive ability and fewer swap errors has implications for such studies. While most 

cohorts do not have access to data on childhood cognitive ability, interpretation of results 

should consider the fact that individual differences in memory binding ability may be 

partially driven by general cognitive ability as well as by pathology.  

 

5.5.3.2. Sex differences 

The finding that males had better memory for the location of objects is interesting in the 

context of a previous study using the “What was where?” task which reported an 

interaction between sex and APOE genotype on the localisation memory measure: male 

APOE-ε4 carriers were found to be at an advantage compared to male non-carriers in 

terms of localisation memory, but no such effect of APOE-ε4 was observed in females 

(Zokaei et al., 2017). As that study found no statistically significant overall difference 

between males and females on the localisation measure (although they did report a 

significant sex difference in terms of swap errors), the authors’ interpretation focussed 

on reasons why APOE-ε4 may have differential effects on men and women, rather than 

on reasons why there may be sex differences in localisation memory. However, the 

direction of their data appears to be consistent with the effect I report here, and their 

hypotheses about differential effects of APOE-ε4 were not supported by their later study 

which reported the same effect of APOE-ε4 in both males and females (Zokaei, 

Čepukaitytė, et al., 2019). Perhaps the lack of a statistically significant sex difference in 

localisation memory in these two studies could be explained by the fact that it is a very 
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subtle effect and those studies had much smaller sample sizes (n=60 and n=66 

respectively) and contained wider age ranges. 

As the male advantage for localisation was primarily driven by the conditions with easier 

memory demands (1 object to remember and 1-second delay), this suggests that the 

difference may lie in the precision of encoding and/or reporting locations, rather than in 

the rate of decay of representations in memory (in which case the opposite result would 

be expected, i.e. a greater sex difference after 4 seconds delay). One previous study 

conducted a detailed examination of sex differences in reporting of point locations within 

a blank circle and within photographs of complex natural scenes, and concluded that the 

sex differences may arise during encoding as the differences were present even when 

there was no retention interval (i.e. participants were asked to reproduce a location from 

an image on a screen onto a response sheet while the screen remained visible) (Holden, 

Duff-Canning and Hampson, 2015). The nature of the errors in this task revealed an 

interesting pattern from which the authors concluded that women were more likely to rely 

on categorical cues whereas men tended to rely on metric information. Within a blank 

circle, women were more likely to localise the point closer to the centre of one of the four 

quadrants that would be formed if the horizontal and vertical axes of the circle were 

drawn in. Similarly in the photographic scenes, they were more likely to localise the point 

closer to the centre of the section that the stimulus location was in, where the sections 

were defined by an algorithm using edge detection and shared perceptual features (e.g. 

the shadow on the side of a mountain). Both cases suggest an increasing tendency to 

categorise the image into regions of interest and to adopt a strategy of remembering 

which region the point is in. Anecdotally, this fits with my perception of watching 

participants complete the “What was where?” task, where I got the impression that some 

participants appeared to be recalling the locations using strategies such as “over by the 

right-hand edge” or “up towards the top-left corner”, as they sometimes seemed to make 

stereotyped errors such as locating the fractal as far towards the edge or corner as 

possible. 

There is a well-established literature on sex differences in spatial abilities, with males 

reported to outperform females on a range of tasks such as spatial navigation and mental 

rotation, in rats as well as humans (for meta-analyses see Voyer, Voyer and Bryden, 

1995; Jonasson, 2005; Voyer, Voyer and Saint-Aubin, 2017). Various explanations for 

sex differences in spatial abilities have been advanced, including hormonal (see 

Jonasson for a review in rats) and evolutionary factors (e.g. Ecuyer-Dab and Robert, 

2004). However, there is also evidence that sex differences in spatial abilities in humans 

are dependent on cultural factors. In a recent analysis of over 2.5 million people from all 

195 nation states who played a mobile-app-based game designed to measure spatial 
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navigation ability, there was a consistent sex difference across nations with males 

performing better, but the size of a nation’s sex difference was positively correlated with 

its level of gender inequality, as defined by the World Economic Forum’s Gender Gap 

Index  (Coutrot et al., 2018). Consistent with the evidence described above of a sex 

difference in preference for cues versus metric information, studies of spatial navigation 

have reported sex differences in navigation strategies, with females tending to place 

more emphasis on allocentric strategies (based on a perception of the positions of 

landmarks and their relationships to other landmarks) and males tending to rely more on 

egocentric strategies (based on an internal representation of spatial information from 

one’s own viewpoint) (Saucier et al., 2002; Jonasson, 2005).  

With respect to sex differences on object location memory tasks specifically, two meta-

analyses have concluded that women outperform men, but these meta-analyses 

focussed on specific types of task which require recall of categorical locations. The first 

meta-analysis included variations of a task where participants are asked to study an 

array of objects and then are presented with a new array in which some objects have 

moved and others are in the same places as before – the task is to identify which objects 

have switched places (Voyer et al., 2007). The second meta-analysis focussed on a task 

where participants are asked to memorize the locations of pairs of coloured dots hidden 

underneath flaps (similar to the ‘Pairs’ card game) (Voyer, Voyer and Saint-Aubin, 2017). 

It has been argued that the apparent female advantage on these sorts of location 

memory tasks may be dependent on non-spatial aspects of these tasks (Andreano and 

Cahill, 2009; Holden, Duff-Canning and Hampson, 2015), which may explain the 

discrepancy with tasks based on recall of absolute metric locations such as “What was 

where?”.  

This argument may also be relevant to my finding that females had slightly better memory 

for the identity of objects, as good performance on this measure may be aided by 

verbalisation strategies (as alluded to in section 5.5.3.1) rather than relying purely on 

visual memory. This result is in line with the results from the other memory tests in the 

Insight 46 battery (Logical Memory and FNAME – see Chapter 4) where females had 

higher scores on average. 

In summary, the finding of sex differences on the “What was where?” task is novel, but 

is consistent with a body of literature on sex differences in verbal and visuospatial 

abilities. This finding is noteworthy for the fact that both male and female advantages 

were demonstrated in a single task. 
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5.5.3.3. Associations with age 

Age effects have previously been observed on the “What was where?” task, whereby 

older adults had poorer memory for object identity and location compared to younger 

adults, although there was no age effect on memory binding (Pertzov et al., 2015). It is 

not surprising that no such evidence of associations between age and performance were 

seen among Insight 46 participants, given that the age range was so small (2.6 years- 

reflecting the time it took to collect the data since all participants were born in the same 

week).  

 

 

5.5.4. Associations with biomarkers and APOE-ε4 

 

Previous studies have suggested that visual memory binding may be one of the first 

aspects of memory to decline as AD pathology accumulates, as subtle binding deficits 

have been detected in presymptomatic FAD mutation carriers, at a stage when memory 

for the individual features was unaffected (Parra et al., 2010, 2011, 2015; Liang et al., 

2016). The results of this study contradict this as there was no evidence of a difference 

between cognitively-normal Aβ+ and Aβ- participants in terms of object-location binding, 

but Aβ+ participants did have slightly poorer memory for the identity of objects (as well 

as evidence of slightly lower scores on the Logical Memory Immediate recall task 

reported in Chapter 4). To my knowledge, associations between Aβ deposition and visual 

short-term memory binding have not been investigated before in cognitively-normal older 

adults, but binding deficits in MCI (Pietto et al., 2016; Parra et al., 2017) and AD are well-

established (Parra et al., 2009, 2010, 2011; Fernández et al., 2018), so further studies 

are needed to determine at what point such deficits may emerge. As the presymptomatic 

mutation carriers in the study by Liang et al. showed evidence of hippocampal atrophy 

which correlated with greater binding deficits, and Aβ deposition is understood to 

precede hippocampal atrophy by some years (Bateman et al., 2012; Jack et al., 2013) it 

is currently unclear whether binding deficits may be detectable before measurable 

neurodegeneration occurs. 

This is now the third independent cohort to report a beneficial effect of APOE-ε4 on 

memory for locations in the “What was where?” task (Zokaei et al., 2017; Zokaei, 

Čepukaitytė, et al., 2019). This is consistent with a recent review of the association 

between APOE-ε4 and cognition in younger adulthood, which highlighted spatial memory 

as one area of cognition in which APOE-ε4 carriers appear to be at an advantage, along 

with advantages in many aspects of physical fitness (Smith, Ashford and Perfetti, 2019). 
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The authors of this review acknowledged the issue of “transition from ε4-associated 

cognitive advantage to cognitive deficit” across the life span, but it is important to 

remember that beneficial effects of APOE-ε4 on cognition may not cease to operate in 

older age, even if outweighed on average by the detrimental effects of Aβ-pathology – 

as highlighted by the novel finding that APOE-ε4 carriers in Insight 46 had better memory 

for object identity on the “What was where?” task, once the detrimental effect of Aβ had 

been accounted for. Many studies comparing APOE-ε4 carriers and non-carriers in older 

age do not have access to biomarker data on Aβ levels, so it is possible that subtle 

independent effects of APOE-ε4 are being masked by Aβ. This could potentially explain 

why Zokaei et al. observed no effect of APOE-ε4 on memory for object identity, if this 

measure is more sensitive to Aβ-pathology as the results reported here suggest. It could 

also explain why the APOE-ε4 carriers in their study showed evidence of poorer memory 

on a delayed recall task, whereas in Insight 46 APOE-ε4 carriers performed better on a 

delayed recall task (Logical Memory – see Chapter 4) after the detrimental effect of Aβ 

was accounted for. This finding on the Logical Memory task further supports the 

hypothesis that the purported beneficial effect of APOE-ε4 is not specific to location 

memory. Furthermore, in light of evidence from studies of spatial navigation that have 

observed poorer performance in APOE-ε4 carriers, both in younger and older adults 

(Kunz et al., 2015; Coughlan et al., 2019), it is possible that the superior performance of 

APOE-ε4 carriers on the “What was where?” localisation measure could be primarily due 

to its demands on working memory and attention, rather than spatial abilities per se. This 

is discussed further in Chapter 10. 

 

5.5.5. Strengths and limitations 
 

Although anecdotally this was one of the tasks on which participants were most likely to 

report a perception of poor performance, it worked well with no floor or ceiling effects, 

and only one participant declining to complete the full task (see section 3.3). The results 

suggest that the adapted short form of the “What was where?” task used in Insight 46 is 

sufficient to measure the outcomes of interest, and suitable for detecting subtle 

differences in performance in this age group. This is encouraging as this version (24 

trials) takes approximately 8-10 minutes to complete, whereas the original version was 

much longer with 100 trials. For participants who did report finding this task particularly 

difficult, a much longer version could have been demoralising. However, more trials may 

be necessary for studies which aim to examine the effects of load and delay, as the small 
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number of trials may have affected our ability to detect differences between the 

conditions, especially since the low load condition only had 4 trials. 

The software had a limitation that resulted in occasional instances of the opposite fractal 

being selected to the one the participant intended. This happened when a participant 

selected a fractal and dragged it to their chosen location, passing through the unselected 

fractal on the way. This could generally be avoided by instructing the participant to tap 

their chosen fractal first and then tap the location, rather than doing both in one 

movement. It was not possible to record which trials this occurred on, but my estimate is 

that it affected 5-10% of trials for 1-5% of participants i.e. no more than 0.5% of trials in 

total. This means that a few participants may have received lower identification scores 

than they should have. Localisation error and swap error scores are unlikely to have 

been affected since they are calculated based on correct identifications only. I am 

confident that this has not affected the results and conclusions, but would recommend 

for future studies that the software is altered to require the identification step to be logged 

before moving onto the localisation step. 

Strengths and limitations that apply to all the analyses presented in this thesis, such as 

considerations relating to the generalisability of the sample, are discussed in Chapter 

10.  

 

5.5.6. Conclusions 
 

In summary, this sensitive computerised task allows precise measurement of multiple 

aspects of visual short-term memory, revealing an interesting pattern of sex differences 

and a novel dissociation between the effects of Aβ pathology and APOE-ε4, whereby Aβ 

was associated with a subtle deficit in object recognition memory whereas APOE-ε4 was 

associated with superior performance. 
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6. CHOICE REACTION TIME 
 

6.1. Introduction  
 

Processing speed is an aspect of cognition in which age-related decline is particularly 

notable (Salthouse, 2000; Harrington et al., 2018), and also an area which becomes 

impaired early in the AD process. Evidence that decline in processing speed can be 

detected in the preclinical phase of AD comes primarily from studies that have reported 

a difference between cognitively-normal individuals with and without amyloid-β and tau 

pathology, on paper-and-pencil tasks such as the WAIS-Digit Symbol and Trail Making 

Test A (e.g. Baker et al., 2017; Ho and Nation, 2018). An aspect of processing speed 

which merits further investigation as a potential marker of subtle cognitive decline in 

preclinical AD is reaction time (RT) because it underpins many other cognitive processes 

and is of constant relevance to daily functioning. Simple RT tasks can be conceptualised 

as requiring sustained attention and the energisation and execution of a pre-planned 

motor or other response (Stuss et al., 2005). Choice RT tasks (which require selection 

of the correct response from two or more options) can be considered to additionally 

require monitoring a larger set of stimuli and inhibiting responses to non-target stimuli 

(Stuss et al., 2005). Choice RT may be a particularly informative measure because – 

compared to simple RT – it is more sensitive to age and cerebral dysfunction (Benton, 

1986; Der and Deary, 2006). As well as response speed itself, another interesting aspect 

of performance on such tasks is intra-individual variability (or inconsistency) in RT.  

It is well-established that Choice RT slows with age. Most evidence comes from cross-

sectional studies comparing younger and older adults (Deary and Der, 2005; Bugg et al., 

2006; Der and Deary, 2006; Garrett, Macdonald and Craik, 2012; Vincent et al., 2012; 

Nissan, Liewald and Deary, 2013; Woods et al., 2015), but longitudinal decline has also 

been reported (Ritchie et al., 2016). While there is a component of motor slowing, most 

of the age-related increase in RT is understood to be due to slower cognitive processing, 

which includes the specific steps of response selection and response generation 

(Salthouse, 1996; Godefroy et al., 2010; Woods et al., 2015), as well as to a decline in 

attention (Godefroy et al., 2010). Intra-individual variability in RT is also widely-reported 

to increase with age (Anstey et al., 2005; Deary and Der, 2005; Williams et al., 2005; 

Dykiert et al., 2012a; Nissan, Liewald and Deary, 2013). As intra-individual variability in 

RT is a function of overall response speed (i.e. variability increases as responses get 

slower), experimental studies often use normalised measures of intra-individual 

variability that account for each individual’s average RT. One such index is the 

“coefficient of variation”, defined as standard deviation / mean (e.g. (Der and Deary, 

2006) or interquartile range / median (e.g. (Phillips et al., 2013)).  
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Impaired RT and increased intra-individual variability in RT are common across a variety 

of neurological conditions including the dementias, traumatic brain injury, schizophrenia 

and attention deficit hyperactivity disorder (Benton, 1986; MacDonald, Nyberg and 

Bäckman, 2006). A number of diverse associations suggest that RT might be a general 

indicator of the integrity of the central nervous system (MacDonald, Nyberg and 

Bäckman, 2006), for example, RT correlates with a wide range of physical health 

measures such as grip strength, forced expiratory volume, corrected visual acuity and 

concentration of macular pigment (Anstey et al., 2005; Feeney et al., 2013). Insight 46 

participants have previously completed a Choice RT task at age 60-64, as part of the 

wider MRC National Survey of Health and Development (NSHD), and the results 

provided evidence that slower RT is associated with greater adiposity (waist 

circumference) (Masi et al., 2018) and impaired kidney function, partially accounted for 

by socioeconomic factors (Silverwood et al., 2014). 

Multiple studies have reported that patients with AD have slower and more variable RTs 

than controls (Hultsch et al., 2000; Burton et al., 2006; Phillips et al., 2013; Christ, 

Combrinck and Thomas, 2018). There is evidence that decline in RT can be detected 

before the onset of AD dementia, as patients with MCI are reported to have slower RTs 

than controls (Christensen et al., 2005; Ballesteros, Mayas and Reales, 2013; Phillips et 

al., 2013; Haworth et al., 2016). One study found that RT discriminated the MCI and 

control groups better than the commonly-used Trail-Making Test, another measure of 

information processing speed that arguably relies more on multiple high-level functions 

such as working memory, cognitive flexibility and set-shifting (Haworth et al., 2016).  

Intra-individual variability in RT has received relatively little attention as a potential 

marker of early cognitive decline in preclinical AD, but some studies have investigated 

intra-individual variability in RT in patients with MCI and reported mixed results. One 

study reported that patients with MCI were more variable than controls (Christensen et 

al., 2005), whereas another reported that patients with MCI had larger standard 

deviations of RT than controls but this was accounted for by their slower overall response 

speed (i.e. there was no difference in the coefficient of variation) (Phillips et al., 2013). A 

third study reported that MCI patients did not differ from controls in terms of intra-

individual variability on a simple RT task, but greater variability within the MCI group was 

predictive of developing dementia within a 2.5 year follow-up (Tales et al., 2012). To my 

knowledge, no studies have investigated associations between Choice RT (response 

speed and intra-individual variability) and biomarkers of AD pathology in cognitively-

normal older adults. 

If Choice RT and/or intra-individual variability in RT are to be useful measures in 

detecting and tracking subtle cognitive decline in the preclinical phase of AD, it is 
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important to disentangle disease-related decline from ageing effects, and also to account 

for other factors which may contribute to individual differences in RT, such as sex and 

prior cognitive ability. Factors associated with individual differences in RT are briefly 

reviewed below.  

The relationship between RT and intelligence has been widely investigated, with the aim 

of understanding how differences in cognitive ability may be underpinned by differences 

in the simple cognitive processes that support more complex information processing. 

Associations between higher intelligence and faster responses in Choice RT tasks have 

been reported across adulthood (e.g. Deary, Der and Ford, 2001; Sheppard and Vernon, 

2008; Deary, Johnson and Starr, 2010; Nissan, Liewald and Deary, 2013). Proposed 

explanations for this association include (1) intelligence is built up over time by the 

processing of information and RT is a measure of information processing efficiency 

(Vernon, 1983); (2) both are at least partially dependent on attention (Doebler and 

Scheffler, 2016); and (3) they share genetic predictive factors (Sheppard and Vernon, 

2008). Evidence from the Lothian Birth Cohort has shown that childhood cognitive ability 

is predictive of Choice RT at age 70 (Deary, Johnson and Starr, 2010).  

Higher intelligence has also been associated with lower intra-individual variability in RT, 

as reported in a recent meta-analysis (Doebler and Scheffler, 2016) – however this meta-

analysis did not adjust the variability measure for its dependence on overall response 

speed, which may account for most of the association with intelligence (Der and Deary, 

2017). Having access to data on Insight 46 participants’ childhood cognitive ability and 

educational attainment provides an (imperfect) way to account for differences in general 

mental ability, which may improve the sensitivity of the Choice RT task to potential effects 

of brain pathologies. It also provides a rare opportunity to examine whether childhood 

cognitive ability and educational attainment have independent effects on RT and intra-

individual variability in RT in older age. 

Some studies have found no sex differences on Choice RT tasks (e.g. (Woods et al., 

2015)), while others have reported that males tend to have faster and less variable RTs 

(Deary and Der, 2005; Der and Deary, 2006; Dykiert et al., 2012b; Vincent et al., 2012; 

Phillips et al., 2013; Haworth et al., 2016). Deary and Der suggest a possible hormonal 

explanation (Deary and Der, 2005), and proposed behavioural explanations include that 

females may show stronger learning effects and greater post-error slowing (Reimers and 

Maylor, 2006; Thakkar et al., 2014; Fischer et al., 2016). This is in contrast to perceptual 

processing speed tests (such as Digit-Symbol Substitution) where females tend to be 

faster (see Chapter 4). 
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Another factor that needs to be considered when interpreting individual differences in RT 

is speed-accuracy trade-offs. Standard practice in Choice RT studies is to analyse error 

rate separately to RT – an approach which allows comparisons of speed and accuracy 

between groups, but does not allow a direct analysis of the trade-offs between speed 

and accuracy on an individual level. Correlations between slower RT and greater 

accuracy on Choice RT tasks have been observed (Nissan, Liewald and Deary, 2013), 

but the opposite result has also been reported (i.e. slower responses being associated 

with poorer accuracy (Vaportzis, Georgiou-Karistianis and Stout, 2013), or no correlation 

between RT and accuracy (Bugg et al., 2006). 

Following the structure of the previous chapter, the aims of this study were firstly to 

understand patterns of performance on the Choice RT task and to characterise 

associations between task performance and demographic and life-course predictors, 

and secondly to investigate associations between performance and biomarkers of brain 

pathologies among cognitively-normal participants.  

 

 

6.2. Methods 
   

6.2.1. Stimuli and Procedure 
 

Two related experiments were combined into one task. This chapter concerns the first 

experiment, a Choice RT task. The second experiment is described in Chapter 7.  

The Choice RT task was presented on a DELL Optiplex 9030 all-in-one touchscreen 

computer, using SuperLab software. A response box with two buttons side by side was 

connected to the computer and placed on the table in front of the participant. The 

experiment had 2 blocks of 12 trials each. In block 1 the stimulus was an arrow pointing 

left or right, and in block 2 the stimulus was a word – ‘LEFT’ or ‘RIGHT’ (see Figure 6-1). 

All stimuli were displayed in the centre of the screen. At the beginning of each trial, there 

was an interval of 1000ms throughout which a cue was displayed (‘Arrow’ in Block 1, and 

‘Word’ in Block 2), before the stimulus appeared below it. The purpose of displaying the 

cue before the stimulus was to pace the experiment and to maintain a consistent format 

with the second experiment (see Chapter 7) where cues formed a necessary part of the 

instructions.  

Six practice trials preceded each block. The practice trials were followed by a gap of 

about 5 seconds before the main block started automatically. The order of trials was the 

same for all participants: LRRRLRLRLLRL in Block 1, and LLLLRRRLRRL in Block 2. 
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However, the software output indicated that 3 participants were presented with the trials 

in a different order (RLLLRLRLLRRR in Block 1, and RRLRRLLLLRRL in Block 2), which 

appeared to be an unexplained consequence of the tester accidentally omitting to 

complete the Session ID field when launching the experiment.  

Participants were instructed to press the correct button on the response box (left or right) 

as quickly as possible, according to the stimulus on the screen. They were asked to use 

the index and middle fingers of their dominant hand, with one finger on each button. If 

their response was correct, the next trial was initiated; if their response was incorrect, 

the stimulus remained on the screen and an error tone sounded to signal that they should 

respond again as quickly as possible. Regardless of whether their second attempt was 

correct or incorrect, no feedback was given and the next trial was initiated.  

 

 

 

 

 

 

 

 

 

Figure 6-1. The Choice Reaction Time task.  

The cue (“Arrow” or “Word”) appeared on its own for 1000ms before the stimulus appeared 
underneath. The XXX inside the arrow is not relevant for the response, but was included so that 
the appearance and visual complexity of both blocks were as similar as possible. 

 

 

6.2.2. Outcome variables 

 

Two variables were recorded for each response: RT (ms) and accuracy (correct or 

incorrect). All analyses were based on the initial response to each stimulus; second 

attempts were not analysed as their purpose was to reorient participants to the task. 

Standard practice across many different tasks measuring RT is to analyse RT for correct 

responses only (e.g. Aron et al., 2004; Forster and Lavie, 2008; Silverwood et al., 2014; 

Stoet, 2017). This is because the cognitive processes involved in making a correct 

response are assumed to be different to those involved in making an incorrect response: 

Block 1 Block 2 
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reasons for errors include anticipatory responses, attentional slips, and failures in 

understanding how to reach the correct answer. Therefore, restricting RT analyses to 

correct responses is a fairer way to compare individuals or groups (notwithstanding the 

fact that correct responses could also be achieved by anticipatory responses or chance). 

This approach was adopted here.  

The third outcome of interest was intra-individual variability in RT. Variability in RT is 

a function of overall response speed, therefore mean RT needs to be accounted for when 

investigating individual differences in intra-individual variability. This analysis adopts the 

commonly-used coefficient of variation, calculated by dividing each participant’s 

standard deviation by their mean RT (e.g. Hultsch et al., 2000; Der and Deary, 2006). As 

before, only correct responses are considered because the RT of incorrect responses is 

likely to vary depending on what led to the error (e.g. inattention, anticipation, difficultly 

working out the answer), whereas the variability in RT of correct responses is a purer 

measure of an individual’s variability in repeating a particular response process.  

 

 

6.2.3. Hypotheses 
 

Based on the literature, I hypothesised that higher childhood cognitive ability, higher 

educational attainment and male sex would be associated with faster and less variable 

RTs. 

I aimed to test the hypothesis that cognitively-normal Aβ+ participants would have slower 

and more variable RTs than Aβ- participants. 

  

 

6.2.4. Participants 

 

All 502 participants completed the Choice RT task (see section 3.3). Participant 

characteristics are reported in section 3.6.  
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6.2.5. Data processing 
 

The first trial in each block was not included in any analyses because participants did 

not always realise that the block had started and this affected RT. This limitation in the 

experimental design in discussed later (see section 6.5.5). 

In line with the policy of keeping the sample as representative as possible, the only 

reason to exclude participants with outlying performance was deemed to be a clear 

indication that they deviated from the protocol e.g. a fundamental misunderstanding of 

the instructions. One participant had a lifelong condition affecting cognition and was 

noted to have difficulty in understanding the task, in telling left from right, and in confusing 

the meaning of ‘right’ with ‘correct’. This participant was excluded from the analyses, 

leaving a sample of 501.  

If any participants were to have an error rate of >50%, i.e. suggestive of guessing at 

chance level, this would be grounds to consider excluding them from the analyses 

because it would indicate that they might not have understood the instructions, paid 

attention to the task or known their left from their right. Some Choice RT tasks adopt 

stricter exclusion criteria (e.g. 90% accuracy (Deary and Der, 2005) or 80% accuracy 

(Der and Deary, 2006). The majority of participants (75%) made no errors and the 

highest error rate was 27%, therefore no participants were excluded from analyses 

based on their error rate.  

Although only correct responses were considered for most of the analyses of RT (see 

section 6.3.1.1), RTs of incorrect responses were considered as part of the analysis of 

speed-accuracy trade-offs (see section 6.3.1.3). Therefore, for the purpose of checking 

for outlying RTs, I have considered all responses together, both correct and incorrect. 

The distribution of each participant’s mean RT shows that there were few participants 

with outlying slow RTs (Figure 6-2). One of these participants had a tremor but this was 

not grounds to exclude them from analyses because they performed the task according 

to the instructions and they were not fundamentally different to some other participants 

with motor symptoms whose performance was not outlying but was affected by their 

symptoms nonetheless.  
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Figure 6-2. Box and whisker plot of mean reaction times (correct and incorrect 
responses) on the Choice Reaction Time task, before data cleaning 

 

Reaction times to individual trials were checked for outliers. Extremely fast RTs can be 

assumed to be invalid as there is a minimum amount of time required to process the 

stimulus. In a previous paper using a similar task, a threshold of 300ms was used as the 

fastest possible time for a genuine response (Aron et al., 2004) so I adopted the same 

criterion, although no trials had RTs of less than 300ms. There were a few outlying slow 

responses (Figure 6-3). Unusually slow responses are unlikely to reflect the participant’s 

ability – for example I observed instances of participants stopping to cough or drink water 

– so I considered three approaches to choosing a threshold for excluding the slowest 

trials:   

i) Excluding trials where the RT is more than 3 SD above the sample mean (i.e. > 

1208 ms). 

ii) Excluding trials where the RT is more than 3 SD above each participant’s own 

mean, as in (Anstey et al., 2005).  

iii) Excluding trials where the RT is above an arbitrary cut-off such as 4000 ms as in 

(Aron et al., 2004) or 1000 ms in (Anstey et al., 2005).  



126 
 

Approach (ii) was adopted as it is most likely to filter out trials that are not representative 

of an individual’s ability. As the range of mean RTs was wide, approach (i) could 

consistently exclude trials from participants who found the task difficult – possibly the 

very participants who may provide evidence to confirm the hypothesis that poor 

performance on this task is associated with brain pathologies. Approach (iii) is too 

arbitrary and would mainly exclude trials belonging to a few low-performing participants 

– again possibly the participants of particular interest to the hypothesis.  

Therefore, I excluded trials more than 3 SD above each participant’s own mean, which 

applied to 40 trials (0.4%) from 40 participants (1 trial each). This reduced the maximum 

RT to 1637 ms. 

 

 

Figure 6-3. Box and whisker plot of individual reaction times (correct and incorrect 
responses) on the Choice Reaction Time task, before data cleaning 
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6.3. Patterns and predictors of performance 
 

Following the format laid out in section 3.5, in the first part of this chapter I aimed to 

describe patterns of performance across the various outcomes and conditions of the 

task, and to investigate the effects of demographic and life-course predictors on 

performance in the full Insight 46 sample. Specifically I aimed to investigate whether RT 

and error rate differ for word and arrow stimuli, explore speed-accuracy trade-offs, and 

describe intra-individual variability in RT. The demographic and life-course predictors 

(sex, age at assessment, childhood cognitive ability, educational attainment, adult 

socioeconomic position and presence of a neurological or psychiatric condition) are 

defined in sections 3.2.4 and 3.2.3 respectively. 

 

 

6.3.1. Statistical Analyses 
 

6.3.1.1. RT and error rate 

Rather than using summary scores for each participant (e.g. mean RT for arrows and 

mean RT for words), trial-by-trial responses to each individual stimulus were analysed to 

avoid losing information. RTs were first log-transformed so that the distribution more 

closely approximated the normal distribution.  

RT was analysed using a GEE model, assuming a normal distribution for the dependent 

variable and an identity link (as with standard linear regression), but including an 

exchangeable correlation structure and robust standard errors to allow for the correlation 

between repeated measures of the same participant.  

Response accuracy (correct vs. incorrect) was analysed using a GEE logistic regression 

model with an independent correlation structure and robust standard errors. Results are 

expressed as odds ratios for ease of interpretation. 

Predictors in the models were stimulus type (arrow vs. word), sex, age at assessment, 

childhood cognitive ability, education, adult socioeconomic position and presence of a 

neurological or psychiatric condition (yes vs. no). 
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6.3.1.2. Practice effects 

As the arrow block always preceded the word block, comparison between them could be 

confounded by practice effects. While this cannot be tested explicitly, exploring practice 

effects with the two blocks separately could give an indication of whether practice effects 

are generally observed on this test. Practice effects on RT and error rate were 

investigated by rerunning the models (see 6.3.1.1) with an additional factor of trial 

number (1 to 11). 

 

6.3.1.3. Speed-accuracy trade-offs  

Speed-accuracy trade-offs can be investigated both between-subject or within-subject. 

Between-subject analyses address questions such as: “Which participants are most 

likely to trade speed for accuracy?” or “Which participants tend to perform well on both 

speed and accuracy?”  Within-subjects analyses address questions such as “Are 

participants more likely to make an error when they respond more quickly, and which 

experimental conditions promote this response pattern?”  The between-subjects 

questions are my main focus in line with my research questions about whether this task 

can identify participants whose performance may be indicative of subtle cognitive 

decline, but the within-subject questions are also of interest in understanding more about 

general patterns of performance on this task.  

To address the between-subject questions, each participant’s mean RT for correct 

responses was compared to their error rate (percentage of incorrect responses), 

combined across arrow and word stimuli. This approach has been adopted in other 

studies, for example a study which investigated speed-accuracy trade-offs on a Choice 

RT experiment in participants with Huntington’s disease (Vaportzis et al., 2015a). 

The distribution of mean RTs had a positive skew. Two transformations were considered: 

log-transforming the mean RTs or calculating the mean of the log-transformed raw RTs. 

As neither of these removed the skew, the untransformed data were used for ease of 

interpretation. The distribution of error rates also had a strong positive skew due to a 

ceiling effect on accuracy. The relationship between mean RT and error rate was 

analysed using Spearman’s rank correlation. This nonparametric test was appropriate 

due to the non-linear relationship between the variables (see section 6.3.2.3), and 

because the main purpose of this section is a simple investigation of whether those who 

rank high in terms of speed tend to rank low in terms of accuracy.  

To address the within-subject trade-offs, trial-by-trial responses to each individual 

stimulus were analysed to investigate whether the speed of a response predicted 
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whether that response would be correct or incorrect. This was done by rerunning the 

GEE model for the odds of making errors (see 6.3.1.1), with RT included as an additional 

factor. RT was not log-transformed this time, to aid interpretability of its effects as a 

predictor (it was previously transformed to comply with the assumption of a normal 

distribution for linear regression when it was being modelled as an outcome). 

 

6.3.1.4. Intra-individual variability in RT 

As intra-individual variability in RT was normally distributed, a linear regression model 

was used to investigate its associations with sex, age at assessment, childhood cognitive 

ability, education, adult socioeconomic position and presence of a neurological or 

psychiatric condition (yes vs. no).  

Some studies have reported that variability in RT for correct responses is a function of 

error rate (Hultsch et al., 2000; Der and Deary, 2006), probably because the response 

following an error is typically slower. To investigate the extent to which intra-individual 

variability in RT (for correct responses only) may be predicted from error rate on this 

task, I reran the regression model including error rate as an additional factor. 

 

6.3.2. Results 
 

6.3.2.1. RT and error rate 

Descriptive statistics are presented in Table 6-1. Results of the multivariable regression 

models for RT and error rate are given in Table 6-2. 

 

Table 6-1. Descriptive statistics for the Choice Reaction Time task   

  Arrow Word Arrow and Word combined 

RT for 
correct 
responses 
(ms) 

Median 741 789 768 

IQR 668 - 828 723 - 870 695 - 850 

Range 489 - 1586 503 - 1637 489 - 1637 

Error rate (%) 3.0 2.2 2.6 

 

Statistics are based on 501 participants who each completed 22 trials. IQR = interquartile range. 
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Table 6-2. Associations between demographic and life-course predictors and 
Choice RT outcomes: RT and error rate (n = 501) 

Predictor 
RT a 

coefficient and 95% CIs 
Odds Ratio for making 
an error and 95% CIs 

Arrow stimulus 
(word stimulus as 
reference) 

1.07* 
(1.06, 1.07) 

0.72* 
(0.58, 0.89) 

Sex (female as 
reference) 

0.99 
(0.97, 1.01) 

1.12 
(0.85, 1.47) 

Age at assessment 
(per year) 

1.03* 
(1.02, 1.04) 

0.81 
(0.68, 0.98) 

Childhood cognitive 
ability (per z-score) 

0.99 
(0.97, 1.00) 

0.72* 
(0.59, 0.89) 

Education  
(per category) b 

1.00 
(0.99, 1.00) 

1.06 
(0.93, 1.21) 

Adult socioeconomic 
position  
(per category) b 

1.00 
(0.99, 1.01) 

1.04 
(0.91, 1.19) 

Neurological or 
psychiatric condition 
(cognitively-normal as 
reference) c 

1.01 
(0.98, 1.04) 

1.54* 
(1.11, 2.12) 

 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. a For 
the RT outcome, as the data were log-transformed, the coefficients are quoted in exponentiated 
form for ease of interpretation; for example, a coefficient of 1.05 would mean that the factor was 
associated with 5% longer response time. Multivariable regression models were used so each 
association is independent of all others. b See section 3.2.4 for definition of categories. c See 
section 3.2.3 for definitions.  

CI = confidence interval; RT = reaction time. 

 

On average, responses were 7% slower to words than arrows (Figure 6-4), and the odds 

of making an error were 28% lower for words than arrows. Taken together, this implies 

a speed-accuracy trade-off, which is investigated later (see 6.3.2.3).  
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Figure 6-4. Box plot of reaction time for arrows and words on the Choice Reaction 
Time task 

 

On average, males responded 1% faster than females (adjusted means 767 vs. 777 ms) 

and were 14% more likely to make errors (adjusted mean error rates 2.7% vs 2.4%), but 

these differences were not statistically significant (Table 6-2).  

Older age at assessment was associated with slightly slower RT and fewer errors (3% 

slower RT, 19% less likely to make errors, per year of older age) (Table 6-2).  

Higher childhood cognitive ability was associated with slightly faster responses and 

substantially lower odds of making errors (Table 6-2).  

Education and adult socioeconomic position were not associated with RT or error rate 

(Table 6-2). 

Participants with neurological and psychiatric conditions did not differ from cognitively-

normal participants in terms of their RTs, but their odds of making an error were 54% 

higher (adjusted mean error rates 3.7% vs 2.5%) (Table 6-2). 
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6.3.2.2. Practice effects 

The comparison of RT and error rate for word and arrow stimuli reported above could 

potentially be confounded by practice effects, as the word block was always administered 

after the arrow block. This could partially explain the observation of lower error rates for 

word stimuli, or could mean that the finding of slower RTs for word trials underestimates 

the true effect (see 6.3.2.1). Practice effects were explored in the two blocks separately 

to give an indication of whether they are a feature of performance on this test. 

RT slightly decreased during the arrow block (regression coefficient = 0.996 per 

successive trial, 95% CIs 0.995 to 0.997, p < 0.0001) suggesting a practice effect, but 

slightly increased during the word block (regression coefficient = 1.002, 95% CIs 1.001 

to 1.003, p < 0.0001). This difference could be due to the fact that the arrow block came 

first so perhaps participants were still getting used to the task. There was no evidence of 

statistically significant practice effects in error rate (Arrow block: OR = 1.004, 95% CIs 

0.998 to 1.094, p = 0.063; Word block: OR = 0.987, 95% CIs 0.932 to 1.045, p = 0.656). 

Overall it does not appear that performance was strongly influenced by practice effects. 

 

6.3.2.3. Speed-accuracy trade-offs  

Slower mean RT was associated with lower error rate i.e. a speed-accuracy trade-off 

was observed (Spearman’s ρ = -0.28, p < 0.0001) (Figure 6-5). The correlation is weak 

as there is a ceiling effect with many participants having an error rate of zero regardless 

of their mean RT. However, it is striking that all of the participants with the highest error 

rates had relatively fast mean RTs, which suggests that those participants were trading 

accuracy for speed. Also, all of the slowest responding participants had very low error 

rates, which suggests that they were trading speed for accuracy. 
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Figure 6-5. Error rate against mean reaction time on the Choice Reaction Time task  

  

 

Incorrect responses were 21% faster than correct responses on average (621ms vs. 783 

ms). The within-subjects analysis found that errors were less likely to occur with 

increasing RT, with a 2% reduction in the odds of making an error per additional 

millisecond (OR = 0.98, 95% CIs 0.98 to 0.98, p < 0.0001). With RT included in the 

model, the difference in error rate between word and arrow stimuli was reversed such 

that word stimuli were associated with greater odds of an error (adjusted error rates: 

words 3.9% vs arrows 2.0%, OR = 2.16, 95% CIs 1.68 to 2.78, p < 0.0001). This suggests 

that the earlier result of a higher error rate for arrows can be fully accounted for by speed-

accuracy trade-offs, since responses to arrows were faster (see section 6.3.2.1).  

 

 

6.3.2.4. Intra-individual variability in RT (for correct responses only) 

Intra-individual variability (IIV) scores were approximately normally distributed across 

Insight 46 participants (mean = 0.126, SD = 0.034). Figure 6-6 illustrates how the IIV 

scores are derived. Results of the multivariable regression models for RT and error rate 

are given in Table 6-3. 
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Figure 6-6. Distribution of reaction times for three participants with the maximum, 
median and minimum intra-individual variability scores 

Each participant’s reaction times to the 22 trials are plotted (correct responses only). Intra-

individual variability (IIV) in RT (for correct responses only) is defined as the coefficient of variation 

(SD/mean). These three participants have been selected to illustrate the meaning of the IIV score 

and to put its magnitude in context: participant 1 has the maximum IIV, participant 2 has the 

median IIV and participant 3 has the minimum IIV. It can be seen that these three participants 

have similar mean RTs (774ms, 755ms and 763ms respectively) but the variability of their 

responses is very different. 
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Table 6-3. Associations between demographic and life-course predictors and 
intra-individual variability in RT on the Choice RT task (n = 501) 

Predictor 
Intra-individual variability in RT a: 

coefficient and 95% CIs 

Sex (female as reference) 0.0046 
(-0.0106, 0.0013) 

Age at assessment (per year) 0.0085* 
(0.0043, 0.0128) 

Childhood cognitive ability  
(per z-score) 

-0.0038 
(0.0084, 0.0007) 

Education (per category) b -0.0030 
(-0.0058, -0.0002) 

Adult socioeconomic position 
(per category) b 

0.0024 
(-0.0008, 0.0057) 

Neurological or psychiatric 
condition c 
(cognitively-normal as reference) 

0.0149* 
(0.0050, 0.0257) 

 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. a 
Intra-individual variability in RT (for correct responses only) is defined as the coefficient of 
variation (SD/mean). Multivariable regression models were used so each association is 
independent of all others. b See section 3.2.4 for definition of categories. c See section 3.2.3 for 
definitions. RT = reaction time. 

 

 

On average, participants with neurological and psychiatric conditions had higher IIV than 

cognitively-normal participants (Table 6-3).  

There was an association between older age at assessment and greater IIV in RT (Table 

6-3, Figure 6-7).    

Higher educational attainment was associated with reduced IIV (Table 6-3). The effect 

size was relatively small: the predicted IIVs of the lowest and highest educational 

categories (with all other variables held at average values) were 0.133 and 0.121 

respectively, equivalent to a difference of 0.35 SD.  

There was no evidence of an association with childhood cognitive ability, sex or adult 

socioeconomic position (Table 6-3).  
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Figure 6-7. Intra-individual variability in reaction time against age at assessment  

Scatter plot shows the raw data. The solid line is the predicted line of best fit from the multivariate 
regression model (adjusted for sex, childhood cognitive ability, education, adult socioeconomic 
position and presence of a neurological or psychiatric condition), and the shaded grey area 
represents its 95% CIs. Intra-individual variability in RT (for correct responses only) is defined as 
the coefficient of variation (SD/mean). 

 

Adding error rate into the model confirmed that higher error rate was associated with 

greater intra-individual variability in RT for correct responses (regression coefficient = 

0.0021 per percentage point increase in error rate, 95% CIs 0.0014 to 0.0029, p < 

0.0001). This could be due to post-error slowing, where a more cautious response speed 

is likely to be adopted for the next response after an error, which could make RTs more 

variable overall. 

 

 

6.4. Associations with biomarkers and APOE-ε4 
 

Following the format laid out in section 3.5, the second part of this chapter investigates 

associations between Choice RT performance and biomarkers of AD in cognitively-

normal participants for whom complete biomarker data are available. The number of 
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participants meeting these criteria who also had usable data from the Choice RT task 

was 406 (see section 3.3). 

As explained in 3.5.2.1, I wanted to derive some summary scores that capture the key 

aspects of performance on each task, to use for comparing results across the different 

cognitive tests in the Insight 46 battery (see Chapter 9). For the Choice RT task, I 

calculated the following three summary outcomes for each participant, combined across 

word and arrow stimuli: 

i) Mean RT for correct responses  

ii) Error rate (% incorrect responses) 

iii) Intra-individual variability in RT for correct responses (SD / mean, as defined 

in section 6.3.1.4) 

Combining outcomes across the word and arrow stimuli is justified because the 

magnitude of differences in RT and error rate between the two stimulus types was small, 

and my hypotheses about associations between AD pathology and RT (see section 

6.2.3) were general rather than specific to certain types of stimuli.  

For each of these three outcomes, I tested for associations with the same biomarkers as 

in the previous chapter (see 3.5.2). I did also run analyses using the trial-by-trial data to 

check whether there were any interactions with stimulus type (arrow vs. word), but there 

were none, so I have only reported the analyses using the summary outcomes. 

 

6.4.1. Statistical Analyses 
 

Mean RTs were analysed using a linear regression model. The distribution of mean RTs 

had a positive skew. As above (see 6.3.1.3), two transformations were considered – log-

transforming the mean RTs or calculating the mean of the log-transforming raw RTs – 

but neither of these removed the skew so the untransformed data were used for ease of 

interpretation, and bootstrapping was used to produce bias-corrected and accelerated 

95% CIs from 2000 replications. 

Error rate was analysed using a GEE logistic regression model with an independent 

correlation structure and robust standard errors. The outcome was number of errors, 

which was treated as a proportion of the number of trials (22 for most people, but 21 for 

the 40 participants who had a trial excluded during the data cleaning process – see 

6.2.5). Results are expressed as odds ratios for ease of interpretation. 
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Intra-individual variability in RT was analysed using a linear regression model as before 

(see section 6.3.1.4). 

All models included predictors of amyloid status (positive vs. negative), whole brain 

volume, WMHV and APOE genotype (ε4-carrier vs. non-carrier). To adjust for the 

correlation between whole brain volume and head size, total intracranial volume (TIV) 

was included in all models, as were the demographic factors investigated in section 6.3 

(sex, age at assessment, childhood cognitive ability, education and adult socioeconomic 

position).  

The models were additionally rerun replacing dichotomised amyloid status with SUVR to 

test whether increasing Aβ deposition was associated with differences in performance. 

To check whether associations between SUVR and cognition were sensitive to the 

inclusion of the imputed SUVR values (see section 3.2.2), the analyses were rerun 

excluding the 26 participants with imputed SUVR data. 

 

 

6.4.2. Results  
 

Results of the regression models for the three outcomes are reported in Table 6-4. 

Results of interactions are reported in the text. Results for the demographic and life-

course factors (sex, age at assessment, childhood cognitive ability, education and adult 

socioeconomic position) are not reported as they are essentially unchanged from the 

first analysis section (6.3.2). 
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Table 6-4. Associations between biomarkers and Choice RT outcomes in 
cognitively-normal participants (n = 406): mean RT, error rate and intra-individual 
variability in RT 

 

Predictor 
Mean RT (ms): 

coefficient 
(95% CIs) 

Odds ratio for 
making an 

error (95% CIs) 

Intra-individual 
variability in RT: 

coefficient (95% CIs) 

β-amyloid status  
(negative as 
reference) 

11.71 
(-7.75, 30.77) 

1.37 
(0.93, 2.01) 

0.013* 
(0.004, 0.021) 

WMHV 
(per 10 ml) 

-3.87 
(-15.11, 7.59) 

0.90 
(0.70, 1.18) 

-0.003 
(-0.008, 0.003) 

Whole brain 
volume  
(per 10 ml) 

-1.70 
(-3.59, 0.09) 

1.01 
(0.97, 1.04) 

-0.000 
(-0.001, 0.000) 

APOE-ε4 
(non-carriers as 
reference) 

-2.25 
(-17.96, 14.76) 

0.94 
(0.68, 1.30) 

-0.004 
(-0.011, 0.003) 

 

Multivariable regression models were used so each association is independent of all others. In 

addition to the predictors listed, models also included sex, age at assessment, childhood cognitive 

ability, adult socioeconomic position and total intracranial volume. 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01.  

CI = confidence interval; RT = reaction time; WMHV = white matter hyperintensity volume.  

 

On average, Aβ+ participants had greater intra-individual variability in RT (adjusted 

means from the regression model: 0.135 vs. 0.122, a difference of 0.37 SD) (Table 6-4, 

Figure 6-8). Aβ+ participants also had slightly slower mean RTs and higher error rates 

than Aβ- participants, but these differences were not statistically significant (RT: Aβ+ = 

789 ms; Aβ- = 777 ms;  error rate: Aβ+ = 3.1%; Aβ- = 2.3% ms) (Table 6-4). Given the 

evidence that performance was influenced by speed-accuracy trade-offs (see section 

6.3.2.3), I conducted a post-hoc analysis to investigate whether Aβ+ and Aβ- participants 

differed in their error rates after accounting for their mean RT, by rerunning the 

regression model for error rate with mean RT included as an additional co-variate. The 

results indicated that Aβ+ participants had 48% higher odds of making an error (95% CIs 

1.03 to 2.13, p = 0.035, adjusted means: Aβ+ = 3.3%; Aβ- = 2.3% ms) after adjustment 

for their mean RTs.  

When rerunning the models replacing dichotomous amyloid status with continuous 

SUVR, the same pattern emerged, as SUVR was associated with intra-individual 

variability in RT (regression coefficient = 0.062, 95% CIs 0.014 to 0.110, p = 0.012) but 
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not with mean RT (regression coefficient = 59.0 ms, 95% CIs -34.1 to 158.7, p > 0.10) 

or error rate (Odds ratio = 2.34, 95% CIs 0.25 to 21.45, p = 0.45). These results were 

unchanged in a sensitivity analysis excluding the individuals with imputed SUVR values 

(see section 3.2.2). 

Whole brain volume, WMHV and APOE genotype showed no evidence of associations 

with any of the outcomes, although there was a trend towards an association between 

larger whole brain volume and faster RT (p < 0.07) (Table 6-4). 

 

 

 

Figure 6-8. Box plots of intra-individual variability in reaction time for β-amyloid 
negative (n=332) and β-amyloid positive (n=74) participants 

Intra-individual variability in RT (for correct responses only) is defined as the coefficient of 
variation (SD/mean). 
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6.5. Discussion 
 

6.5.1. Summary 

 

As hypothesised, cognitively-normal Aβ+ participants had greater intra-individual 

variability in Choice RT. To my knowledge, this is the first time this finding has been 

reported. However, there was no evidence in support of the hypothesis that Aβ positivity 

would be associated with slower RT. As expected, there were some effects of childhood 

cognitive ability and education on performance, but there was no evidence of the sex 

differences reported by others. Speed-accuracy trade-offs were identified as an 

important factor in interpreting response patterns. These results are discussed in greater 

detail in the following sub-sections. 

 

6.5.2. Patterns of performance 
 

Responses were slower to words than arrows. A possible explanation is that word stimuli 

place greater cognitive demands on the participant because they require higher-order 

processing of the concepts of left and right, whereas arrow stimuli simply require the 

participant to press the button on the same side as the arrow. A similar effect was found 

in a previous study which compared Choice RT to numbers and lights, and concluded 

that the slower responses to numbers could be attributed to the higher-order cognitive 

processing required (Nissan, Liewald and Deary, 2013). One might expect that stimuli 

requiring greater cognitive processing (and consequently slower RT) would also elicit a 

higher error rate. This was the case in the results of Nissan et al., but the opposite pattern 

was observed in this study – a higher error rate for arrows than words. My analyses 

suggest that this was due to a speed-accuracy trade-off (i.e. errors occurred with hasty 

responses – the classic pattern in decision-making) because after adjusting for RT, the 

relationship was reversed such that words were associated with a higher error rate than 

arrows. This illustrates the importance of considering speed-accuracy trade-offs when 

interpreting error rates in Choice RT tasks.  

The finding that incorrect responses were typically faster than correct responses 

suggests that some errors arose from anticipatory responses. This is consistent with the 

observation of a between-subjects speed-accuracy trade-off: the most error-prone 

participants tended to have fast mean RTs, and the slowest-responding participants 

tended to be highly accurate. Thus, the tendency to prioritise speed or accuracy was a 

relevant factor in explaining individual differences in performance, although its impact 

was limited by the ceiling effect on accuracy. Similar speed-accuracy trade-offs in Choice 
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RT tasks have been observed before (Nissan, Liewald and Deary, 2013) but other 

studies have reported the reverse (a correlation between speed and accuracy) 

(Vaportzis, Georgiou-Karistianis and Stout, 2013). I would hypothesise that the 

difference is most likely to be explained by the design of the experiment and the precise 

stimuli used, with easier tasks being more susceptible to speed-accuracy trade-offs, and 

more complex tasks tending to show speed-accuracy correlations (as in the following 

experiment, see Chapter 7). Regarding the factors which predict whether an individual 

tends to prioritise speed or accuracy, strategies have been reported to differ on a range 

of cognitive tasks by age (Brébion, 2001), sex (Reimers and Maylor, 2006; Thakkar et 

al., 2014), risk-aversion (Nagengast, Braun and Wolpert, 2011) and mental fatigue 

(Rozand et al., 2015). However, it should be noted that an individual may alter their 

speed-accuracy strategy during the task, which was not captured by the between-

subjects analysis. For example, after making an error participants may shift their strategy 

to place an increased priority on accuracy, or after a run of correct responses they may 

shift their strategy to place an increased priority on speed; toggling between the two 

priorities is a legitimate strategy for maximising both over the course of the experiment 

(Dang, Figueroa and Helton, 2018).  

 

6.5.3. Demographic and life-course predictors 
 

6.5.3.1. Associations with age at assessment 

The findings that older age was associated with slower RT, greater intra-individual 

variability in RT and lower error rate are consistent with the literature, where response 

times are widely-reported to become slower and more variable with age (Anstey et al., 

2005; Deary and Der, 2005; Williams et al., 2005; Bugg et al., 2006; Der and Deary, 

2006; Dykiert et al., 2012a; Garrett, Macdonald and Craik, 2012; Vincent et al., 2012; 

Nissan, Liewald and Deary, 2013; Woods et al., 2015). However, the fact that they were 

detected in the Insight 46 cohort was unexpected, since the age range is so narrow (69.2 

to 71.8 years – reflecting the time it took to collect the data, since participants were all 

born in the same week). To my knowledge no studies have investigated age effects on 

Choice RT over such a small interval, but estimates of the rate of decline per year have 

been reported in cross-sectional studies: a recent comparison of large-scale Choice RT 

studies concluded that RT increases by 2.0-3.4 ms per year after young adulthood 

(Woods et al., 2015), and another study of adults aged 60-85 estimated that processing 

speed declines by about 0.06 SD per year (Harrington et al., 2018). A longitudinal study 

which tested adults repeatedly at ages 70, 73 and 76 reported a decline of -0.096 SD 
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per year (Ritchie et al., 2016). The effect size reported here, which equates to an 

increase in RT of about 24ms per year, or 0.30 SD, is implausibly large in comparison.  

Regarding the association between older age and lower error rate, this is consistent with 

some previous reports that older people tend to reduce errors at the expense of speed 

(i.e. they adopt a more cautious balance on the speed-accuracy trade-off) (Brébion, 

2001)) but other studies contradict this (Vaportzis, Georgiou-Karistianis and Stout, 2014; 

Woods et al., 2015), and it may depend greatly on the precise characteristics of the task. 

As mentioned in Chapter 4 in the context of the apparent age effect on the Matrix 

Reasoning task, while it is conceivable that a genuine subtle effect of age may be 

detectable over a 2.6-year range, especially when carefully controlling for other factors 

that affect performance such as childhood cognitive ability and education, I considered 

the possibility of a recruitment bias whereby participants seen towards the beginning of 

the data collection period may have differed in some ways to those seen towards to the 

end. This is discussed in greater detail in Chapter 10. 

 

6.5.3.2. Associations with childhood cognitive ability, education and adult 

socioeconomic position 

Consistent with the literature on the relationship between RT and intelligence, higher 

childhood cognitive ability was associated with faster RT, but the effect size was small. 

Higher childhood cognitive ability was also associated with lower error rate, even though 

error rate did not vary much due to the ceiling effect on accuracy. Following on from my 

earlier conclusion that errors were likely to be anticipatory or hasty responses (section 

6.5.2), this may suggest a link between higher childhood cognitive ability and inhibition, 

which was assessed more directly in a related experiment presented in Chapter 7. 

Contrary to hypotheses, childhood cognitive ability was not associated with intra-

individual variability in RT. Conversely, educational attainment had no independent effect 

on RT and error rate, but was associated with reduced intra-individual variability in RT – 

an effect which is consistent with a previous report (Christensen et al., 2005) but was 

modest in magnitude and unlikely to be clinically meaningful. These findings are broadly 

consistent with the conclusion of Der and Deary (2017) that intra-individual variability in 

RT shows little association with mental ability when its dependence on mean RT is 

accounted for, as was the case in my analyses.  

Overall, the effects of childhood cognitive ability and education on this task were 

relatively small when compared to their effects on the standard cognitive tests discussed 

in the previous chapter. The fact that adult socioeconomic position was not a significant 
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predictor of performance on any outcome is not unexpected in light of previous analyses 

of predictors of cognition across adulthood in the NSHD, which have found adult 

socioeconomic position to be less important than childhood cognitive ability and 

education (Richards and Sacker, 2003; Richards et al., 2019). 

 

6.5.3.3. Sex differences 

Contrary to some previous studies (Deary and Der, 2005; Der and Deary, 2006; Dykiert 

et al., 2012b; Vincent et al., 2012; Phillips et al., 2013), in this study, which benefits from 

a large sample size, very narrow age range, and adjustment for confounding variables 

of prior cognitive ability, there was no evidence of sex differences on any outcome. 

 

6.5.4. Associations with biomarkers and APOE-ε4 

The second part of the analyses investigated associations between performance on the 

key summary outcomes of the Choice RT task and various neuroimaging and genetic 

biomarkers of AD pathology. The hypothesis that Aβ+ participants would have greater 

intra-individual variability in RT than Aβ- participants was supported, but there was no 

evidence for the hypothesis that their RT would be slower overall.  

To my knowledge, the literature on changes in response time and variability preceding 

the onset of AD dementia comes from investigation of individuals with MCI (Christensen 

et al., 2005; Tales et al., 2012; Phillips et al., 2013). As the Aβ+ participants in this 

analysis were all cognitively-normal and on average perhaps a decade or more away 

from the time when a significant proportion of them may be expected to develop 

dementia, this suggests the possibility that intra-individual variability in RT may be a 

particularly sensitive measure to accumulating AD pathology, whereas the slowing of 

mean RT may perhaps occur at a later stage. 

It is important to remember that changes in response speed and variability are by no 

means specific to AD. These measures appear to be general markers of the integrity of 

the central nervous system, vulnerable to disruption across a range of 

neurodegenerative diseases and brain injuries, and correlating with diverse physical 

health measures such as grip strength, forced expiratory volume and waist 

circumference (Anstey et al., 2005; MacDonald, Nyberg and Bäckman, 2006; Masi et al., 

2018). Further work is needed to investigate how changes in RT associated with AD 

pathology may relate to such physical health measures and to other brain pathologies 

that accumulate with age. One study comparing intra-individual variability of RT in 

patients with AD and Parkinson’s disease reported that the AD patients were more 



145 
 

variable, controlling for overall severity of cognitive impairment (Burton et al., 2006), but 

more research is needed to determine whether there is a pattern to the timing and nature 

of changes in RT (both response speed and variability) as AD pathology accumulates. 

There was a suggestion that Aβ pathology was associated with higher error rate on this 

task, as Aβ+ participants made more errors than Aβ- participants and this difference was 

statistically significant after adjustment for the trade-off between RT and error rate. As 

Aβ+ participants had slightly slower RTs on average (although this difference was not 

statistically significant), I would speculate that they might have been less likely to make 

errors due to responding in haste and more likely to make errors for other reasons, such 

as failures in the executive functions of monitoring and inhibition. However, this 

experiment was limited in its ability to measure subtle differences in accuracy due to the 

small number of trials, as discussed in the following section. 

No evidence was found of statistically significant associations between outcomes on this 

task and whole brain volume, white matter hyperintensity volume (WMHV) or APOE-ε4 

(accounting for amyloid status). In the previous chapter I reported the finding that Insight 

46 participants with smaller whole brain volumes and larger WMHV showed evidence of 

slightly slower perceptual processing speeds on the Digit-Symbol task (see Chapter 4), 

and discussed why the Digit-Symbol test may be particularly sensitive to overall brain 

health. As the detrimental effects of white matter disease on processing speed are well 

established (Prins and Scheltens, 2015) and compromised white matter integrity has 

been reported to predict slower and more variable RT (Fjell et al., 2011; Jackson et al., 

2012), the lack of an association between WMHV and Choice RT is probably due to the 

fact that the Insight 46 participants on the whole had very low levels of white matter 

disease.  

In summary, this study builds on the results of the previous chapter by providing further 

evidence that subtle differences in cognition can be detected cross-sectionally between 

cognitively-normal Aβ+ and Aβ- individuals in a large well-characterised sample, and that 

such differences are present in multiple cognitive domains.  

 

6.5.5. Strengths and limitations 

A strength of the experimental design is that RTs were collected for every response, in 

contrast to some RT experiments which only collect the mean RT, SD and error rate (for 

example the numbers-based device that has been widely used (e.g. (Der and Deary, 

2006)) including in the NSHD cohort when they were aged 60-64 (Silverwood et al., 

2014). By collecting data on individual responses, we were able to exclude extreme 
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responses thus reducing noise in the data, as well as being able to investigate within-

subject speed-accuracy trade-offs by comparing the RTs of correct and incorrect 

responses. Without this information it would have been difficult to interpret the fact that 

arrow stimuli had a higher error rate than word stimuli, which turned out to be explained 

by a speed-accuracy trade-off (see section 6.5.2). 

There were a number of limitations to the experimental design, the main one being the 

small number of trials (22). This had a particular impact on the error rate measure, as a 

single incorrect response corresponded to a large proportionate increase in error rate. 

The fact that odds of making an error were associated with childhood cognitive ability, 

age at assessment and presence of a neurological or psychiatric condition – despite the 

ceiling effect on accuracy – suggest that this measure may capture something 

meaningful about performance on this task, rather than just signifying random mistakes. 

The fact that errors tended to be faster than correct responses suggests that impulsivity 

or a lack of inhibition may be playing a role. The numbers of participants with each 

neurological or psychiatric diagnosis are too small to compare between them (see 

section 3.6), but some of the conditions have motor symptoms (e.g. Parkinson’s disease 

and multiple sclerosis) so motor errors could have been a contributing factor. The 

apparent difference in accuracy between cognitively-normal Aβ+ and Aβ- participants 

would be interesting to investigate further. The best strategy for replicating these results 

would be to repeat the experiment with a much greater number of trials. Any attempt to 

reduce the ceiling effect on accuracy by making the task more difficult (e.g. by changing 

the number of response options from two to three) could disrupt the phenomena being 

studied, since the ceiling effect is integral to the type of errors that are being captured 

(theoretically the only requirement for accuracy is to know one’s left from one’s right so 

errors are likely to be due to anticipations or occasional lapses of attention). 

It is worth noting that many Choice RT studies place little focus on error rates – and 

sometimes they are not even reported – since the interest is naturally in investigating 

RT, which is typically only analysed for correct responses. To study RT in as pure a form 

as possible, some studies exclude participants with high error rates, for example Der and 

Deary (2006) excluded participants with error rates of 20% or higher, noting that their 

performance “suggests problems in correctly carrying out the task”. However, for 

studying brain health in older age it might be the case that errors on Choice RT tasks 

could be a relevant indicator.  

There were a number of other limitations to the experimental design. Below is a list of 

recommendations (in no particular order) for how I think the task should ideally be altered 

to address these limitations.  
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i) The first trial of each block began automatically after a pause of about 5 seconds, 

following the practice trials. Although participants were warned about this, they 

were not always ready. This resulted in me having to exclude the first trial of each 

block. A better experimental design would be for the tester or participant to initiate 

the main block by pressing a button when ready, or to designate the first few trials 

of the block as warm-up trials, as in Aron et al. (2004). 

ii) Button presses of longer than a certain duration were registered as multiple 

presses. Although participants were instructed to press the button quickly, some 

had a tendency to hold the button down (e.g. for 500ms). If this happened for a 

correct response, it did not matter because the next trial would be immediately 

initiated after the first button press had registered, and any “extra” presses would 

fall during the cue of the next trial, when they would not be registered. However, 

if a participant held the button down for too long on an incorrect response, this 

meant that they would not have the chance to correct their error since their 

incorrect response registered as both the first and second attempt. Ideally a 

single button press should be registered until the button is released, however 

long that takes. 

iii) When the instructions were on the screen at the start of each block, it was 

possible for the participant to accidentally initiate the block by pressing one of the 

response buttons before the tester had finished explaining the task. Occasionally 

this happened when the participant held down the button too long when 

responding to the final stimulus of the previous block and it registered as a 

double-press (see point ii). Ideally an extra blank screen should be added before 

the instructions screen, and it should be impossible to initiate the block using the 

response buttons (e.g. by assigning a key on the keyboard instead). 

 

Strengths and limitations that apply to all the analyses presented in this thesis, such as 

considerations relating to the generalisability of the sample, are discussed in Chapter 

10.  

 

6.5.6. Conclusions 
 

In summary, this short Choice Reaction Time experiment has provided novel evidence 

that cognitively-normal older adults with Aβ pathology are, on average, less consistent 

in their response times. This adds to previous literature that has shown similar deficits in 
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individuals with MCI and AD, and suggests that this may be a sensitive measure of early 

cognitive changes that could be included in future studies and clinical trials targeting 

individuals with preclinical AD.  
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7. RESPONSE INHIBITION 

 

7.1. Introduction 

 

Executive function is a term that describes the higher-order cognitive processes – 

controlled by the prefrontal cortex – which are necessary for problem-solving, decision-

making, planning and focusing attention in an effortful manner to accomplish tasks (Otero 

and Barker, 2014). A key aspect of executive function is inhibitory control, which has 

both behavioural and cognitive dimensions. Behavioural inhibition describes the ability 

to resist impulsive actions (self-control), whereas cognitive inhibition describes the ability 

to selectively focus attention on stimuli or thought processes that are relevant for the 

current goal and to resist interference from irrelevant stimuli or thought processes that 

would interfere with achieving the goal (Diamond, 2013). Often this involves inhibiting 

automatic responses, which are habitual or “overlearned”. Inhibitory control is a vital skill 

for all aspects of life including health, social interactions and employment.  

Inhibitory control has been widely researched using response inhibition tasks, which 

create a conflict between an automatic (but incorrect) response and the correct 

response. An effective way of creating this conflict is to use incongruent stimuli, such as 

in the Stroop task (see MacLeod (1991) for a review) or the Simon task (Simon, 1969). 

In the Stroop task participants are presented with incongruent stimuli (e.g. the word 

“blue” printed in red-coloured ink) and congruent stimuli (e.g. the word “blue” printed in 

blue-coloured ink) and asked to name the colour of the ink. Responses to incongruent 

stimuli are typically slower and less accurate than responses to congruent stimuli. In a 

computerised version of the Simon task (e.g. Stoet, 2017), arrows are presented pointing 

left or right, on either the left-hand or right-hand side of the screen. If the direction of the 

arrow is incongruent with its position on the screen (e.g. arrow pointing left on the right-

hand side of the screen), participants are generally slower and less accurate at 

identifying the direction of the arrow. There are other methods of creating conflict 

between an automatic response and the required response; for example, the Stop-signal 

or Go/No-Go tasks (see Rey-Mermet and Gade, 2018) require participants to repeatedly 

press a button in response to a stimulus, except on rare occasions when a “stop signal” 

is presented. The response is difficult to inhibit because it has become automatic through 

repetition. The Insight 46 cognitive battery contained a response inhibition task with 

congruent and incongruent stimuli, somewhat akin to the Simon task. 

Impaired inhibitory control can be a feature of many neurodevelopmental and psychiatric 

conditions affecting the frontal lobes, including attention deficit hyperactivity disorder, 
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autism, schizophrenia, obsessive compulsive disorder and addictions, and is also seen 

subsequent to frontal lobe damage due to traumatic brain injury or neurodegenerative 

diseases including the dementias (Goldstein and Naglieri, 2014). It is a prominent and 

early feature of frontotemporal dementia – a spectrum of neurodegenerative diseases 

where the frontal and temporal lobes are subject to focal atrophy (O’Callaghan, Hodges 

and Hornberger, 2013). Although it is not generally considered to be a defining symptom 

of typical AD, a recent meta-analysis estimated that 17% of patients with AD show 

disinhibition, as rated by a care-giver on the Neuropsychiatric Inventory (Zhao et al., 

2016). There is some evidence that patients with AD show impairments on the response 

inhibition tasks described above: patients with mild AD have been reported to respond 

disproportionately slowly and inaccurately to incongruent stimuli on the Stroop task 

(Bélanger, Belleville and Gauthier, 2010) and the Simon task (Castel et al., 2007), as 

well as a similar interference task (Aschenbrenner et al., 2015). There is also some 

evidence to suggest that such impairments in inhibitory control may emerge prior to the 

onset of AD dementia, as individuals with MCI have been reported to show increased 

interference from incongruent stimuli compared to healthy older adults (Bélanger, 

Belleville and Gauthier, 2010).  

As to whether impairments in inhibitory control may emerge even earlier – in the 

preclinical stage of AD when individuals are cognitively-normal but have accumulating 

AD pathology – there has been little research to date. While there is growing evidence 

that subtle changes in executive function can be detected in the preclinical stage of AD 

and can predict progression to dementia diagnosis (i.e. in cognitively-normal individuals 

who show biomarker evidence of AD pathology) (Grober et al., 2008; Clark et al., 2012; 

Hassenstab et al., 2015; Baker et al., 2017; Duke Han et al., 2017; Mortamais et al., 

2017), executive function is a broad term with no consistent definition. The conclusions 

of these studies are based on diverse cognitive tests including processing speed (e.g. 

Digit-Symbol test, see Chapter 4), verbal fluency (e.g. generating items within a category 

such as animals or vegetables), cognitive flexibility (e.g. the Trail Making Test) and 

working memory (e.g. Digit Span). A small number of studies have specifically examined 

associations between inhibitory control and biomarkers of AD pathology in cognitively-

normal individuals. One such study reported that individuals with pathological β-

amyloid42/tau ratios (based on CSF sampling) tended to show greater interference on 

the Stroop task than controls (Harrington et al., 2013) and another study observed that 

interference on a different response inhibition task was correlated with quantity of β-

amyloid plaques (as measured by PET) and CSF levels of β-amyloid42 and tau 

(Aschenbrenner et al., 2015). 
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As I have argued in previous chapters, when investigating potential differences in 

inhibitory control that may be associated with AD pathology, it is important to account for 

other factors which may contribute to individual differences such as age effects, sex and 

prior cognitive ability. Factors associated with individual differences in inhibitory control 

are briefly commented on below.  

A recent meta-analysis of 176 studies comparing older and younger adults on response 

inhibition tasks (including the Stroop, Simon and stop-signal tasks) concluded that the 

prevailing hypothesis of a deficit in inhibitory control in older age was generally not 

supported, although there was some variation between tasks (Rey-Mermet and Gade, 

2018). 

In terms of sex differences on response inhibition tasks, the evidence is limited as most 

studies adjust for sex in their analyses without reporting whether it was associated with 

the outcomes. Sex differences are generally not observed on the Stroop task (MacLeod, 

1991). A recent review concluded that women may show greater interference on the 

Simon task (i.e. greater slowing of responses to incongruent stimuli), but the evidence is 

mixed (Stoet, 2017). 

As with many cognitive tests, there is some evidence of a relationship between education 

and performance on response inhibition tests, although it does not seem to have been 

widely investigated: one study reported an association between greater education and 

reduced interference (Aschenbrenner et al., 2015), and another study found that 

increased interference on the Stroop task was correlated with lower verbal IQ in older 

adults (Puccioni and Vallesi, 2012). 

As for the Choice Reaction Time task reported in the previous chapter, it is important to 

consider the relationship between speed and accuracy on response inhibition tasks, 

rather than only considering them as two separate outcomes. Speed-accuracy trade-offs 

have been reported on “stop-signal” tasks (Dang, Figueroa and Helton, 2018), so the 

speed of an individual’s response may dictate their ability to suppress interference from 

irrelevant properties of the stimulus. 

Following the structure of the previous chapter, the aims of this study were firstly to 

understand patterns of performance on the Response Inhibition task and characterise 

associations between task performance and demographic and life-course predictors, 

and secondly to investigate associations between performance and biomarkers of brain 

pathologies among cognitively-normal participants.  
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7.2. Methods 

   

7.2.1. Stimuli and Procedure 

 

Two related experiments were combined into one task. The first experiment – a Choice 

Reaction Time task – was described in the previous chapter. This chapter concerns the 

second experiment which was a response inhibition task.  

The response inhibition task was presented on the same DELL computer with the same 

2-button response box (see section 6.2.1). All stimuli were displayed in the centre of the 

screen and consisted of an arrow pointing left or right with the word ‘LEFT’ or ‘RIGHT’ 

inside it. In 50% of trials, the arrow and the word were congruent (e.g. an arrow pointing 

left with the word ‘LEFT’ inside it) and in the other 50% of trials the arrow and the word 

were incongruent (e.g. an arrow pointing right with the word ‘LEFT’ inside it) (Figure 7-1). 

Each stimulus was preceded by a cue indicating whether the participant should respond 

to the arrow or to the word.  

There were 2 blocks of 48 trials each. In Block 1, the cue duration was 200ms (i.e. the 

cue was displayed on its own for 200ms before the stimulus appeared below it). In Block 

2 the cue duration was 1500ms. Throughout both blocks, the order of the trials was A-A-

A-W-W-W-A-A-A-W-W-W etc., where A indicates an arrow cue and W indicates a word 

cue. Thus, there were equal numbers of arrow cue and word cue trials. Within each A-

A-A and W-W-W sequence the trials are referred to as being in run-positions 1, 2 and 3. 

Within each block there were equal numbers of trials in each of the four possible 

combinations of congruency and cue type (congruent arrow, incongruent arrow, 

congruent word, incongruent word). However, these factors were not perfectly 

counterbalanced across each run-position; the number of trials in each combination of 

run-position x cue type x congruency varied from 2 to 6 within each block, because the 

order was random with respect to congruency. 

The order of trials was the same for all participants. Six practice trials preceded each 

block. The practice trials were followed by a gap of about 5 seconds before the main 

block started automatically.  

As in the Choice RT task (see Chapter 7), participants were instructed to press the 

correct button on the response box (left or right) as quickly as possible, using the index 

and middle fingers of their dominant hand. If their response was correct, the next trial 

was initiated; if their response was incorrect, the stimulus remained on the screen and 

an error tone sounded to signal that they should respond again as quickly as possible. 
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Regardless of whether their second response was correct or incorrect, no feedback was 

given and the next trial was initiated. 

 

 

 

 

 

 

 

 

 

Figure 7-1. The Response Inhibition task 

The cue (“Arrow” or “Word”) appeared on its own for 200ms (Block 1) or 1500ms (Block 2) 
before the stimulus appeared underneath. 

 

 

7.2.2. Outcome variables 

 

Two variables were recorded for each response: RT (ms) and accuracy (correct or 

incorrect). All analyses were based on the initial response to each stimulus; second 

attempts were not analysed as their purpose was to reorient participants to the task. 

As explained in section 6.2.2, standard practice on tasks measuring RT is to analyse RT 

for correct responses only. This approach was adopted here. 

In the Choice RT task, an outcome of interest was intra-individual variability in RT. This 

would not be a very meaningful measure in the Response Inhibition task because there 

are large differences in RT depending on congruency, cue duration and cue type. A 

variability measure would be heavily influenced by the extent to which participants were 

affected by these factors, rather than capturing their variability in executing a repeated 

response. I considered calculating intra-individual variability for each combination of 

these factors separately, but there are not many trials in each and it is not the primary 

interest of this experiment. The primary interest is the ability to inhibit automatic 

responses to incongruent stimuli. 

 

Congruent trial Incongruent trial 
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7.2.3. Exploration of task-set switching 

 

This experiment is based on the paradigm used by Aron et al. (2004) which was designed 

to measure task-set switching – the ability to switch backwards and forwards between 

two different sets of instructions, or “task-sets”, within the same experiment. As in our 

experiment, they ordered the trials in groups of three (A-A-A-W-W-W-A-A-A-W-W-W etc. 

where A indicates an arrow cue and W indicates a word cue) and their aim was to 

examine task-set switching by comparing responses in run-positions 1, 2 and 3. They 

assessed whether responses were slower and less accurate to trials in run-position 1 

(i.e. trials where the cue was different to the previous trial, requiring a switch of task-set) 

compared to run-positions 2 and 3 (where the cue was the same as the previous trial). I 

was not involved in the design of the experiment for Insight 46, and when I came to 

analyse it, I came to the conclusion that it is not suitable for addressing the question of 

task-set switching because the experimental design differs from that of Aron et al. in 

several important ways.  

Firstly, in order to accurately assess task-set switching, trials should be excluded from 

analysis if the participant’s response to the preceding trial was incorrect, because their 

incorrect response may be due to adopting the wrong task-set. For example, if a trial in 

run-position 3 is an incongruent stimulus with the cue ‘arrow’, but the participant 

responds to the word (thus making an error), then the following trial (a trial in run-position 

1 with the cue ‘word’) would not actually require the participant to switch their task-set. 

Aron et al. excluded trials following an error on either of the preceding two trials for this 

reason. This was feasible because their experiment contained a large number of trials 

(288). This experiment only contained 96 trials due to time constraints, but contained a 

requirement for participants to make a second response if they received feedback that 

their first attempt was incorrect – a feature not present in the experiment of Aron et al. – 

which arguably functions as an alternative mechanism to ensure that participants were 

reoriented to the correct task-set before the next trial appeared. However, on reflection I 

do not think this modification is sufficient for the following reasons: 

i) To correct an incorrect response, all that is required is to press whichever button 

was not pressed on the first attempt. This may be cognitively different to having 

to process the cue and stimulus, so it cannot be assumed that correcting an error 

equates to being reoriented to the task.  

ii) Some participants may have got the second attempt wrong due to perseverating 

with the incorrect task-set despite the feedback that their first attempt was 

incorrect – anecdotally I believe I sometimes observed this happening when 
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administering the test. As no feedback was given for the second attempt, this 

would not be drawn to their attention. 

iii) As discussed in section 6.5.5, one limitation of the response box used for the 

Choice RT and Response Inhibition experiments was that button presses of 

longer than a certain duration registered as multiple presses. Although this issue 

only affected a minority of participants, it reduces confidence in the effectiveness 

of the second attempt for reorienting participants to the correct task-set. 

The second main reason that this experiment does not address task-switching in a 

comparable manor to Aron et al. is that their format made the A-A-A-W-W-W pattern 

obvious to participants by the position of the stimuli on the screen (see Figure 7-2) as 

run-positions 1, 2 and 3 appeared in different locations on the screen, moving round in 

a circle. This allowed the authors to conclude that task-switching was associated with a 

cost (slower and less accurate responses) even when each upcoming switch could be 

anticipated. In contrast, the design of the experiment used in Insight 46 meant that the 

A-A-A-W-W-W pattern was not made obvious to participants and, based on anecdotal 

observations, I suspect that few of them spotted it, although there may have been some 

implicit learning. Therefore, participants may have been more likely to respond to each 

trial with the same degree of surprise rather than allowing the task-set to become 

established by knowing when the switches were due. 
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Figure 7-2. Run-position effect and task design in the experiment used by Aron 
et al.  

 
This figure is reprinted from Aron et al. (2004) with permission from Oxford University Press.  
(A) shows that run-position 1 elicited significantly slower and less accurate responses, indicating 
the presence of a task-set shifting effect. (B) shows that stimuli in the three run-positions were 
presented in different places on the screen, making it obvious when the shift of task-set would 
occur.  
CT = controls; LF = left frontal lesion patients; RF = right frontal lesion patients; RSI = duration of 
cue before stimulus appeared; pos = run-position.  

 

 

Thirdly, in the original study, the simple arrow and word trials (which the Insight 46 Choice 

RT experiment was based on – see Chapter 6) were not administered in a separate 

experiment but were mixed in with the congruent and incongruent trials, and were 

referred to as ‘neutral’ trials. By comparing neutral and congruent trials the authors were 

able to address a specific question about the processes involved in task-set switching 

because neither neutral nor congruent trials trigger any competing response which needs 

to be inhibited, yet there is typically a difference in RT between the two, with responses 

to congruent trials being slower than responses to neutral trials. As congruent stimuli 

contain elements that are associated with the irrelevant task-set (e.g. the presence of a 

word when the relevant task-set is ‘arrow’), this slowing of responses compared to 
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neutral trials can only be attributed to competition arising from endogenous activation of 

the irrelevant task-set. This is different to the activation of the irrelevant task-set that can 

be triggered exogenously by incongruent stimuli. Therefore, the original study was able 

to analyse both the endogenous and exogenous aspects of task-set shifting, whereas 

our experiment does not permit investigation of the endogenous aspect because of the 

lack of ‘neutral’ trials. 

In summary, I concluded that the Insight 46 Response Inhibition task could not provide 

a valid measure of task-set shifting. However, the fact that the trials were ordered in a 

pattern of groups of three (A-A-A-W-W-W, where A indicates an arrow cue and W 

indicates a word cue) meant that the influence of run-position on the results still needed 

to be considered. My methods for considering this are outlined in 7.3.1.1.  

 

7.2.4. Hypotheses 

 

For the purpose of assessing inhibitory control, the outcomes of interest were RT and 

error rate on incongruent trials, compared to congruent trials.  

Based on the literature, I hypothesised that higher childhood cognitive ability and 

educational attainment would be associated with greater inhibitory control i.e. the 

tendency to respond slower and less accurately on incongruent trials would be reduced. 

I aimed to test the hypothesis that cognitively-normal Aβ+ participants would show 

reduced inhibitory control compared to Aβ- participants.  

 

 

7.2.5. Participants 

 

All 502 participants completed the Response Inhibition task, but one participant’s data-

file was not successfully saved (see section 3.3). Participant characteristics are reported 

in section 3.6.  
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7.2.6. Data processing 

 

As for the Choice RT task, the first trial in each block was excluded from analyses 

because participants did not always realise that the block had started and this affected 

RT (see sections 6.2.5 and 6.5.5).  

In line with the policy of keeping the sample as representative as possible, the only 

reason to exclude participants with outlying performance was deemed to be a clear 

indication that they deviated from the protocol e.g. a fundamental misunderstanding of 

the instructions. As mentioned in the previous chapter (see section 6.2.5), one participant 

had a lifelong condition affecting cognition and was noted to have difficulty in 

understanding the task, so this participant was excluded from the analyses, reducing the 

sample size to 500. 

As explained in the previous chapter (see section 6.2.5), an error rate of greater than 

50% in a 2-choice task would normally be suggestive of guessing at chance level, and 

this would be grounds to consider excluding participants from the analyses. However, 

this task contains incongruent trials where it is necessary for participants to inhibit 

incorrect responses which are prompted by the non-cued property of the stimulus. 

Therefore, an error rate of greater than 50% on incongruent trials would not necessarily 

be suggestive of guessing at chance level – it could indicate a failure to inhibit incorrect 

responses despite understanding the instructions. Anecdotally, from observing 

participants completing this task, I concluded that this was the case, so it would not be 

appropriate to exclude participants with error rates of greater than 50%. In fact, although 

no participants had an overall error rate of greater than 50%, 12 participants had an error 

rate of greater than 50% on incongruent trials alone (max 67%). Of these, three met 

criteria for a neurological or psychiatric condition and nine were classified as cognitively-

normal (see definitions in section 3.2.3) 

As in the previous chapter, I have considered both correct and incorrect responses for 

the purpose of checking for outlying RTs. The distribution of each participant’s mean RT 

shows that there a few participants with outlying slow RTs (Figure 7-3). Of those with a 

mean RT greater than 4000 ms, one met criteria for MCI (see section 3.2.3) and the 

other three were cognitively-normal. There was no evidence that any participants did not 

complete the task according to the instructions, so none were excluded based on their 

mean RT. 

Reaction times to individual trials were checked for outliers. As in the previous chapter 

(see section 6.2.5), I adopted a threshold of 300 ms as the fastest possible time for a 

valid response. Four participants had one response each excluded for being faster than 
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300ms. There were a few trials with extremely slow outlying RTs, up to 40 seconds 

(Figure 7-4). It is clear that some of these should be excluded as they are outside a 

reasonable time frame and correspond to notes made by the testers about deviations 

from the protocol; for example, I observed instances of participants stopping to cough or 

drink water. As in the previous chapter (see section 6.2.5) I excluded trials where the RT 

was more than 3 SD above each participant’s own mean. This applied to 558 trials (1.2%) 

from 379 participants, with between 1-4 trials each. After these exclusions, the slowest 

response was 13755 ms. Even though slower responses are more likely to occur in 

certain conditions (e.g. incongruent stimuli, short cue duration – see results section 

7.3.2.2.1) I concluded that it was fair to exclude this small minority of trials as a way of 

reducing noise in the data, especially as there are not enough trials in the different 

conditions to define outliers within each one.  

 

Figure 7-3. Box and whisker plot of mean reaction times (correct and incorrect 
responses) on the Response Inhibition task, before data cleaning 
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Figure 7-4. Box and whisker plot of individual reaction times (correct and incorrect 

responses) on the Response Inhibition task, before data cleaning 

 

7.3. Patterns and predictors of performance 

 

Following the format laid out in section 3.5, in the first part of this chapter I aimed to 

describe patterns of performance across the various outcomes and conditions of the 

task, and to investigate the effects of demographic and life-course predictors on 

performance in the full Insight 46 sample. Specifically I aimed to investigate whether RT 

and error rate differ in the different conditions (word vs. arrow stimuli, congruency, cue 

duration) and explore the relationship between RT and error rate. The demographic and 

life-course predictors (sex, age at assessment, childhood cognitive ability, educational 

attainment, adult socioeconomic position and presence of a neurological or psychiatric 

condition) are defined in sections 3.2.4 and 3.2.3 respectively. 
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7.3.1. Statistical Analyses 

 

7.3.1.1. Run-position and practice effects 

As described in section 7.2.3, the fact that trials were presented in an A-A-A-W-W-W 

sequence (where A indicates an arrow cue and W indicates a word cue) means that the 

speed and accuracy of a given response may potentially be affected by its position within 

this sequence. As the three experimental factors (congruency, cue type and cue 

duration) were not perfectly counterbalanced across the run-positions (see 7.2.1), the 

interpretation of the effects of these factors could be confounded by the influence of run-

position.  

Practice effects could also confound interpretation of the effects of these factors, 

particularly the effect of cue duration since the short cue block always preceded the long 

cue block, so the long cue block would theoretically benefit more from practice effects. 

As well as general improvement in speed and accuracy, practice effects could have led 

to implicit or explicit learning of the A-A-A-W-W-W sequence, which may have helped 

participants to improve their performance as the task went on. 

Therefore, to account for these issues, run-position (1, 2 or 3) and trial number (1 to 47 

within each block) were included in the analysis models as described below, and their 

effects are reported first (see section 7.3.2.1) to provide context for the other results 

which follow. 

 

7.3.1.2. RT and error rate 

Rather than using summary scores for each participant (e.g. mean RT for each 

condition), trial-by-trial responses were analysed to avoid losing information. 

As in the previous chapter, reaction times were analysed using a GEE model assuming 

a normal distribution for the dependent variable and an identity link (as with standard 

linear regression), with an exchangeable correlation structure and robust standard errors 

to allow for the correlation between repeated measures of the same participant. RTs 

were first log-transformed so that the distribution more closely approximated the normal 

distribution.  

As in the previous chapter, response accuracy (correct vs. incorrect) was analysed using 

a GEE logistic regression model with an independent correlation structure and robust 

standard errors. Results are expressed as odds ratios for ease of interpretation. 
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Predictors in the models were cue type (arrow vs. word), congruency (congruent vs. 

incongruent), cue duration (short vs. long), run-position (1, 2 or 3), trial number (1 to 47), 

sex, age at assessment, childhood cognitive ability, education, adult socioeconomic 

position and presence of a neurological or psychiatric condition (yes vs. no). 

To investigate how cue type, congruency and cue duration combine to affect 

performance, I tested for interactions between these variables. I also tested for 

interactions between these variables and each between-subject predictor (sex, 

education etc.). In the case of congruency, these interaction tests allowed me to assess 

differences in inhibitory control, in accordance with my hypotheses. In the case of cue 

type and cue duration, these interaction tests were exploratory as I did not have prior 

hypotheses about how the between-subject predictors may be associated with 

differences in the degree to which participants would be disadvantaged by the short cue 

duration (compared to the long duration) or differences in performance on arrow and 

word trials. 

 

7.3.1.3. Relationship between speed and accuracy 

As in the previous chapter, I investigated the relationship between speed and accuracy 

both between-subjects and within-subject, to determine whether there was a trade-off 

between speed and accuracy as there was on the Choice Reaction Time task (see 

sections 6.3.1.3 and 6.3.2.3).  

To address the between-subject questions (e.g. are the fastest-responding participants 

likely to make the most errors?), each participant’s mean RT for correct responses was 

compared to their error rate (percentage of incorrect responses). 

As in the Choice RT task, the distributions of mean RTs and error rates both had a 

positive skew. Two transformations were considered for mean RT: log-transforming the 

mean RTs or calculating the mean of the log-transformed raw RTs. As neither of these 

removed the skew, the untransformed data were used for ease of interpretation and for 

consistency with the analysis of the Choice RT data (see section 6.3.1.3). Spearman’s 

rank correlation was used to examine the relationship between mean RT and error rate. 

As in the Choice RT task, the within-subjects questions were addressed by analysing 

the trial-by-trial data to see whether the speed of a response predicted whether that 

response would be correct or incorrect. This was done by rerunning the GEE model for 

the odds of making errors (see 7.3.1.2) with RT included as an additional covariate. RT 

was not log-transformed this time, to aid interpretability of its effects as a predictor (it was 
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previously transformed to comply with the assumption of a normal distribution for linear 

regression when it was being modelled as an outcome). 

 

 

7.3.2. Results 

 

Descriptive statistics are presented in Table 7-1. 

 

Table 7-1. Descriptive statistics for the Response Inhibition task 

  Congruent Incongruent 
Congruent and 

Incongruent combined 

RT for correct 
responses (ms)  

Median 1491 1645 1560 

IQR 1111 - 1936 1225 - 2185 1161 - 2052 

Range 513 - 12273 353 - 13755 353 – 13755 

Error rate (%) 0.8 10.7 5.6 

 

Statistics are based on 500 participants who each completed 94 trials. Results for congruent and 
incongruent trials are presented separately as this was the main factor of interest. IQR = 
interquartile range 

 

 

7.3.2.1. Run-position and practice effects 

Run-position effects on RT are illustrated in Figure 7-5. Correct responses got faster with 

increasing run-position (regression coefficient = 0.982 (i.e. 1.8% decrease in RT per run-

position), 95% CIs 0.978 to 0.986, p < 0.0001). As this effect was independent of the 

effect of trial number, it cannot be explained by the fact that run-positions 2 and 3 would 

benefit more on average from the general practice effect. Therefore, it is likely that some 

implicit and/or explicit learning of the A-A-A-W-W-W pattern facilitated faster responses 

across each group of three trials. It is worth noting that this does not constitute a “task-

set switching” effect as described by Aron et al. (see 7.2.3), as pairwise comparisons of 

consecutive run-positions revealed that RT improved steadily from position 1 to 2 

(regression coefficient = 0.982 (i.e. 1.8% decrease in RT), 95% CIs 0.974 to 0.989, p < 

0.0001) and position 2 to 3 (regression coefficient = 0.985 (i.e. 1.5% decrease in RT), 

95% CIs 0.980 to 0.991, p < 0.0001), whereas a task-set switching effect would manifest 

as a large decrease in RT from run-positions 1 to 2 only (see Figure 7-2). 
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Figure 7-5. Mean reaction time at each run-position in the short cue and long cue 
blocks of the Response Inhibition task 

Markers show unadjusted means and error bars show 95% confidence intervals.  

 

Run-position effects on error rate are illustrated in (Figure 7-6). The odds of making an 

error decreased with increasing run-position (OR = 0.935, 95% CIs 0.890 to 0.982, p = 

0.007). However, there were contrasting profiles in the short cue duration and long cue 

duration blocks: in the short cue duration block there was no main effect of run-position 

(OR = 0.954, 95% CIs 0.893 to 1.019, p = 0.16), whereas in the long cue duration block 

error rate decreased with increasing run-position (OR = 0.862, 95% CIs 0.801 to 0.928, 

p < 0.0001). The lack of a consistent relationship between run-position and error rate is 

probably due to the fact that error rate was heavily influenced by congruency and 

stimulus cue (arrow vs. word) (see 7.3.2.2.1) and these factors were not counterbalanced 

across the run-positions (see 7.2.1). Again, there is no evidence of the task-set switching 

effect described by Aron et al. (which would be indicated by substantially higher error 

rates at run-position 1 relative to the positions 2 and 3).  
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Figure 7-6. Error rate at each run-position in the short cue and long cue blocks of 

the Response Inhibition task 

Markers show unadjusted means and error bars show 95% confidence intervals. 

 

Practice effects on RT are illustrated in Figure 7-7. There was a general practice effect 

whereby RT got slightly faster with increasing trial number (regression coefficient = 0.999 

(i.e. 0.1% decrease in RT per trial), 95% CIs 0.998 to 0.999, p < 0.0001). However, when 

analysing the ‘short cue’ and ‘long cue’ blocks separately, it is clear that this effect derives 

from the short cue block (regression coefficient = 0.997 (i.e. 0.3% decrease in RT per 

trial), 95% CIs 0.997 to 0.997, p < 0.0001), and there is no statistically significant effect 

in the long cue block (regression coefficient = 1.000, 95% CIs 0.999 to 1.000, p = 0.42). 

This could be partly because the long cue duration block was administered after the short 

cue duration block, so participants may have already had sufficient practice to reach their 

optimum level of performance, but also because the long cue duration block is easier 

(see next section) so participants may have reached a plateau very quickly.  
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Figure 7-7. Mean Reaction Time for each trial in the short cue and long cue blocks 

of the Response Inhibition task 

There were 47 trials within each condition. The long cue block was always administered first. 

 

 

Practice effects on error rate are illustrated in Figure 7-8. A slight practice effect (i.e. a 

reduction in error rate with increasing trial number) was observed overall (OR = 0.993, z 

= -4.54, p < 0.0001). As with RT, this was observed in the short cue block (OR = 0.982, 

z = -7.62, p < 0.0001) but not the long cue duration block, which had evidence of a slight 

worsening of performance over time (OR = 1.008, z = 3.09, p = 0.002).  

Overall, run-position and trial number had small independent effects on RT and error rate 

so it is justified to account for them in the following analyses, but there is no cause to be 

concerned that the comparison between the short and long cue durations will be 

significantly compromised by practice effects. 
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Figure 7-8. Error rate for each trial in the short cue and long cue blocks of the 
Response Inhibition task 

There were 47 trials within each condition. The long cue block was always administered first. 
 
 
 
 
 

7.3.2.2. RT and error rate 

 

7.3.2.2.1. Cue duration, congruency and cue type 

Results of the multivariable regression models for RT and error rate are given in Table 

7-2 and Table 7-3 respectively, along with results of interaction tests between predictors.  

Responses were 39% slower on average when the cue was of short duration compared 

to long duration (Table 7-2), and also 1.65 times more likely to be incorrect (Table 7-3). 

This is as expected, because the long cue duration gives people more time to prepare 

the appropriate task set for their response. As mentioned above, a contribution of 

practice effects to this result cannot be ruled out, as the long cue duration block came 

after the short cue duration block.  
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Incongruent trials were associated with 13% slower responses than congruent trials 

(Table 7-2) and the odds of making an error were 17.17 times greater (Table 7-3).  

Responses were slightly slower (6%) to arrow cues than word cues (Table 7-2) and also 

5.32 times more likely to be incorrect (Table 7-3). 

Several interaction effects were observed between these factors; as an aid to the 

interpretation of these interaction effects, described below, mean RT and error rate for 

each combination of cue duration, congruency and cue type are shown in Figure 7-9 and 

Figure 7-10. 

The slowing of responses and the increased error rate associated with incongruent trials 

were both disproportionately greater when the cue type was arrow rather than word 

(Table 7-2, Table 7-3, Figure 7-9, Figure 7-10). The slowing of responses associated 

with incongruent trials was slightly reduced when the cue was of short duration compared 

to long duration (Table 7-2, Figure 7-9), but there was no evidence that the increase in 

error rate on incongruent trials differed between the short and long cue duration 

conditions (Table 7-3, Figure 7-10). Finally, the slowing of responses and the increased 

error rate associated with arrow cues were both disproportionately greater when the cue 

was of short duration compared to long duration (Table 7-2, Table 7-3, Figure 7-9, Figure 

7-10).  

Overall these results show that both RT and error rate were influenced by all three 

experimental factors, with the most difficult combination being an arrow cue of short 

duration for an incongruent stimulus. The biggest influence on RT was cue duration 

whereas the biggest influence on error rate was congruency. It is clear from Figure 7-10 

that the error rate for congruent trials was extremely low, regardless of cue duration and 

cue type, whereas incongruent trials were much more error-prone, especially when 

participants were cued to respond to the arrow. This suggests that the word was the 

most salient part of the stimulus and participants found it difficult to inhibit a response to 

it.  

 

  



169 
 

 

Table 7-2. Associations between demographic and life-course predictors and RT 
in the Response Inhibition task (n = 500) 

 

 

Predictor 

Coefficient a (95% confidence intervals) 

Main effect 
of predictor 

Interaction 
between 
predictor and 
cue duration 

Interaction 
between 
predictor and 
congruency 

Interaction 
between 
predictor and 
cue type 

Short cue 
duration  
(long cue as 
reference) 

1.39* 
(1.37, 1.41) 

N/A 
0.97* 

(0.96, 0.98) 
1.13* 

(1.11, 1.14) 

Incongruent 
stimulus 
(congruent as 
reference) 

1.13* 
(1.12, 1.14) 

0.97* 
(0.96, 0.98) 

N/A 
1.08* 

(1.07, 1.10) 

Arrow cue type 
(word as 
reference) 

1.06* 
(1.05, 1.07) 

1.13* 
(1.11, 1.14) 

1.08* 
(1.07, 1.10) 

N/A 

Sex 
(female as 
reference) 

0.92* 
(0.88, 0.96) 

0.98 
(0.95, 1.01) 

0.99 
(0.98, 1.01) 

0.98 
(0.96, 1.00) 

Age at 
assessment 
(per year) 

1.05* 
(1.02, 1.08) 

0.98 
(0.96, 1.00) 

1.00 
(0.99, 1.01) 

1.00 
(0.99, 1.01) 

Childhood 
cognitive 
ability  
(per z-score) 

0.95* 
(0.92, 0.98) 

1.00 
(0.98, 1.01) 

0.98* 
(0.97, 0.99) 

1.00 
(0.99, 1.01) 

Education  
(per category) b 

0.98 
(0.96, 1.01) 

0.99 
(0.98, 1.00) 

0.99* 
(0.98, 1.00) 

1.00 
(0.99, 1.01) 

Adult SEP 
(per category) b 

0.99 
(0.97, 1.02) 

1.00 
(0.98, 1.01) 

0.99* 
(0.98, 1.00) 

1.00 
(0.99, 1.01) 

Neurological or 
psychiatric 
condition c 
(cognitively-
normal as 
reference) 

1.05 
(0.97, 1.14) 

1.01 
(0.96, 1.96) 

1.03 
(1.00, 1.06) 

0.99 
(0.96, 1.03) 

 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. 
Multivariable regression models were used so each association is independent of all others. a As 
the data were log-transformed, the coefficients are quoted in exponentiated form for ease of 
interpretation; for example, a coefficient of 1.05 would mean that the factor was associated with 
5% longer response time. b See section 3.2.4 for definition of categories. c See section 3.2.3  for 
definitions. 

SEP = socioeconomic position.  
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Table 7-3. Associations between demographic and life-course predictors and error 
rate in the Response Inhibition task (n = 500) 

 

 

Predictor 

Odds Ratio for making an error (95% CIs) 

Main effect 

of predictor 

Interaction 

between 

predictor and 

cue duration 

Interaction 

between 

predictor and 

congruency 

Interaction 

between 

predictor 

and cue 

type 

Short cue 
duration (long 
cue as reference) 

1.65* 
(1.48, 1.83) 

N/A 
0.75 

(0.50, 1.14) 
1.79* 

(1.36, 2.34) 

Incongruent 
stimulus 
(congruent as 
reference) 

17.17* 
(12.96, 
22.75) 

0.75 
(0.50, 1.14) 

N/A 
3.51* 

(2.45, 5.04) 

Arrow cue type 
(word as 
reference) 

5.32* 
(4.34, 6.52) 

1.79* 
(1.36, 2.34) 

3.51* 
(2.45, 5.04) 

N/A 

Sex 
(female as 
reference) 

1.25 
(0.98, 1.59) 

0.87 
(0.71, 1.08) 

0.71 
(0.42, 1.20) 

0.83 
(0.55, 1.23) 

Age at 
assessment 
(per year) 

0.97 
(0.82, 1.14) 

1.00 
(0.86, 1.16) 

1.33 
(0.94, 1.90) 

1.37 
(1.02, 1.85) 

Childhood 
cognitive ability 
(per z-score) 

0.70* 
(0.59, 0.84) 

1.06 
(0.93, 1.22) 

0.83 
(0.63, 1.11) 

1.36 
(1.06, 1.76) 

Education  
(per category) a 

0.82* 
(0.73, 0.91) 

1.06 
(0.98, 1.14) 

1.05 
(0.86, 1.29) 

1.15 
(1.00, 1.32) 

Adult SEP 
(per category) a 

0.87 
(0.78, 0.98) 

0.99 
(0.91, 1.07) 

1.06 
(0.86, 1.30) 

1.07 
(0.91, 1.26) 

Neurological or 
psychiatric 
condition b 
(cognitively-
normal as 
reference) 

1.33 
(0.88, 2.03) 

0.91 
(0.67, 1.24) 

0.84 
(0.47, 1.49) 

0.80 
(0.42, 1.56) 

 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. 
Multivariable regression models were used so each association is independent of all others.  
a See section 3.2.4 for definition of categories. b See section 3.2.3 for definitions. 
  
CI = confidence interval; SEP = socioeconomic position. 
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Figure 7-9. Mean reaction time by congruency, cue type (arrow vs. word) and cue 
duration (short vs. long) on the Response Inhibition task 

Markers show unadjusted means and error bars show 95% confidence intervals. 
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Figure 7-10. Error rate by congruency, cue type (arrow vs. word) and cue duration 
(short vs. long) on the Response Inhibition task 

Markers show unadjusted means and error bars show 95% confidence intervals. 

 

 

7.3.2.2.2. Demographic and life-course predictors  

Results of the multivariable regression models for RT (correct responses only) and error 

rate are given in Table 7-2 and Table 7-3 respectively, along with results of interaction 

tests between predictors. 

On average, males responded 8% faster than females (1640 vs. 1788 ms, Table 7-2). 

There was evidence of an interaction between sex and cue type, such that the tendency 

to respond more slowly to arrow cues than words cues was reduced in males, i.e. their 

RTs to arrows and words were more similar. There was no evidence of statistically 

significant sex differences in overall error rates (males = 6.0%; females = 5.3%) nor in 

the extent to which accuracy was influenced by cue duration, congruency or cue type 

(Table 7-3). 

Older age at assessment was associated with slightly slower RT (5% slower per year), 

an effect which appeared to generalise across all conditions of the task as there was no 

evidence of interactions between age and cue duration, congruency or cue type (Table 
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7-2). There was no evidence of a general ageing effect on error rate, but the tendency 

to make more errors in response to arrow cues (as opposed to word cues) was 

exaggerated in older participants (Table 7-3). 

Participants with higher childhood cognitive ability tended to respond faster overall (5% 

faster per z-score unit of childhood cognitive ability) and had a reduced tendency to 

respond more slowly to incongruent stimuli, i.e. their RTs to congruent and incongruent 

stimuli were more similar, indicating better inhibitory control (Table 7-2). While higher 

educational attainment and higher adult socioeconomic position did not have a 

statistically significant effect on RT overall, these factors were also associated with a 

reduction in the tendency to respond more slowly to incongruent stimuli, indicating better 

inhibitory control (Table 7-2).  

Childhood cognitive ability, education and adult socioeconomic position all had notable 

independent effects on error rate (odds of making an error reduced by 30% per unit z-

score of childhood cognitive ability, reduced by 18% per category of educational 

attainment, and reduced by 13% per category of adult socioeconomic position, Table 

7-3, Figure 7-11). There was no evidence of interactions between these factors and the 

tendency to make more errors on incongruent trials, although as error rates in the 

congruent condition were so low it should be noted that the overall error rates were driven 

almost entirely by errors on incongruent trials. There was also no evidence of interactions 

between these factors and the tendency to make more errors when the cue was of short 

duration, but there were interaction effects with cue type such that those with higher 

childhood cognitive ability and higher education attainment made relatively more errors 

in response to arrow cues (as opposed to word cues). In other words, their accuracy 

advantage was greater when they were required to respond to the word.  

There was no evidence of any statistically significant differences between participants 

with neurological or psychiatric conditions and cognitively-normal participants in terms of 

RT or error rate (Table 7-2, Table 7-3).  
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Figure 7-11. Association between childhood cognitive ability and error rate on the 
Response Inhibition task 

Error rate is represented as a proportion between 0 and 1. Solid line indicates predictions from 

the multivariate regression model, adjusted for sex, age at assessment, education, adult 

socioeconomic position and presence of a neurological or psychiatric condition. Shaded area 

represents 95% confidence intervals. For an explanation of the childhood cognitive ability 

variable, see section 3.2.4. 

 

 

7.3.2.3. Relationship between speed and accuracy 

Figure 7-12 illustrates the relationship between mean RT and accuracy. There was a 

ceiling effect on accuracy with many participants having an error rate close to zero 

regardless of their speed, but there was a positive association (rather than a trade-off) 

between speed and accuracy, such that slower mean RT for correct responses was 

predictive of a higher error rate (Spearman’s ρ = 0.33, p < 0.0001).  
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Figure 7-12. Scatter plot of each participant’s mean reaction time against their 
error rate on the Response Inhibition task 

Transparent markers have been used so that the density is visible where there are markers on 
top of each other. Solid line indicates line of best fit. 

 

The within-subjects analysis of trial-by-trial responses found that errors were more likely 

to occur with increasing RT, with a 2% increase in the odds of making an error per 

additional 100 milliseconds (OR = 1.02, 95% CIs 1.01 to 1.03, p < 0.0001). To put this in 

context, the mean RTs for correct and incorrect responses were 1712 ms and 2175 ms 

respectively. The predictors of higher error rate remained unchanged when adjusting for 

RT: incongruent stimuli (OR = 16.21, 95% CIs 12.19 to 21.54, p < 0.0001), short cue 

duration (OR = 1.48, 95% CIs 1.31 to 1.66, p < 0.0001), and arrow cues (OR = 5.11, 

95% CIs 4.16 to 6.26, p < 0.0001). This provides evidence that RT and error rate were 

mainly dependent on the properties of the stimuli (i.e. certain conditions were more 

difficult which had a detrimental effect on both speed and accuracy), rather than errors 

being due to responding in haste. 
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7.4. Associations with biomarkers and APOE-ε4 

 

Following the format laid out in section 3.5, the second part of this chapter aims to 

investigate associations between performance and biomarkers of AD in cognitively-

normal participants for whom complete biomarker data are available. The number of 

participants meeting these criteria who also had usable data from the Response 

Inhibition task was 405 (see section 3.3). 

As explained in section 3.5.2.1, I wanted to derive some summary scores that capture 

the key aspects of performance on each task, to use for comparing results across the 

different cognitive tests in the Insight 46 battery (see Chapter 9). As a test of response 

inhibition, the outcome of primary interest in this task is how well participants can inhibit 

incorrect responses when presented with incongruent stimuli. This is the dimension of 

the task which my hypotheses relate to, rather than the other factors that were varied 

across the experiment, namely cue duration and cue type (arrow vs. word). The results 

reported above support the idea that congruency is the aspect on which interesting 

differences in RT between participants are observed, as the extent to which RT was 

slowed on incongruent stimuli varied by childhood cognitive ability, education and adult 

socioeconomic position, whereas the effects of cue duration and cue type on RT did not 

vary by any of the predictors tested (except a small interaction between sex and cue type 

(see section 7.3.2.2.2).  

Based on this, I decided to calculate summary scores that quantify the extent to which 

RT and accuracy were compromised on incongruent trials, compared to congruent trials. 

This approach is commonly adopted on response inhibition tasks. For example on the 

Simon task, the ‘Simon effect’ is the difference between mean RT for congruent trials 

and mean RT for incongruent trials (e.g. Stoet, 2017), and the ‘Stroop effect’ is usually 

defined as the total time to complete the incongruent condition of the Stroop task minus 

the total time to complete the congruent condition (MacLeod, 1991). I calculated the 

following two summary outcomes for each participant: 

i) “Incongruent cost” to RT, defined as the mean RT for incongruent trials minus 

the mean RT for congruent trials, divided by the mean RT for congruent trials. 

This is a measure of the relative increase in RT for incongruent trials. I chose to 

calculate the relative difference, rather than the absolute difference, because it 

may be more meaningful given the large range of RTs and because it more 

closely approximates the normal distribution. 

ii) “Incongruent cost” to error rate, defined as the percentage of incorrect 

responses on incongruent trials minus the percentage of incorrect responses on 
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congruent trials. I considered whether to normalise this outcome to each 

participant’s performance in the congruent condition (i.e. to calculate the relative 

difference in error rate rather than the absolute difference) but this was 

problematic because it would require dividing by zero for the vast majority of 

participants (83%) who made no errors on congruent trials. Because of this 

ceiling effect on accuracy for congruent trials, this outcome is essentially a 

measure of error rate on incongruent trials, but one that attempts to minimise the 

influence of anticipations or lapses of attention – the most likely explanation for 

making errors in the congruent condition. 

For each of these two outcomes, I tested for associations with the same biomarkers as 

in the previous chapter (see section 3.5.2).  

 

 

7.4.1. Statistical Analyses 

 

“Incongruent cost” to RT and “incongruent cost” to error rate were both analysed 

using multivariable linear regression models. For the error rate variable, bootstrapping 

was used to produce bias-corrected and accelerated 95% CIs from 2000 replications, as 

it had a positive skew. 

All models included predictors of amyloid status (positive vs. negative), whole brain 

volume, WMHV and APOE genotype (ε4-carrier vs. non-carrier). To adjust for the 

correlation between whole brain volume and head size, total intracranial volume (TIV) 

was included in all models, as were the demographic factors investigated in section 6.3 

(sex, age at assessment, childhood cognitive ability, education and adult socioeconomic 

position).  

The models were additionally rerun replacing dichotomised amyloid status with SUVR to 

test whether increasing Aβ deposition was associated with differences in performance. 

To check whether associations between SUVR and cognition were sensitive to the 

inclusion of the imputed SUVR values (see section 3.2.2), the analyses were rerun 

excluding the 26 participants with imputed SUVR data. 
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7.4.2. Results 

 

Results of the regression models for the two outcomes are reported in Table 7-4. Results 

for the demographic and life-course factors (sex, age at assessment, childhood cognitive 

ability, education and adult socioeconomic position) are not reported as they are 

essentially unchanged from the first analysis section (7.3.2). 

There was no evidence of any associations between any biomarkers and either of the 

two outcomes. 

 

Table 7-4. Associations between biomarkers and Response Inhibition outcomes 
in cognitively-normal participants (n = 405) 

Predictor 

Coefficients and 95% CIs 

“Incongruent cost” to 
RT a 

“Incongruent cost” to 
error rate b 

β-amyloid status  
(negative as reference) 

-0.01 
(-0.04, 0.02) 

0.77 
(-1.79, 3.99) 

WMHV (per 10 ml) 
0.01 

(-0.01, 0.03) 
0.90 

(-0.61, 2.40) 

Whole brain volume  
(per 10 ml) 

-0.00 
(-0.00, 0.00) 

0.02 
(-0.17, 0.24) 

APOE-ε4 
(non-carriers as reference) 

0.00 
(-0.02, 0.03) 

-1.04 
(-3.34, 1.38) 

 

Multivariable regression models were used so each association is independent of all others.  
In addition to the predictors listed, models also included sex, age at assessment, childhood 
cognitive ability, adult socioeconomic position and total intracranial volume. 
 
Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01.  
a “Incongruent cost” to RT is the relative increase in RT for incongruent trials, defined as the mean 
RT for incongruent trials minus the mean RT for congruent trials, divided by the mean RT for 

congruent trials. b “Incongruent cost” to error rate is defined as the percentage of incorrect 
responses on incongruent trials minus the percentage of incorrect responses on congruent trials. 
CI = confidence interval; WMHV = white matter hyperintensity volume. 
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7.5. Discussion 

 

7.5.1. Summary 

 

This study investigated inhibitory control on a task where incongruent stimuli were used 

to create a conflict between the automatic (but incorrect) response and the correct 

response. As hypothesised, there was evidence that higher childhood cognitive ability 

and education were associated with increased inhibitory control, as evidenced by a lower 

error rate and a reduction in the tendency to respond more slowly to incongruent stimuli. 

There was evidence of a similar effect of higher adult socioeconomic position. There was 

no evidence to support the hypothesis that Aβ+ participants would show reduced 

inhibitory control. There was no evidence of speed-accuracy trade-offs; rather there was 

a positive association between speed and accuracy. These results are discussed in 

greater detail in the following sub-sections. 

 

 

7.5.2. Patterns of performance 

 

As expected, responses were slower when the stimuli were incongruent and when 

participants had less time to prepare for their response (i.e. the cue was of short 

duration). Responses were also slightly slower when the cue instructed participants to 

respond to the arrow rather than the word. This may be explained by the fact that reading 

words is an automatic or “overlearned” process, and would naturally take precedence 

over attending to the direction of the arrow – this is the phenomenon behind the well-

established Stroop effect (see 7.1). The results of the Choice RT experiment reported in 

the previous chapter support this explanation, because in the Choice RT experiment 

(where arrows and words were presented alone, not combined together as in the 

Response Inhibition experiment) responses were slightly faster to arrows than words, 

suggesting that in the Response Inhibition task it was indeed the presence of the 

irrelevant word that slowed down responses to arrows. In the experiment by Aron et al. 

(2004) on which this one was based, cue type was not considered as a factor in the 

analyses so it is not possible to compare my results with theirs in this respect.  

The finding that the fastest-responding participants tended to make the fewest errors, is 

the opposite of the relationship observed in the Choice RT experiment reported in the 

previous chapter, where there was a trade-off between speed and accuracy. Similarly, 
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the observation that incorrect responses were typically slower than correct responses 

was the opposite of the Choice RT experiment. In my discussion of those results (section 

6.5.2), I hypothesised that the complexity of the task is the key factor in determining the 

relationship between speed and accuracy, as errors in a more complex task may arise 

primarily from making an incorrect judgement, whereas on a more simple task errors 

may arise primarily from anticipatory or hasty responses. 

 

 

7.5.3. Demographic and life-course predictors 

 

7.5.3.1. Associations with age at assessment 

As on the Choice RT experiment reported in the previous chapter, there was an 

association between older age and slower RT. However, there was no evidence of an 

age effect on inhibitory control, as the tendency to respond more slowly to incongruent 

stimuli was independent of age. This agrees with the conclusion of a recent meta-

analysis which concluded that there is little evidence that inhibitory control declines with 

age (Rey-Mermet and Gade, 2018), although the very narrow age range of Insight 46 

participants (2.6 years – reflecting the time it took to collect the data, since all participants 

were born in the same week) means that I was not expecting to observe age effects in 

general. As discussed previously (see sections 4.5.2.3 and 6.5.3.1) I considered the 

possibility of a recruitment bias whereby participants seen towards the beginning of the 

data collection period may have differed in some ways to those seen towards to the end, 

and this is discussed in greater detail in Chapter 10. 

 

7.5.3.2. Associations with childhood cognitive ability, education and adult 

socioeconomic position  

Error rate on this task showed strong independent associations with childhood cognitive 

ability, education and adult socioeconomic position. As error rates for congruent stimuli 

were extremely low, these associations are driven by errors in the incongruent condition, 

which occurred primarily when participants were required to ignore the word and respond 

to the direction of the arrow (see 6.5.2). Higher childhood cognitive ability, higher 

educational attainment and higher adult socioeconomic position also independently 

predicted a reduced tendency to slow down when the stimuli were incongruent, indicating 

better inhibitory control. These results are consistent with previous studies that have 

described an effect of education on response inhibition tasks (Puccioni and Vallesi, 2012; 
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Aschenbrenner et al., 2015), but to my knowledge this is the first study to report 

independent effects of these factors on inhibitory control in older age.  

Consistent with the results of the Choice RT experiment reported in the previous chapter, 

higher childhood cognitive ability was associated with faster RT overall, whereas there 

was no evidence for associations between RT and education or adult socioeconomic 

position. As discussed in the previous chapter, associations between RT and general 

cognitive ability are widely reported in the literature.  

 

7.5.3.3. Sex differences 

There was evidence of a sex difference in RT whereby males generally responded faster. 

In the previous chapter I discussed the fact that the lack of evidence for sex differences 

on the Choice RT experiment was contrary to some previous studies which had reported 

that males tended to respond faster on Choice RT tasks  (Deary and Der, 2005; Der and 

Deary, 2006; Dykiert et al., 2012b; Vincent et al., 2012; Phillips et al., 2013). While this 

task was primarily designed to measure inhibitory control, it can still be considered as a 

Choice RT task, albeit one with an extra layer of demands due to the congruent and 

incongruent stimuli. One theory of relevance that could explain this finding is the 

hypothesis that females may show greater post-error slowing (Thakkar et al., 2014; 

Fischer et al., 2016), so I plan to conduct further analyses to see if this was indeed the 

case. 

This study did not find any evidence of a sex difference in inhibitory control, which is 

consistent with the literature on the Stroop task where sex differences in inhibitory control 

are not generally observed (MacLeod, 1991) but contrary to the results of a previous 

study which reported that males had reduced interference on the Simon task (Stoet, 

2017). I would speculate that a possible reason for the discrepancy could be related to 

the design of the task, because the incongruity in the Simon task comes from the 

direction of an arrow and its location, whereas the incongruity in the Stroop task comes 

from a word and colour, and in the task used in Insight 46 it comes from a word and the 

direction of an arrow. As discussed in Chapter 5 in the context of the observation that 

males had slightly better memory for the location of objects in the “What was where?” 

task, there is evidence for sex differences in spatial abilities, so this could perhaps play 

a role in the result reported on the Simon task. However, it should also be noted that the 

literature on sex difference in the Simon task is somewhat mixed (Stoet, 2017). 
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7.5.4. Associations with biomarkers and APOE-ε4 

On the two summary outcomes chosen as measures of inhibitory control on this task, 

there was no evidence of differences between cognitively-normal Aβ+ and Aβ- 

participants, nor of any associations with whole brain volume, WMHV or APOE genotype. 

Given that I have found evidence that β-amyloid deposition is associated with subtly 

poorer performance on a range of other cognitive measures covering a variety of 

cognitive domains (see Chapters 4 to 6), this may suggest that inhibitory control is not 

an area in which such early changes are seen. That would be contrary to the conclusion 

of a previous study which suggested that decline in inhibitory control may be evident 

before memory impairment, as they found that individuals with pathological β-

amyloid42/tau ratios showed greater interference on the Stroop task but did not differ from 

controls on any other cognitive measure (Harrington et al., 2013). The participants in that 

study were slightly older and the sample size was small (mean age 76 for controls, n = 

36; mean age 78 for those with pathological β-amyloid42/tau ratios, n = 34). While the 

evidence for impaired inhibitory control in MCI and AD dementia is more well-established 

(e.g. Castel et al., 2007; Bélanger, Belleville and Gauthier, 2010) further studies are 

needed to understand the timing of declines in this area and how this may relate to 

accumulation of AD pathology. It still remains to be understood how potential declines in 

inhibitory control may relate to changes in other executive functions such as processing 

speed, cognitive flexibility, attention and working memory, where there is accumulating 

evidence for subtle declines in the preclinical stage of AD (Grober et al., 2008; Clark et 

al., 2012; Hassenstab et al., 2015; Baker et al., 2017; Duke Han et al., 2017; Mortamais 

et al., 2017).  

 

7.5.5. Strengths and limitations 

This task worked well as a measure of inhibitory control, in that it detected substantial 

differences between participants in terms of their ability to deal with incongruent stimuli. 

However its design was complex, arising from the fact that it was initially based on a 

task-set shifting experiment, but I concluded that its suitability for measuring task-set 

shifting was too limited (see 7.2.3). In order to measure task-set shifting, the experiment 

would need a greater number of trials, and for trial types to be properly counterbalanced. 

In the previous chapter I made three recommendations to improve the design of the 

Choice RT experiment (see section 6.5.5). The same three recommendations apply to 

the Response Inhibition experiment. The fact that the first trial of each block had to be 

dropped (see first recommendation) had an additional consequence on the Response 

Inhibition task because it meant that the number of trials was no longer perfectly 
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counterbalanced for congruency, cue type (arrow / word) and cue duration (long / short), 

so there is an additional motivation to address that issue. 

The experiment contained two blocks of a long and short cue duration, but I did not have 

prior hypotheses about whether certain groups of participants would perform differently 

depending on the cue duration, and in fact there were no differences between 

participants in this regard. This feature of the design could be removed without affecting 

the ability of the task to measure inhibitory control. Similarly, I did not have prior 

hypotheses about whether certain groups of participants would perform differently 

depending on whether they were cued to respond to the word or the arrow, so it was 

difficult to interpret these effects (for example, I observed that the tendency to respond 

more slowly to arrow cues than words cues was exaggerated in female participants and 

in older participants), and it should be remembered that some of the findings may be due 

to chance. For a future study, I would recommend either simplifying the design of this 

experiment to focus purely on inhibition, or using a different inhibition task. The Stroop 

task and Simon task (see section 7.1) are both good candidates. If the Stroop task is 

administered in a computerised format with a microphone to record the verbal responses 

(e.g. Bélanger, Belleville and Gauthier, 2010), then it offers the same advantages as the 

Simon task in terms of allowing the RT and accuracy of each individual response to be 

recorded.  

Strengths and limitations that apply to all the analyses presented in this thesis, such as 

considerations relating to the generalisability of the sample, are discussed in Chapter 

10.  

 

7.5.6. Conclusion 

The results of this Response Inhibition task have provided evidence that childhood 

cognitive ability, education and adult socioeconomic position each have independent 

effects on the ability to resist interference from irrelevant stimuli in older age. This task 

did not appear to be sensitive to brain pathology in cognitively-normal 70-year-olds.  
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8. CIRCLE-TRACING AND SERIAL SUBTRACTION 

8.1. Introduction 
 

Many common daily activities such as eating, getting dressed or driving depend on the 

ability to combine visuoperceptual and motor skills. In particular, visual information often 

has to be continuously integrated with motor output – this is referred to as visuomotor 

integration. This is similar to the concept of hand-eye coordination which describes the 

ability to use visual information to guide hand movements, for example when reaching 

or grasping objects. Visuomotor integration encompasses situations where the visual 

feedback is either direct or indirect. Direct visual feedback means that the visual 

information required to carry out the movement can be gathered by observing the 

movement directly. For example, when someone is hand-writing or using a fork to pick 

up food, they watch their hand as they complete the action. Indirect visual feedback 

means that the visual information is derived from an indirect source. For example, when 

someone is using a computer mouse, they look at the screen rather than the mouse itself 

and continuously interpret the movement of the pointer on the screen to guide their hand 

movements, or when reversing a car, they may look in the mirrors to guide their 

movement of the steering wheel. Visuomotor integration is difficult to assess using paper-

and-pencil tests but is a good candidate for novel computerised assessments that allow 

real-time capture of movement data. 

Visuoperceptual difficulties can be a varied, complex and debilitating aspect of many 

types of dementia, for example causing problems with detecting movement, recognising 

objects, and judging distances (Alzheimer’s Society, 2016b). The posterior parietal 

cortex is understood to be particularly important for visuomotor integration as it is 

involved in spatial perception and coordinating information about eye and hand 

movements through its connections with the frontal cortex (Tippett and Sergio, 2006), 

and it is vulnerable to early damage in AD (Hawkins and Sergio, 2014). Visuomotor 

integration has received relatively little attention in AD research but there is some 

evidence that it may become impaired early in the disease process. Several studies 

using a visuomotor integration task with nonstandard visual feedback (e.g. rotated with 

respect to the plane of movement) have reported impairments in AD patients, even those 

with otherwise mild cognitive deficits (Tippett and Sergio, 2006; Tippett, Krajewski and 

Sergio, 2007; Tippett, Sergio and Black, 2012) and in those at high risk of AD (strong 

family history or MCI) (Hawkins and Sergio, 2014). Other studies have observed that AD 

patients are slower to initiate and carry out goal-directed hand movements compared to 

controls (Verheij et al., 2012; de Boer et al., 2016) and less likely to move their eyes in 

an anticipatory manner when carrying out a sequential tapping task (Verheij et al., 2012). 
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There has been little investigation to date of whether visuomotor integration tasks could 

be sensitive markers of subtle cognitive decline in preclinical AD, but one recent study 

with a small sample size found that cognitively-normal individuals with CSF evidence of 

elevated amyloid deposition (n=19) performed slower than controls (n=47) on a reaction 

time task with a visuomotor component (Mollica et al., 2017). Interestingly, the presence 

of abnormal amyloid and tau biomarkers has been reported to predict decline in an 

annual on-road driving test in cognitively-normal individuals (Roe et al., 2017, 2018).  

A circle-tracing task has detected subtle impairments in visuomotor integration in 

presymptomatic carriers of the mutation for Huntingdon’s disease – an autosomal 

dominant inherited disorder with progressive motor, cognitive and psychiatric symptoms 

– up to a decade before estimated symptom onset (Say et al., 2011). Compared to 

healthy controls, presymptomatic gene carriers traced less accurately, particularly when 

the visual feedback was indirect (see Figure 8-1). I previously analysed the results of a 

study which administered this same circle-tracing task to presymptomatic FAD mutation 

carriers and found a similar result, with presymptomatic carriers tracing less accurately 

than controls (Macpherson et al., 2017). This circle-tracing task was included in the 

Insight 46 battery to investigate whether it might be sensitive to subtle visuomotor 

integration deficits associated with amyloid deposition. 

If it is to have potential as a useful marker of cognitive decline, it is important to be able 

to account for other factors which predict differences in performance between individuals, 

such as sex and education. To my knowledge, no studies have investigated the effects 

of these factors on the specific circle-tracing task used here, but sex differences were 

assessed on a different circle-tracing task which involves pursuing a moving target 

around a circle, with the finding that females were less accurate than males in some age 

groups but not in other age groups (Stirling et al., 2013). Studies of associations between 

visuomotor integration and educational attainment have tended to focus on the 

development of handwriting skills in children, since handwriting requires visuomotor 

integration and is an important skill for performance at school (e.g. (Van Hoorn et al., 

2010)), but effects of educational attainment on visuomotor integration in later life have 

received little attention. Insight 46 offers a novel opportunity to assess potential effects 

of childhood cognitive ability, education and adult socioeconomic position on visuomotor 

integration at age 70.  

Another factor which is important to consider when interpreting the results of visuomotor 

integration tasks is the impact of speed-accuracy trade-offs, which have already been 

discussed in the context of the Choice Reaction Time task (see Chapter 6). Speed-

accuracy trade-offs are highly relevant to motor tasks and have been studied in the 

context of sport, for example to optimise bowling in cricket (Freeston and Rooney, 2014). 
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Speed-accuracy trade-offs have been observed on the circle-tracing task previously, with 

the participants who traced fastest being more error-prone  (Vaportzis, Georgiou-

Karistianis and Stout, 2014). 

Following the structure of previous chapters, the aims of this study were to understand 

patterns of performance on the circle-tracing task, characterise associations between 

task performance and demographic and life-course predictors, and investigate 

associations between performance and biomarkers of brain pathologies among 

cognitively-normal participants.  

 

8.2. Methods 

 

8.2.1. Stimuli and Procedure 

The circle-tracing task was presented on a Lenovo ThinkPad X61 tablet laptop, placed 

horizontally on the table in front of the participant, with an additional vertically placed 

monitor behind it for the indirect condition (Figure 8-1). The monitor was at a distance of 

about 60cm from the participant. On the laptop, the display showed a 90mm diameter 

circle and 5mm thick annulus; on the monitor, the display showed a 143mm diameter 

circle and 9mm thick annulus. Although the actual size of the circle was larger on the 

monitor than the laptop, the visual angle was comparable – about 13o in each case – 

because the monitor was at a greater distance from the eyes. 

Participants were instructed to trace clockwise round the circle using a stylus as quickly 

and accurately as possible (trying to stay within the annulus) without leaning their hand 

on the screen, starting from the vertical apex of the circle. A thin blue line appeared on 

the display to show their tracing path. In the direct condition, participants could see their 

hand and the path they were tracing on the tablet screen (Figure 8-1). In the indirect 

condition, the laptop was covered by an upturned box with the front open to allow the 

participant to put their hand inside. The participant wore a long cape which completely 

covered both their arms so they had no direct visual feedback while they were drawing, 

but they could view a copy of the circle and the tracing path on the monitor (Figure 8-2). 

The length of each trial was 45 seconds. There were three trials of each feedback 

condition, administered in the order Direct, Indirect, Indirect, Direct, Direct, Indirect. Two 

practice trials – one direct and one indirect – were administered approximately one hour 

before the main experiment, so that participants could familiarise themselves with the 

procedure, but with a long enough delay to mitigate against immediate practice effects. 

Some previous studies have randomised or counterbalanced the order of presentation 
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of trials (Lemay et al., 2005; Say et al., 2011) but others have administered them in a 

fixed order to allow participants to start with an easier direct trial and build up experience 

for the more difficult indirect trial (Vaportzis, Georgiou-Karistianis and Stout, 2014; 

Vaportzis et al., 2015b).  

The task was administered in a dual-task format with a concurrent task of serial 

subtraction, as has been done in previous studies (Vaportzis, Georgiou-Karistianis and 

Stout, 2014; Vaportzis et al., 2015b). Participants were asked to count backwards in 

threes from a given starting number while performing each circle-tracing trial. Starting 

numbers across the six trials were the same for all participants as follows: 99, 98, 97, 

96, 95 and 94. Participants were instructed that, if they reached zero or near zero, they 

should begin again from the starting number. The tester wrote down the sequence of 

numbers called out by the participant.  

In December 2016 (approximately half-way through the data collection period) the 

procedure was modified to add an additional two circle-tracing trials (Direct, Indirect) to 

the end of the experiment. These two trials were performed as a single task without serial 

subtraction, so that I could compare circle-tracing performance in the dual and single 

task conditions in a sub-sample of participants, to investigate how tracing speed and 

accuracy were influenced by having to attend to the concurrent subtraction task (the 

“dual-task cost”). Limitations of this design are discussed later (section 8.5.5). 
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Figure 8-1. Circle-tracing apparatus 

This figure is reprinted from Say et al. (2011) with permission from Elsevier. The additional box 
and cape for the indirect condition are not shown, but see Figure 8-2. 

 

 

 

Figure 8-2. Box and cape to obscure the laptop in the indirect condition of the 
circle-tracing task 
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8.2.2. Outcome Variables 

 

8.2.2.1. Circle-tracing 

For each trial, the following outcome measures were derived: 

i) Number of rotations completed in 45 seconds, as an index of tracing speed. This 

was recorded by the software to 14 decimal places.  

ii) Number of errors per rotation, as an index of tracing accuracy. An error was 

recorded whenever the stylus deviated outside of the annulus (either beyond its inner 

or outer edge) for more than 100 ms.  

iii) Error time per rotation (milliseconds) defined as the time spent tracing outside of the 

annulus. This variable was split by a factor of direction: when the stylus was moving 

away from the annulus this was classified as error detection, when the stylus was 

moving back towards the annulus this was classified as error correction.  

iv) For the sub-sample of participants who completed the additional ‘single task’ trials 

(circle-tracing without concurrent serial subtraction), dual-task cost for tracing speed 

was calculated, which is a measure of the extent to which tracing speed was 

compromised by having to attend to the subtraction task. Dual-task cost was defined 

as: (single speed – dual speed) / single speed, where speed is the number of 

rotations completed in 45 seconds, as above. 

 

8.2.2.2. Serial Subtraction 

For each trial, the following outcome measures were derived: 

i) Subtraction rate (responses per second), calculated by dividing the number of 

responses by the duration of the trial (45 seconds). 

ii) Percentage of incorrect responses, as an index of subtraction accuracy.  

 

8.2.3. Hypotheses 
 

Based on the results of previous studies (Lemay et al., 2005; Say et al., 2011; Vaportzis, 

Georgiou-Karistianis and Stout, 2014; Vaportzis et al., 2015b), I expected that the 

indirect condition (indirect visual feedback) would be associated with slower tracing, 

reduced accuracy, and a disproportionately longer time spent on error detection relative 

to error correction. I also expected to observe speed-accuracy trade-offs whereby 

participants who traced more quickly would tend to deviate outside the circle more often.  
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Given that education is associated with better performance on most cognitive tasks 

across a wide range of cognitive domains, and analyses from the NSHD have 

consistently reported associations between childhood cognitive ability, education and 

cognition during adulthood (Richards and Sacker, 2003; Richards et al., 2019), I 

anticipated that higher childhood cognitive ability and educational attainment would be 

associated with better performance on this task. However, because the two main 

outcomes are in competition with each other (speed vs. accuracy), “better performance” 

is difficult to define and I did not have specific hypotheses about the effects of these 

predictors on individual outcome measures. 

I aimed to test the hypothesis that cognitively-normal Aβ+ participants would show 

evidence of subtle impairments along the same lines as pre-symptomatic Huntington’s 

gene carriers i.e. disproportionately poorer tracing accuracy in the indirect condition (Say 

et al., 2011). 

Although the experimental design was not ideal for measuring “dual-task cost” (see 

discussion in section 8.5), I hypothesised that Aβ+ participants would have a greater 

dual-task cost than Aβ- participants. 

 

8.2.4. Participants 
 

483 participants completed the dual-task circle-tracing (see section 3.3), of whom 209 

also completed the single-task circle-tracing. Participant characteristics are reported in 

section 3.6. The proportion of participants who were right-handed was 91%. 

 

8.2.5. Data processing 
 

8.2.5.1. Circle-tracing 

The data were generated in xml format (one file per participant) and I processed them 

using the HD-CAB Data Analyzer software application PxAnalyze, which produced a 

single spreadsheet of outcome variables for all participants.  

Certain trials were excluded from analysis according to the following criteria:  

i) A ‘tracing time’ variable was generated as part of the software output; it should 

be 45 seconds (i.e. the duration of the trial) but could be less if the trial was not 

completed perfectly, for example if the participant lifted the pen off the screen 

during the trial, they pressed too hard with the stylus such that no trace was 
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recorded temporarily, or they failed to begin tracing immediately upon initiating 

the trial. The maximum time in this dataset was exactly 44 seconds rather than 

45 seconds as expected. I corresponded with the research group in Monash 

University who wrote the software and they did not have an explanation for this 

discrepancy, as the author of the source code was not available. I chose a 

threshold of three standard deviations below the mean (34.7 seconds) as a 

minimum acceptable tracing time. Thirty-two participants had one trial excluded 

for being below this threshold, an additional three participants had two trials 

excluded, and an additional one participant had four trials excluded (Figure 8-3). 

After these exclusions, the number of participants with usable single-task data 

dropped to 208 and the number with usable dual-task data remained at 483.  

 

Figure 8-3. Dot plot showing total tracing time on the circle-tracing task 

Red line shows the threshold below which trials were excluded (3 standard deviations 
below the mean). 

 

ii) An additional two participants had one indirect trial excluded because the output 

showed a negative number of rotations (-0.07 and -0.08). I corresponded with the 

research group in Monash University who wrote the software and they did not 

have an explanation for these odd results. I considered if this could be caused by 

initially tracing anti-clockwise out of the red box (see Figure 8-1) but when I tested 

this myself, the results were normal. However, I identified that if all rotations are 



192 
 

completed anti-clockwise (contrary to instructions) this outputs a negative 

number. I highly doubt that any testers would have failed to correct a participant 

who was tracing anti-clockwise, but it is possible. It is slightly concerning not to 

know how these results arose, but it only affects 0.07% of trials.  

 

iii) Two previous studies using the circle-tracing task excluded trials where the speed 

or error rate was more than 3.5 standard deviations from the individual’s mean  

(Vaportzis, Georgiou-Karistianis and Stout, 2014; Vaportzis et al., 2015b). 

However, they used 18 trials lasting 20 seconds each, whereas this task uses 6 

trials lasting 45 seconds each (plus two additional trials for those who completed 

the single-task). Given the smaller number of trials and the fact that speed and 

accuracy vary between the direct and indirect conditions, it would be 

inappropriate to consider each participant’s six trials as a distribution. Therefore, 

I decided not to follow such a method for data cleaning, but simply to check that 

none of the speed or error rates looked impossible. The number of rotations 

ranged from 0.37 to 50.62 and the number of errors per rotation ranged from 0 to 

49, which are all plausible.  

 

iv) An additional issue was considered, which could affect the validity of analyses 

comparing error detection and error correction. Sixteen participants had one trial 

where they were recorded as having traced outside of the annulus only in one 

direction, e.g. they recorded an ‘error detection time’ for tracing away from the 

annulus, but they have no corresponding ‘error correction time’. The most likely 

explanations for this are either that the participants lifted the pen off the screen 

and placed it back inside the annulus, or that they had a temporary issue with the 

tracing pressure such that there was a break in the line due to them pressing too 

hard or too lightly with the stylus. I decided not to exclude these trials because 

the data probably reflect the participant’s true performance, rather than being due 

to a software error. Also, other trials could have been affected by the same 

irregularities in tracing but within the annulus, which is not apparent from the 

software output. 

 

In line with the policy of keeping the sample as representative as possible, the only 

reason to exclude participants with outlying performance was deemed to be a clear 

indication that they deviated from the protocol e.g. a fundamental misunderstanding of 

the instructions. To identify any participants whose performance was outlying overall, I 

calculated each participant’s mean speed and error rate, then applied transformations to 

reduce the skew of the distributions (log-transform for speed, square-root for accuracy). 
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As there are trade-offs between speed and accuracy, outlying values of either could 

represent a valid extreme of prioritising speed or accuracy, so the most valid way to 

identify outliers is to consider speed and accuracy together. I plotted speed and error 

rate against each other, doing this separately for the dual and single tasks because I 

expected that the relationship between speed and accuracy might differ between the 

two, and because the single task was only performed on a sub-sample.  

In the dual task, the two participants with the highest error rates appear to be outlying 

from the distribution, whereas the participants with the fastest and slowest speeds 

appear to conform to the normal pattern of speed-accuracy trade-offs (Figure 8-4). Both 

outlying participants have a diagnosis of Parkinson’s disease so it is reasonable to 

suppose that their high error rates are due to their motor symptoms. This is not grounds 

to exclude these participants from analyses because they performed the task according 

to the instructions and they are not fundamentally different to some other participants 

with milder motor symptoms (e.g. other forms of tremor) whose performance was not 

outlying but was affected by their symptoms nonetheless. 

  

Figure 8-4. Speed-accuracy trade-offs on the circle-tracing dual task  

Each participant's mean speed is plotted against their mean error rate. This graph is presented 
on the same scale as Figure 8-5 to facilitate visual comparison. 

 

In the single task, two participants appeared to be outlying from the distribution in terms 

of high performance, as they achieved unusually fast tracing with an error rate of around 
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average (Figure 8-5). Their results are plausible and there were no grounds to exclude 

them.  

 

Figure 8-5. Speed-accuracy trade-offs on the circle-tracing single task  

Each participant's mean speed is plotted against their mean error rate. This graph is presented 
on the same scale as Figure 8-4 to facilitate visual comparison. 

 

 

8.2.5.1.1. Comparison of dual and single task 

An ideal experimental design for comparing single vs. dual task would have equal 

numbers of single and dual trials, equally divided between the direct and indirect 

conditions, and the order of trials would be counterbalanced to control for practice 

effects. As our design did not achieve this (see Table 8-1), a simple average of speed or 

accuracy on dual vs. single trials might not be the fairest comparison because there were 

unequal numbers of trials (6 dual and 2 single) and the single-task trials always came at 

the end of the experiment where they may benefit more from practice effects. Therefore, 

I examined the pattern of responses across each trial before deciding which would be 

the best trials to use for comparison of single and dual task.  

Figure 8-6 shows the mean speed and accuracy for each trial, for the 208 participants 

with usable data for both the dual and single tasks. Tracing speed improved on 



195 
 

successive trials within both the direct and indirect conditions of the dual-task, but the 

gains were relatively small in magnitude so an average of speed across the dual-task 

might be a fair reflection of tracing speed ability (Figure 8-6A). However, error rate was 

much more variable from one trial to another, specifically in the indirect condition. The 

highest error rates on the dual task were recorded on the two indirect trials that 

immediately followed a direct one (trials 2 and 6), suggesting that switching to the indirect 

visual feedback was initially difficult and required some adjustment each time, whereas 

performance was much improved when completing a second consecutive indirect trial 

(trial 3) (Figure 8-6B). Therefore, I decided that a fair comparison between the dual and 

single task should use trials which are matched for these factors as much as possible. 

 

Table 8-1 Order and description of circle-tracing trials 

Trial Number Condition Task 

1 Direct Dual 

2 Indirect Dual 

3 Indirect Dual 

4 Direct Dual 

5 Direct Dual 

6 Indirect Dual 

7 Direct Single 

8 Indirect Single 

 

 

I considered the following options for comparing the dual and single tasks. 

Option 1: compare trials 1 and 2 against 7 and 8 

 Advantage: none of these trials are preceded by another trial in the same 

condition, so there would not be any confounding practice effects due to 

performing consecutive trials in one condition.  

 Disadvantage: Practice effects across the whole experiment may depress the 

dual task results (trials 1 and 2) – especially in terms of accuracy as trial 2 (the 

first indirect trial) had a particularly high error rate.  
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Option 2: compare trials 5 and 6 against 7 and 8 

 Advantage: Theoretically this minimises the influence of general practice effects 

as it uses trials from the end of the experiment. 

 Disadvantage: Trial 5 (dual task, direct condition) is preceded by another trial in 

the same condition, whereas none of the others are. This means it may have 

benefitted more from practice effects, which could explain why trial 5 had faster 

tracing and a slightly lower error rate than trial 4 (although the difference in error 

rate was not statistically significant) (Figure 8-6B). This may inflate the dual task 

results.  

 

Option 3: compare trials 4 and 6 against 7 and 8 

 Advantage: All trials are alike in that they are preceded by a trial in the opposite 

condition (direct or indirect).  

 Advantage: Theoretically this almost minimises the influence of general practice 

effects as it uses trials from towards the end of the experiment. 

 

Option 4: Compare the average of all direct dual task trials (1/4/5) and all indirect 

dual task trials (2/3/6) against trials 7 and 8. 

 Advantage: This might improve the reliability of the dual-task results because it 

would minimise the impact of any individual outliers. 

 Disadvantage: By including trials from the beginning of the experiment, this fails 

to minimise the impact of practice effects so may depress the dual-task results. 

Conversely, as it includes trials 3 and 5 which benefit from being in the same 

condition their preceding trials, this may inflate the dual-task results. 

 

I decided to choose Option 3 as it gives the best match between the circumstances of 

the dual and single-task trials, so I only included trials 4, 6, 7 and 8 in analyses comparing 

the dual and single tasks. Of the 208 participants who completed the dual and single 

tasks, nine did not have usable data for all four of these trials because their tracing time 

had been less than 34.53 seconds on at least one trial – see point (1) in section 8.2.5.1 

– so these participants were excluded from analyses involving the single task, leaving a 

sample of n=199.  

* 
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Figure 8-6. Means and 95% confidence intervals for circle-tracing speed and 
accuracy on each trial. A = speed. B = accuracy.  

Asterisks indicate statistically significant difference in pairwise comparisons between successive 
dual-task trials within the direct or indirect condition (p < 0.05). The means and confidence 
intervals were generated from the transformed data (log transformed for speed, square-root 
transformed for error rate) as these are the variables that were used in the regression models 
(see 8.3.1.1.2), but the values were back-transformed before plotting on the graphs for ease of 
interpretation.  
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8.2.5.2. Serial Subtraction 

When processing the serial subtraction task, I decided to exclude trials where the 

concurrent circle-tracing data had been excluded, as these exclusions were mostly due 

to the tracing time being significantly less than expected (see section 8.2.5.1) indicating 

a problem with performing the circle-tracing. I observed that when such problems arose, 

the participant invariably paused their subtraction while trying to address it. This resulted 

in 34 participants having one trial excluded and an additional two participants having two 

trials excluded. I examined the distributions of subtraction rates and error rates to check 

for implausible outliers. Some participants found this task very challenging, as evidenced 

by a minimum subtraction rate of 0.12 responses per second and a maximum error rate 

of 49% (to calculate these values, each participant’s performance was averaged across 

the six subtraction trials, see section 8.3.1.2.1). This is not unexpected, especially as the 

dual task design meant that participants could not give the subtraction task their full 

attention. Notes from the testing sessions reported that some participants struggled with 

this task but there was no indication that they did not understand the instructions or 

deviated from the protocol. Therefore, no outlying responses were excluded. 

 

 

 

In ter   

8.3. Patterns and predictors of performance 
 

Following the format laid out in section 3.5, the first part of this chapter aims to describe 

patterns of performance across the various outcomes and conditions of the task, and to 

investigate the effects of demographic and life-course predictors on performance in the 

full Insight 46 sample. The demographic and life-course predictors (sex, age at 

assessment, childhood cognitive ability, educational attainment, adult socioeconomic 

position and presence of a neurological or psychiatric condition) are defined in sections 

3.2.4 and 3.2.3 respectively. 
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8.3.1. Statistical Analyses 

 

8.3.1.1. Circle-tracing 

8.3.1.1.1. Speed and accuracy  

All main circle-tracing analyses were carried out using the data from the six dual-task 

trials completed by 483 participants.  

To improve data distribution, a log transformation was applied to the speed variable 

(number of rotations) and square-root transformations were applied to the accuracy and 

error time measures. The transformed data were used in all statistical analyses. 

Regression models were fitted for the transformed speed (number of rotations) and 

accuracy (number of errors per rotation) variables using GEE, assuming a normal 

distribution for the dependent variable and an identity link (as with standard linear 

regression), but including an exchangeable correlation structure and robust standard 

errors to allow for the correlation between repeated measures of the same participant. 

Predictors in the models were condition (direct / indirect), age at assessment, sex, 

childhood cognitive ability, adult socioeconomic position, education and presence of a 

neurological or psychiatric condition (yes / no). Handedness (left / right) was included as 

an additional covariate because anecdotally it can be more difficult to trace clockwise for 

left-handed people. 

As I was interested in identifying factors that predict disproportionately poorer 

performance in the indirect condition, I tested for interactions between these predictors 

and circle-tracing condition. 

 

 

8.3.1.1.2. Practice Effects 

The order of trials (D-I-I-D-D-I) is such that the indirect trials have a higher average 

position in the order than the direct trials. Therefore, comparisons of circle-tracing and 

serial subtraction outcomes between the direct and indirect conditions may be 

confounded by practice effects. While this cannot be tested explicitly, exploring practice 

effects within the direct and indirect trials separately could give an indication of whether 

practice effects are generally observed on this test. Practice effects on speed and 

accuracy across the dual-task trials have already been described for the sub-sample of 

participants who also completed the single task, using pairwise comparisons of 

successive trials within the direct and indirect conditions (section 8.2.5.1.1). For each 

pair of trials, these comparisons were conducted by fitting the GEE regression models 
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for speed and accuracy with trial number as a predictor, also including the usual 

predictors of sex, age at assessment, childhood cognitive ability, education, adult 

socioeconomic position, handedness and presence of a neurological or psychiatric 

condition. These comparisons were repeated for the full sample of 483 participants.  

 

8.3.1.1.3. Error detection time versus error correction time 

A similar GEE model was used for the error time outcome, including an additional 

predictor of tracing direction (away from the circle / towards the circle) in order to 

compare detection time with correction time. The software output gives the total error 

time per trial, split into detection and correction, but does not provide any information 

about the duration of individual errors. The total error time is sufficient for making 

comparisons between error detection time versus error correction time, but not for 

drawing conclusions about whether some participants detected and corrected errors 

more quickly than others – to answer that question the number of errors should be taken 

into account. This was not done in the original paper (Say et al., 2011) and therefore 

their conclusion that “premanifest and early Huntington’s disease groups required longer 

to detect and correct errors (than the control group)" could alternatively be explained by 

the fact that the Huntington’s disease groups made a greater number of errors, so 

naturally their total error time would be greater even if each individual error was of a 

comparable duration to the errors made by the control group. To exclude this alternative 

explanation, I adjusted for the number of errors per rotation (square-root transformed). 

In summary, the outcome was error time (ms) and the predictors were tracing direction 

(away / towards), number of errors per rotation (square-root transformed), condition 

(direct / indirect), age at assessment, sex, childhood cognitive ability, adult 

socioeconomic position, education, handedness, and presence of a neurological or 

psychiatric condition. 

As for the speed and accuracy variables above, I tested for interactions between these 

predictors and circle-tracing condition (direct vs. indirect). I also tested for interactions 

between the predictors and error direction (detection / correction), to identify predictors 

of spending a relatively longer time on either detecting or correcting. 

 

8.3.1.1.4. Speed-accuracy trade-offs 

As discussed in the context of the Choice Reaction Time task (see Chapter 6) speed-

accuracy trade-offs can be investigated between-subject or within-subject. Between-

subject analyses address questions such as: “Which participants are most likely to trade 

speed for accuracy?” or “Which participants tend to perform well on both speed and 
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accuracy?”. These questions are relevant to my hypotheses about whether this task can 

identify participants who may show evidence of subtle cognitive decline, as differences 

may become apparent when considering speed and accuracy together, rather than as 

separate outcomes. Within-subjects analyses address questions such as “Are quick 

responses more quickly to be inaccurate?” which was of interest in the Choice Reaction 

Time task, but are not appropriate in the context of these circle-tracing and serial 

subtraction tasks, since we do not have information on the timing of individual errors 

within the circle-tracing task, nor the latency of individual subtraction responses. 

Therefore within-subjects speed-accuracy trade-offs were not investigated. 

To address the between-subjects questions for the circle-tracing task, each participant’s 

mean number of rotations was compared to their mean number of errors per rotation 

using Pearson’s correlation. Initially I did this separately for the direct and indirect 

conditions, to examine whether the pattern of speed-accuracy trade-offs differed 

between the two. As patterns of trade-offs were similar across both (see section 

8.3.2.1.4) I calculated each participant’s average speed and accuracy combined across 

both conditions, to more easily assess overall differences between individuals. I did this 

by averaging the means for the direct and indirect conditions, rather than simply 

averaging across all the trials – this was to avoid an unfair outcome for the participants 

who had one or more trials excluded (n=36, see section 8.2.5.1). For example, if a 

participant was missing an indirect trial, a simple average of their scores would be 

weighed towards direct trials (known to be easier) and the average score would look 

better than it should.  

As speed logically precedes accuracy, I wanted to investigate whether any of the effects 

on accuracy investigated in the primary analyses (section 8.3.1.1.1) could be explained 

by speed-accuracy trade-offs. It is possible that having a higher-than-expected error rate 

(higher than predicted at a given speed) may be a more sensitive indicator of visuomotor 

integration problems than having a high error rate per se. A linear regression model was 

fitted with an outcome of mean number of errors per rotation (square-root transformed) 

and predictors of mean number of rotations (log-transformed), age at assessment, sex, 

childhood cognitive ability, adult socioeconomic position, education and presence of 

neurological or psychiatric condition (yes / no). Robust standard errors were used 

because of heteroscedasticity in the data (the variance in error rate is not constant across 

the speed distribution (Figure 8-4)).  
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8.3.1.1.5. Comparison of Dual and Single Task  

In order to compare tracing speed in the dual and single tasks, I calculated each 

participant’s “dual-task cost” in terms of tracing speed (number of rotations). Dual-task 

cost was defined as: 

(mean single-task speed – mean dual-task speed) / mean single-task speed  

For example, a dual-task cost of 0.4 would mean that tracing speed in the dual task was 

40% slower than in the single task. As explained in section 8.2.5.1.1, only the data from 

trials 4, 6, 7 and 8 were used. A regression model was fitted with an outcome of dual-

task cost and predictors of age at assessment, sex, childhood cognitive ability, adult 

socioeconomic position, education, handedness and presence of a neurological or 

psychiatric condition.  

Dual-task cost for error rate was not calculated, since accuracy was actually higher on 

the dual task due to a speed-accuracy trade-off (see section 8.3.2.1.5).  

 

8.3.1.2. Serial Subtraction 

 

8.3.1.2.1. Speed and accuracy 

A regression model was fitted for subtraction rate using GEE assuming a normal 

distribution for the dependent variable and an identity link (as with standard linear 

regression), but including an exchangeable correlation structure and robust standard 

errors to allow for the correlation between repeated measures of the same participant.  

Subtraction error rate was analysed using a GEE logistic regression model with an 

independent correlation structure and robust standard errors. The outcome was the 

number of incorrect subtractions responses on each trial, which was treated as a 

proportion of the total number of subtraction responses on each trial. Results are 

expressed as odds ratios for ease of interpretation. 

Predictors in the models were condition (direct / indirect), age at assessment, sex, 

childhood cognitive ability, adult socioeconomic position, education, handedness and 

presence of a neurological or psychiatric condition (yes / no). 

 

8.3.1.2.2. Relationship between speed and accuracy  

Each participant’s mean subtraction rate was compared to their overall error rate using 

Spearman’s correlation. Mean subtraction rate was calculated by averaging the 
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subtraction rate across all trials. If the same approach were used for calculating mean 

error rate, this would mean that errors committed on trials where subtraction was slower 

would be weighted more heavily than errors committed on trials where subtraction was 

faster; to avoid this, error rate was calculated as the total number of incorrect responses 

summed across all trials, divided by the total number of responses summed across all 

trials. 

 

8.3.1.2.3. Practice effects 

Practice effects on subtraction rate and accuracy were investigated by rerunning the 

models (see section 8.3.1.2) with an additional factor of trial number (1 to 6).  
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8.3.2. Results 
 

Descriptive statistics for the circle-tracing and serial subtraction outcome variables are 

provided in Table 8-2.  

  

Table 8-2. Descriptive statistics for circle-tracing and serial subtraction 
outcomes in the dual task  

    Median Interquartile range Range 

Tracing speed (number of 
rotations in 45 seconds) 

 

 

 
                  Direct 5.73 3.93 – 8.25 0.59 – 50.63 

                  Indirect 3.09 2.09 – 4.46 0.37 – 36.52 

Tracing accuracy (number 
of errors per rotation)  

 

 

                  Direct 0.59 0.20 – 1.16 0 – 10.27 

                  Indirect 0.84 0.27 – 1.80 0 – 24.04 

Error time per rotation (ms)  
 

 

      Error detection    

                  Direct 85 19 - 201 0 – 5682 

                  Indirect 149 23 - 413 0 – 13174 

      Error correction    

                  Direct 94 22 - 205 0 – 5556 

                  Indirect 149 25 - 399 0 – 9654 

Subtraction rate (responses 
per second)  

 

 

                  Direct 0.51 0.38 – 0.64 0.04 – 1.22 

                  Indirect 0.47 0.36 – 0.58 0.07 – 1.04 

Subtraction error rate (%)  
 

 

                  Direct 0 0 – 3.13 0 – 77.78 

                  Indirect 0 0 – 3.70 0 – 57.14 
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8.3.2.1. Circle-tracing 

 

8.3.2.1.1. Speed and accuracy 

Results of the multivariable regression models for speed and accuracy are reported in 

Table 8-3, along with results of interaction tests between each predictor and tracing 

condition (direct vs. indirect).  
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Table 8-3. Associations between demographic and life-course predictors and 
circle-tracing speed and accuracy (n = 483) 

 

 

Predictor 

Speed (number of 
rotations) a: 

coefficient and 95% CIs 

 Accuracy (number of errors 
per rotation) 

(square-root transformed) b: 
coefficient and 95% CIs 

Main effect 
of 

predictor 

Interaction 
between 
predictor 

and 
condition 
(direct vs. 
indirect) 

 

Main effect 
of predictor 

Interaction 
between 

predictor and 
condition 
(direct vs. 
indirect) 

Indirect condition 
(compared to 
direct as reference 
category) 

0.54* 
(0.53, 0.56) 

N/A 

 

0.17* 
(0.12, 0.21) 

N/A 

Sex (female as 
reference 
category) 

1.08 
(0.97, 1.21) 

1.01 
(0.97, 1.05) 

 
0.03 

(-0.04, 0.11) 
-0.04, 

(-0.13, 0.05) 

Age at 
assessment  
(per year) 

1.15* 
(1.06, 1.24) 

1.01 
(0.99, 1.04) 

 
0.07* 

(0.02, 0.13) 
-0.002 

(0.070, 0.065) 

Childhood 
cognitive ability 
(per z-score) 

0.97 
0.90, 1.05) 

1.00 
(0.98, 1.03) 

 
-0.04 

(-0.09, 0.02) 
-0.05 

(-0.11, 0.02) 

Education  
(per category) c 

0.97 
(0.92, 1.02) 

1.01 
(1.00, 1.03) 

 -0.04 
(-0.07, -0.01) 

0.02 
(0.05 to 0.02) 

Adult SEP  
(per category) c 

1.02 
(0.96, 1.08) 

1.00 
(0.98, 1.02) 

 -0.02 
(-0.06, 0.02) 

-0.04 
(-0.09, 0.00) 

Neurological or 
psychiatric 
condition d 

(cognitively-normal 
as reference 
category) 

0.94 
(0.77, 1.14) 

0.98 
(0.92, 1.05) 

 

0.22 
(0.04, 0.39) 

0.01 
(-0.17, 0.20) 

Handedness  
(right-handed as 
reference 
category) 

0.91 
(0.77, 1.08) 

1.04 
(0.97,1.11) 

 

0.07 
(-0.07, 0.21) 

0.42* 
(0.26, 0.58) 

 
Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. 
Multivariable regression models were used so each association is independent of all others.  
 a For the circle-tracing speed outcome, as the data were log-transformed, the coefficients are 
quoted in exponentiated form for ease of interpretation; for example, a coefficient of 1.5 would 
mean that the factor was associated with 50% faster tracing. b The coefficients for the square-
root transformed error rate are not easily interpretable as a back-transformation would not be 

meaningful. c See section 3.2.4 for definition of categories. d See section 3.2.3 for definitions. 

CI = confidence interval; SEP = socioeconomic position 
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As expected, the indirect condition was associated with slower tracing than the direct 

condition (54% fewer rotations in the adjusted model) and poorer accuracy (Table 8-2, 

Table 8-3). 

On average, males traced slightly faster and made slightly more errors, but these 

differences were not statistically significant (Table 8-3).  

There was a significant main effect of age on speed and accuracy, with older participants 

tracing faster (15% more rotations per year of older age) (Table 8-3) but making more 

errors (Table 8-3).  

Higher educational attainment was not associated with speed but was associated with 

fewer errors per rotation (Table 8-3). 

Childhood cognitive ability and adult socioeconomic position were not associated with 

speed or accuracy (Table 8-3).  

Participants with neurological and psychiatric conditions did not differ from cognitively-

normal participants in terms of tracing speed but they made more errors per rotation 

(Table 8-3) (unadjusted untransformed means: cognitively-normal participants = 0.79 

errors per rotation, participants with neurological and psychiatric conditions = 1.02 errors 

per rotation).  

There was no evidence of a statistically significant difference between left and right-

handed participants in terms of their overall speed and accuracy, but there was an 

interaction between handedness and circle-tracing condition such that left-handed 

participants made significantly more errors per rotation in the indirect condition (Figure 

8-7).  
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Figure 8-7. Number of errors in the direct and indirect conditions of the circle-
tracing task, by handedness 

There were 438 right-handed and 45 left-handed participants. Markers show the predicted means 
from the multivariate regression model and error bars show the 95% confidence intervals. The 
model included adjustment for tracing direction (away / towards), condition (direct / indirect), 
number of errors per rotation, age at assessment, sex, childhood cognitive ability, adult 
socioeconomic position, education, handedness, and presence of a neurological or psychiatric 
condition. 

 

Apart from handedness, there was no evidence of interactions between any other 

predictors and circle-tracing condition, so the detrimental effect of the indirect condition 

on speed and accuracy appeared to be fairly universal.  

 

 

8.3.2.1.2. Practice Effects 

Practice effects on speed and accuracy across the dual-task trials have already been 

described for the sub-sample of participants who completed the single task (section 

8.2.5.1.1). The analyses were repeated for the full sample of 483 participants and the 

same pattern of effects was observed, so results are not reported again but their 

implications are briefly discussed below.  
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The finding of practice effects on speed (speed improved in successive trials within the 

direct and indirect conditions) could affect the comparison between the direct and indirect 

conditions. Although the indirect condition was associated with substantially slower 

tracing (section 8.3.2.1.1), the true effect of indirect visual feedback could be 

underestimated in this study as the indirect trials had a higher average position in the 

trial order so would theoretically benefit more from practice effects.  

 

 

8.3.2.1.3. Error detection time versus error correction time 

As all analyses of error time controlled for the number of errors per rotation, the outcome 

is an index of how quickly participants detected and corrected errors, rather than just a 

correlate of how many errors were made.  

As expected, error time was longer in the indirect condition than the direct condition 

(regression coefficient = 1.22 (ms, square-root transformed), 95% CIs 0.90 to 1.55, p < 

0.0001). While there was no overall difference in time spent on error detection compared 

to correction (regression coefficient = 0.03, 95% CIs -0.06 to 0.12, p = 0.52), there was 

an interaction between condition and error direction (regression coefficient = 0.29, 95% 

CIs 0.12 to 0.47, p = 0.001). This interaction arose from opposite profiles being observed 

in the direct and indirect conditions: in the indirect condition participants spent a little 

more time on detection than correction, which is consistent with a previous study (Say et 

al., 2011), whereas in the direct condition there was a small difference in the opposite 

direction (error correction taking longer than detection) (Table 8-2, Table 8-4). Previous 

studies have reported no difference between detection and correction time in the direct 

condition (Lemay et al., 2005; Say et al., 2011). 

In light of this, the effects of each predictor on error time were analysed in the direct and 

indirect conditions separately and are reported in Table 8-4, along with results of 

interaction tests between each predictor and error direction (detection vs. correction).  
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Table 8-4. Associations between demographic and life-course predictors and 
circle-tracing error time (n = 483) 

 Coefficients and 95% confidence intervals 
(milliseconds, square-root transformed) 

 

Predictor 

Direct condition  Indirect condition 

Main effect 
of predictor 

Interaction 
between 

predictor and 
error 

direction 
(detection vs. 

correction) 

 

Main effect 
of predictor 

Interaction 
between 

predictor and 
error 

direction 
(detection vs. 

correction) 

Error direction 
(detection, 
compared to 
correction as a 
reference) 

-0.12 
(-0.21, -0.03) 

N/A 

 

0.17 
(0.02, 0.33) 

N/A 

Sex (female as 
reference 
category) 

-0.23 
(-0.67, 0.21) 

-0.08 
(-0.26, 0.10) 

 
-0.67 

(-1.27, -0.08) 
0.15 

(-0.15, 0.46) 

Age at 
assessment 
(per year) 

0.10 
(-0.11, 0.31) 

-0.04 
(-0.18, 0.09) 

 
0.23 

(-0.11, 0.58) 
-0.12 

(-0.34, 0.09) 

Childhood 
cognitive 
ability  
(per z-score) 

0.07 
(-0.26, 0.41) 

0.02 
(-0.09, 0.14) 

 

-0.73* 
(-1.19, -0.26) 

0.38* 
(0.14, 0.62) 

Education  
(per category) a 

0.05 
(-0.14, 0.23) 

-0.03 
(-0.11, 0.04) 

 0.03 
(-0.22, 0.29) 

-0.13 
(-0.26, 0.00) 

Adult 
socioeconomic 
position 
(per category) a 

-0.03 
(-0.20, 0.14) 

0.01 
(-0.09, 0.12) 

 

0.04 
(-0.27, 0.35) 

-0.07 
(-0.24, 0.09) 

Neurological or 
psychiatric 
condition b 
(cognitively-
normal as 
reference 
category) 

1.66 
(-0.11, 3.42) 

0.03 
(-0.28, 0.34) 

 

 

1.64 
(-0.13, 3.42) 

0.38 
(-0.31, 1.06) 

Handedness 
(right-handed as 
reference 
category) 

-0.16 
(-0.68, 0.36) 

0.04 
(-0.29, 0.37) 

 

0.60 
(-0.90, 2.10) 

0.05 
(-0.45, 0.54) 

 
Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01. 
Multivariable regression models were used so each association is independent of all others. In 
addition to the predictors listed, models were additionally adjusted for number of errors per 
rotation (square-root transformed). The units of the coefficients are not easily interpretable as a 

back-transformation would not be meaningful. a See section 3.2.4 for definition of categories. b 
See section 3.2.3 for definitions.  
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There was no evidence of sex differences in error time in the direct condition but males 

had a shorter error time per rotation in the indirect condition (Table 8-4, Figure 8-8) 

suggesting that they were able to detect and correct errors slightly more quickly. There 

was no evidence of sex differences in the relative times spent on detection and correction 

in either condition (Table 8-4, Figure 8-8). 

 

 

Figure 8-8. Error detection and error correction time of males and females on the 
direct and indirect condition of the circle-tracing task  

Markers show the predicted means from the multivariate regression model and error bars show 
the 95% confidence intervals. The model included adjustment for tracing direction (away / 
towards), condition (direct / indirect), number of errors per rotation, age at assessment, sex, 
childhood cognitive ability, adult socioeconomic position, education, handedness, and presence 
of a neurological or psychiatric condition. Error time is the total time spent tracing outside the 
annulus during a 45 second trial, split into error detection (tracing away from the annulus) and 
error correction (tracing back towards the annulus). 

 

Age was not associated with error time in either condition and there was no evidence of 

age effects on the relative times spent on error detection and correction in either 

condition (Table 8-4). This indicates that, although older participants tended to make 

more errors per rotation (see section 8.3.2.1.1), they did not differ in terms of the time 

required to detect and correct errors on average.  
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Childhood cognitive ability was not associated with error time in the direct condition but 

higher childhood cognitive ability predicted shorter error time in the indirect condition 

(Table 8-4). In the direct condition, there was no evidence of an interaction between 

childhood cognitive ability and error direction, so the tendency to spend slightly longer 

on error correction in the direct condition applied across the range of childhood cognitive 

abilities (Table 8-4, Figure 8-9). However, in the indirect condition, there was an 

interaction between childhood cognitive ability and error direction such that with 

increasing childhood cognitive ability, error detection and correction times were more 

similar i.e. the tendency to spend longer on error detection was reduced (Table 8-4, 

Figure 8-9). Overall these results suggest that, although participants with higher 

childhood cognitive ability did not make fewer errors overall (see 8.3.2.1.1), they were 

able to detect and correct their errors more quickly in the indirect condition, with a 

particular advantage in the time taken to detect errors.  

  

Figure 8-9. Difference between error detection time and error correction time 
across the range of childhood cognitive abilities, for the direct and indirect 
conditions of the circle-tracing task 

Solid lines represent predictions from the multivariate regression models, holding all other 
predictors at average values, and shaded areas represent 95% confidence intervals. y=0 
represents no difference between error detection and correction. Positive values of y indicate 
spending longer on detection than correction. Negative values of y indicated spending longer on 
correction than detection. The model included adjustment for tracing direction (away / towards), 
condition (direct / indirect), number of errors per rotation, age at assessment, sex, adult 
socioeconomic position, education, handedness, and presence of a neurological or psychiatric 
condition. For an explanation of the childhood cognitive ability variable, see section 3.2.4. 
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Education and adult socioeconomic position were not associated with error time in either 

condition and there was no evidence of these variables being associated with differences 

in the relative times spent on error detection and correction (Table 8-4). 

Compared to cognitively-normal participants, participants with neurological and 

psychiatric conditions had a greater error time in both conditions, but these differences 

were not statistically significant (Table 8-4). They followed the same pattern as 

cognitively-normal participants in terms of the relative times spent on detection and 

correction in each condition, as there was no evidence of interactions between error 

direction and presence of a neurological or psychiatric condition (Table 8-4). 

Handedness was not associated with error time in either condition and there was no 

evidence of differences between right-handed and left-handed participants in terms of 

the relative times spent on error detection and correction in either condition (Table 8-4). 

This indicates that, although left-handed participants tended to make more errors in the 

indirect condition (see 8.3.2.1.1), they did not differ in terms of the time required to detect 

and correct errors on average.   

 

 

8.3.2.1.4. Speed-accuracy trade-offs 

Speed-accuracy trade-offs were initially examined in the direct and indirect conditions 

separately. Figure 8-10 shows that a trade-off was observed in both conditions i.e. faster 

tracing was associated with a higher number of errors per rotation (Direct: Pearson’s r = 

0.40, p < 0.0001; Indirect: Pearson’s r = 0.30, p < 0.0001). 
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Figure 8-10. Speed-accuracy trade-offs in the direct and indirect conditions of the 
circle-tracing task 

Each participant has one point plotted for each condition, showing their mean speed and mean 
error rate. Transparent markers have been used so that the density is visible where there are 
markers on top of each other. Solid lines indicate lines of best fit. 

 

 

Examination of the residual error rates (vertical distance to the line of best fit in Figure 

8-10) revealed that participants were fairly consistent between the two conditions in 

terms of how far their error rate deviated from that which would be predicted given their 

speed (Figure 8-11). This is consistent with results reported above, where there was no 

evidence that any particular groups of participants (according to sex, age, education etc.) 

performed disproportionately worse in the indirect condition (section 8.3.2.1.1). 

Therefore, I decided that averaging each participant’s performance across the two 

conditions was justified as a way of examining overall between-subject differences in the 

tendency to prioritise speed or accuracy.  
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Figure 8-11. Residual error rate in the direct condition against residual error rate 
in the indirect condition of the circle-tracing task 

Residual error rate was calculated from a linear regression of mean speed against mean error 
rate (see Figure 8-10). A positive residual indicates that the participant made more errors than 
would be predicted from their mean speed. Residual error rates in the direct and indirect 
conditions were correlated (Pearson’s r = 0.41, p < 0.0001). Transparent markers have been used 
so that the density is visible where there are markers on top of each other. 

 

 

Figure 8-12 shows the speed-accuracy trade-off across the direct and indirect conditions 

combined. The correlation appears relatively weak among participants who traced more 

slowly, but it is evident that none of the fastest-tracing participants managed to maintain 

a low error rate.  
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Figure 8-12. Speed-accuracy trade-offs combined across the direct and indirect 
conditions of the circle-tracing task 

Each participant has one point plotted, showing their mean speed and mean error rate. Solid 
line indicates predictions from the multivariate model adjusted for sex, age at assessment, 
childhood cognitive ability, education, adult socioeconomic position, handedness, and presence 
of a neurological or psychiatric condition. Shaded areas represent 95% confidence intervals. 

 

In the earlier analysis of circle-tracing accuracy, which did not account for tracing speed, 

predictors of higher error rate were lower education, older age at assessment, and 

presence of a neurological or psychiatric condition (section 8.3.2.1.1). Results of the 

regression model for error rate accounting for speed revealed that participants with 

neurological or psychiatric conditions still had higher error rates at a given speed 

(regression coefficient = 0.22 (number of errors per rotation, square-root transformed), 

95% CIs 0.04 to 0.41, p = 0.019) and higher educational attainment was still associated 

with lower error rates at a given speed (regression coefficient = -0.03, 95% CIs -0.06 to 

-0.00, p = 0.035). However, the effect of age was much reduced and was no longer 

statistically significant, suggesting that the higher error rates of older participants can be 

explained by their faster tracing speed (regression coefficient = 0.03, 95% CIs -0.01 to 

0.08, p = 0.15).  

Sex, childhood cognitive ability, adult socioeconomic position and handedness were not 

significant predictors of error rate at a given speed.  
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8.3.2.1.5. Comparison of Dual and Single Task  

In the sub-sample of 199 participants who completed both the dual and single tasks, the 

mean dual-task cost to circle-tracing speed was 0.24 (i.e. 24% fewer rotations on 

average in the dual task, compared to the single task). 13% of participants had a negative 

“dual-task cost”, meaning that they traced more slowly in the single task than the dual 

task (Figure 8-13). 

 

 

Figure 8-13. Dual-task cost to circle-tracing speed 

Dual-task cost is a measure of the extent to which tracing was slower in the dual task compared 
to the single task (for full definition see section 8.3.2.1.5). 

 

Dual-task cost to circle-tracing speed did not show any statistically significant 

associations with sex, age at assessment, education, adult socioeconomic position, 

handedness or presence of a neurological or psychiatric condition (Table 8-5). There 

was a trend towards an association between higher childhood cognitive ability and 

smaller dual-task cost, suggesting that participants with higher childhood cognitive ability 

might be less impacted by having to perform concurrent serial subtraction (Table 8-5).   
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Table 8-5. Associations between demographic and life-course predictors and 
dual-task cost (n =208) 

Predictor 
Coefficient 

(95% confidence interval) 
p 

Sex  
(female as reference category) 

0.03 (-0.04, 0.11) 0.41 

Age at assessment (per year) 0.05 (-0.08, 0.18) 0.44 

Childhood cognitive ability  
(per z-score) 

-0.06 (-0.12, 0.00) 0.06 

Education (per category) a 0.02 (-0.02, 0.05) 0.33 

Adult socioeconomic position 
(per category) a 

0.01 (-0.03, 0.05) 0.65 

Neurological or psychiatric 
condition b 
(cognitively-normal as reference 
category) 

-0.08 (-0.22, 0.06) 0.27 

Handedness 
(right-handed as reference category) 

0.05 (-0.07, 0.17) 0.43 

 
Multivariable regression models were used so each association is independent of all others.  
a See section 3.2.4 for definition of categories. b See section 3.2.3 for definitions. 

 

Dual-task cost to circle-tracing accuracy was not calculated, since error rate was 

actually slightly higher on the single task on average (mean errors per rotation: single = 

1.08; dual = 0.99), with 53% of participants having a higher mean error rate in the 

single task than the dual task.  

 

 

8.3.2.2. Serial subtraction 

 

8.3.2.2.1. Speed and accuracy 

Results of the multivariable regression models for speed and accuracy are reported in 

Table 8-6, along with results of interaction tests between each predictor and circle-tracing 

condition (direct vs. indirect).   
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Table 8-6. Associations between demographic and life-course predictors and 
performance on the serial subtraction task (n = 483) 

 

 

Predictor 

Subtraction rate: 
coefficient (responses per 

second) and 95% CIs 

 Odds ratio for making a 
subtraction error and 95% 

CIs 

Main effect 
of predictor 

Interaction 
between 

predictor and 
condition 
(direct vs. 
indirect) 

 

Main effect 
of 

predictor 

Interaction 
between 
predictor 

and 
condition 
(direct vs. 
indirect) 

Indirect condition 
(direct condition as 
reference 
category) 

-0.04* 
(-0.05, -0.04) 

N/A 

 

1.12 
(0.99, 1.27) 

N/A 

Sex (female as 
reference 
category) 

0.10* 
(0.07, 0.12) 

-0.01 
(-0.02, -0.00) 

 
0.68 

(0.51 0.92) 
0.94 

(0.73, 1.22) 

Age at 
assessment 
(per year) 

0.00 
(-0.02, 0.02) 

0.00 
(-0.00, 0.01) 

 
1.11 

(0.90, 1.37) 
0.93 

(0.78, 1.10) 

Childhood 
cognitive ability 
(per z-score) 

0.05* 
(0.02, 0.07) 

-0.01* 
(-0.01, -0.00) 

 
0.69* 

(0.58, 0.83) 
0.98 

(0.85, 1.14) 

Education 
(per category) a 

0.02* 
(0.00, 0.03) 

-0.00 
(-0.01, -0.00) 

 
0.84 

(0.73, 0.98) 
0.98 

(0.90, 1.07) 

Adult 
socioeconomic 
position 
(per category) a 

(0.00 
(-0.01, 0.02) 

-0.00 
(-0.01, 0.00) 

 

1.02 
(0.88, 1.18) 

1.02 
(0.92, 1.14) 

Neurological or 
psychiatric 
condition b 
(cognitively-normal 
as reference 
category) 

-0.08* 
(-0.12, -0.03) 

0.009 
(-0.007, 0.025) 

 

1.75 
(1.01, 3.03) 

1.08 
(0.69, 1.69) 

Handedness 
(right-handed as 
reference 
category) 

-0.04 
(-0.09, 0.00) 

-0.03* 
-0.04, -0.01) 

 

1.34 
(0.79, 2.27) 

0.72 
(0.47, 1.12) 

 

Coefficients and Odds Ratios in bold are significant at p < 0.05 and asterisks indicate significance 
at p < 0.01. Multivariable regression models were used so each association is independent of all 
others. a See section 3.2.4 for definition of categories. b See section 3.2.3 for definitions 
 
CI = confidence interval 
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Participants subtracted more slowly when the concurrent circle-tracing task was in the 

indirect condition (indirect visual feedback) compared to direct condition (Table 8-2, 

Table 8-6). The effect size was small, equivalent to 1.8 fewer responses on average over 

the 45-second period. On average, participants made slightly more subtraction errors 

during the indirect condition of the circle-tracing task, compared to the direct condition, 

but this difference was not statistically significant (p = 0.08) (Table 8-2, Table 8-6).  

Predictors of faster and more accurate subtraction were male sex, higher childhood 

cognitive ability, higher educational attainment, and absence of a neurological or 

psychiatric condition (Table 8-6). The mean values for males and females were as 

follows: females = 0.45 responses per second, 3.5% error rate; males = 0.55 responses 

per second, 2.2% error rate.  

For subtraction accuracy, these effects appeared to apply equally in both the direct and 

indirect conditions of the concurrent circle-tracing task, as there was no evidence of 

interactions between the predictors and circle-tracing condition (Table 8-6). For 

subtraction rate, there were interactions with circle-tracing condition whereby the effects 

of sex, childhood cognitive ability and education were slightly reduced in the indirect 

condition compared to the direct condition (Table 8-6). This suggests that participants 

were on a more equal footing in terms of their subtraction speed when they were doing 

the more difficult concurrent task (indirect circle-tracing). However the detrimental effect 

of neurological or psychiatric conditions on subtraction rate (equivalent to 3.6 fewer 

responses over the 45-second period) was not reduced in the indirect condition (Table 

8-6).  

There was an interaction between handedness and circle-tracing condition such that left-

handed participants subtracted disproportionately slowly in the indirect condition (Table 

8-6, Figure 8-14). This mirrors the earlier finding that left-handed participants traced 

disproportionately less accurately in the indirect condition, which I believe was due to the 

set-up of the equipment being less convenient for them (see section 8.3.2.1.1). This 

provides further evidence that subtraction tended to be slower when the circle-tracing 

was more difficult, whether because the visual feedback was indirect or because of some 

other problem. 

Age at assessment and adult socioeconomic position were not associated with 

performance on the subtraction task (Table 8-6). 
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Figure 8-14. Subtraction rate of right-handed (n = 438) and left-handed (n = 45) 
participants in the direct and indirect conditions of the concurrent circle-tracing 
task 

Markers show the predicted means from the multivariate regression model and error bars show 
the 95% confidence intervals. The model included adjustment for age at assessment, sex, 
childhood cognitive ability, adult socioeconomic position, education, and presence of a 
neurological or psychiatric condition. 

 

 

8.3.2.2.2. Relationship between speed and accuracy  

Faster subtraction rate was associated with lower error rate (Spearman’s ρ = -0.51, p < 

0.0001) i.e. the opposite of a speed-accuracy trade-off (Figure 8-15). The relationship is 

non-linear due to a ceiling effect on subtraction accuracy. It is evident that all of the 

fastest-subtracting participants also achieved low error rates, whereas participants who 

subtracted slowly had a wide range of error rates. 
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Figure 8-15. Speed against accuracy on the serial subtraction task 

Each participant has one point plotted, showing their mean subtraction rate (an index of speed) 
and mean error rate across the six subtraction trials. Transparent markers have been used so 
that the density is visible where there are markers on top of each other. 

 

 

 

8.3.2.2.3. Practice effects 

Trial-by-trial performance on serial subtraction is shown in Figure 8-16. There was 

evidence of a small practice effect on subtraction rate, equivalent to an improvement of 

0.006 responses per second on each successive trial (95% CIs 0.005 to 0.008, p < 

0.0001). Therefore the finding that subtraction was slower when the concurrent circle-

tracing task had indirect visual feedback 8.3.2.2.1 could be an underestimate of the true 

effect, as the indirect trials had a higher average position in the trial order so would 

theoretically benefit more from practice effects.  

There was a slight improvement in subtraction accuracy on successive trials but this was 

not statistically significant (OR for making an error per successive trial = 0.97, 95% CIs 

0.93 to 1.00, p = 0.065). 
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Figure 8-16. Means and 95% confidence intervals for subtraction speed and 
accuracy on each trial  

A = subtraction rate (an index of speed). B = subtraction error rate (an index of accuracy). 

 

  

A 

B 
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8.4. Associations with biomarkers and APOE-ε4 

 

Following the format laid out in section 3.5, the second part of this chapter aims to 

investigate associations between performance and biomarkers of AD in cognitively-

normal participants for whom complete biomarker data are available. The number 

meeting these criteria who also had usable data from the circle-tracing task was 392 for 

the dual task and 165 for the single task. 

As explained in section 3.5.2.1, I wanted to derive some summary scores to capture the 

key aspects of performance on this task. In the Choice RT, Response Inhibition and 

“”What was where?” tasks (see Chapters 5 to 7), it was appropriate to create summary 

outcomes by averaging responses across all trials (mean RT, overall identification rate 

etc.) because, although performance levels did vary according to the conditions of the 

task (e.g. in the Choice RT task, RT tended to be faster for words rather than arrows), 

the magnitude of these differences were small. By contrast, in the circle-tracing task, the 

magnitude of differences in performance between the direct and indirect conditions was 

large, with speed differing by approximately a factor of two. Therefore, while a simple 

average would still be valid as a way of comparing participants’ tracing speed, it would 

have limited meaning as a representation of typical performance. Also, there is a 

theoretical reason to focus on the difference in performance between the two conditions 

(which would be masked by a simple average), because the outcome that was sensitive 

to early changes in Huntington’s disease was the interaction between tracing condition 

and clinical group (Huntington’s gene carriers were disproportionately disadvantaged in 

the indirect condition (Say et al., 2011)). Therefore, I decided to investigate the 

associations between biomarkers and circle-tracing outcomes using the trial-by-trial data 

as I did in the previous section (8.3), and then to use these results to inform the selection 

of the most promising summary scores.  

I focused on the speed and accuracy variables, rather than the error time variable, 

because speed and accuracy are the main dimension of the task and exploring the error 

time variable was more a way of understanding the nature of errors. I also investigated 

dual-task cost because deficits in dual-tasking have been reported in presymptomatic 

FAD mutation carriers at a stage when their episodic memory was unimpaired 

(MacPherson et al., 2012), so it has potential as a marker of subtle cognitive change 

associated with preclinical AD. 
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8.4.1. Statistical Analysis 
 

8.4.1.1. Circle-tracing 

 

8.4.1.1.1. Speed and accuracy  

GEE regression models were fitted as above for tracing speed and accuracy (see section 

8.3.1.1.1) including predictors of amyloid status, whole brain volume, WMHV and APOE 

genotype. I tested for interactions between these factors and circle-tracing condition. As 

in previous chapters, total intracranial volume was included to adjust for the correlation 

between whole brain volume and head size, as were the demographic factors 

investigated in section 8.3 (sex, age at assessment, childhood cognitive ability, education 

and adult socioeconomic position).  

The models were additionally rerun replacing dichotomised amyloid status with SUVR to 

test whether increasing Aβ deposition was associated with differences in performance. 

To check whether associations between SUVR and cognition were sensitive to the 

inclusion of the imputed SUVR values (see section 3.2.2), the analyses were rerun 

excluding the 26 participants with imputed SUVR data. 

 

8.4.1.1.2. Comparison of Dual and Single Task  

A regression model was fitted with an outcome of “dual-task cost” as above (see section 

8.3.1.1.5) including predictors of amyloid status, whole brain volume, WMHV and APOE 

genotype. As above, total intracranial volume was included to adjust for the correlation 

between whole brain volume and head size, as were the demographic factors 

investigated in section 8.3 (sex, age at assessment, childhood cognitive ability, education 

and adult socioeconomic position). The model was additionally rerun replacing 

dichotomised amyloid status with SUVR, and a sensitivity analysis was run excluding the 

26 participants with imputed SUVR data. 

 

 

8.4.1.2. Serial subtraction 

 

GEE regression models were fitted as above for tracing speed and accuracy (see section 

8.3.1.2.1) including additional factors of amyloid status, whole brain volume, WMHV and 

APOE genotype, and tested for interactions between these factors and circle-tracing 
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condition. As in previous chapters, total intracranial volume was included as to adjust for 

the correlation between whole brain volume and head size, as were the demographic 

factors investigated in section 8.3 (sex, age at assessment, childhood cognitive ability, 

education and adult socioeconomic position). 

The model was additionally rerun replacing dichotomised amyloid status with SUVR, and 

a sensitivity analysis was run excluding the 26 participants with imputed SUVR data. 

 

8.4.2. Results 

 

8.4.2.1. Circle-tracing 

8.4.2.1.1. Speed and accuracy 

Results of the multivariable regression models for speed and accuracy are reported in 

Table 8-7, along with results of interaction tests between each predictor and tracing 

condition (direct vs. indirect). As these regression models used log-transformed and 

square-root transformed data, descriptive statistics on the untransformed data for Aβ+ 

and Aβ- participants are provided in Table 8-8 to aid interpretation of the results. Results 

for the demographic and life-course factors (sex, age at assessment, childhood cognitive 

ability, education and adult socioeconomic position) are not reported as they are 

essentially unchanged from the first analysis section (8.3.2.1.1).  
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Table 8-7. Associations between biomarkers and circle-tracing speed and 
accuracy in cognitively-normal participants (n = 392) 

 

 

Predictor 

Speed (number of 
rotations) a: 

coefficient and 95% CIs 

 Accuracy (number of errors 
per rotation) 

(square-root transformed) b: 
coefficient and 95% CIs 

Main effect 
of predictor 

Interaction 
between 
predictor 

and 
condition 
(direct vs. 
indirect) 

 

Main effect 
of predictor 

Interaction 
between 

predictor and 
condition 
(direct vs. 
indirect) 

β-amyloid 
status 
(negative as 
reference) 

1.05 
(0.90, 1.22) 

1.05 
(1.00, 1.10) 

 

0.09 
(-0.01, 0.19) 

0.16 
(0.03, 0.29) 

WMHV 
(per 10 ml) 

0.91 
(0.82, 1.01) 

1.02 
(0.98, 1.06) 

 
0.03 

(-0.05, 0.10) 
0.10 

(0.00, 0.20) 

Whole brain 
volume  
(per 10 ml) 

1.02* 
(1.01, 1.04) 

1.00 
(1.00, 1.00) 

 
-0.00 

(-0.01, 0.01) 
-0.00 

(-0.01, 0.00) 

APOE-ε4 
(non-carriers 
as reference) 

1.01 
(0.88, 1.16) 

1.04 
(0.99, 1.09) 

 
-0.03 

(-0.12, 0.06) 
0.03 

(-0.07, 0.13) 

 

Multivariable regression models were used so each association is independent of all others. In 
addition to the predictors listed, models also included sex, age at assessment, childhood cognitive 
ability, adult socioeconomic position, handedness and total intracranial volume. 

Coefficients in bold are significant at p < 0.05 and asterisks indicate significance at p < 0.01.  

a For the circle-tracing speed outcome, as the data were log-transformed, the coefficients are 
quoted in exponentiated form for ease of interpretation; for example, a coefficient of 1.5 would 
mean that the factor was associated with 50% faster tracing. b The coefficients for the square-root 
transformed error rate are not easily interpretable as a back-transformation would not be 
meaningful.  

CI = confidence interval; WMHV = white matter hyperintensity volume 
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Table 8-8. Descriptive statistics for circle-tracing speed and accuracy, by 
amyloid status 

Outcome variable 
mean, median, (range) 

amyloid positive (n = 72) amyloid negative (n = 320) 

Speed (number of 
rotations) 

  

Direct condition 6.8, 5.7, (1.0 to 31.7) 6.7, 5.6, (0.6 to 44.1) 

Indirect condition 3.8, 3.1, (0.8 to 15.7) 3.6, 3.1, (0.4 to 33.1) 

Accuracy (number 
of errors per 
rotation) 

  

Direct condition 0.7, 0.5, (0 to 5.5) 0.7, 0.6, (0 to 9.6) 

Indirect condition 1.4, 1.2, (0 to 9.2) 1.1, 0.7, (0 to 12.2) 

 

 

There were no statistically significant differences between Aβ+ and Aβ- participants in 

terms of their overall accuracy, but the detrimental effect of the indirect condition was 

greater in Aβ+ participants (Table 8-7, Figure 8-17). As a post-hoc exploration of this 

interaction, the models were rerun in the direct and indirect conditions separately. In the 

direct condition alone, the difference between Aβ+ and Aβ- participants was minimal and 

not statistically significant (regression coefficient = 0.01 errors per rotation (square-root 

transformed), 95% CIs -0.10 to 0.11, p = 0.92), but in the indirect condition Aβ+ 

participants made significantly more errors (regression coefficient = 0.18, 95% CIs 0.05 

to 0.31, p = 0.008).  

When rerunning the models replacing dichotomous amyloid status with continuous 

SUVR, the same pattern emerged, as SUVR did not have a statistically significant 

association with error rate (regression coefficient = 0.50 errors per rotation (square-root 

transformed), 95% CIs –0.06 to 1.06, p = 0.08) but there was evidence of an interaction 

between higher SUVR and circle-tracing condition, with higher SUVR predicting 

disproportionately poorer accuracy in the indirect condition (regression coefficient = 0.88, 

95% CIs 0.22 to 1.54, p = 0.009). These results were unchanged in a sensitivity analysis 

excluding the individuals with imputed SUVR values (see section 3.2.2). 

Overall these results suggest that Aβ deposition was associated with greater difficulty in 

tracing accurately with indirect visual feedback, consistent with subtle deficits in 

visuomotor integration.  
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In terms of tracing speed, there was no statistically significant difference between Aβ+ 

and Aβ- participants, nor a statistically significant interaction between Aβ and circle-

tracing condition (Table 8-7).  

When rerunning the models replacing dichotomous amyloid status with continuous 

SUVR, there was no evidence of an association between SUVR and tracing speed 

(regression coefficient = 1.25, 95% CIs 0.50 to 3.09, p = 0.63) and there was no 

statistically significant interaction between SUVR and circle-tracing condition (regression 

coefficient = 1.26, 95% CIs 0.96 to 1.67, p = 0.10). These results were unchanged in a 

sensitivity analysis excluding the individuals with imputed SUVR values (see section 

3.2.2). 

 

 

Figure 8-17. Tracing accuracy in the direct and indirect conditions of the circle-
tracing task, by amyloid status 

Markers show the predicted means from the multivariate regression model and error bars show 
the 95% confidence intervals. The model included adjustment for sex, age at assessment, 
childhood cognitive ability, adult socioeconomic position, education, handedness, white matter 
hyperintensity volume, whole brain volume, total intracranial volume and APOE genotype. 
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Larger whole brain volume was associated with faster tracing, equivalent to 2% more 

rotations per 10ml (Table 8-7, Figure 8-18). There was no evidence that this effect 

differed between the direct and indirect conditions (Table 8-7). There was no evidence 

of any relationship between whole brain volume and tracing accuracy (Table 8-7). 

 

 

Figure 8-18. Association between whole brain volume and circle-tracing speed 

Solid line represents prediction from the multivariate regression model, holding all other predictors 
at average values, and shaded area represents 95% confidence intervals. The model included 
adjustment for age at assessment, sex, adult socioeconomic position, education, handedness, 
amyloid status, white matter hyperintensity volume, APOE-ε4 genotype and total intracranial 
volume. Markers show each participant’s mean speed combined across the direct and indirect 
conditions. TIV = total intracranial volume. 

 

There was a trend towards an association between greater WMHV and slower tracing (p 

= 0.07), but no evidence that this effect differed between the direct and indirect conditions 

(Table 8-7). For tracing accuracy, there was no overall association with WMHV but there 

was evidence of an interaction between WMHV and circle-tracing condition, such that 

greater WMHV was associated with disproportionately poorer accuracy in the indirect 

condition (Table 8-7). As a post hoc exploration of this interaction, the models were rerun 

in the direct and indirect conditions separately, and WMHV was not associated with 

tracing accuracy in either condition alone (Direct: regression coefficient = -0.02 errors 
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per rotation (square-root transformed) per 10 ml, 95% CIs -0.10 to 0.06, p = 0.68; 

Indirect: regression coefficient = 0.07, 95% CIs -0.02 to 0.17, p = 0.13). 

APOE-ε4 was not associated with any circle-tracing outcomes (adjusting for amyloid 

status and all other covariates) (Table 8-7). 

 

  

8.4.2.1.2. Comparison of Dual and Single Task  

Larger whole brain volume was associated with smaller dual-task cost (regression 

coefficient = -0.01 per 10 ml, 95% CIs -0.02 to -0.00, p = 0.023), meaning that participants 

with larger brain volumes tended to be less influenced (slowed) in their tracing speed by 

the concurrent subtraction task (Figure 8-19). The units represent proportional decrease 

in speed in the dual task compared to the single task (see 8.3.1.1.5) so the regression 

coefficient is equivalent to a reduction of 1 percentage point for every additional 10ml of 

brain volume. 

Amyloid status, WMHV and APOE-ε4 genotype showed no evidence of associations with 

dual-task cost. When the models were rerun replacing amyloid status with SUVR, it also 

showed no association with dual-task cost, and this was unchanged when excluding the 

participants with imputed SUVR values. 

Results for the demographic and life-course factors (sex, age at assessment, childhood 

cognitive ability, education and adult socioeconomic position) are not reported as they 

are essentially unchanged from the first analysis section (8.3.2.1.5). 
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Figure 8-19. Association between whole brain volume and dual-task cost to 
circle-tracing speed 

Solid line represents prediction from the multivariate regression model, holding all other predictors 
at average values, and shaded area represents 95% confidence intervals. The model included 
adjustment for age at assessment, sex, adult socioeconomic position, education, handedness, 
amyloid status, white matter hyperintensity volume, APOE-ε4 genotype and total intracranial 
volume. Markers show each participant’s mean dual-task cost against whole brain volume 
adjusted for total intracranial volume. 
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8.4.2.2. Serial subtraction 

 

Results of the multivariable regression models for subtraction speed and accuracy are 

given in Table 8-9. Results for the demographic and life-course factors (sex, age at 

assessment, childhood cognitive ability, education and adult socioeconomic position) are 

not reported as they are essentially unchanged from the first analysis section (8.3.2.2). 

 

 

Table 8-9. Associations between biomarkers and subtraction speed and accuracy 
in cognitively-normal participants (n = 392) 

 

 

Predictor 

Subtraction rate: 
coefficient (responses per 

second) and 95% CIs 

 Odds ratio for making a 
subtraction error and 95% 

CIs 

Main effect 
of predictor 

Interaction 
between 

predictor and 
condition 
(direct vs. 
indirect) 

 

Main effect 
of predictor 

Interaction 
between 

predictor and 
condition 
(direct vs. 
indirect) 

β-amyloid 
status  
(negative as 
reference) 

-0.05* 
(-0.09, -0.02) 

0.01 
(-0.00, 0.02) 

 

1.23 
(0.86, 1.77) 

0.88 
(0.60, 1.30) 

WMHV 
(per 10 ml) 

-0.02 
(-0.04, 0.01) 

0.00 
(-0.01, 0.01) 

 
1.24 

(0.95, 1.64) 
0.73 

(0.57, 0.93) 

Whole brain 
volume  
(per 10 ml) 

0.004 
(0.001, 0.007) 

-0.000 
(-0.001, 0.000) 

 
0.99 

(0.97, 1.02) 
1.00 

(0.99, 1.02) 

APOE-ε4 
(non-carriers 
as reference) 

0.02 
(-0.02, 0.05) 

0.01 
(-0.00, 0.02) 

 
0.81 

(0.60, 1.09) 
0.83 

(0.61, 1.14) 

 

Multivariable regression models were used so each association is independent of all others. In 
addition to the predictors listed, models also included sex, age at assessment, childhood cognitive 
ability, adult socioeconomic position, handedness and total intracranial volume.  

Coefficients and Odds Ratios in bold are significant at p < 0.05 and asterisks indicate significance 
at p < 0.01.  

CI = confidence interval; WMHV = white matter hyperintensity volume 
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On average, Aβ+ participants subtracted more slowly than Aβ- participants (Table 8-9). 

The effect size is equivalent to 2.3 fewer responses in the 45 second period (predicted 

means: Aβ+ = 20.6 responses in 45 seconds, Aβ- = 22.9 responses in 45 seconds). 

There was no evidence that this effect differed according to whether the concurrent 

circle-tracing task was in the direct or indirect condition (Table 8-9).  

When rerunning the models replacing dichotomous amyloid status with continuous 

SUVR, the results followed the same pattern: there was an association between higher 

SUVR and slower subtraction rate (regression coefficient = -0.23, 95% CIs -0.42 to -0.04, 

p = 0.018) and no statistically significant interaction between SUVR and circle-tracing 

condition (regression coefficient = 0.03, 95% CIs -0.03 to 0.09, p = 0.38). These results 

were unchanged in a sensitivity analysis excluding the individuals with imputed SUVR 

values (see section 3.2.2). 

There was no evidence of a statistically significant difference between Aβ+ and Aβ- 

participants in subtraction error rate (unadjusted means: Aβ+ = 3.1%; Aβ- = 2.6%) (Table 

8-9). 

Larger whole brain volume was associated with slightly faster subtraction rate but was 

not associated with subtraction accuracy (Table 8-9). 

WMHV was not associated with subtraction rate or accuracy overall (Table 8-9). 

However, for subtraction accuracy there was an interaction between WMHV and circle-

tracing condition such that the tendency to make more subtraction errors in the indirect 

condition (compared to the direct condition) was reduced in participants with greater 

WMHV. As a post-hoc exploration of this interaction, the models were rerun in the direct 

and indirect conditions separately, which revealed that greater WMHV predicted a 

greater likelihood of making subtraction errors in the direct condition (OR = 1.45 per 10 

ml, 95% CIs 1.07 to 1.96, p = 0.02), but WMHV was not associated with subtraction 

accuracy in the indirect condition (OR = 1.03 per 10 ml, 95% CIs 0.78 to 1.37, p = 0.81).  

APOE-ε4 was not associated with any subtraction outcomes (adjusting for amyloid status 

and all other covariates) (Table 8-9). 

 

  

8.4.2.3. Selection of summary outcome variables 

I decided that the following two summary outcomes would be the most meaningful 

representation of the circle-tracing effects described above. They are based on the six 

dual-task trials completed by all participants. 
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Difference in error rate between indirect and direct conditions. This was defined by 

calculating each participant’s mean error rate in the direct and indirect conditions 

separately (the mean number of errors per rotation across the three trials within each 

condition) and subtracting the former from the latter. This is an index of the extent to 

which participants’ tracing accuracy was affected by the indirect visual feedback. As the 

circle-tracing task was designed to assess visuomotor integration ability, this outcome 

reflects the core demands of the task better than overall error rate, and captures the 

aspect of performance that showed a difference between Aβ+ and Aβ- participants. I 

considered whether to normalise this outcome to each participant’s performance in the 

direct condition i.e. to calculate the relative difference in error rate rather than the 

absolute difference. However, this was problematic because it would require dividing by 

zero for some participants who made no errors in the direct condition. As the error rate 

variable is already expressed per rotation, large differences between participants have 

already been eliminated and its range is relatively small (-1.58 to 9.9 errors per rotation), 

therefore I decided that the absolute difference was appropriate. 

Overall tracing speed. This was defined as the mean number of rotations across all six 

dual-task trials (combined across direct and indirect conditions). This is the same 

outcome that was used to examine speed-accuracy trade-offs (see sections 8.3.1.1.4 

and 8.3.2.1.4). I chose this outcome, rather than the difference in speed between the 

direct and indirect conditions, as it captures a wide and meaningful variation between 

individuals (range 0.6 to 35.8 rotations in 45 seconds) and is the aspect of performance 

which was associated with whole brain volume. 

For the serial subtraction task, the summary outcomes are obvious: mean subtraction 

rate (responses per second) and overall error rate, as defined earlier 8.3.1.2.2. 

These summary outcomes will be used when comparing performance across different 

cognitive tests (see Chapter 9). 

 

8.5. Discussion 
 

8.5.1. Summary 

 

This study reported the results of a circle-tracing and serial subtraction task which were 

administered concurrently. The serial subtraction task showed evidence of sex 

differences (males subtracting faster and more accurately) and relatively strong 

associations with childhood cognitive ability and educational attainment, whereas circle-

tracing performance was generally less associated with these factors. As hypothesised, 
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cognitively-normal Aβ+ individuals showed evidence of subtle deficits in visuomotor 

integration, indicated by disproportionately poorer tracing accuracy when visual 

feedback was indirect. There was also evidence of an association between Aβ pathology 

and slower subtraction rate. Speed-accuracy trade-offs were an important feature of 

circle-tracing performance. 

 

8.5.2. Patterns of performance 
 

8.5.2.1. Patterns of performance on the circle-tracing task 

Performance of Insight 46 participants on the circle-tracing task was consistent with 

previous studies in that tracing was slower and less accurate in the condition of indirect 

visual feedback compared to the direct condition. A trade-off between speed and 

accuracy was observed, with the participants who traced more quickly tending to make 

more errors per rotation. As discussed earlier in the context of the Choice Reaction Time 

task (see section 6.5.2), it is worth noting that a person may alter their speed-accuracy 

strategy during the task, which is not captured by a between-subjects analysis.  

The speed-accuracy trade-off showed a surprising relationship with age at assessment 

whereby older participants traced faster and less accurately, despite the age range being 

so narrow (2.6 years – reflecting the time taken to collect the data as all participants were 

born in the same week). There is no obvious explanation for this finding. The nature of 

the trade-off means that performance was not better or worse with age – just different. 

Age effects on this circle-tracing task have been investigated in one study which 

compared older and younger adults and found that they did not differ in their tracing 

accuracy but the older adults traced more slowly (Vaportzis, Georgiou-Karistianis and 

Stout, 2014). In another study which recruited adults aged from 21 to 95, strong 

associations were observed between older age and decreasing accuracy on a different 

circle-tracing task which involved pursuing a moving target around a circle, but speed 

was not reported (Stirling et al., 2013). As mentioned in previous chapters (4, 6 and 7) 

where “age effects” were observed, I considered the possibility of a recruitment bias 

whereby participants seen towards the beginning of the data collection period may have 

differed in some ways to those seen towards to the end. This is discussed in greater 

detail in Chapter 10. One factor of potential relevance to differences in speed-accuracy 

trade-offs is risk sensitivity, as one study has reported that risk-seeking individuals are 

more likely to prioritise speed whereas risk-averse individuals are more likely to prioritise 

accuracy on a task of motor control (Nagengast, Braun and Wolpert, 2011). 
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In the sub-sample of participants who completed two additional single-task circle-tracing 

trials (without the concurrent subtraction task), the majority traced more quickly in the 

single task compared to the dual. According to the influential multiple-component working 

memory system proposed by Baddeley (Baddeley and Hitch, 1974; Baddeley, 2000), 

healthy individuals show little interference when performing dual tasks that rely on 

different components of working memory, such as processing verbal and visuospatial 

information (e.g. (MacPherson et al., 2012)), but these results suggest that the circle-

tracing and serial subtraction tasks were competing for the same attentional and working 

memory resources. Anecdotally, I often observed participants slowing down or even 

pausing their tracing on the dual task when they were struggling to work out the next 

subtraction response. However, tracing accuracy was poorer in the single task, which is 

consistent with a previous study using the same experiment (Vaportzis, Georgiou-

Karistianis and Stout, 2014) and can be explained by speed-accuracy trade-offs. It 

appears that the influence of the subtraction task in slowing down participants’ tracing 

prevented them from adopting a fast and inaccurate tracing style, whereas when free to 

focus entirely on the circle-tracing task they could prioritise speed at the expense of 

accuracy. Limitations of this experiment for measuring dual-task abilities are discussed 

in section 8.5.5. 

 

8.5.2.2. Patterns of performance on the serial subtraction task 

There was wide variability between participants in terms of their subtraction rates, with 

the fastest participant subtracting 10 times faster than the slowest, while error rates were 

generally low. There was a correlation, rather than a trade-off, between speed and 

accuracy, with the highest error rates recorded by participants with the slowest 

subtraction rates. A possible explanation for this is that arithmetic is a task where speed 

has to be adjusted to maintain accuracy, because each response is either correct or 

incorrect, so – unless one is prepared to simply guess the answer – one has to take as 

much time as necessary to work out each answer. This explanation is consistent with 

the fact that subtraction rate – but not subtraction accuracy – was affected by the 

demands of the concurrent circle-tracing task, with slower subtraction rates while tracing 

with indirect visual feedback compared to direct visual feedback. Another piece of 

evidence in support of this idea that only subtraction rate (but not accuracy) is influenced 

by external demands is the observation that left-handed participants subtracted more 

slowly than right-handed participants in the indirect condition – where circle-tracing was 

disproportionately difficult for them – but did not perform worse than right-handed 

participants on subtraction accuracy. 
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The finding that subtraction rate was slower while tracing with indirect visual feedback is 

somewhat analogous to the concept of “dual-task cost” discussed earlier, as it could be 

explained by the fact that the indirect condition placed a greater demand on cognitive 

resources, leaving less resources available to allocate to the subtraction task. 

 

8.5.3. Demographic and life-course predictors 

 

8.5.3.1. Predictors of performance on the circle-tracing task 

Participants with neurological or psychiatric conditions traced less accurately than 

cognitively-normal participants, but the fact that this effect was observed with both direct 

and indirect visual feedback suggests that motor problems or more distributed cognitive 

deficits may have been the main contributing factors rather than a difficulty with 

integrating non-standard visual feedback. 

On the whole, the circle-tracing task was relatively free from associations with childhood 

cognitive ability, educational attainment and adult socioeconomic position, with the 

exception that higher educational attainment predicted more accurate tracing. This is 

perhaps surprising given the importance of these predictors for most cognitive tests 

including tests with a speed component such as Digit-Symbol Substitution (see Chapter 

4). One speculative explanation for this could be that the circle-tracing task relies on fine 

motor control, which is more affected by physical health factors at this age, such as 

tremors and arthritis. Although childhood cognitive ability was not associated with tracing 

speed or accuracy, analysis of error times revealed a specific effect whereby participants 

with higher childhood cognitive ability were able to detect and correct their errors more 

quickly in the condition of indirect visual feedback, with a particular advantage for error 

detection. To my knowledge, this is the first study to report associations between 

childhood cognitive ability, educational attainment and performance on a visuomotor 

integration task in older age, and this evidence provides important context for interpreting 

any decline in visuomotor integration that may be associated with accumulating brain 

pathologies.  

The finding that left-handed participants traced disproportionately less accurately in the 

indirect condition is likely to reflect a difficulty with drawing left-handed under the 

constraints of the equipment that was used to cover the tablet screen, rather than that 

left-handed participants were disproportionately disadvantaged by the indirect visual 

feedback. The fact that left-handed participants also subtracted disproportionately slowly 

in the indirect condition supports this view. The box used to cover the tablet screen was 
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rather small, so I believe that left-handed participants were more restricted in how they 

could angle their arm to draw clockwise.  

 

8.5.3.2. Predictors of performance on the serial subtraction task 

Sex differences of a moderate magnitude were observed on the subtraction task, with 

males subtracting more quickly and more accurately. A male advantage in mathematics 

has been widely reported and its basis is the subject of some controversy. While some 

argue that it may be underpinned by biological differences in visuospatial abilities, others 

have pointed to environmental and cultural factors (Halpern et al., 2007). For example, 

an analysis of quarter of a million students from 40 countries found that sex differences 

in mathematical test performance were eliminated in countries with high levels of gender 

equality (Guiso et al., 2008). Other predictors of faster and more accurate subtraction 

were higher childhood cognitive ability, higher educational attainment and absence of a 

neurological or psychiatric condition. As the subtraction task was not administered alone 

(without concurrent circle-tracing), it is not possible to determine whether these 

predictors apply to subtraction in general, or were specific to this dual-task format. This 

issue is discussed in greater detail in section 8.5.5. 

 

 

8.5.4. Associations with biomarkers and APOE-ε4 
 

8.5.4.1. Circle-tracing 

To my knowledge, this is the first study to evaluate the effects of β-amyloid pathology on 

visuomotor integration in cognitively-normal older adults. These results support the 

hypothesis that β-amyloid deposition is associated with subtle deficits in visuomotor 

integration, as Aβ+ participants had disproportionately poorer circle-tracing accuracy 

with indirect visual feedback. This mirrors the result reported in presymptomatic 

Huntington’s mutation carriers (Say et al., 2011) and builds on my previous analysis of 

the same circle-tracing task in presymptomatic FAD mutation carriers, who were an 

average of 7 years before estimated age of symptom onset (Macpherson et al., 2017). 

The mutation carriers (n = 19) traced less accurately than controls (n = 12) across the 

experiment as a whole and there was a suggestion that this effect was exaggerated in 

the indirect condition but the interaction was not statistically significant. The results are 

also consistent with previous studies that have described visuomotor integration deficits 
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in patients with AD dementia (Tippett and Sergio, 2006; Tippett, Krajewski and Sergio, 

2007; Tippett, Sergio and Black, 2012; Verheij et al., 2012; de Boer et al., 2016). 

While loss of motor control is a major symptom of Huntington’s disease, it is not a 

prominent feature of AD, particularly in the early stages where memory deficits tend to 

dominate. This result is of considerable interest in understanding more about the subtle 

cognitive decline that may accompany the accumulation of Alzheimer’s pathology during 

the preclinical stage of the disease. However, one must of course remain mindful of the 

fact that Aβ positivity does not necessarily predict progression to AD on an individual 

basis (Brookmeyer and Abdalla, 2018). 

It is interesting that the outcome that was sensitive to Aβ positivity (disproportionate 

decrease in accuracy in the indirect condition) also showed evidence of being sensitive 

to white matter disease burden. This is consistent with the sensitivity of this outcome to 

presymptomatic Huntington’s disease, as white matter damage has been documented 

as an early feature of Huntington’s disease (McColgan et al., 2017). This outcome was 

not associated with any of the demographic and life-course predictors (sex, age at 

assessment, childhood cognitive ability, education, adult socioeconomic position – with 

the exception of left-handedness which I believe was an artefact of the experimental 

design (see section 8.5.2.1)), suggesting that it may be specifically sensitive to brain 

pathology rather than general cognitive ability. 

This study did not find any evidence of an association between β-amyloid deposition and 

dual-task cost. However the measurement of dual-task cost was subject to limitations in 

the experimental design, discussed in section 8.5.5. 

The association between greater whole brain volume and faster tracing speed is 

consistent with my earlier finding of a similar association on the Digit-Symbol processing 

speed test (see Chapter 4) and the association with subtraction speed, discussed below. 

 

8.5.4.2. Serial subtraction 

I did not have prior hypotheses about associations between amyloid deposition and 

performance on the serial subtraction task, as the subtraction task was initially chosen 

as a way to examine the impact of a dual task on circle-tracing, rather than as a primary 

outcome of interest in its own right. The finding that Aβ+ participants subtracted more 

slowly is interesting but not easy to interpret because the experiment did not contain a 

measure of “pure” subtraction ability (i.e. subtraction as a single task without the 

concurrent circle-tracing task). Impaired calculation ability, or dyscalculia, is known to 

occur in AD and to have significant functional consequences (Girelli and Delazer, 2001). 
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Like visuomotor integration, it is understood to be associated with parietal damage, 

specifically the left inferior parietal lobule (Hirono et al., 1998). Research studies that 

assess calculation tend to focus on errors rather than speed (e.g. (Martin et al., 2003), 

although assessments usually have time limits so an error would be recorded if a 

response is too slow (e.g. the arithmetic sub-test of the Wechsler Adult Intelligence Scale 

– Revised (Wechsler, 1981)).  

As subtraction rate was dependent on the demands of the concurrent circle-tracing task 

(see 8.3.2.2.1 and 8.5.3.2), the slower subtraction rate of Aβ+ participants could 

potentially stem from greater interference from the concurrent circle-tracing task, rather 

than a difficulty with subtraction per se. Unfortunately, this theory cannot be tested with 

these data. Also, this subtraction task was not designed to probe differences in 

calculation ability, as subtracting in 3s is not challenging for the majority of people and 

there was a strong ceiling effect, so a more difficult test would be required to properly 

probe differences in calculation ability between Aβ+ and Aβ- individuals. 

The finding of an association between whole brain volume and subtraction rate mirrors 

its association with circle-tracing speed and information processing speed as assessed 

by the Digit-Symbol test (see Chapter 4), indicating that the effect of brain volume on 

speed applies across a range of cognitive domains and task demands – this is discussed 

further in Chapter 10. 

 

8.5.5. Limitations 
 

There were a number of limitations to the experimental design. The most significant was 

regarding its suitability for assessing “dual-task cost” – the extent to which performance 

on a task is compromised by having to perform a second task concurrently. There was 

no measure of subtraction ability as a single task, which made it difficult to interpret the 

effects of predictors that were associated with subtraction rate and accuracy, since it was 

impossible to know the extent to which the dual-task aspect was driving performance, 

rather than the core demands of the subtraction task. Less than half of participants had 

a measure of circle-tracing ability as a single task, as this part of the protocol was added 

later. However, the size of this sub-sample (n=208) was still large in comparison to most 

neuropsychological studies. The more potentially limiting issue was the fixed order and 

unequal numbers of the trials (6 dual-task trials, followed by 2 single-task trials), coupled 

with the complex practice effects, which made it difficult to decide how best to compare 

the dual and single tasks. Ideally there would be five conditions with equal numbers of 

trials administered in a randomised order: circle-tracing with direct visual feedback; 



242 
 

circle-tracing with indirect visual feedback; serial subtraction; circle-tracing with direct 

visual feedback plus serial subtraction; circle-tracing with indirect visual feedback plus 

serial subtraction.  

Although the circle-tracing task has been administered in a dual-task format before 

(Vaportzis, Georgiou-Karistianis and Stout, 2014; Vaportzis et al., 2015b), it is not a 

straight-forward choice for measuring dual-tasking ability as it is hard to define optimum 

performance on the task, since speed and accuracy are in competition with each other. 

If participants adopt a different balance of speed and accuracy on the dual and single 

tasks, this can result in a negative dual-task cost on either outcome alone, as observed 

in this study. To probe dual-tasking ability more easily, it may be better to use a task less 

susceptible to speed-accuracy trade-offs, such as a tracking task (Della Sala et al., 2010; 

MacPherson et al., 2012) or a simple reaction time task (Logie et al., 2007).  

Another limitation of the analyses is that mild motor symptoms such as action tremor 

were not controlled for. While I do not think this was a major issue in this study, this 

potential confounder could be accounted for using scores from the Unified Parkinson’s 

Disease Rating Scale (UPDRS), which was administered to all Insight 46 participants. 

There were a number of other limitations to the experimental design. Below is a list of 

recommendations (in no particular order) for how I think the task should ideally be altered 

to address these limitations.  

i) If a participant traces quickly and completes many rotations, the blue line showing 

their tracing path can begin to obscure the annulus. I suspect this makes further 

errors more likely, so ideally the tracing path should fade during each rotation so 

that by the time the participant reaches the top of the circle, they have a clean 

circle for the next rotation.  

 

ii) As the speed-accuracy trade-off is an important feature of this task, it would be 

useful to check its influence more explicitly. This could be done by adding a 

condition where participants are asked to prioritise accuracy, tracing as slowly as 

is necessary to achieve their best accuracy, as was done in one previous study 

(Lemay et al., 2005). 

 

iii) The set-up for the indirect condition should be improved so that it does not 

disadvantage left-handed people. This could be done by using a bigger box to 

obscure the screen, or possibly allowing left-handed people to trace anticlockwise 

if the software was modified to allow for this.  
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iv) The software output for error time was sufficient for comparing error detection 

with error correction, but for a more accurate analysis of error time – for example, 

to investigate whether certain groups of were particularly slow to detect or correct 

errors – it would be better to have fine-grained data on the duration of each error. 

I suspect that this information is recorded in the raw data-files but do not know 

how to extract it. 

 

v) In light of the interesting association between amyloid deposition and subtraction 

rate, it would be informative to compare this with a more challenging calculation 

task, as well as conducting the subtraction task on its own without circle-tracing. 

It is possible that the slower subtraction observed in this study could be indicative 

of general decline in calculation ability, which might be detectable as errors on a 

more challenging task. 

Strengths and limitations that apply to all the analyses presented in this thesis, such as 

considerations relating to the generalisability of the sample, are discussed in Chapter 

10.  

 

8.5.6. Conclusions 
 

In summary, this study has provided novel evidence that Aβ+ cognitively-normal older 

adults may have subtle deficits in visuomotor integration. The finding of an association 

between Aβ pathology and slower subtraction rate merits further investigation and should 

be explored in future studies that address some of the limitations of this experimental 

design.  
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9. INTEGRATION OF RESULTS ACROSS THE COGNITIVE 

BATTERY, AND POTENTIAL APPLICATIONS 

 

So far in this thesis each cognitive test has been considered separately. In order to view 

the results as a whole and draw broader conclusions from them, I aimed to 1) summarise 

the results reported in previous chapters; 2) evaluate which combination of cognitive 

measures may be most sensitive to amyloid status; 3) reflect on potential applications of 

these results. The rationale, methods and results for each of these three aims are 

reported in the following three sub-sections.  

 

9.1. Summary of results across cognitive tests 

 

9.1.1. Rationale 

 

In order to draw conclusions about patterns of performance across all the tests, I aimed 

to summarise and compare the effects of the various predictors (demographic 

characteristics, biomarker measures etc.) across the different cognitive measures and to 

examine correlations between the cognitive measures. 

   

9.1.2. Methods 

 

While the paper-and-pencil tests all had simple outcomes (total number of items correct), 

the computerised tests had a variety of outcome measures that could be analysed on a 

trial-by-trial basis or summarised across the various different conditions of the task. The 

selection of two or three key summary outcomes for each computerised test was 

explained in previous chapters (see section 3.5.2.1). For the purposes of comparison 

across tests, all outcomes were framed such that a higher score indicates better 

performance and converted into z-scores based on all participants. Transformations 

were applied to skewed outcomes where helpful to enable the data to more closely 

approximate the normal distribution. Table 9-1 summarizes the 19 cognitive outcomes 

that are used in this chapter and how they were derived. 
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Table 9-1. List of cognitive outcome measures from the Insight 46 battery 

Name of cognitive 
measure 

Brief descriptor How score was derived 

MMSE 
(see Chapter 4) 

Screening test for cognitive 
impairment, covering 
multiple cognitive domains 

Total score (max. 30)  
standardised into z-score. 

Matrix Reasoning 
(see Chapter 4) 

Non-verbal reasoning 
Total score (max. 32)  
standardised into z-score. 

FNAME-total  
(see Chapter 4) 

Associative memory for 
face-name and face-
occupation pairs 

Total score of names and 
occupations (max. 96)  
standardised into z-score. 

Logical Memory 
Immediate 
(see Chapter 4) 

Immediate recall for a short 
story  

Total score (max. 25)  
standardised into z-score. 

Logical Memory 
Delayed 
(see Chapter 4) 

Recall for a short story after 
approximately 20 minutes 

Total score (max. 25)  
standardised into z-score. 

Digit-Symbol 
(see Chapter 4) 

Processing speed  
Total score (max. 93)  
standardised into z-score. 

PACC 
(see Chapter 4) 

Composite measure of 
MMSE, FNAME-total, 
Logical Memory Delayed 
and Digit Symbol 

Mean of the following four z-
scores: MMSE, Logical 
Memory Delayed Recall, Digit-
Symbol, FNAME-total 

“What was 
where?” 
Identification 
(see Chapter 5) 

Memory for the identity of 
objects in the “What was 
where?” task 

Proportion of correct 
identifications  standardised 
into z-score 

“What was 
where?” 
localisation 
(see Chapter 5) 

Memory for the location of 
objects in the “What was 
where?” task 

Mean localisation error for 
correctly identified items  
log-transformed  multiplied 
by -1  standardised into z-
score 

“What was 
where?” binding 
(see Chapter 5) 

Measure of “swap errors” 
where objects and locations 
are “mis-bound” in the “What 
was where?” task 

Proportion of swap errors 
within correctly identified items 
 multiplied by -1  
standardised into z-score 

Choice RT 
(see Chapter 6) 

Mean response time in the 
2-choice RT task 

Mean RT (ms) for correct 
responses  multiplied by -1 
 standardised into z-score 

Choice RT 
accuracy 
(see Chapter 6) 

Accuracy in the 2-choice RT 
task 

Percentage of correct 
responses  standardised into 
z-score 

Choice RT 
consistency 
(see Chapter 6) 

Consistency of response 
times in the 2-choice RT 
task 

Intra-individual variability in RT 
for correct responses (SD / 
mean)  multiplied by -1  
standardised into z-score 
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Name of cognitive 
measure 

Brief descriptor How score was derived 

Response 
Inhibition 
“incongruent 
cost” to RT 
(see Chapter 7) 

Proportional difference in 
response time between 
conditions of congruent and 
incongruent stimuli 

(Mean RT for incongruent 
trials) minus (mean RT for 
congruent trials)  divided by 
mean RT for congruent trials 
 multiplied by -1  
standardised into z-score 

Response 
Inhibition 
“incongruent 
cost” to accuracy 
(see Chapter 7) 

Difference in accuracy 
between conditions of 
congruent and incongruent 
stimuli  

(Error rate for incongruent 
trials) minus (error rate for 
congruent trials)  multiplied 
by -1  standardised into z-
score. 

Circle-tracing 
speed 
(see Chapter 8) 

Speed of circle-tracing while 
concurrently completing 
serial subtraction 

Mean number of rotations  
log-transformed  
standardised into z-score 

Circle-tracing 
“indirect cost” to 
accuracy 
(see Chapter 8) 

Difference in circle-tracing 
accuracy between 
conditions of indirect and 
direct visual feedback, while 
concurrently completing 
serial subtraction 

(Mean number of errors per 
rotation in indirect trials) minus 
(mean number of errors per 
rotation in direct trials)  
standardised into z-score 

Subtraction 
speed 
(see Chapter 8) 

Speed of subtracting in 3s 
while concurrently complete 
circle-tracing 

Number of responses per 
second  standardised into z-
score 

Subtraction 
accuracy 
(see Chapter 8) 

Accuracy of subtracting in 3s 
while concurrently complete 
circle-tracing 

Percentage of incorrect 
responses  square-root 
transformed  multiplied by -1 
 standardised into z-score 

 
FNAME = Face-name associative memory exam; MMSE = Mini Mental State Examination; 
PACC = Preclinical Alzheimer Cognitive Composite; RT = reaction time 

 

 

Multivariable regression models were fitted for each cognitive outcome, with sex, age at 

assessment, education, childhood cognitive ability, adult socioeconomic position, 

amyloid status, WMHV, whole brain volume and APOE genotype (ε4-carrier or non-

carrier) included as predictors. As in previous analyses, bootstrapping was used to 

produce bias-corrected and accelerated 95% CIs from 2000 replications for outcomes 

with skewed distributions (MMSE, Matrix Reasoning, “What was where?” Identification, 

Choice RT, Choice RT accuracy, Serial subtraction accuracy, Response Inhibition 

“incongruent cost” to RT, and Response Inhibition “incongruent cost” to accuracy). 

In chapters 4 to 8, associations between cognitive outcomes and the demographic and 

life-course predictors (sex, age at assessment, education, childhood cognitive ability, 
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adult socioeconomic position, presence of a neurological or psychiatric condition) were 

reported based on all 502 participants, whereas associations between cognitive 

outcomes and the biomarker predictors (β-amyloid, WMHV, whole brain volume, APOE) 

were reported based on the sub-sample of cognitively-normal participants with complete 

biomarker data (n = 406). For the purpose of summarising all the predictors together in 

the current chapter, only the sub-sample of cognitively-normal participants with complete 

biomarker data were included. This explains why the regression coefficients for the 

demographic and life-course predictors (and the R-squared values for the models) are 

not identical to those reported in previous chapters.  

Correlations between cognitive outcomes were measured using Pearson’s correlation 

coefficient, or Spearman’s correlation coefficient if either or both of the outcomes had a 

skewed distribution (as per the list above). The PACC was not included in these 

correlation analyses because its sub-tests were already included as outcomes in their 

own right, so correlations between the PACC and its own sub-tests are present by 

definition and are not informative. 

 

9.1.3. Results and commentary 

 

Results of the multivariable regressions for each cognitive outcome are shown in Table 

9-2. Some observations on the patterns of results are presented below, but a fuller 

discussion is provided in Chapter 10 which summarizes the findings of this thesis and 

interprets them in the context of the literature. 

Overall it appears that sex differences were more evident on the standard paper-and-

pencil tests and the serial subtraction task (with a consistent advantage for females, 

especially on memory-based tests, and a substantial advantage for males on subtraction 

speed), whereas sex differences on the computerised tests were much smaller in 

magnitude and not statistically significant (Table 9-2). (In Chapter 5 I reported sex 

differences on the “What was where?” computerised test when the full sample of 502 

participants was included, which are now in the same direction but not statistically 

significant).  

Childhood cognitive ability influenced performance on at least one outcome of every 

cognitive test (Table 9-2). (For the circle-tracing task, although it did not have a significant 

effect on the summary outcomes reported in this chapter, it was associated with 

differences in the time taken to detect and correct errors – see section 8.3.2.1.3.)  
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Education also had a consistent effect on many cognitive outcomes, whereas 

socioeconomic position was a much less notable predictor (Table 9-2).  

Most cognitive outcomes did not have any association with age at assessment, which 

was as expected given the extremely narrow age range of Insight 46 participants (2.6 

years – see section 3.6). However unexpected age effects were observed on the Matrix 

Reasoning, Choice RT and Circle-tracing tasks, as detailed in the relevant chapters (4, 

6, 8). Possible reasons for these findings are discussed in Chapter 10. 

Aβ+ participants consistently performed worse than Aβ- participants across a range of 

cognitive domains, with the greatest differences in Matrix Reasoning and Choice RT 

consistency (Table 9-2, Figure 9-1). On the eight measures where the difference was 

statistically significant, the effect size was reasonably consistent at around -0.3 SD. 

Larger whole brain volume (adjusted for total intracranial volume) was associated with 

better performance on three cognitive measures which all have a speed component – 

Digit-Symbol, Circle-tracing speed, and Subtraction speed – with the largest effect on 

Digit-Symbol (Table 9-2, Figure 9-2). It is interesting that this relationship between whole 

brain volume and speed was shown on three tasks that all have very different demands 

in terms of what the participant is asked to do. WMHV was only associated with Digit-

Symbol processing speed, and APOE-ε4 was associated with superior short-term 

memory on the Logical Memory and “What was where?” tasks. These findings are 

discussed in greater detail in Chapter 10. 
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Figure 9-2. Associations between whole brain volume and cognition 

Solid lines indicate predictions from the multivariate models adjusted for total intracranial volume, 
sex, age at assessment, childhood cognitive ability, education, adult socioeconomic position, 
APOE-ε4, amyloid status and white matter hyperintensity volume (WMHV). Dashed lines 
represent 95% confidence intervals. TIV = total intracranial volume. 

 

Correlations between the cognitive outcomes are shown in Table 9-3. As a general rule, 

the standard paper-and-pencil tests were moderately correlated with each other, but the 

computerised tests were less so. This could be because, by having multiple metrics on 

the computerised tests, these metrics tend to hone in on more specific aspects of 

cognition, and hence reflect less of task-general demands. It could also be related to 

other properties of the tests, for example the standard tests all involved the participant 

responding verbally to the tester (with the exception of Digit-Symbol) and I would argue 

that the potential for adopting different approaches was relatively limited, whereas my 

impression from administering the computerised tests is that they offered more scope for 

adopting different strategies. 

Within the six memory measures (FNAME-total, Logical Memory Immediate, Logical 

Memory Delayed, “What was where?” identification, “What was where?” localisation, and 

“What was where?” binding), correlations were only moderate at best (apart from the 

expected strong correlation between Logical Memory Immediate and Delayed, which not 
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only assessed similar cognitive processes but were based on identical test stimuli). 

Clearly these various memory tests encompassed a range of demands (visual, verbal, 

differing delay times etc.), so the specific set of cognitive processes that underlie 

performance on each test are different, and all are relevant to different aspects of 

memory in daily living. It is also likely that the tests were affected to differing degrees by 

other factors such as attention and confidence; anecdotally I observed that some 

participants commented that they experienced mind-wandering during the “What was 

where?” task, and some commented that they expected to perform poorly on the FNAME 

task. This highlights the value of including multiple measures of memory in a cognitive 

battery and illustrates the need for cautious interpretation of results, for example when 

using limited memory measures to define “amnestic” cognitive impairment or when 

equating results from studies that have used different memory tests. 
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9.2. Which combination of tests is most sensitive to amyloid 

status? 

 

9.2.1. Rationale 

 

As discussed in section 2.5.1, cognitive composites are increasingly being used as 

outcome measures in research studies in preclinical AD, based on evidence that a 

combination of cognitive measures covering different cognitive domains may be more 

sensitive to subtle decline than any single measure. Given that I have identified group 

differences between Aβ+ and Aβ- participants on a range of different cognitive measures, 

this leads to the question: which combination of these cognitive measures is most 

sensitive to amyloid status?  It is possible that there is an optimum combination of 

measures sufficient to detect differences in cognition between the groups, beyond which 

the addition of further measures is redundant. I aimed to investigate this by modelling 

amyloid status as a function of different combinations of cognitive measures from the 

Insight 46 battery, plus relevant demographic and genetic predictors. 

As age and APOE-ε4 are by far the biggest risk factors for Aβ positivity (ARUK Dementia 

Statistics Hub; Prince et al., 2014), the strongest predictor in a model of amyloid status 

among Insight 46 participants, all approximately the same age, will clearly be APOE-ε4. 

As I have reported that the differences in cognition between Aβ+ and Aβ- participants 

were very subtle with overlapping distributions, and by definition all participants included 

in these analyses were cognitively-normal, it is unrealistic to expect that the results of a 

cognitive assessment alone could be a good predictor of dichotomous amyloid status on 

an individual level. However, it is still reasonable to hypothesise that a model which 

includes sensitive cognitive measures could fit the distribution of amyloid status better 

than a model based purely on APOE genotype and demographic factors, and to use this 

approach to evaluate which combination of cognitive measures adds the most value. 

One motivation for developing this approach as part of my PhD work is that once the 

Insight 46 follow-up assessments are completed and the cognitive measures can be 

expressed in terms of change over a ~2-year interval, this type of model may be useful 

for determining the combination of cognitive tests that is most sensitive to Aβ-related 

cognitive decline. There is consistent evidence that accelerated decline in cognition can 

be detected in Aβ+ individuals over time, on the PACC and other measures, (see 

sections 2.3 and 4.1) and the question of which combination of cognitive tests is most 

sensitive to such decline is a pertinent one for clinical trials.  
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As discussed in section 2.5.1, cognitive composites are generally constructed using one 

of two approaches: measures can either be selected based on their face validity and 

prior evidence for their sensitivity – as in the case of the PACC (Donohue et al., 2014), 

or they can be selected using a data-driven approach (e.g. Ayutyanont et al., 2014; 

Langbaum et al., 2014; Tariot et al., 2018). Both approaches require informed decisions 

to be made about which cognitive measures should be considered in the first place, but 

the first approach allows a higher priority to be placed on selecting tests that cover a 

range of cognitive domains and on accounting for practical considerations such as the 

time, equipment and expertise required to administer the assessments, depending on 

the intended application. Given that I have already used my judgment to define the most 

relevant summary outcomes for each cognitive test in the Insight 46 battery, and I have 

already drawn conclusions about the sensitivity of each cognitive measure to amyloid 

status, I decided to use this information to propose several combinations of cognitive 

measures and to compare them against each other, rather than comparing every 

possible combination of the measures. (With 19 summary outcome measures, the 

number of possible combinations of any number of them is over 500,000!) 

As the PACC has emerged as a front-running outcome measure in therapeutic trials in 

preclinical AD (Weintraub et al., 2018), I decided to frame my analyses in terms of 

starting with the PACC and testing whether the step-wise addition of other promising 

cognitive measures into the model yields improvements. After evaluating this and 

selecting the best combination of cognitive measures, I aimed to quantify how much this 

combination of cognitive measures could improve the prediction of an individual’s 

amyloid status compared to a prediction based simply on their APOE genotype and 

demographic characteristics.  

   

9.2.2. Methods 

 

The first step in choosing which measures to add, and in which order, was to exclude 

those tests which form a part of the PACC composite, since performance on those tests 

is already captured by inclusion of the PACC in the model. Note that although the PACC 

contains only the delayed recall score from the logical memory test (not the immediate 

recall score), I excluded the immediate recall score from consideration as well, as it 

overlaps very closely with the delayed in terms of what it measures (Abikoff et al., 1987). 

From the remaining outcomes, I considered only those for which there was a statistically 

significant difference between Aβ+ and Aβ- participants and ordered these by the effect 

size of the association with amyloid status (see Table 9-2, Figure 9-1). The outcome with 
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the largest effect size would be added to the model first, followed by step-wise addition 

of the other outcomes in decreasing order of effect size. I decided to make one alteration 

to this order based on the pragmatic fact that the serial subtraction and circle-tracing 

tasks are administered concurrently, so once subtraction speed is added, the circle-

tracing outcome could be added with no extra time or effort for the tester or participant. 

Therefore, I moved the circle-tracing outcome up one place in the list, which seemed 

justified since its effect size was virtually identical to the next largest effect size (“What 

was where?” identification).  

This yielded the following list, (see Table 9-1 for definitions of each outcome):  

1. Matrix Reasoning (d = -0.40) 

2. Choice RT consistency (d = -0.37) 

3. Subtraction speed (d = -0.32) 

4. Circle-tracing “indirect cost” to accuracy (d = -0.29) 

5. “What was where?” identification (d = -0.30) 

I also considered the cognitive domains that are covered by these measures and 

concluded that there is no reason to assume that any measures would be redundant 

since they all tap into different abilities and processes.  

This gave me 7 models to test, where the outcome is amyloid status and the predictors 

are as follows: 

Model A: sex, age at assessment, childhood cognitive ability, education, adult 

socioeconomic position, APOE-ε4 (carrier or non-carrier) 

Model B: model A + PACC 

Model C: model B + Matrix Reasoning 

Model D: model C + Choice RT consistency 

Model E: model D + Subtraction speed 

Model F: model E + Circle-tracing “indirect cost” to accuracy  

Model G: model F + “What was where?” identification 

 

To compare how well these models predict amyloid status, I adopted a cross-validation 

approach. Cross-validation is a technique often used in machine-learning to evaluate the 

quality of a model in a relatively unbiased way by splitting the dataset into groups, called 

‘folds’, and using these to generate multiple estimates of the model’s accuracy. This has 
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advantages over simply evaluating a model’s goodness-of-fit across the whole dataset 

because such an approach is vulnerable to over-fitting, meaning that the model may not 

generalise well to other datasets and will be of limited usefulness for predicting new 

results. Cross-validation is less likely to over-estimate a model’s accuracy and can give 

increased confidence in the generalisability of the results (Brownlee, 2018).  

I conducted k-fold cross-validation, which involves splitting the dataset into k folds, where 

k is a number to be decided depending on the properties of the dataset (see below). The 

principle of the process is that one fold is left out and the model is fitted on the remaining 

k-1 folds and its accuracy evaluated, then this process is then repeated a total of k times, 

leaving out a different fold each time. Comparing the model’s accuracy across each 

repetition allows relatively unbiased conclusions to be drawn about its accuracy. 

When deciding how many folds to split the data into, the optimum number depends on 

the sample size and the distribution of the outcome to be predicted. A large number of 

folds is desirable for reducing bias, as the sub-sample used for each repetition (the k-1 

folds) is increasingly likely to be representative of the whole sample. However, a larger 

number of folds incurs extra computational burden and means that the sub-samples used 

for each repetition increasingly overlap with each other and become basically equivalent 

to the full sample, so are similarly vulnerable to overfitting (Brownlee, 2016). I used 10 

folds as this is widely accepted as the default recommended number (Brownlee, 2018).  

In order to compare the 7 different models, I used an information criterion and a measure 

of accuracy, as explained below.  

Information criteria measure how much information is lost by using the model to 

represent the “true” processes that generated the data and are commonly used for 

selecting a statistical model from several candidates. I used the Akaike information 

criterion (AIC), which balances goodness-of-fit against complexity to give an overall 

measure of the quality of a model. Balancing these two factors is desirable because 

goodness-of-fit nearly always improves with the addition of extra parameters but this 

extra complexity can lead to over-fitting – simpler models are generally preferred as they 

are more robust and generalisable (Bozdogan, 1987). AIC is defined as follows: 

AIC = 2k – 2(ln L)        (Equation 1) 

where k is the number of parameters and L is the likelihood function (a measure 

of goodness-of-fit) 

Thus, AIC penalises complexity by including a term that increases with the number of 

parameters. A lower value of AIC indicates a better model, one that minimises the 

information loss. The AIC values of two models can be compared to calculate the 
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probability that one minimises the information loss better than the other. For example, if 

model X has a lower AIC value than model Y, the probability that model Y minimises the 

information loss better than model X is:  

 𝑒((𝐴𝐼𝐶𝑋−𝐴𝐼𝐶𝑌)/2)       (Equation 2) 

While AIC allows models to be compared against each other, it does not provide an 

absolute measure of a model’s quality. In order to quantify how accurately each model 

can predict an individual’s dichotomous amyloid status, I used Receiver Operating 

Characteristic (ROC) curves, a common technique for assessing the accuracy of 

diagnostic tests where the classification is either positive or negative. A ROC curve plots 

the detection rate (rate of ‘true positives’) against “Type 1 errors” (rate of ‘false positives’) 

for every possible cut-point. In this case the possible cut-points are predicted 

probabilities of being Aβ+. The area under the curve (AUC) is a measure of the accuracy 

of the model, with an area of 0.5 representing a useless model (one that classifies 

individuals no better than chance) and an area of 1 representing a perfect model (one 

that correctly classifies all individuals).  

Therefore, my strategy for selecting the best model was to minimise AIC and maximise 

AUC. 

As explained earlier, after identifying the best model, I aimed to test how well this model 

can predict an individual’s amyloid status. To avoid circularity, I reserved a proportion of 

the sample – hereafter referred to as the “validation set” – before conducting the cross-

validation so that I could carry out this predictive testing using data that had played no 

part in the model selection process. 

A summary of the methods is presented in Figure 9-3, with explanatory notes in the text 

below. Out of the 406 cognitively-normal participants with complete biomarker data, 21 

were missing data for one or more of these cognitive measures so were excluded from 

this section of the analyses, leaving a sample of 385. As the missing data were mostly 

due to random technical problems (see section 3.3), excluding these individuals is 

unlikely to bias the sample, whereas including them would mean that models A to G were 

being tested on variable sample sizes.
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Figure 9-3. Flow-chart illustrating methods for cross-validation 

 

Note 1. I chose to assign 20% of the sample to the validation set as this is a sufficient 

proportion to be representative of the dataset but allows the majority of the sample to be 

used in selecting the best model. It was important to ensure that each group contained 

a representative proportion of Aβ+ participants, since this is the outcome being modelled. 

I also balanced the groups for sex and childhood cognitive ability since these were the 

strongest and most consistent predictors of individual differences in cognition (see 

section 9.1). To achieve this, I ordered the dataset by amyloid status then sex then 

childhood cognitive ability, and applied the following repeating sequence to the dataset 

from top to bottom to assign each participant to a group: V, F1, F2, F3, F4, V, F5, F6, 

F7, F8, V, F9, F10, F1, F2, V, F3, F4, F5, F6, V, F7, F8, F9, F10. (V = validation set; F = 

fold). 

Note 2. In this context, “fit the models” means run a logistic regression model with an 

outcome of amyloid status and predictors as specified earlier for models A to G. All 

Reserve 20% of the data as a validation set and 
split the remaining dataset into 10 equally-sized 
folds, ensuring that all groups are balanced for 
important variables (see Note 1). 

Leave out one fold and fit models A, B, C, D, E, F 

and G using the remaining 9 folds (see Note 2). 

Generate measures of the goodness-of-fit and 

accuracy of each model (see Note 3). 

Using the information generated by all 10 
repetitions, conclude which model is best (see 
Note 4). 

Evaluate how well this model can predict the 
amyloid status of individuals in the validation set 

(see Note 5). 

Repeat a total of 
10 times, leaving 
out a different fold 
each time. 
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cognitive predictors were in the form of z-scores with a higher score indicating better 

performance (see Table 9-1).  

Note 3. As explained earlier, the goodness-of-fit measure was Akaike’s Information 

Criterion (AIC) and the accuracy measure was the area under the ROC curve (AUC).  

Note 4. For each of models A to G, I calculated the mean AIC and mean AUC across 

the ten repetitions, and the standard errors of these means. I then chose the best model 

based on the aim to minimise AIC and maximise AUC (as explained above).  

Note 5. The probability that an individual is amyloid positive can be predicted from the 

logistic regression model using an equation of the following form: 

𝑝(Aβ+) = 1/(1 + 𝑒−(constant + coef1.predictor1 + coef2.predictor2… )) 

         (Equation 3) 

where p(Aβ+) is the probability of being amyloid positive, and ‘coef’ is the regression 

coefficient that corresponds to each predictor.  

I fitted the chosen model to all ten folds to get the values for the constant and coefficients, 

then for each participant in the validation set I used the equation to predict their 

probability of being Aβ+. To assess the accuracy of these predictions, I compared them 

to the actual classifications of amyloid status derived from the PET scans. As the 

probability scores had a skewed distribution, I used a non-parametric test (Wilcoxon’s 

rank sum) to determine whether the predicted probabilities were higher for the Aβ+ group 

than the Aβ- group.  

 

 

9.2.3. Results 

 

The characteristics of the groups are shown in Table 9-4. 
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Table 9-4. Characteristics of the validation set and the 10 folds 

 n % female % Aβ+ 
Childhood 
cognitive 

ability (mean) 

% APOE-ε4 
carrier 

Validation set 77 50.7 18.2 0.41 35.1 

Fold 1 31 48.4 16.1 0.43 25.8 

Fold 2 31 51.6 19.4 0.34 32.3 

Fold 3 31 51.6 19.4 0.39 38.7 

Fold 4 31 51.6 19.4 0.44 25.8 

Fold 5 31 51.6 19.4 0.51 38.7 

Fold 6 31 48.4 19.4 0.42 38.7 

Fold 7 31 45.2 19.4 0.36 16.1 

Fold 8 31 45.2 19.4 0.43 25.8 

Fold 9 30 46.7 16.7 0.41 30.0 

Fold 10 30 46.7 16.7 0.44 23.3 

 

 

9.2.3.1. Selection of best model 

Table 9-5 shows the results for each model in each of the ten repetitions. An example of 

the ROC curves for models A to G is provided in Figure 9-4, illustrating results from the 

first repetition. Figure 9-5 summarises the AUC and AIC statistics for each model 

averaged across the ten repetitions.  

In each of the ten repetitions, the area under the curve (AUC) slightly increased from 

Models A to G (Table 9-5). This is consistent with the hypothesis that adding additional 

cognitive measures would improve the accuracy of the model. As illustrated in Figure 

9-5, the rise in AUC value was greatest between models A and D, after which further 

gains appeared to be minimal. However, there was no evidence that these differences 

in accuracy were statistically significantly, as the confidence intervals of the AUCs of 

models A to G overlapped in each repetition.  

Regarding Akaike’s Information Criterion (AIC), each of the ten repetitions showed a 

consistent pattern whereby AIC increased slightly from model A to B, then decreased 

from model B to D (Table 9-5, Figure 9-5). Between models D to G the AIC values were 

more variable but remained broadly similar (Table 9-5, Figure 9-5). As a lower value of 

AIC is preferred, this suggests that the inclusion of the first three additional cognitive 

measures (PACC, Matrix Reasoning, Choice RT consistency) improved the quality of the 
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model (in spite of the fact that AIC is designed to penalize the number of parameters). 

The magnitude of these differences in AIC values is not negligible; for example, by 

comparing the mean AIC values for models A and D, using Equation 2 (page 262) above, 

we can conclude that the probability of model A being better than model D is only 5%. 

Based on these results, there was no evidence that the addition of further cognitive 

measures (Subtraction speed, Circle-tracing “indirect cost” to accuracy, and “What was 

where?” identification) improved the quality of the model.  

In summary, the AUC and AIC statistics suggest that a model for amyloid status can be 

improved by the addition of cognitive measures (on top of demographic characteristics 

and APOE). These results tentatively suggest that model D appears the most promising, 

as adding additional cognitive measures beyond those included in model D may not yield 

improvements, and may not merit the extra time and effort involved in generating these 

measures (both for participants and researchers). However, it is important to note that 

these results are not conclusive and must be interpreted with caution given the lack of 

statistically significant differences in the AUCs.  
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Table 9-5. Results of the cross-validation process 

Repetition Model AOC (95% CIs) AIC 

1 

A 0.78 (0.71, 0.84) 242.6 

B 0.78 (0.72, 0.84) 243.6 

C 0.80 (0.47, 0.85) 240.9 

D 0.80 (0.75, 0.86) 239.9 

E 0.80 (0.75, 0.86) 241.9 

F 0.81 (0.76, 0.87) 240.3 

G 0.81 (0.76, 0.87) 242.3 

2 

A 0.77 (0.70, 0.84) 240.2 

B 0.79 (0.73, 0.85) 241.0 

C 0.80 (0.75, 0.86) 236.3 

D 0.82 (0.77, 0.88) 230.8 

E 0.82 (0.77, 0.88) 232.8 

F 0.83 (0.77, 0.88) 232.0 

G 0.83 (0.77, 0.88) 233.0 

3 

A 0.79 (0.72, 0.85) 237.3 

B 0.80 (0.74, 0.86) 237.3 

C 0.82 (0.76, 0.87) 232.5 

D 0.83 (0.77, 0.88) 229.4 

E 0.83 (0.77, 0.88) 231.1 

F 0.83 (0.78, 0.88) 231.2 

G 0.83 (0.78, 0.88) 233.1 

4 

A 0.77 (0.71, 0.84) 238.9 

B 0.79 (0.73, 0.85) 239.3 

C 0.81 (0.76, 0.87) 233.6 

D 0.82 (0.77, 0.87) 232.9 

E 0.82 (0.77, 0.88) 234.3 

F 0.83 (0.78, 0.88) 232.7 

G 0.83 (0.78, 0.88) 233.9 

5 

A 0.77 (0.71, 0.84) 240.4 

B 0.78 (0.72, 0.84) 241.7 

C 0.80 (0.74, 0.86) 237.1 

D 0.82 (0.77, 0.88) 232.9 

E 0.82 (0.76, 0.88) 234.8 

F 0.83 (0.77, 0.88) 233.6 

G 0.83 (0.78, 0.88) 235.0 

6 

A 0.78 (0.71, 0.84) 241.1 

B 0.79 (0.73, 0.85) 242.3 

C 0.80 (0.75, 0.86) 238.5 

D 0.82 (0.77, 0.88) 232.6 

E 0.82 (0.77, 0.88) 234.1 

F 0.83 (0.77, 0.88) 234.5 

G 0.83 (0.77, 0.88) 235.9 
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Repetition Model AOC (95% CIs) AIC 

7 

A 0.78 (0.71, 0.84) 240.5 

B 0.79 (0.72, 0.85) 241.0 

C 0.79 (0.74, 0.85) 240.1 

D 0.81 (0.75, 0.87) 235.3 

E 0.81 (0.75, 0.87) 237.1 

F 0.81 (0.76, 0.87) 236.3 

G 0.82 (0.76, 0.87) 237.1 

8 

A 0.78 (0.72, 0.85) 238.5 

B 0.79 (0.73, 0.85) 239.8 

C 0.81 (0.75, 0.86) 234.4 

D 0.82 (0.76, 0.87) 233.6 

E 0.82 (0.76, 0.87) 235.6 

F 0.83 (0.78, 0.89) 229.6 

G 0.83 (0.78, 0.88) 231.3 

9 

A 0.77 (0.70, 0.83) 245.7 

B 0.77 (0.71, 0.84) 245.7 

C 0.79 (0.73, 0.85) 243.6 

D 0.80 (0.75, 0.86) 241.4 

E 0.80 (0.75, 0.86) 243.3 

F 0.81 (0.75, 0.87) 241.4 

G 0.81 (0.76, 0.87) 234.3 

10 

A 0.76 (0.69, 0.83) 244.6 

B 0.78 (0.72, 0.84) 244.4 

C 0.79 (0.73, 0.85) 243.3 

D 0.80 (0.75, 0.86) 240.5 

E 0.80 (0.75, 0.86) 242.5 

F 0.81 (0.75, 0.86) 242.0 

G 0.81 (0.76, 0.87) 243.4 

 

Repetition numbers correspond to the fold that was left out (e.g. in repetition 1 the models were 

fitted using all participants in folds 2-10). See section 9.2.2 for details of the predictors included 

in models A to G.  

AIC = Akaike’s Information Criterion; AUC = Area under the curve.  
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Figure 9-4. Receiver Operating Characteristic (ROC) curves for models A to G in 
repetition 1  

Repetition 1 involved fitting the models to folds 2-10. Areas under the curves are quoted in 
Table 9-5. See section 9.2.2 for details of the predictors included in models A to G.   
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Figure 9-5. Mean AUC and AIC values for Models A to G 

AUC (navy circles) is plotted on the left-hand y-axis. AIC (maroon squares) is plotted on the right-
hand y-axis. Markers show the mean value across the ten repetitions of each model, and error 
bars show the standard error of the mean. A preferred model maximises AUC and minimises AIC. 
See section 9.2.2 for details of the predictors included in models A to G.  
AUC = Area under the curve; AIC = Akaike’s Information Criterion 

 

 

9.2.3.2. Prediction of amyloid status in validation set 

Based on the above results I selected model D for testing in the validation set (the group 

of 77 individuals whose data were not included in the model-selection process). I used 

model D to calculate a probability score for each participant – their predicted probability 

of being Aβ+ according to the model (see Note 5 of Figure 9-3).  

The predicted probabilities were higher for Aβ+ (mean = 36%) than Aβ- participants 

(mean = 19%), although the difference was not statistically significant (z = -1.73, p = 

0.08). To examine whether the model was doing any better than simply accounting for 

APOE-ε4, I compared the predicted probabilities for Aβ+ and Aβ- participants in the ε4-

carrier and non-carrier groups separately. In the ε4-carrier group, the predicted 

probabilities were higher on average for Aβ+ participants than Aβ- participants (z = -3.10, 

p =0.002), but in the non-carrier group the predicted probabilities did not differ between 

Aβ+ and Aβ- participants (z = 0.21, p = 0.83) (Figure 9-6). 
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Figure 9-6. Probabilities of β-amyloid positivity for participants in the validation 
set, based on predictions from Model D  

Box plots show the distribution of probability scores, which are predictions of the probability that 
an individual is β-amyloid positive. These probability scores were calculated based on the 
equations for Model D that were derived from the cross-validation process (see Note 5 of Figure 
9-3). APOE-ε4 carriers and non-carriers are plotted separately, further separated into Aβ+ and 
Aβ- (the true amyloid status according to PET scan). Numbers of participants in each group are 

as follows: non-carrier Aβ- = 43; non-carrier Aβ+ = 7; ε4-carrier Aβ- = 20; ε4-carrier Aβ+ = 7. 

 

 

9.2.4. Conclusions 

 

In summary, it is not possible to conclude from these results that one combination of 

cognitive measures was more sensitive to dichotomous amyloid status than another. 

There was an indication that sensitivity (true positives) was improved by the inclusion of 

additional cognitive measures (Matrix Reasoning and Choice RT consistency) compared 

to the PACC alone, but the evidence was inconclusive due to the lack of statistically 

significant differences in accuracy between the various models. This is not unexpected 

given that the differences in cognition between Aβ+ and Aβ- participants were so subtle 

and the majority of variance in cognitive performance was unexplained (see 9.1.3), so 

cognitive scores are not a strong predictor of amyloid status on an individual level at age 

70. Once follow-up data have been collected and changes in cognitive performance over 
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time can be used as predictors in the model, I would like to repeat this approach to 

investigate the most sensitive combination of measures for detecting Aβ-related decline 

in cognition.  

The results from testing the chosen model in the validation set confirmed that the chosen 

model does not accurately predict dichotomous amyloid status on an individual level. On 

a group level (i.e. does the model predict amyloid status better than predictions purely 

based on APOE genotype?), the results were in the expected direction for ε4-carriers, 

but again do not constitute convincing evidence, and statistical comparisons were limited 

by the small sample size of the validation set. The question of whether these sorts of 

predictive models may have practical applications is explored in the following section.  

 

 

9.3. Potential applications for clinical practice and clinical trials 

 

The final section of this chapter focuses on potential applications of the results reported 

in this thesis. I decided to approach this in two ways. Firstly, it could be of value in a 

clinical setting to estimate the likelihood of Aβ positivity for an individual who does not 

meet criteria for dementia or MCI but falls into an “impaired” range on one or more 

cognitive tests. Secondly, eligibility for future therapeutic trials in preclinical AD is likely 

to be based on having an Aβ+ PET scan. This was the case in the first clinical trial in 

preclinical AD, the A4 trial (Sperling et al., 2014), which is currently still ongoing, as well 

as in the Janssen EARLY trial 

https://clinicaltrials.gov/ct2/show/NCT02569398?term=JNJ-54861911, which was 

terminated in 2018 due to liver toxicity https://www.janssen.com/update-janssens-bace-

inhibitor-program. It would be valuable to know whether the addition of a cognitive 

assessment into the screening process could improve efficiency by reducing the number 

of PET scans required to recruit the desired number of Aβ+ individuals. These two 

potential applications are explored in the following two sub-sections. This section is 

purely exploratory and partly a vehicle for me to reflect on the meaning of the analyses 

and results I have reported.  

 

https://clinicaltrials.gov/ct2/show/NCT02569398?term=JNJ-54861911
https://www.janssen.com/update-janssens-bace-inhibitor-program
https://www.janssen.com/update-janssens-bace-inhibitor-program
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9.3.1. Application for clinical practice 

 

9.3.1.1. Rationale 

In clinical neuropsychology, the standard definition of cognitive impairment is below the 

fifth percentile of the normal healthy population. If an individual shows evidence of 

cognitive impairment on a clinical neuropsychological assessment, the next steps in the 

diagnostic process will be guided by evidence about the likelihood of possible causes. I 

decided to investigate the prevalence of Aβ positivity in the lowest-performing five 

percent of Insight 46 participants, as this could be of potential use to clinicians when 

dealing with patients who show similar evidence of possible cognitive impairment. I 

hypothesised that Aβ+ participants would be more likely to fall into the “impaired” range. 

 

9.3.1.2. Methods 

Before defining the fifth percentile of performance on each test, participants with 

dementia (n=3) were excluded. Participants with other neurological and psychiatric 

conditions (see section 3.2.3) were not excluded as the criteria for those conditions were 

primarily designed for analyses involving biomarkers (to ensure exclusion of potentially 

confounding comorbidities) and do not necessarily imply clinical symptoms or cognitive 

impairment. As this analysis aims to be relevant to the general population who may 

present to clinic without having had prior neuroimaging or screening for MCI, the sample 

was kept as representative as possible. From the sub-sample of dementia-free 

participants with complete biomarker data (n=443), participants who performed below 

the fifth percentile on each cognitive outcome were identified (see Table 9-1 for 

definitions of the 19 different outcomes). For each cognitive outcome, a chi-square test 

was conducted to assess whether the prevalence of Aβ positivity among individuals in 

this “impaired” group was higher than in the “non-impaired” group (those whose 

performance was greater than or equal to the fifth percentile).  

For each participant, I totalled up the number of cognitive measures on which their 

performance was below the fifth percentile. As some participants were missing data for 

one or more cognitive tests (mostly due to technical problems – see section 3.3), this 

total was converted into a proportion by dividing it by the number of tests completed. 

Wilcoxon’s rank sum test was used to assess whether Aβ+ participants tended to fall into 

the “impaired” range on a greater proportion of tests than Aβ- participants.  

 



274 
 

9.3.1.3. Results 

The lowest-performing five percent of participants equates to approximately 22 

individuals in this sample, but the exact number varies from one cognitive test to another 

depending on the distribution of scores.   

In sixteen out of the nineteen cognitive outcomes, the prevalence of Aβ positivity in the 

lowest-performing five percent of participants was greater than 18.3%, which was the 

prevalence in the sample as a whole (Figure 9-7). However, these differences were not 

statistically significant, with the exception of the Matrix Reasoning test, on which the 

prevalence of Aβ positivity in the “impaired” group (38%) was significantly higher than in 

the “non-impaired” group (χ2 = 6.0, p = 0.014). 

On average, Aβ+ participants performed below the fifth percentile on a greater proportion 

of tests than Aβ- participants (Aβ+ median = 0.05; Aβ- median = 0; z = -2.24, p = 0.02). 

For Aβ+ participants, the median value is equivalent to performing below the fifth 

percentile on one out of nineteen tests.  

 

9.3.1.4. Conclusions 

With the exception of the Matrix Reasoning test, these results do not support the 

hypothesis that Aβ+ participants were more likely to fall into the “impaired” range on 

cognitive tests, although statistical comparisons between the “impaired” and “non-

impaired” groups were limited by the small sample size of the “impaired” group. It is 

interesting that Matrix Reasoning was the test on which Aβ+ participants were most likely 

to fall into the “impaired” range, as this complements the results of the main analyses 

where the Matrix Reasoning stood out as the test with the largest group difference 

between Aβ+ and Aβ- participants (see section 9.1). However it is important to note that 

Matrix Reasoning scores were generally high in Insight 46 as discussed previously (see 

Chapter 4) so it may be misleading to refer to the lowest 5% of scores as an “impaired” 

range relative to the wider population. Further studies would be needed to validate 

normative data for healthy adults of this age. 
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9.3.2. Application for clinical trial recruitment 

 

9.3.2.1. Rationale 

The second application I chose to explore is whether a sensitive battery of cognitive 

measures may improve the efficiency of screening for a clinical trial in preclinical AD, 

where eligibility is conditional on having an Aβ+ PET scan. As the prevalence of Aβ 

positivity is still relatively low in healthy older adults who would be the target population 

for such a trial (Jansen et al., 2015), screening is a time-consuming and expensive 

process (~£1500 per PET scan) with a low success rate. Cognitive assessment is non-

invasive and cheap, so could potentially be used to pre-screen large numbers of people, 

in order to decide which individuals should proceed to have a PET scan. The purpose of 

the pre-screening process would be to exclude individuals who are highly likely to be 

Aβ-. A recent analysis of three large cohorts concluded that a pre-screening algorithm 

for Aβ positivity based on cognitive, genetic and socio-demographic predictors could 

reduce recruitment costs by about 20% by reducing the number of PET scans required 

(Ansart et al., 2019). 

In section 9.2 I concluded that the optimum combination of cognitive measures for 

detecting Aβ positivity was the following three, with the caveat that this model was not 

conclusively better than the others: PACC, Matrix Reasoning, Choice RT consistency. In 

this section, I aimed to quantify the extent to which this cognitive battery might improve 

the efficiency of the screening process and provide an estimate of cost-effectiveness. I 

decided to investigate this question in a scenario where APOE genotype is unknown, 

since that is the most realistic scenario for clinical trial recruitment. Although commercial 

companies offering APOE genotyping have appeared in the last few years, APOE testing 

is not available clinically due to its low prognostic value on an individual level, and is 

generally not recommended (National Institute on Aging, 2015; Alzheimer’s Society, 

2016a), so the vast majority of people do not know their APOE genotype. To date, clinical 

trials targeting Aβ+ cognitively-normal older adults – the A4 trial (Sperling et al., 2014) 

and the Janssen EARLY trial 

https://clinicaltrials.gov/ct2/show/NCT02569398?term=JNJ-54861911 – have used Aβ-

PET to determine eligibility and have not included APOE genotyping in the screening 

process. 

 

 

https://clinicaltrials.gov/ct2/show/NCT02569398?term=JNJ-54861911
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9.3.2.2. Methods 

I imagined a clinical trial which aims to recruit 100 Aβ+ individuals, and compared two 

screening scenarios: 1) no pre-screening; 2) pre-screening with a cognitive assessment.  

In the “no pre-screening” scenario, the number of individuals who should have a PET 

scan to meet the recruitment target can be estimated from the prevalence of Aβ positivity 

among cognitively-normal participants in the Insight 46 sample (18.3%). 

For the “pre-screening scenario” I conducted a Receiver Operating Characteristic (ROC) 

analysis to select an optimal cut-point that would be used as a threshold for determining 

whether or not participants proceeded to have a PET scan. The outcome was amyloid 

status, and the model included the following cognitive measures as predictors: PACC, 

Matrix Reasoning and Choice RT consistency (see Table 9-1 for definitions). The sample 

was the 406 cognitively-normal participants with complete biomarker data.  

I chose an optimal cut-point by maximising Youden’s index, which is defined as follows: 

Youden’s index = Sensitivity + Specificity – 1  

Youden’s index falls between 0 for a useless model (predicts the outcome no better than 

chance) and 1 for a perfect test (predicts the outcome perfectly). 

For any screening test we have a 2x2 table as follows: 

 TEST 

TRUE Positive Negative 

Positive true positive (TP) false negative (FN) 

Negative false positive (FP) true negative (TN) 

 
 

These values relate to the ROC analysis according to the following three equations: 

1. Sensitivity = TP / (TP + FN) 

2. Specificity = TN / (TN + FP) 

3. Accuracy = (TP + TN) / (TP + TN + FN + FP) 

 

At any given cut-point, values are defined for the model’s sensitivity, specificity and 

accuracy (proportion of subjects correctly classified). Therefore if a clinical trial needs to 

recruit 100 Aβ+ individuals, the value of “true positives” is set to 100 and the other three 

values (false negative, false positive, true negative) can be determined by 

simultaneously solving the three equations. The number of individuals required at each 
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stage of the screening process to achieve the recruitment target can then be calculated 

as follows:  

Number required for pre-screening = TP + FN + TN + FP 

Number who would proceed from pre-screening to PET scan = TP + FP 

 

To evaluate cost-effectiveness I assumed that a PET scan costs £1500 and a cognitive 

assessment costs £50 (similar to the estimated cost assumed in Ansart et al. (2019)). 

 

9.3.2.3. Results 

A ROC curve for the pre-screening scenario is shown in Figure 9-8, with the chosen cut-

point. Note that the lower bound of the 95% confidence intervals for the area under the 

curve is greater than 0.5, which is evidence that the cognitive assessment enables 

amyloid status to be predicted better than chance – this can also be concluded from the 

chi-square value of the model (χ2 = 11.7, p = 0.009). 
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Figure 9-8. ROC curves for pre-screening scenario 

Area under the curve = 0.63 (95% confidence intervals 0.55 to 0.70). Black cross indicates the 

chosen cut-point, which maximises Youden’s index. Youden’s index can be visualised as the 

vertical distance from the cross to the reference line.  

 

 

The equation for the model takes the form of Equation 3 (page 264), and is given below: 

𝑝(Aβ+) = 1/(1 + 𝑒(1.52+ 0.17∗P+ 0.23∗M+0.28∗R)) 

         (Equation 4) 

where p(Aβ+) is the probability of being amyloid positive; P = PACC score; M = 

Matrix Reasoning z-score; R = Choice Reaction Time consistency z-score 

 

The chosen cut-point (see Figure 9-8) corresponds to a 20% probability of being Aβ+, 

meaning that participants with a probability of less than 20% would not proceed to a PET 

scan.  Table 9-6 shows the solutions of the equations for this pre-screening scenario. 
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Table 9-6. Solution of the equations for the number of individuals required for 
pre-screening, and number of individuals who would proceed to a screening PET 
scan 

Sensitivity 0.51 

Specificity 0.74 

Accuracy 0.70 

TP 100 

FN 95 

TN 651 

FP 224 

Number of people required for pre-screening 1069 

Number of people proceeding to PET scan 324 

 

See 9.3.2.2 for explanation of the solution of the simultaneous equations for sensitivity, specificity 
and accuracy. TP = true positives; FN = false negatives; TN = true negatives; FP = false positives.  

 

Based on the prevalence of Aβ positivity in the Insight 46 sample, if no pre-screening 

were conducted then 548 individuals would need to be scanned to meet the recruitment 

target of 100 Aβ+ individuals. By pre-screening 1069 individuals with the cognitive 

assessment, 324 PET scans would be required – a reduction of 41%. This would be 

cost-effective as the £53,450 cost of conducting the cognitive assessments would be 

outweighed by the £336,000 reduction in scan costs. 

 

9.3.2.4. Conclusions 

In this section I explored the potential application of a cognitive assessment to as part of 

the screening process for therapeutic trials in preclinical AD, where the target population 

is cognitively-normal older adults with elevated β-amyloid. The results suggested that my 

chosen battery of cognitive measures was able to predict an individual’s amyloid status 

better than chance in the Insight 46 sample, and therefore including a cognitive 

assessment in the pre-screening process may be worth considering in the future as it 

could improve efficiency and cost-effectiveness by reducing the number of expensive 

PET scans required.  

This was an exploratory analysis conducted primarily as a demonstration of method, and 

there are a number of factors that limit its relevance to real-word therapeutic trials. Firstly, 

as the sample only contains 69- to 71-year-olds, and increasing age is associated with 

both cognitive decline and increasing likelihood of Aβ positivity, the model would not 

generalise to a wider age range. Secondly, my approach was to choose a cut-point that 

optimised the accuracy of the predictive model and then to evaluate its cost-

effectiveness, but if cost-effectiveness was the primary goal then it may be preferable to 
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choose a cut-point that minimised cost rather than maximising accuracy (as was done in 

(Ansart et al., 2019)). Alternatively for a screening test it may be most important to 

optimise sensitivity (i.e. to minimise false negatives). 

In summary, while it is clear that a cross-sectional cognitive assessment is not a good 

predictor of amyloid status on an individual basis (within cognitively-normal older adults), 

it may be of potential use in a clinical trial recruitment scenario for identifying individuals 

who are more likely to be Aβ+.  
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10. GENERAL DISCUSSION 

 

10.1. Summary  

In this large population-based sample of older adults of approximately the same age, I 

investigated predictors of performance on a range of cognitive measures, including some 

standard paper-and-pencil tests and some more novel computerised tests. My key 

findings are summarised as follows, with reference to the overarching hypotheses stated 

in section 2.7.2: 

i) As expected, higher childhood cognitive ability was strongly associated with 

better performance on almost all cognitive tests, and there were independent 

effects of educational attainment and socioeconomic position on some cognitive 

outcomes. 

 

ii) As hypothesised, subtle sex differences in cognition were detected on a range of 

cognitive measures. On average, women performed better on measures of 

memory and processing speed, whereas men tended to be faster at serial 

subtraction, more accurate at reporting the locations of objects, and slightly faster 

at responding to a complex reaction time task.  

 

iii) Consistent with the hypothesis that cognitively-normal participants with elevated 

Aβ deposition would show evidence of subtle cognitive deficits, Aβ+ participants 

performed less well than Aβ- participants on a range of cognitive measures. 

Importantly, these subtle deficits covered a range of cognitive domains – not just 

memory – and included some measures where such differences have not been 

reported before. Differences between the group means were of the order 0.3 SD. 

The continuous measure of Aβ (SUVR) also showed associations with poorer 

performance on some cognitive measures. 

 

iv) In general, white matter pathology and whole brain volume were not strongly 

associated with cognitive performance, but there was evidence of some specific 

associations that are consistent with previous studies: greater whole brain 

volume was associated with faster performance on three different timed 

measures and greater white matter hyperintensity volume (WMHV) was 

associated with slower processing speed.  

 

v) The hypothesis that composite and computerised cognitive measures would be 

more sensitive to brain pathology than standard paper-and-pencil cognitive tests 
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was not supported overall. There was evidence that some computerised 

measures were among the most sensitive to Aβ, but some of the non-

computerised measures performed similarly and the most sensitive measure in 

this study was in fact Matrix Reasoning (a standard test of non-verbal reasoning). 

The Preclinical Alzheimer’s Cognitive Composite (PACC) was not better at 

discriminating Aβ+ and Aβ- individuals than some of the individual tests.  

Regarding associations between APOE-ε4 and cognition (about which I did not make an 

overarching hypothesis), there was no evidence of a detrimental effect of APOE-ε4 on 

cognition after accounting for Aβ pathology, but rather there was evidence that APOE-

ε4 was associated with better performance on measures of short-term memory. 

These results are discussed in more detail below, followed by a discussion of the 

strengths and limitations of this study, and directions for future work.  

 

 

10.2. Key results and interpretation 

 

10.2.1. Effects of childhood cognitive ability, education and adult 

socioeconomic position 

The association between higher childhood cognitive ability and better cognitive 

performance more than 60 years later was seen across most cognitive measures, 

covering a wide range of cognitive domains, and is consistent with previous NSHD 

analyses (Richards and Sacker, 2003; Richards et al., 2004, 2019; Davis et al., 2017; 

Philippou et al., 2018). The finding that educational attainment and adult socioeconomic 

position were associated with many cognitive outcomes, independent of childhood 

cognition, is also consistent with previous NSHD analyses (Richards and Sacker, 2003; 

Richards et al., 2019), which have concluded that these factors are only moderately 

correlated (see section 2.4.2). Clearly educational and occupational attainment are 

affected by many factors other than cognitive ability; among Insight 46 participants one 

of these factors was sex, as males had on average 2 years more education (likely a 

reflection of cultural norms at the time) and were more likely to work in jobs with a higher 

occupational complexity, despite there being no sex difference in childhood cognitive 

ability. Other predictors of education and adult socioeconomic position in NSHD are 

mother’s education and father’s socioeconomic position (Richards and Sacker, 2003; 

Richards et al., 2019). As most studies of ageing and neurodegenerative disease do not 
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have access to measures of prior cognitive ability, educational attainment is often used 

as a proxy, but the results reported in this thesis highlight the limitations of this.  

The independent effects of education and adult socioeconomic position on later-life 

cognition are consistent with evidence that cognitive ability is not fixed from birth but is 

shaped by various influences throughout life (Richards and Deary, 2013). A recent meta-

analysis of the effects of education on IQ reported an increase of approximately 1 to 5 

IQ points per additional year of education, and found that these effects persisted into 

older age (Ritchie and Tucker-Drob, 2018). Another analysis from the NSHD found that 

education and training undertaken during adulthood was associated with higher cognitive 

ability at age 53, after accounting for childhood cognitive ability and educational 

attainment up to age 26 (Hatch et al., 2007).  

The evidence for independent effects of childhood cognitive ability, education and adult 

socioeconomic position on cognitive performance at age ~70 is also consistent with 

evidence that these factors may be protective against cognitive decline in later life. 

Multiple longitudinal studies have reported an association between higher childhood 

cognitive ability and reduced risk of dementia (Snowdon et al., 1996; Whalley et al., 2000; 

McGurn et al., 2008; Russ et al., 2017; Huang et al., 2018). Higher educational and 

occupational attainment are similarly associated with a reduced risk of AD, and have 

been identified as potentially modifiable factors that could be considered as targets for 

intervention (Stern, 2012; Norton et al., 2014; Xu et al., 2015). Paradoxically, it has been 

reported that highly-educated cognitively-normal older adults tend to have a greater 

burden of Aβ pathology (Jansen et al., 2015; Arenaza-Urquijo et al., 2017) and 

neurodegeneration (Pettigrew et al., 2016). The concept of ‘cognitive reserve’ has been 

proposed to account for this, positing that individual differences in the way that cognitive 

tasks are performed allow some individuals to tolerate a greater burden of pathology 

than others before they experience cognitive decline, and that this resilience or ‘reserve’ 

can be increased by factors such as education, stimulating activities, healthy lifestyle 

and social support (Stern, 2012; Chan et al., 2018; Russ, 2018). There was no evidence 

of this divergence occurring in Insight 46, as the Aβ+ and Aβ- groups did not differ in 

their childhood cognitive ability, educational attainment or adult socioeconomic position 

(see section 3.6). However, as rates of cognitive impairment are extremely low at age 

70, it may be that differences in resilience to pathology become apparent in future when 

some individuals begin progressing to dementia. 
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10.2.2. Sex differences 

The sex differences in cognition detected in this study are consistent with typical patterns 

of sex differences reported in the literature. Women performed better than men on 

measures of verbal memory (Logical Memory immediate and delayed recall, recall for 

face-name and face-occupation associations on the FNAME-12 task). A female 

advantage on verbal tasks is well-documented, with one proposed explanation being 

differences in cognitive strategies: women are reported to show an increased tendency 

to cluster items to be remembered according to semantic and phonological categories 

(Andreano and Cahill, 2009), and to engage in elaborative processing of the meaning of 

information to be remembered (Wirth et al., 2007). Another proposed explanation is a 

sex difference in distribution of language processing across the brain, with some studies 

reporting that women show more bilateral activity whereas men show more left-

lateralised activity (Andreano and Cahill, 2009), although others do not find such 

differences (Sommer et al., 2004).  

Sex differences in verbal encoding could also explain my finding of a subtle advantage 

for women on recalling the identity of objects on the “What was where?” visual short-

term memory binding task, as I noted from anecdotal reports that participants were 

adopting verbalisation strategies (Andreano and Cahill, 2009). Verbal encoding has also 

been proposed as an explanation for the consistent finding – replicated here in Insight 

46 – of superior performance for women on the Digit-Symbol substitution task (Royer, 

1978; Majeres, 1983). However, a review of sex differences in processing speed tasks 

(including Digit-Symbol Substitution) concluded that memory does not play a big role in 

performance and suggested that the effect may be underpinned by female superiority in 

reading and writing skills, although the concept of processing speed itself remains poorly 

defined (Roivainen, 2011). 

The measures on which male participants showed superior performance – serial 

subtraction speed, location memory in the “What was where?” task, and response times 

in the Response Inhibition task – are also consistent with the literature. A male advantage 

has been widely reported on mathematical (e.g. (Hyde and Mertz, 2009)), visuospatial 

(e.g. (Andreano and Cahill, 2009; Voyer, Voyer and Saint-Aubin, 2017)) and reaction 

time tasks (e.g. (Der and Deary, 2006; Roivainen, 2011)). As discussed in Chapters 5 

and 8 respectively, the superior performance of males in mathematics and visuospatial 

abilities is reduced in countries with greater gender equality (Hyde and Mertz, 2009; 

Coutrot et al., 2018), but biological explanations have also been proposed.  

In summary, a predictable pattern of sex differences has emerged across the Insight 46 

cognitive battery, and differences between males and females were in the region of 0.5 
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SD on average. This highlights the importance of accounting for sex differences when 

seeking to detect and track subtle cognitive decline in the preclinical stages of AD, as 

average differences between men and women in this study were often larger than 

differences between Aβ+ and Aβ- groups (typically ~0.3 SD). Once Insight 46 follow-up 

assessments are completed, it will be important to see whether any sex differences 

emerge in terms of changes in cognition over the ~2 year interval, as a similar study that 

conducted longitudinal assessment of 755 cognitively-normal older adults on the 

Preclinical Alzheimer Cognitive Composite (PACC) found that, although sex was not a 

direct predictor of cognitive decline, Aβ+ women declined faster than Aβ+ men (Buckley 

et al., 2018).  

 

10.2.3. Age effects 

Despite the very narrow age range of Insight 46 participants (2.6 years – due to the time 

taken to collect the data, as all participants were born during the same week), 

unexpected associations between age and cognition were observed on three cognitive 

tests. Older participants tended to score lower on the Matrix Reasoning task and to have 

slower and more variable reaction times on the Choice RT task. Both these findings 

follow the expected direction of age effects but the magnitudes are significantly greater 

than could be expected (see discussions in sections 4.5.2.3 and 6.5.3.1). On the Choice 

RT task, the slower RT of older participants was accompanied by higher accuracy, which 

can be explained by a speed-accuracy trade-off. Conversely, on the circle-tracing task, 

older participants tended to trace more quickly and to make correspondingly more errors 

– an effect which has no obvious explanation (see discussion in section 8.5.3.1).  

I considered the possibility of a recruitment bias i.e. that participants tested towards the 

end of the data collection period may have differed in some ways to those seen earlier. 

While participants were invited in a random order, inevitably some participants delayed 

their visits due to health problems, life circumstances or being initially undecided about 

taking part. However we did not find any evidence of differences in childhood cognitive 

ability, education or adult socioeconomic position (which were controlled for in analyses 

anyway), or in general health based on measures of self-rated health status and overall 

disease burden (see (James et al., 2018) for a description of these measures). In terms 

of biomarker measures, older age was associated with greater white matter disease 

burden and smaller whole brain volume, but again the age effects on cognition were 

present despite controlling for these variables. 
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10.2.4. Associations with β-amyloid pathology 

Investigating associations between dichotomous amyloid status and cognition was the 

primary focus of my research. As hoped, this work has produced novel evidence that 

contributes to the understanding of subtle cognitive changes that may be associated with 

preclinical AD pathology. These results are discussed below, followed by a discussion 

of their potential implications for clinical trials. 

 

10.2.4.1. Evidence for differences between Aβ+ and Aβ- groups 

The dominant narrative is that episodic memory is the first cognitive function to decline 

in AD (e.g. (Grober et al., 2008; Mortamais et al., 2017; Farrell et al., 2018; Landau et 

al., 2018)), although a closer examination of the literature reveals a nuanced picture, with 

reports of early declines in several areas including episodic function and visuospatial 

ability (e.g. (Baker et al., 2017; Duke Han et al., 2017) – see section 2.3). One particularly 

notable feature of my results is that statistically significant differences were observed 

between cognitively-normal Aβ+ and Aβ- on eight different outcomes covering a wide 

range of cognitive domains: MMSE; Logical Memory immediate recall; Matrix Reasoning 

test of non-verbal reasoning; intra-individual variability in reaction time (RT) on the 

Choice RT task; memory for object identity on the “What was where?” task; serial 

subtraction speed; and visuomotor integration on the circle-tracing task (the difference 

in accuracy between the conditions of direct and indirect visual feedback). To my 

knowledge, some of these have not been reported before – particularly Matrix 

Reasoning, intra-individual variability in RT, visuomotor integration and serial subtraction 

speed – and such a wide range of differences has not been reported before in a single 

study. 

It is also worth noting that the results were in the predicted direction (poorer performance 

for Aβ+ participants) on the vast majority of other measures: face-name associative 

memory exam (FNAME-12); Logical Memory delayed recall, Digit-Symbol Substitution; 

object location memory on the “What was where?” task; mean Choice RT, accuracy on 

the Choice RT task; difference in accuracy between the congruent and incongruent 

conditions of the Response Inhibition task; subtraction accuracy. While these results 

should not be over-interpreted, this is consistent with the overall picture of the literature, 

where differences between Aβ+ and Aβ- groups are not consistently detected cross-

sectionally but emerge more clearly when comparing longitudinal change scores (Baker 

et al., 2017; Duke Han et al., 2017; Mormino et al., 2017).  
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In fact, it would not have been overly surprising if no cross-sectional differences had 

been observed at all in Insight 46, especially given the relatively young age of the cohort: 

one meta-analysis of cross-sectional differences between Aβ+ and Aβ- groups 

concluded that differences in episodic memory and executive function were statistically 

significant only in samples aged 75 years and above (Baker et al., 2017). It is likely that 

the availability of unusually rich data on our participants’ prior cognitive ability, plus the 

ability to adjust for other brain pathologies and APOE-ε4, increased the sensitivity of 

analyses to detect subtle effects of Aβ pathology, as other sources of intra-individual 

variation in cognition were accounted for more robustly than usual. As mentioned earlier, 

accounting for prior cognitive ability may be particularly necessary when investigating 

differences in high-performing individuals (Rentz et al., 2004, 2007). With the important 

caveats that Aβ positivity is not sufficient to meet criteria for preclinical AD (tau pathology 

is also needed – see section 2.2.1) and that not all Aβ+ individuals are expected to 

develop symptoms in their life-times (see section 2.2.2), these results make a novel 

contribution to growing evidence that preclinical AD is accompanied by subtle cognitive 

decline in a broad range of cognitive domains, and that this decline begins many years 

before the onset of symptoms. 

 

10.2.4.2. Implications for clinical trials in preclinical AD 

The results of one of the first clinical trials in preclinical AD (currently ongoing) rest upon 

the Preclinical Alzheimer Cognitive Composite, since this is the primary outcome 

measure on which Aβ+ individuals on active treatment and placebo will be compared 

(Sperling et al., 2014). My analyses have provided novel information about life-course 

determinants of the PACC – childhood cognitive ability, educational attainment and adult 

socioeconomic position – which should be considered when interpreting any differences 

between groups. In addition, the results reported in this thesis can be interpreted both to 

support and challenge the argument for using the PACC as an outcome measure in such 

trials, i.e. the argument that composites may be sensitive to deficits which are too subtle 

to be detected on individual cognitive tests. On the one hand, I identified a large number 

of tests whose results appeared to suggest subtle non-statistically significant deficits in 

Aβ+ individuals, including three of the four tests which make up our version of the PACC 

(Logical Memory delayed recall, Digit-Symbol Substitution; FNAME). Therefore, the fact 

that a statistically significant difference between the Aβ+ and Aβ- groups was detected 

on the PACC is due to the additive contributions of these small effects on its sub-tests. 

However, the effect size of the difference on the PACC (0.17 SD) was less than half of 

that of the most sensitive individual measures (Matrix Reasoning and intra-individual 

variability in Choice RT – see section 9.1.3) suggesting that the PACC could be improved 
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and it may be important to widen the focus from episodic memory and executive function 

to consider a broader range of cognitive domains. 

However, as the PACC was designed to measure change in cognitive performance over 

time, it will be important to see how these other measures compare to the PACC in terms 

of longitudinal performance once the Insight 46 follow-up data have been collected. 

Rates of cognitive decline may differ from one cognitive domain to another (Cloutier et 

al., 2015), and also different tests are differentially influenced by practice effects and 

test-retest reliability, so measures that appear promising cross-sectionally may not 

perform best for tracking longitudinal change. 

Looking ahead to future clinical trials in preclinical AD, my results suggest that it may be 

cost-effective to include cognitive assessment in the screening process, to exclude 

individuals who are highly likely to be Aβ- and thus reduce the number of PET scans 

required to recruit the required number of Aβ+ individuals. However, my data do not allow 

me to recommend a specific screening process for several reasons: 1) my analyses were 

inconclusive with respect to which combination of cognitive tests was most sensitive to 

amyloid status; 2) the results cannot be generalised to participants outside this very 

narrow age range; 3) a more robust cost-effectiveness analysis would be needed to 

weigh up the feasibility of different options, including, for example, whether certain 

cognitive tests could be administered remotely.  

 

 

10.2.5. Associations with whole brain volume, white matter pathology and 

APOE-ε4 

While my main aim was to study Aβ, I also investigated whether cognition was 

independently associated with whole brain volume, global WMHV and APOE-ε4. Some 

interesting results emerged, with each of these variables showing specific associations 

with particular cognitive domains. The consistency of effects across tests, and their 

consistency with previous literature, allays concerns about spurious findings due to 

multiple comparisons. 

 

10.2.5.1. APOE-ε4 

In general, APOE-ε4 was not associated with cognition after adjustment for amyloid 

status, consistent with evidence that APOE-ε4 confers increased risk of cognitive decline 

primarily by increasing the likelihood of accumulation of Aβ plaques (Kline, 2012). 

However, on the “What was where?” task my analyses replicated two previous studies 
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in identifying an advantage for ε4-carriers in reporting the locations of objects (Zokaei et 

al., 2017; Zokaei, Čepukaitytė, et al., 2019). In addition, I found evidence of advantages 

for ε4-carriers in recalling the identities of objects on this task, and in immediate recall of 

the Logical Memory story (after adjustment for Aβ positivity, which was associated with 

poorer performance on these same measures); these results have not been reported 

before to my knowledge. These tasks are both measures of short-term memory after 

delays of a few seconds and rely heavily on attention. Logical Memory delayed recall 

(delay of ~20 minutes) showed a trend in the same direction (p = 0.06) – unsurprising 

given its strong correlation with the immediate recall score – but there was no evidence 

of an effect of APOE-ε4 on the other memory test in the Insight 46 battery (face-name 

associative memory exam (FNAME)).  

These results could be interpreted to support the hypothesis of antagonistic pleiotropy, 

whereby the APOE-ε4 allele is associated with both beneficial and detrimental effects 

(see section 2.6.1). Investigation of this phenomenon tends to focus on the transition 

from beneficial to detrimental effects with age (Duke Han and Bondi, 2008; Tuminello 

and Duke Han, 2011; Smith, Ashford and Perfetti, 2019), but my results highlight the 

possibility that beneficial effects may persist, albeit often counteracted by Aβ, such that 

ε4-carriers who avoid accumulation of significant Aβ pathology may be the most 

cognitively advantaged on certain measures. This is consistent with evidence that among 

clinically-normal individuals aged ~90 years and above (i.e. those who have survived 

dementia-free beyond the prime ages for developing dementias), the cognitive 

performance of ε4-carriers appears to be at least as good as non-carriers (see review in 

(Tuminello and Duke Han, 2011)). The model of antagonistic pleiotropy accounts for 

evidence that ε4-carriers show increased brain activation in task-relevant regions, 

particularly frontal and parietal regions in tasks of short-term memory and attention (Duke 

Han and Bondi, 2008; Tuminello and Duke Han, 2011; Rusted et al., 2013), and further 

suggests that this increased activation may be pronounced in older age as individuals 

preferentially recruit frontal brain regions to compensate for preclinical AD pathology in 

other regions (Duke Han and Bondi, 2008; Tuminello and Duke Han, 2011; Scheller et 

al., 2017).  

This study was limited in its ability to study the effects of APOE-ε4 by the fact that we 

combined all participants into two categories (ε4-carriers and non-carriers), an approach 

that was taken due to the rarity of the ε4/ε4 genotype and the desire not to exclude 

participants with ε2 alleles, since the main focus of the analyses was on Aβ. Further 

studies are required to investigate the effects of APOE-ε4 and Aβ in large groups of older 

adults with each specific APOE genotype. 
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10.2.5.2. White matter hyperintensity volume 

My finding of an association between greater WMHV and slower processing speed (as 

measured by the Digit-Symbol Substitution task) is consistent with the results of previous 

studies (Gunning-Dixon and Raz, 2000; Oosterman et al., 2004; Prins et al., 2005; van 

Dijk et al., 2008). As discussed in Chapter 4, this has implications for the interpretation 

of the PACC as an outcome measure in research studies and clinical trials, and it is 

important to remember that processing speed is a sensitive but non-specific measure of 

brain function which is compromised in many disorders (Jaeger, 2018). There was also 

an indication of an association between greater WMHV and poorer visuomotor 

integration (as evidenced by disproportionately inaccurate circle-tracing under the 

condition of indirect visual feedback – see Chapter 8). Aside from this, these results 

indicate that WMHV appear to have little effect on the cognitive performance of 

cognitively-normal older adults with a generally low burden of white matter disease.  

 

10.2.5.3. Whole brain volume 

As expected for 70-year-olds, there did not appear to be evidence of significant brain 

atrophy among Insight 46 participants (excluding individuals with major neurological and 

psychiatric conditions), although inferences about atrophy based on cross-sectional 

measures of brain volume are limited by the variability that exists between individuals. 

The finding that larger whole brain volume was associated with faster performance on 

three different timed measures is consistent with previous studies (Jackson et al., 2012; 

Magistro et al., 2015; Takeuchi et al., 2017) and is notable for the diversity of these 

measures: Digit-Symbol Substitution, serial subtraction rate, and circle-tracing speed. 

However, as serial subtraction and circle-tracing were administered concurrently, 

performance on each task was affected by the other so further studies would be needed 

to test whether these findings are replicated if the tasks are administered separately. 

 

10.3. Strengths and limitations 

This study has a number of major strengths, foremost of which is the very small age 

range. Neurodegenerative diseases are notoriously difficult to disentangle from so-called 

normal or healthy ageing, since ageing is accompanied by increasing brain pathologies 

and neurodegeneration (Jack et al., 2014; Parnetti et al., 2019), and decline in most 

cognitive abilities (Glisky, 2007). This age-homogenous sample allowed hypotheses 

about the effects of brain pathologies to be clearly tested with this confound all but 

eliminated. Another major strength is the prospective collection of cognitive and 
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demographic data from birth, which provided the rare opportunity to investigate the 

effects of childhood cognitive ability on cognitive performance more than 60 years later. 

Thirdly, the large sample size made it possible to detect subtle effects including sex 

differences, differences between Aβ+ and Aβ- participants and associations with whole 

brain volume and WMHV. A large sample size was particularly important to the 

comparison of Aβ+ and Aβ- groups, since there was a difference in numbers of 

participants in the these groups – in line with expectations of the proportion of Aβ+ 

individuals at this age (Jansen et al., 2015) – which reduced statistical power to detect 

differences between them.  

As an investigation of preclinical AD, the main limitation of this study was the absence of 

tau-PET imaging. Since standard criteria for preclinical AD are based on the presence 

of both Aβ and tau pathology (see section 2.2), it was not possible to identify participants 

who meet criteria for preclinical AD, nor to investigate how Aβ and tau pathology may 

interact to affect cognition. Based on previous studies, somewhere around 30% of Aβ+ 

70-year-olds would be expected to have tau pathology (Jack et al., 2017; Kern et al., 

2018), and tau pathology will be present in some Aβ- individuals as well (possibly around 

15-20% (Jack et al., 2017)). As subtle cognitive deficits are reported to be greater in 

individuals with both pathologies, as opposed to those with Aβ alone (Soldan et al., 2016; 

Duke Han et al., 2017; Bilgel et al., 2018; Ho and Nation, 2018; Sperling et al., 2018), 

the associations between Aβ and poorer cognition reported in this thesis may be partially 

explained by tau pathology. 

Another limitation of the study is that the computerised cognitive tests were all shortened 

versions that contained relatively few trials compared to most neuropsychological 

research studies, which limited the potential for detailed examination of patterns of 

performance on any individual test. However, this was a necessary trade-off when 

designing a ~90-minute cognitive battery that could be incorporated into a busy 

assessment day, and on the whole these results indicate that the battery was highly 

successful at capturing subtle differences in cognitive performance across a wide range 

of domains, as well as being well-tolerated by participants.  

The generalisability of findings from this study rests on the extent to which the sample is 

representative of the population. This is a source of both strengths and limitations, which 

are discussed in the following sub-section. 
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10.3.1. Representativeness of the NSHD and Insight 46 

The NSHD sample was originally designed to be representative of the general 

population, with the following caveats: 1) only single babies were included (not twins or 

multiples); 2) the sample was stratified by social class, taking all babies whose fathers 

had an agricultural or non-manual occupation, and one in four babies whose fathers had 

a manual occupation; 3) only babies born to married mothers were included, since the 

stratification by social class was based on the father’s occupation (and in the 1940s it 

was relatively uncommon for unmarried couples to co-habit) (Wadsworth et al., 2006). A 

comparison with census data when study members were aged 43 concluded that the 

cohort remained broadly representative of the UK population of British-born adults of the 

same age (Wadsworth et al., 1992), and a similar comparison at ages 60-64 concluded 

that the cohort was representative in terms of socioeconomic position and rates of 

unemployment, although they were more likely to own a home and less likely to have 

limiting illness (Stafford et al., 2013). As a native-born cohort reflecting the general British 

post-war population, all NSHD participants are white, so do not represent the more 

contemporary ethnic and cultural diversity of the wider population.  

Inevitably, there is a bias for healthier study members to still be alive and participating in 

the cohort. At age 69, active NSHD participants (52% of the original cohort) were more 

likely to have higher childhood cognitive ability, higher educational attainment, a non-

manual occupation, and better health status than those no longer active (Kuh et al., 2016; 

Richards et al., 2019). Despite their better health status on average, it is notable that 

only 15% of NSHD participants had no clinical disorders at age 60-64 (based on a list of 

15 disorders e.g. cancer, hypertension, diabetes), and the average was 2 disorders each 

– a telling illustration of population ageing (Pierce et al., 2012).  

By drawing participants from the NSHD, Insight 46 is likely to be more representative 

than most studies in dementia research which recruit convenience samples or recruit 

through memory clinics and which may be biased towards those with higher education, 

higher socioeconomic position, and better cognition (Hultsch et al., 2002; Brodaty et al., 

2014). Convenience samples of so-called healthy controls have been reported to have 

a higher prevalence of a family history of AD (Brodaty et al., 2014) and higher rates of 

hippocampal atrophy than population-based samples (Whitwell et al., 2012). In addition, 

the inclusive recruitment criteria and wide geographical area (participants came from 

across England, Wales and Scotland) distinguish Insight 46 from most research and 

clinical trial cohorts which tend to recruit participants who live near major urban centres 

(Tanner et al., 2015) and have strict exclusion criteria for physical health problems and 

neurological or psychiatric conditions. Insight 46 participants, however, were required to 

be willing and able to attend a research visit in London, and on average had slightly 
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higher education and socioeconomic position than those who decided not to participate 

or were ineligible (James et al., 2018). Within Insight 46, participants with missing 

neuroimaging data were more likely to be obese and to have mental health problems 

(James et al., 2018). As obesity and depression are associated with increased dementia 

risk (Norton et al., 2014), this raises the possibility that individuals with brain pathology 

and associated subtle cognitive decline may be underrepresented in these analyses.  

 

10.4. Future directions 

Questions about the nature and timing of cognitive decline in the preclinical stages of AD 

can best be answered with longitudinal cognitive assessment. Insight 46 participants are 

currently undergoing follow-up assessments (interval = ~2 years) which will be 

completed in summer 2020, so it will then be possible to assess changes in performance 

on each cognitive task, and to investigate whether Aβ pathology at baseline is predictive 

of relatively poorer cognition at follow-up. Declines relative to baseline are expected, 

since numerous studies have reported an association between Aβ positivity and 

cognitive decline over a similar interval (see (Baker et al., 2017; Duke Han et al., 2017) 

for meta-analyses), but practice effects are also anticipated to play a role (Hassenstab 

et al., 2015; Vemuri et al., 2015; Machulda et al., 2017). Predictive effects of baseline 

WMHV, whole brain volume and APOE-ε4 will also be explored. 

Models of cognitive trajectories will also be able to incorporate measures of cognition 

across adulthood in the NSHD (see Table 3-2), which will allow examination of 

relationships between life-course cognition and later-life brain pathology. 

It will also be important to examine changes in levels of brain pathologies over the ~2-

year interval and how these relate to changes in cognition. As discussed in section 2.3.2, 

“amyloid accumulators” – individuals whose levels of Aβ are rising from an initially normal 

level – may be a group of particular importance for identifying the earliest changes in 

cognition and may be a suitable target group for future clinical trials (McMillan and 

Chételat, 2018).  

Investigation of a broader range of biomarkers is also planned, including blood-based 

biomarkers, cortical thickness (a biomarker for neurodegeneration specified in the NIA-

AA criteria for preclinical AD (Jack et al., 2018)), microstructural neuroimaging measures, 

a polygenic risk score that incorporates other genetic risks for AD in addition to APOE-

ε4, and measures of Aβ and tau pathology in CSF (as approximately 35% of the cohort 

have so far agreed to have a lumbar puncture at their follow-up assessment). Looking 

further ahead, approximately one third of Insight 46 participants have agreed to post-
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mortem brain donation, which will ultimately allow direct investigation of pathologies and 

their relationship with cognition during life. 

 

10.5. Closing summary 

These results add to growing evidence of subtle cognitive decline associated with 

preclinical AD pathology and contribute novel data, with differences in cognition between 

Aβ+ and Aβ- groups reported in an unusually wide range of cognitive domains including 

some that have so far received little attention. These differences were detectable at an 

age when those who are destined to develop dementia are still likely to be many years 

from symptoms. The rich historical data available on this cohort enabled predictable 

variation between individuals to be accounted for in a manner unique among 

neuroimaging studies in the field of preclinical AD research, as well as making possible 

a detailed investigation of the life-course determinants of cognition at age 70. These 

results have implications for the interpretation of cognitive data measured in later life, 

and for the use of cognitive tests as outcome measures in future clinical trials that will 

hopefully provide long-awaited relief to those who live with the effects of this devastating 

disease. 
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APPENDIX 
 

 

Figure A1. Fractals used in the “What was where?” task 

Figure reprinted from Liang et al. (2016) under the terms of the Creative Commons Attribution 
License (CC BY). 


