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The theory of slow viscous flow around a slender body is generalized to the situation
where the ambient fluid has a yield stress. The local flow around a cylinder that is
moving along or perpendicular to its axis, and rotating, provides a first step in this
theory. Unlike for a Newtonian fluid, the nonlinearity associated with the viscoplastic
constitutive law precludes one from linearly superposing solutions corresponding to each
independent component of motion, and instead demands a full numerical approach to the
problem. This is accomplished for the case of a Bingham fluid, along with a consideration
of some asymptotic limits in which analytical progress is possible. Since the yield stress
of the fluid strongly localizes the flow around the body, the leading-order slender-body
approximation is rendered significantly more accurate than the equivalent Newtonian
problem. The theory is applied to the sedimentation of inclined cylinders, bent rods and
helices, and compared with some experimental data. Finally, the theory is applied to the
locomotion of a cylindrical filament driven by helical waves through a viscoplastic fluid.

1. Introduction

Slow viscous flow past a cylinder is a classical problem in fluid mechanics and is
associated with Stokes’ observation that there is no solution for a Newtonian fluid with
zero Reynolds number in an infinite domain. The resolution of the Stokes paradox, which
partly laid the foundation for the modern theory of matched asymptotic expansions
(Hinch 1991), is that inertia must play a role sufficiently far from the cylinder (Lamb
1932). The viscoplastic version of the problem has been considered since the 1950s, with
detailed numerical computations conducted by, for example, Tokpavi et al. (2008) and
Roquet & Saramito (2003). The key feature of a viscoplastic fluid is its yield stress:
material only flows like a fluid if the stresses exceed a critical yield threshold. The
consequence for a cylinder moving through a viscoplastic fluid is that there is no motion if
the force on the object is insufficient to yield the fluid. In a related manner, viscoplasticity
is also expected to resolve the Stokes paradox without the need for inertia, since the
stress decays away from the cylinder, and so sufficiently distant material must eventually
become rigid.

Previous studies of a cylinder moving through viscoplastic fluid have considered motion
perpendicular to the axes. In the plastic limit (when the yield stress dominates the viscous
stress, as must be the case close to the initiation of motion), this problem reduces to
determining the critical load on a cylindrical pile embedded in cohesive soil, which was
solved by Randolph & Houlsby (1984) using the method of sliplines. Our first aim in
this current paper is to consider the more general situation of creeping viscoplastic flow
around an infinitely long cylinder that translates at an arbitrary angle to its axis and
can also rotate at an arbitrary rate. We achieve this by exploring analytically various
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asymptotic limits, and by providing full numerical solutions for the motion of a cylinder
through a Bingham fluid inclined at an arbitrary angle. Note that, unlike for a Newtonian
fluid, the non-linearity inherent in the viscoplastic rheology prohibits the simple linear
superposition of the independent cylinder motions to construct general solutions.

More broadly, our goal in this paper is to provide the viscoplastic analogue of slender-
body theory for slow viscous flow (e.g. Keller & Rubinow 1976), for which the local
flow around a cylinder provides a crucial stepping stone. The viscous theory underscores
analyses of elongated particles or fibres in suspension (Tornberg & Shelley 2004) and the
propulsion of micro-organisms by flagella (Taylor 1952; Hancock 1953; Lighthill 1975;
Lauga & Powers 2009), the latter of which has also enjoyed generalization to motion
through granuar media (Hosoi & Goldman 2015). From a theoretical standpoint, the
great advantage of a viscoplastic fluid is that flow past an object becomes localised to
the vicinity of that object. Indeed, under the assumption that the localisation around
a cylindrical filament is sufficiently strong (i.e. the yield surfaces lie at distances of the
order of the object’s radius), and that it is sufficiently slender (i.e. its radii of curvature
are much larger than its radius), the dynamics of the filament locally reduce to that
of flow around a relatively long and straight cylinder. This reduction is equivalent to
classical Resistive Force Theory (Hancock 1953; Lighthill 1975; Gray & Hancock 1979),
but is made much more effective here by the flow-localizing effect of the yield stress.

We apply the results of our analysis to two sets of problems. First, we consider
the inertialess sedimentation of rods, that are either straight and inclined, or bent
symmetrically into v-shapes. We extract the threshold for motion, together with the
speed and direction of motion, for a given inclination angle and ratio of driving force and
yield stress. We compare these theoretical predictions with the results of some simple
experiments of sedimenting cylinders in carbopol gel. We also compare with previous
experimental studies of viscoplastic sedimentation and fractionation (Jossic & Magnin
2001; Madani et al. 2010).

Second, we explore the motion of a cylindrical filament that is twisted into a helix. We
again examine how such an object falls under the action of a force, this time directed
along the helix axis, and extract the fall speed and rotation rate for different helical pitch
angles. Qualitative comparison is again made with a simple experiment of a sedimenting
helix in carbopol gel. We then apply our results to describe locomotion of a swimming
helix, as in classical studies of biological locomotion through a Newtonian fluid (Taylor
1952; Hancock 1953). In this model, the helix is propelled forwards when it exerts a
torque around its axis, forcing it to turn.

2. Slender-body formulation
2.1. Governing equations

Consider an infinitely long cylindrical filament moving through an incompressible
Bingham fluid. We neglect gravity and inertia, and attach a local cylindrical polar
coordinate system (r, 8, z) to the body, as illustrated in figure 1(a). The cylinder translates
at velocity Ux + W2z and rotates around its axis with angular velocity 2. Under
the assumption that axial variation in the flow field is weak and can be ignored, the
dimensionless governing equations for the fluid velocity in cylindrical polar coordinates
(u(r,0),v(r,0),w(r,0)) and pressure p(r,0) are
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FIGURE 1. Sketch of the geometry: (a) the local cylindrical configuration. (b) a slender curved
filament with circular cross section wrapped around another cylinder to form a helix.
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where 7;; is the deviatoric stress tensor, and subscripts indicate tensor components. The
Bingham law relates the stress to the strain rate ;;,

Bi
T = (1 + ;) 4 for 7> Bi (2.4)
and ;; = 0 otherwise. Here, the strain rate is related to the velocity field by
2u, vr + (ug —v)/r  w,
Fijt = v+ —v)/r  2(wg+u)/r wy/r|, (2.5)
Wy we /T 0

where subscripts of 7 and € on the velocity components denote partial derivatives, and

v o= ,/%Zij vijYi; and T = 1/%2:” 7;;Tij denote the tensor second invariants. We
incorporate the incompressibility condition directly by defining a streamfunction ) (r, )
such that u = r710/00 and v = —dv/Or.

To arrive at this dimensionless system, we use the radius of the filament, R, and the
translation speed of the cylinder, Y = v/U? + W2, to remove the dimensions of length
and velocity, respectively, while the stresses and pressure are scaled by pld /R, where
is the (plastic) viscosity. These scalings introduce the Bingham number,

Bi= 1~ (2.6)

where Ty is the yield stress.

With this scaling of the variables, the cylinder translates in the (z,z)—plane with
unit dimensionless speed at an angle ¢ to the = axis; the Cartesian translation velocity
is cos ¢k + sin @z (see figure la). The cylinder also rotates around its axis with the
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dimensionless rotation rate {2 = QR/Z/{ . Consequently, we impose
(u, v, w) = (cos b cos @, 2 — sin @ cos ¢, sin @) at r=1. (2.7)

In the far field, the stresses must eventually fall below the yield stress and the fluid
must plug up, such that (u,v,w) — (0,0,0). We exploit this fact to introduce a finite
computational domain in which we set (u,v,w) = (0,0,0) at an outer radius r = R,.
Provided this boundary lies well beyond the yield surface, we expect that its precise
location has no effect. Importantly, when Bi = O(1) the yield surfaces are expected to
occur at radii of order one, underscoring the strong localizing effect of the yield stress on
the flow around the cylinder and rendering accurate the leading-order approximation of
slender-body theory.

2.2. Forces and torque

On the surface of the cylinder (r = 1), the fluid exerts the force (7., 79, 7r)|,_;. This
leads to a net drag per unit length of XF, + zF,, with

[Fz} _ j{ {(—p + Ty ) cOS 0 — Tpp SIN 9} 40 — j{ {27% cos 0 + (r7r9), sin 6 o,
r=1

F, Trz _ Trz 1

(2.8)
where the latter expression follows from an integration by parts, and provides a conve-
nient form for calculation of the forces without first calculating the pressure field. If the

cylinder rotates (£2 # 0), there is also a torque given by

T =r? ?{7}9(7', z)dé. (2.9)

The force balance (and, in particular, the integral of (2.2b) in #) demands that T is
independent of 7.

The two drag components, F, (¢, 2, Bi) and F.(¢, £2,Bi), and torque, T(¢, 2, Bi), are
the key ingredients when fully formulating slender-body theory. For the applications
in §4, we consider straight or bent rods, or a helix, and the net force and torque on
these objects follow immediately from F, (¢, 2,Bi), F,(¢,2,Bi) and T(¢, 2,Bi). The
remaining step in applying the slender-body theory is to ensure that the object is either
force-free in a certain direction or torque-free, which ultimately prescribes either the
translation direction, rotation rate or swimming speed.

For a slender body with a twisted centerline, the drag force and torque vary with
position along the centerline. Integrating these quantities over the arc length then
provides an estimate for the total force and torque acting on the body. This leading-
order calculation corresponds to the resistive force theory of viscous fluid mechanics,
which is often considered to be a poor approximation in view of nonlocal logarithmic
corrections to the viscous-flow solution due to the finite aspect ratio of the body (e.g.
Lauga & Powers 2009). Here, no such logarithmic corrections are expected because of
the localization of the flow by the yield stress, provided that Bi is not small and there
are no significant effects stemming from the ends of the object.

2.3. Some numerical details

We solve the equations numerically using an extension of the augmented Lagrangian
scheme described by Hewitt & Balmforth (2017). The key extension here is to combine
the Stokes-like solver used there for the streamfunction with a similar (but lower-
order) scheme for the axial velocity w. These equations reduce in the Newtonian limit
to a biharmonic equation for ¢ and Laplace’s equation for w; for non-zero Bingham
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number, the equations are instead solved iteratively. We omit further details of the
augmented Lagrangian scheme, which have been described in numerous previous studies
(e.g. Saramito & Wachs 2017).

Given Bi, ¢ and (2, the equations are solved by adopting truncated Fourier series
for the angular dependences and using standard second-order finite differences in the
radial direction, giving a band-diagonal matrix problem. When (2 = 0, solutions can be
computed directly by matrix inversion. When {2 # 0, however, and as a consequence
of working with a streamfunction rather than with pressure, we cannot directly impose
the constraint that the torque T is independent of radius (see (2.9)). Instead, we enforce
the constraint by iterating the net azimuthal flux around the cylinder until the radial
variation in the calculated torque falls below a tolerance of 0.5%. The resultant nested
iterative scheme is qualitatively similar to that employed by Hewitt & Balmforth (2017)
to enforce a condition of zero net force in a related problem.

3. Breaking the problem down

The problem outlined in §2 can be broken down into pieces to understand its con-
stituents in more detail, although the nonlinearity of the viscoplastic flow law forbids us
from simply superposing these pieces to build general solutions. These pieces correspond
to some idealized examples that have received attention in existing literature, as well
as some that have not, and lead to some special limits in which analytical progress is
possible to build asymptotic or exact solutions.

3.1. Newtonian limit

In the limit Bi — 0, the yield stress becomes unimportant over the regions near the
cylinder where the viscous stresses remain high. Only further away do those stresses
decline to permit viscoplasticity to affect the flow. Thus, the solution is composed of a
near-field Newtonian region and a far-field viscoplastic one. Despite this, the Newtonian
solution is controlled by the far-field conditions, owing to the presence of logarithmically
diverging corrections. In this manner, the problem is directly analogous to the removal
of the classical Stokes paradox, with viscoplasticity here taking the role of inertia.

Over the Newtonian region we may compute a solution perturbatively by adopting
asymptotic solutions in the sequence 1, (log Bi_l)_l7 ..., as in the classical problem
of Stokes flow past a cylinder (e.g. Hinch 1991). The leading two orders, ¢ ~ g +
(log Bi™ ") ~; and w ~ wy + (logBi~')~lw, satisfy the Newtonian problems, V%, =
Vi, = V2wg = V2w, = 0, subject to the no-slip conditions on the cylinder. The
remaining arbitrary constants in the solutions are fixed by demanding a match to the
far-field solution where r = O(Bi™*) and (u,w) — 0. We thus find

2rl - -1
1) ~ sin 6 cos ¢ [7" 7 Oleng::T } — Nlogr, (3.1a)
. logr
wNSIH(b(l—IOg]Bi_l) y (316)

without any need to calculate explicitly the viscoplastic far-field structure. Given (3.1),
the drag force and torque can be computed from (2.8)—(2.9) to be

2
{Ff} ~——T {290591’] and T ~ —4r12. (3.2a, b)
F. log Bi sin ¢
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Note that the drag force and torque are decoupled in this limit: the drag is independent
of the rotation rate {2 and the torque is independent of translation.

3.2. No transverse motion

If the cylinder moves with only axial translation (i.e. ¢ = %w) and rotation, some
analytical progress is possible because the flow is independent of the polar angle 6.
Integration of the force-balance equations (2.2b) and (2.3), together with the condition
7 = Bi at the yield surface, gives expressions for the non-zero stress components,

_ _Trp; ™\ _ Bi _
(Trzy Tre) = . Bi (C,S . ) = (1 + 5 ) (W, v —0/T), (3.3)

where 42 = w2 + (v, —v/r)? in this limit, and (C, S) = (cos7,sinT), with 7" a parameter
defined such that the yield surface is the circle » = r,. The drag and torque are thus
F,=0, F, = —2mr,CBi, T = —27r; SBi, (3.4)

from (2.8) and (2.9). Given that w = v = 0 at r = rp, the integral of (3.3) gives the
velocity components,

w = %Bi {02 log (%”) 14 /s2 02(T/7’p)2] (3.5)

/Bi S(ﬁ 1) [a+s) (VETEE - 5)
- L - + In
2 (1-9) (VCTF S /m,)? +5)

r2
Finally, the parameter 7" and location of the yield surface r = r, follow from the implicit
relations implied by the boundary conditions in this limit, w =1 and v = 2 at r = 1.

For large yield stress, Bi > 1, the yield surface approaches the surface of the cylinder
and we arrive at the relations,

and

v =

(3.6)

2
(w,v) ~ (1, 92) (”’ - ’i) . and  (F.,T) ~ —27Bi(C, S) (3.7)
T'p —
with
Q~tan?  and 7, ~ 1+ V2[(1+ S?)CBi| V2 (3.8)

Thus the region of flow around the cylinder is localised to a narrow layer of width
O(Bi™'/?) when Bi > 1. If also 2 >> 1, the thickness of that yielded annulus increases
like O(£2'/2), while the axial drag force decreases like O(£2~!) and the torque approaches
T ~ —27Bi. That is, unlike in the Newtonian limit discussed above, rotating the cylinder
in the plastic limit reduces the drag.

Conversely, for small yield stress, Bi <« 1, the location of the yield surface r, becomes
large and the parameter 7" becomes small:

1
T ~N —
" BilogBi~!

This leads to the force F, and torque T quoted in (3.2) with ¢ = %77.
In the absence of rotation ({2 = 0), the solution is more explicit:

and S~ 20Bi(logBi™t)2. (3.9)

w=1+4+Bi(r—1—r,logr) and Bitt=1-r,+r,logr, (3.10)

which, for Bi > 1, give r, — 1 +v2Bi "2 w — (1 — €)2 and F. ~ —27Bi, where
&€= (r—1)Bi'?/y2.
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FIGURE 2. (a—c) Density plots of the logarithmic strain rate log, (%) in the (z, y)—plane (showing
only y > 0), for a cylinder translating in the z direction (¢ = 0), with (a) Bi = 0.0625, (b)
Bi =1, and (c) Bi = 1024 (note the different axis scales). The (blue) curves show streamlines,
1 = constant, in the frame of the ambient fluid. (d) The distance from the centre of the
cylinder to the furthest yield surface along the x (red circles) and y (blue crosses) axes; the
slipline predictions (v/2 and 2+ ) are shown by dashed lines. (e) The widths of the boundary
layer against the cylinder (red circles) and the outer free shear layer (blue crosses), both along
z = 0. (f) The force |F,(Bi)|, together with the Newtonian (blue dots; (3.2a)) and plastic (red
dashed; (3.11)) predictions.

3.3. No axial motion
3.3.1. Pure transverse motion

In the absence of axial motion (¢ = 0), the problem reduces to two-dimensional flow
around a circle. This limit without rotation was discussed at length by Tokpavi et al.
(2008). In general, the two-dimensional structure of the flow field in this limit precludes
analytical progress except in the limits of small or large Bi.

Sample numerical solutions with no rotation ({2 = 0) are shown in figure 2, together
with a collection of data that highlight how certain flow features vary with the Bingham
number. The density plots in the figure show log;, ¥, with the plugs regions in black and
superposed streamlines (i.e. ¥ = constant) in the frame of the ambient fluid. As Bi is
increased, flow becomes more localized to the cylinder, but unlike in the problem without
translation, the fluid remains yielded over a region of O(1)-extent, even as Bi — oo
(figure 2d). Over the bulk of those regions, shear rates are low but finite and the fluid
deforms in the manner of ideal plasticity: two triangular plugs remain attached to the
front and back of the cylinder, and rigidly rotating cells survive at the centre of the plastic
zones. The plastic zones are buffered from the cylinder and plugs by high-shear boundary
layers within which viscous stresses remain important. As illustrated in figure 2(e), the
width of these boundary layers decrease with the Bingham number in agreement with
viscoplastic boundary-layer theory (Appendix A; see also Balmforth et al. 2017).

The solution for the plastic zones can be constructed using the method of character-
istics, or slipline theory; see Randolph & Houlsby (1984). In this construction, there are
two families of orthogonal characteristic curves, the sliplines, whose local tangents make
angles of 9 and %7‘( + 1 with the r—axis. The curves are normally referred to as either
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FIGURE 3. Slipline solutions for (a) {2 =0 and (b) {2 = 1.6. The two families of sliplines are
shown with different colours (a—lines are red; 8—lines are blue). Plugs are shaded light grey.

a or 8 lines, and have the Riemann invariants, p + 2Bid. As illustrated in figure 3(a),
Randolph & Houlsby’s slipline construction proceeds by placing centred semicircular fans
of the characteristics of radius 1+ 411” at the points (0, £1). These fans are then extended
immediately below or above by continuing the circular arcs as the involutes of other
circles and adding new straight sliplines that meet the cylinder tangentially (i.e. the fans
become non-centred and follow the cylinder surface). The plastic regions are terminated
by straight sliplines of unit slope that meet at (z,y) = (£v/2,0).
The slipline stress solution predicts that

F, = —4(7 + 2V2)Bi, (3.11)

as Bi — oo (Randolph & Houlsby 1984). The drag force F,, for general Bi is plotted in
figure 2(f), and recovers the slipline prediction for Bi > 10 or so.

3.3.2. Transverse motion and rotation

Sample solutions with both transverse motion and rotation are shown in figure 4;
corresponding results for the drag force and torque are presented in figure 5. The
inclusion of rotation desymmetrizes the velocity field about the z—axis, strengthening
the recirculating cell above the cylinder (for anti-clockwise rotation) and weakening that
below. Eventually, for sufficiently large §2, the lower cell disappears, which, for Bi > 1,
leaves a thin boundary layer coating the cylinder.

In the limit Bi > 1, it is again possible to construct slipline solutions bordered by
viscoplastic boundary layers. For sufficiently small {2 the rotation of the cylinder has no
effect on the stress field, leaving a slipline pattern equivalent to the non-rotating case, but
with an asymmetrical velocity field; see figure 4(a). An immediate consequence is that, to
leading order in Bi~!, the drag force remains as in (3.11) and, because the torque vanishes
for 2 = 0, T < O(Bi). In fact, the numerical results indicate that 7 = O(Bi'/3) over
this range of {2 (see figure 5b), highlighting its origin within the viscoplastic boundary
layers.

For large Bi, the {2 = 0 stress solution is eventually replaced by a second, alternative
stress pattern for higher {2 in which a rigidly rotating plug attached to the cylinder takes
the place of the upper fan. The alternative pattern is feasible because the no-slip condition
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FIGURE 4. Density plots of log,, ¥ on the (z,y)—plane, overlain by streamlines, for a cylinder
translating with unit velocity in the z direction (¢ = 0) and rotating with angular velocity (a,e)
=04, (bf) 2=038, (c,g) 2 =1.6 and (d,h) 2 = 12.8. The upper row (a-d) is for Bi = 1,
the lower row (e—h) is for Bi = 2048.
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FIGURE 5. (a) Force and (b,c) torque for a cylinder translating with unit velocity in the x
direction (¢ = 0) and rotating with angular velocity 2. The data are scaled as indicated. The
vertical dashed lines mark {2 = 1. Other lines show predictions for Bi > 1: the horizontal dashed
line in (a) shows the force for pure translation (3.11), and the red solid lines show the force and
torque for solutions with a rigidly rotating upper plug (3.12). The different colours/symbols
indicate data for Bi = 2™ with n = 8 (black cross), n = 9 (blue circle), n = 10 (red star), n = 11
(green square) and n = 12 (grey diamond).

on the cylinder, with velocity field X+ 2(yX+2x¥), can be accommodated by rigid rotation
about a centre (0,v9), with yo = 27!, The rigidly rotating plug demands a circular arc
of failure, which broadens into a viscoplastic shear layer in the Bingham computation of
figure 4(g). The broadened arc merges with the viscoplastic boundary layer underneath
the cylinder, leaving intact an underlying plastic zone. The stress solution makes the
transition between the two patterns over a window of rotation rates around 2 =1 (see
e.g. figure 4f,g), with the second stress pattern becoming accessible once the centre of
rotation yo = 27! lies close to or inside the cylinder.

The slipline solution corresponding to the alternative stress-field pattern is illustrated
in figure 3(b). The upper circular failure arc must correspond to a slipline in ideal
plasticity, and therefore continues one of the straight sliplines that leave tangentially
from the lower half of the cylinder. This in turn is met by other sliplines to join the fan
underneath the cylinder, which persists in the re-organization of the plastic flow. The
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requirement that there is no net pressure drop around the sliplines that border the region
of deformation (i.e. the union of the circular failure arc and the outer periphery of the
fan) demands that the fan and circular failure arc intersect along sliplines that make
angles of :I:%W with the z—axis (BC and DF in figure 3b). It follows from geometrical
considerations that the radius of the rigidly rotating plug is R = 1 + yo/v/2. Further
details of this slipline construction can be found in Appendix B. Moreover, a calculation
using the resultant slipline stress-field solution, also outlined in Appendix B, gives

(24 3m) (3w + 2)]

F,=-Bi|2r+4V2+ 5 7

, T =—1iBi [471' - (3.12a, b)
and F, =0, for Bi > 1.

As {2 is increased still further, the rigidly rotating slipline pattern persists until the
circular failure arc approaches the cylinder and the plug becomes consumed by the
adjacent viscoplastic boundary layer (figure 4h). At this stage, the torque approaches
the limit —27Bi expected for pure rotation. Simultaneously, the drag force abruptly falls
off, see figure 5a, for £2 < 20. The residual drag stems from a “squeeze” flow driven by
the translation of the cylinder inside the rotationally induced boundary layer: continuity
demands that the radial velocity of the cylinder forces an O((r, —1)™') correction to the
angular velocity with an associated shear stress of O((r, —1)~2). The radial derivative of
this stress must be balanced by an angular pressure gradient, giving p ~ O((r, — 1)73).

Finally, because the boundary layer has thickness r, —1 ~ O(Bi~/2021/2) (see §3.2), and
in view of (2.8), we find F, ~ O(273/2Bi*/?) for 2> 1.

4. Cylinders, rods and helices
4.1. Angled motion of a cylinder

A collection of numerical solutions for viscoplastic flow around a cylinder for varying
B and ¢ are shown in figure 6. In these non-rotating solutions, the yield stress increases
from left to right, and the orientation of motion with respect to the cylinder axis (¢)
from top to bottom. The plots show density maps of log;, ¥, overlain by streamlines in
the (z,y)—plane (upper half) and contours of axial velocity w (lower half). The location
of the yield surfaces for these and other solutions are shown in figure 7, while figure 8
shows results for the drag forces on the cylinder.

The upper two rows of figure 6 show that solutions are relatively insensitive to the flow
angle over a large range of ¢. Indeed, the stress pattern of the solutions broadly mirrors
that for pure transverse motion (¢ = 0; § 3.3.1). This behaviour is clearest for Bi > 1,
where the outer yield surface remains close to the transverse limit over most of the range
of ¢ (figure 7c), and only decreases towards the for the much smaller axial limit when
¢ becomes close to 7/2. The persistence of this stress pattern reflects how the addition
of axial motion for ¢ < 1 constitutes a regular perturbation of the transverse-motion
problem: the axial velocity w and associated axial drag F, scale with ¢ in this limit, but
the feedback on the transverse flow and transverse drag F, (which occurs through the
constitutive law and ) is O(¢?).

For ¢ closer to %77, however, the flow pattern adjusts more noticeably, and rather
abruptly for %7‘( — ¢ = O(Bi™') in the plastic limit Bi > 1. In this limit, the axial flow
becomes restricted to a boundary layer against the cylinder, surrounded by a delocalized
transverse flow with much weaker deformation rates characteristic of an almost perfectly
plastic region (see figure 6i). The outer plastic flow persists very close to ¢ = %77,
supporting a finite transverse drag F, that exceeds the axial drag F, even when the
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FIGURE 6. Density plots of logarithmic strain rate log;, (%) for flow around non-rotating cylinders
moving at an data areangle ¢, together with streamlines in the x — y plane (i.e. ) = constant;
blue, shown for y > 0) and contours of the axial velocity w (green, shown for y < 0). From left
to right, the yield stresses are (a—c) B = 0.0625, (d—f) B = 1, and (g-i) B = 256. From top to
bottom, the angle of motion is (a,d,g) ¢ = 7/8, (b,e,h) ¢ = /4, and (c,f,i) ¢ = 197/40.

(a) ,

-4 0 4
T

FIGURE 7. The outermost yield surface for (a) Bi = 1, (b) Bi = 256, and (c) Bi = 2048.
The surfaces correspond to inclination angles of ¢ = 0 (black, circles), ¢ = 7 /4 (blue, stars),
¢ = 31/8 (green, squares), ¢ = 197 /40 (grey, diamonds) and ¢ = /2 (red, triangles).
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FIGURE 8. The drag force on a cylinder moving at an angle ¢ to the z-axis. (a) The magnitude
of the force, scaled by the Bingham number, |F'| /Bi. (b) The orientation of the force relative to
the z-axis o = tan™'(F,/F.). Note the that larger values of o are confined to an increasingly
narrow boundary layer for Bi 3> 1. (¢) The components of the drag F./Bi (black) and F,/Bi
(blue) for 1 < Bi < 2'°. (d) A magnification of the same data (showing 2° < Bi < 2'9), for
¢ — /2. The red dashed line shows |F,| = 97(7/2 — ¢)Bi? (see Appendix C).

cylinder’s motion is almost aligned with its axis (figure 8c). Ouly for %71' —¢=0(Bi")
does F, eventually drop to zero (figure 8d). Some analysis of this limit is provided in
Appendix C.

The disparity between F,, and F., for %77— o> O(Bi_l) leads to a drag anisotropy that
becomes embedded in the variation of the orientation angle « of the force (figure 8b). This
angle remains small (less than ~ %ﬂ) over most of the range of ¢, but increases sharply
near ¢ = %7‘( where the transverse force F, drops sharply. Consequently, in situations
where the angle of the force is prescribed rather that the direction of motion, as in the
examples that will be described presently, any variation in o must be accommodated by
a sensitive tuning of ¢ near %7‘(‘: it is only when a < %w that ¢ can vary over its full
range.

4.2. Sedimentation of rods
4.2.1. An inclined straight rod

Consider a straight rod falling under the action of a force such as gravity. The force
makes an angle of %7‘1’ — « with the cylinder axis (i.e. the z—direction; see figure 1a).
The drag F = F,X + F,Z must therefore also point in this direction to balance the
applied force. Thus the angle o = tan~'(F,/F,) and magnitude |F| are specified in this
problem, rather than the angle ¢ and speed U of the resulting motion. It is therefore
more natural to define a yield-stress parameter based on the dimensional applied line
force |F| (e.g. the weight per unit length), rather than our previously defined Bingham
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number Bi = 7R /(uld). More specifically, we define an Oldroyd number

Bi TyR
d= — = ——. (4.1)
[l |F|
Then, given the switch in the specified physical parameters, we must translate our results
by a suitable two-dimensional interpolation from the (¢, Bi)—parameter plane to the
new parameters, (a,Od) = (tan~'(F./F,),Bi/\/F2 + F2). We thereby arrive at the
dimensionless fall speed V' and angle ¥ to the force direction:

it od

and U(a,0d) = ¢(a, Od) — av. (4.2)

These quantities are plotted in figure 9(a,b). As Od — 0, the weight of the cylinder
becomes much larger than the yield strength of the material and solutions approach

the Newtonian limit, with limiting drag components (F,,F,) = |F|(cosq,sina) ~
21(2 cos ¢, sin ¢)/log Bi~* (see (3.2)). The fall speed and angle thus approach
logOd ™"
Vo~ OgT\/ 1+ 3sin o and VU~ tan" ! (2tana) — a, (4.3)
™
for Od — 0.

Conversely, above a critical threshold value Od,. (figure 9d) the cylinder cannot exert
sufficient stress on the material to move, and so remains stationary. This threshold value
increases with orientation angle «, and lies between two limiting values for transverse
(o = 0) and axial (o = 7/2) sedimentation. These can be calculated for Bi > 1 from the
asymptotic values of the force components in (3.7) and (3.11),

Bi { (4m +8v/2)~1 a—0

Ode = IF| (2m)~t a— /2.

(4.4)

The angle ¥ of motion relative to the force (figure 9b) does not provide a clear sense
of how the cylinder moves. Figure 9(c) instead shows the angle of motion relative to the
cylinder’s own axis (37 — ¢; see figure 1(a)), which reveals that, close to the initiation of
motion (Od — Od..) the cylinder slides almost along its axis for any inclination angle «
greater than about %w. Conversely, if the cylinder is oriented closer to the perpendicular
( < im), it can drift in a wide range of directions. Both of these features are a
consequence of the drag anisotropy for Bi > 1 discussed in the previous section: the
resistance to motion in the transverse direction is larger than that in the axial direction
over almost the entire range of angles ¢ of motion relative to the axis.

Sedimentation of cylindrical rods was studied experimentally by Madani et al. (2010) in
centrifuge experiments using Carbopol gel. They measured the critical force (i.e. 1/0d.)
for the initiation of motion. Figure 10(a) shows their data for straight rods orientated
either parallel (o = %w) or perpendicular (o = 0) to the force against the aspect ratio of
the rods, L/R, where L is the rod length; our slender-body theory applies for L > R. Like
the theoretical predictions in (4.4), the two orientations lead to critical values of Od that
are different by a factor of order unity (the factor is about 5 in the experimental data, and
predicted theoretically to be close to 4). Curiously, however, both sets of experimental
data are different from the theory by a factor of about two (this has been scaled out
in the data in figure 10; see caption). We are not sure of the origin of this discrepancy,
particularly since Tokpavi et al. (2009) report far better agreement with theory for their
own experiments in the perpendicular orientation (o« = 0). Indeed, a separate set of
experiments by Jossic & Magnin (2001) also measured the critical forces on cylinders in
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FIGURE 9. Numerical solutions for a cylinder whose axis is inclined at an angle of %w —a to an
applied force ,with strength gauged by the Oldroyd number Od: (a) the fall speed V; (b) the
angle of motion ¥ = ¢ — « relative to the applied force; and (c) the angle of motion 7/2 — ¢
relative to its own axis. For Od > Od.(«), the force on the cylinder is not sufficient to yield
the fluid and there is no motion, leading to the white areas at the top of the plots. The critical
value Od.(«) is shown in (d), together with the limits of transverse (short blue dashed) and
axial (long red dashed) orientation, and a set of experimental data for headless machine screws
sedimenting through a Carbopol gel (see Appendix D). Stationary rods are indicated by open

circles and moving rods by filled circles, and the shading represents vV (in y/cm/s), according
to the colour scheme indicated.

both the perpendicular and parallel orientation; their data are also shown (as stars) in
figure 10(a), and is more consistent with the theoretical results.

We also performed our own simple experiments of the sedimentation of inclined rods,
and the data are presented in figure 9(d). The experiments are conducted using headless
machine screws immersed in an acqueous Carbopol gel, as described in more detail in
Appendix D. The figure reports the sedimentation speed observed for screws of different
size for varying orientation, distinguishing between rods that did or did not move over
the duration of the experiments. This distinction picks out an estimate of the critical
threshold Od,, which compares well with the theoretical predictions. The screws in these
experiments had aspect ratios L/R lying between 13 and 33. Despite their simplicity,
the experiments provide some other qualitative agreement with the predictions of the
theory regarding the fall direction, although they also exhibit some potential sources of
disagreement with the theory, as discussed in more detail in Appendix D.

4.2.2. A bent rod

For a simple model of a bent rod, we assume that the axis is straight except for an
abrupt corner at the midpoint, the effect of which on the flow dynamics is negligible.
We further orientate the object so that the centreline is contained in a vertical plane
and is symmetrical about the horizontal; i.e. we consider the two v-shaped orientations
illustrated in figure 10(b). Thus, over half of the length of the rod the centreline makes an
angle « with respect to the force, while over the other half the angle is equal and opposite.
Such configurations were also examined by Madani et al. (2010) in their experimental
study.

Figure 10(b) shows this experimental data together with the theoretical prediction
for bent rods, with the degree of the bend measured in terms of the shortest distance
between the ends of the rod S, divided by its original length L. As indicated in the plot,
two symmetrical orientations are possible: a “scallop” and a “v” arrangement. When
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FI1GURE 10. Comparison of experimental data from Madani et al. (2010) (points) with theory
(lines) for the critical dimensionless force 1/0d at which cylinders of aspect ratio (length/radius)
L/R start to move. (a) Straight cylinders with axis aligned with the force (black circles) or
side-on to the force (blue squares) together with our corresponding predictions for an infinite
cylinder (dashed lines). The corresponding experimental results of Jossic & Magnin (2001) are
also shown by stars. (b) Bent cylinders, in the orientations shown, where the force acts in the
direction of the arrows, for different ratios of the shortest distance between ends S to the length
L, together with the corresponding predictions (lines). The data are for cylinders with aspect
ratios between L/R = 20 and L/R = 40. All of the experimental data of Madani et al. (2010)
has been divided by a factor of two.

S — L the rods are straight, whereas for S/L — 0 the rods become bent into two,
potentially violating the slender-body assumptions (which leads us to truncate the plot
at S/L = 0.2). Theoretically, the critical force depends only on the angle «, as was shown
in figure 9(d). However, the two orientations differ in their definition of that angle, leading
to the two curves in the figure: for the “scallop” arrangement, o = sin_l(S /L), whereas
a = cos~1(S/L) for the “v” orientation. Once again, there is rough agreement between
theory and experiment in terms of the dependence of Od. on S/L, notwithstanding the
same disconcerting factor of two.

4.3. Helices

For the flow around a turning and translating helix, we must again translate our
computational results for the velocity field and drag relative to the local orientation of
the filament. As illustrated in figure 1(b), we embed the helix inside a virtual cylindrical
surface of radius Ry, and let (s,t) denote axes that lie along and tangential to it. We
further let @ denote the pitch angle of the helix (i.e. the angle between the centre line
of the filament and the t-axis). We first consider both sedimentation and locomotion of
helices with arbitrary pitch angle (§84.3.1-4.3.2), in which case the slender-body theory
is valid when Ry > R. Then, in §4.3.3, we consider locomotion driven by relatively long
spiral waves with & — %w; in this case the theory applies for Ry /R = O(1).

The dimensional velocity U(cos ¢, sin ¢) associated with axes aligned with the filament
corresponds to a translation speed V; in the s-direction and a turning rate @ in the
t-direction that are given by

Vo= Ucos(p+ @), B= 2 sin(p+ ) (45a,b)
H

The dimensionless force on the helix is also resolved into the (s,¢)—directions as

Fy| _ |F.(¢,Bi)cos® + Fy(¢,Bi)sind
Fs|  |F.(¢,Bi)sin® — F,(¢,Bi)cosP| "
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FIGURE 11. (a) The velocity V; and (b) the angular rotation w for helix with pitch @ sedimenting
along its axis. (c¢) The angle of motion ¢ — 7/2 of each filament of the helix to its own axial
direction. Small angles indicate a nearly corkscrewing motion.

4.3.1. The spiral of a sedimenting helix

When the helix is subjected to an axial force (in the s—direction), the helix drifts in
that direction along a spiral path. The force F; is unbalanced and must therefore be
eliminated, which demands that

F
¢ = —tan"! (F—Z> =T —a (4.7

where the last equality follows from noting that both ¢ and « must lie in the range
[7,7] in this scenario. As for the sedimenting rod, the dynamics is naturally described
in terms of the Oldroyd number (4.1). Hence we must transform the input parameters
from (¢, Bi) to (¢,0d) = (—tan~(F,/F,),Bi/\/F2 + F2). The output quantities are
then the dimensionless fall speed and turn rate,

1V, Odcos[p(,0d) + & L _ HRu& _ Odsin[¢(®,0d) + ]

=3 = 4.8a,b
T Bi(®,0d) IF| Bi(w,00)  \Seb)
shown in figure 11(a,b).
In the Newtonian limit Bi — 0 (§3.1), the limiting drag components imply
log Od ™"
(Vs,w) ~ Og—(l + sin® @, sin @ cos D). (4.9)

Conversely, for higher Od (weaker force) we again encounter a critical yield stress Od.
above which there is no motion. Indeed, the critical stress Od.(®) as a function of pitch
angle is the same as the critical stress Od.(«) in terms of the inclination of straight
cylinders. Furthermore, the motion of the helix is affected by exactly the same drag
anisotropy as straight cylinders for Od — Od,. (see figure 11c). That is, for pitch angles
that are close to %7‘(‘ (i.e. for long loosely wound helices), the angle of motion ¢ spans

almost its full range, and so the spiral taken by any filament of the helix is different from
1

the curve itself. But for helices with @ < %7‘(, ¢ — 5m: the helix turns such that each
filament moves almost axially, and the helix falls via a corkscrewing motion.

We performed a simple experiment of a sedimenting helix in Carbopol gel to confirm
the latter prediction, as shown in figure 12. The upper image shows the helical corkscrew
used, while the lower shows successive snapshots of the centreline as the helix spirals
vertically downwards (plotted to the right in the figure). As illustrated by the near perfect
alignment of the snapshots, the helix falls in almost the direction of the filament axis to
perform a corkscrew motion. Note that we are unable to make any further quantitative
comparison with theory as the Carbopol is better modelled as a Herschel-Bulkley fluid
rather than using the Bingham law (precluding a direct comparison of the fall speed,

for example). Nevertheless, the relatively slow sedimentation speed (less than 1 cm per
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FIGURE 12. An image of a helix falling through Carbopol, and a plot showing successive
snapshots of the centerline. The helix has mass M = 10.6 g, axial length 14 cm, radii R ~ 1.2 mm
and Ry ~ 3.4 mm, pitch angle ¢ ~ 32°, and falls vertically (to the right in the plots) with a
speed of 0.83 cm/min.

minute), suggests that the helix is close to the onset of motion. The Oldroyd number,
however, is Od = 7vR/(Mg) ~ 0.095, which is greater that the critical threshold of 0.083
for motion at the pitch angle of the corkscrew, @ ~ 32° = 0.187 rad. Given that the
corkscrew is made of smooth steel, this discrepancy might point to a reduction of Od.
due to effective slip on its boundary (cf. Jossic & Magnin 2001). Alternatively, the radius
of the helix Ry ~ 3.4 mm is not that much larger than the filament radius R ~ 1.2 mm,
which suggests that the slender-body limit may be inaccurate.

4.3.2. Swimming with helical waves

In Taylor and Hancock’s model of the locomotion of a micro-organism driven by helical
waves propagating down a cylindrical flagellum (Taylor 1952; Hancock 1953), the filament
spirals around the cylinder surface under the action of an imposed turning moment with
Fy # 0, driving a swimming speed Vs. Force balance along the surface, however, now
demands that the axial force Fs vanishes, or, given (4.6),

F m
P(p,Bi)=tan ' [ = )| = = —a. 4.10
(0.3 =t () =3 - (1.10)
In this situation, the imposed turning velocity Ryw provides a characteristic velocity
scale. We therefore introduce a modified Bingham number,

TyR Bi

Bi* = - 411
VTR sin(o+ @) (4.11)

given (4.5b), and write the dimensionless velocity along the cylindrical surface as

Eﬂ N RLHW Ef] B {— cot(lqﬁ-i-gp)} : (4.12)

We now map the input parameters from (¢, Bi) to (&,Bi*), and then determine the
swimming speed V (&, Bi*) from (4.12). Figure 13 shows the results of this computation.

In the Newtonian limit (Bi — 0 or Bi* — 0), we find that tana = %tamz) = cot P,
given the limits in §3.1. Hence

v sin @ cos @

s 77 +cos2 P’

which is equivalent to the result quoted by Hancock (1953).
For higher Bi*, the swimming speed increases and, at a particular pitch angle, attains

a maximum that can exceed the turning velocity of the helix (i.e. Vs > 1; see figure

13b,c). For pitch angles that are sufficiently below %77, the speed converges to the curve

Vs = tan @, (4.14)

(4.13)
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FIGURE 13. Calculations for a swimming cylindrical filaments propelled by helical waves. (a)
The pitch angle ®(¢, Bi), calculated from (4.10). (b) The swimming speed Vi(®,Bi*). (¢) The
swimming speed for different Bingham numbers between Bi* = 0.003 and Bi* = 1995, together
with the Newtonian (red, long dashed) limit, the speed for perfect ‘corkscrewing’ (blue dashed),
and the prediction for @ — /2 given in §4.3.3 (for 2 — 0; green, short dashed).

in the plastic limit Bi* > 1 (figure 13c). This limit corresponds to a perfect “corkscrew-
ing” motion, and follows from (4.12) with filaments of the helix moving along their
axis (¢ = 7m/2). The corkscrewing behaviour is once again a consequence of the drag
anisotropy F}, > F, outlined in § 4.1. When Bi > 1 (and hence Bi* > 1), the force angle
a is small over most of the range of ¢, and so, given (4.10), the pitch @ must be close to
/2. Hence variation in ¢ away from 7/2 must be accommodated by a sensitive tuning
of ¢ very near 7/2. In other words, over much of the range of pitch angles, ¢ is very close
to m/2 and the filament translates almost along its axis in a corkscrewing motion.

With a perfect corkscrewing motion, the swimming speed could in principle diverge for
pitch angles approaching /2. As illustrated in figure 13(c), this is not achieved for our
model swimmer because, as ¢ becomes closer to /2, the angle ¢ is redirected away from
/2. The swimming speed V; thus deviates off the corkscrew curve (4.14) and decreases
as ¢ approaches %w. The descent of the swimming speed corresponds to the main range
of ¢ in the plots of the drag components (figure 8b,c), where 0 < a < %ﬂ. Given this
range of «, an optimal speed for Bi > 1 of V; & 2.14 results from (4.14), at a pitch angle
of & ~ 1.12.

4.3.3. Long helical waves

When locomotion is driven by relatively long helical waves, the pitch of the helix is
close to %77 and the z-axis of the filament almost aligns with the s-axis of the helix. In
this setting, we may assume that Ry /R = O(1). In the local Cartesian coordinates of
the filament, the rigid turning and translation of the helix driven by angular rotation @

then provides the dimensional surface velocity field,
(R — Rsinf)w X+ Rcosbuw y + W z =U(cos b cos ¢, 2 —sinf cos d,sing), (4.15)

where W = V is the dimensional locomotion speed. The latter expression in (4.15) is
simply a dimensional version of the generic boundary condition in (2.7), where U =

vVU? +W? as before but now
R
U=Ryow  and 9:7“’.

In this long wave limit, the condition ¢ — %7‘( is expected to demand that ¢ < 1 (cf.
figure 13), and so the surface velocity (4.15) is

U(cos, 2 —sinb, ¢), (4.17)

(4.16)
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with
w - R
Solutions in this limit can therefore be calculated by computing the motion of a cylinder

at small ¢, but with arbitrary rotation rate {2, to determine the drag force,

Fo(¢,2,Bi) X + F,(¢, 2,Bi) z ~ F,(0,2,Bi) X + ¢F. (£, Bi) 2, (4.19)
with
0
F.(2,Bi) = [FZ} . 4.20
@)= |5k (4.20)
But, as before, a = %ﬂ' — &, and so
F,(0, £2,Bi)

¢(£2,Bi) =~ (37 — D) (4.21)

F!(£2,Bi) ’
which is the dimensionless swimming speed. Note that, in the Newtonian limit, the results
in §3.1 imply that ¢ ~ 2(37 — @), which is equivalent to the @ — 7 limit of (4.13).

Figure 14(a) shows computations of the speed coefficient F, (0, 2,Bi)/F.(£2,Bi) for
varying radius ratio {2 and different yield stresses. For {2 — 0, the helix is loosely
wound and (4.21) reduces to the ® — 17 limit of the analysis in §4.3.2. The speed
increases towards a maximum value when the helix is more tightly wound (larger (2),
before decreasing again towards zero as {2 — co.

In the loosely wound limit, the swimming speed is insensitive to the radius ratio and
approaches a finite value for large yield stress. One expects this result for Bi > 1 because
the stress fields of the underlying plasticity solutions are independent of {2 until the
rotation rate becomes sufficiently large to force a change in the slipline pattern (see
§3.3.2). In addition, when the flow pattern contains a significant nearly perfectly plastic
region, the stresses, and therefore the drag components, are all expected to scale with
Bi, such that the speed is independent of Bi in the plastic limit. Only when the plastic
flow outside the cylinder is replaced by a boundary-layer flow for larger (2 (see §3.3.2
and figure 4) does the speed becomes more strongly dependent on the yield stress. In
this very tightly wound limit, the transverse drag is F, ~ Bi*/23/2 (see §3.3.2), while
the axial drag scales with F, ~ ¢Bi 271, because 7, ~ Bi w,/|v,.| ~ O(¢Bi/2). Hence,
¢ ~ Bi'/2071/2 which captures the final decay of the swimming speed for £ > 1 in
figure 14(a). A maximum value of the speed is attained between these two limits, for
O(1) < 22 < O(Bi'/?), where the axial drag decays like F, ~ ¢Bi 2! but the stress
state is still given by the modified slipline solution in §3.3.2 and the transverse drag
remains O(Bi). The speed grows over this intermediate range, and attains a maximum
value (Fi/F.)max ~ Bi'/3? when 2 = Quax ~ Bil/3 (figure 14b).

5. Summary

In this paper we have formulated viscoplastic slender-body theory to describe the slow
(inertialess) flow of a yield-stress fluid around a thin cylindrical filament. For Newtonian
Stokes flow, the linearity of the problem means that a general solution can be found by
breaking things down into the constituent components of motion (transverse and axial
motion plus rotation) and then suitably superposing the results. The nonlinearity of
the constitutive law means that such a superposition is not possible here, forcing us to
consider all the possible combinations independently. The theory does, however, simplify
matters by exploiting the slenderness of the filament to reduce the problem to that of
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FIGURE 14. (a) Computations of the speed coeflicient F (0, £2, Bi)/F.(§2, Bi) in (4.21) for varying
2 and Bi = 4 (black circles), Bi = 16 (blue stars), Bi = 64 (red crosses), Bi = 256 (green
squares) and Bi = 1024 (gray diamonds), together with the high-Bi limit for 2 = 0 from the
data in figure 8 (red dashed). (b) The (interpolated) maximum speed coefficient (Fj/Fy)max
(blue squares) and corresponding Bingham number at which it is attained Bimax (black stars).

the local flow around a cylinder, which is inclined relative to its direction of motion and
rotates. We solved this problem numerically using a specially designed technique to deal
with the yield stress (an augmented-Lagrangian scheme). We also provided some exact
or asymptotic solutions in different analytically accessible limits.

We applied the theory to the sedimentation of a straight or bent rod, and compared
the results with both existing experiments (Jossic & Magnin 2001; Madani et al. 2010;
Tokpavi et al. 2009) and some simple experiments of our own. We further considered flow
around a helix, by exploring both the spiral fall of a vertical helix and the locomotion
of a cylindrical filament driven by helical waves. The latter makes a non-Newtonian
generalization of the model of Taylor (1952) and Hancock (1953) for a swimming mi-
croscopic organism with a flagellum. We found that, as the strength of the yield stress
increases, an optimal swimming speed arises for a certain pitch angle of the helix, which
is connected to a near corkscrewing motion of the helix. This results because the drag
opposing transverse motion is typically higher than that opposing axial motion, and may
have application to biological organisms such as spirochetes that are observed to perform
a corkscrewing motion in gel-like materials (Wolgemuth et al. 2006).

We thank John Lister, Mark Martinez and Gunnar Peng for helpful comments

Appendix A. Two-dimensional viscoplastic boundary-layer theory

As suggested by Piau (2002) and confirmed by Tokpavi et al. (2008), the boundary
layers against the solid surface of the cylinder in the limit of transverse motion have
a thickness of O(Bi~'/2). As predicted by Oldroyd (1947) and shown by Balmforth
et al. (2017), on the other hand, the free viscoplastic shear layers have a thickness
of O(Bi~'/?) and a structure with self-similar form. For a shear layer with a curving
centerline, however, the theory outlined by Balmforth et al. (2017) is strictly only valid
when the curvature k < O(1) (despite an erroneous statement to the contrary contained
in that paper). In this Appendix, we briefly outline the correct generalization to order-one
curvatures.

We resolve the boundary layer in terms of a local coordinate system (s,n = en) based
on arc length s and a stretched transverse coordinate 7, and introduce the velocity field
(U, €V), where e = Bi~'/3. The force balance can then be expressed as

OTss
0s

OTsn _ Op
+(1- enn)a—n — 2eKkTqny = €5s’ (A1)

€
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dp
a (A2)

0 sn 0 nn
€ (;-s +(1- 6/177)(;—17 + €6(Tss — Tan) =

The components of the deformation rate tensor scale as

2 0 0 1 0 10
'yss: E—EKJV , 'ynn:2l7 "stzi Gl—f—ﬁ‘,u +77M7
1—exn \ 0Os € dn

(A3)
which, in view of the constitutive law, 7;; = 4;;(1 + e 3471), guide the stress scalings,
Ten = € osgn(Uy,) + € Msn(s,n) and (Tss, Tan) = O(e~2). To account for the third term on
the left of (A1) and maintain a consistent balance in that equation at O(e™!), we now
introduce the pressure scaling,

2 1
p=F 0+ 5P(s), (A4)

where 9(s) is the angle that the centerline of the boundary layer makes with the z—axis,
so that kK = 09/0s. The first term in the pressure solution (A 4), which is missing in
Balmforth et al. (2017), reflects how p + 2Bid is, to leading order, constant along the
boundary layer. But that centreline must be equivalent to a slipline, and p+£2Bid is simply
the corresponding Riemann invariant. With this correction to the pressure solution, the
remainder of the boundary layer theory proceeds as outlined by Balmforth et al. (2017).

Appendix B. Sliplines for rotating and translating cylinders

The notation in this Appendix refers to figure 3(b). Let © denote the angle of the line
BC, and pg the pressure at the base of the fan. Since the circles of the fan are S—lines,
and 9 = —%ﬂ' along the a-line x = 0, the pressure within the fan is p = pg + 2Bid + 7Bi.
It follows that the pressure along BC' is p = po + (7w + 20)Bi. The circular failure arc
CD is an a—line with pressure p = po + (7 + 40 — 29)Bi. Along CD (with ¥ = 27 — O)
we therefore have p = py — (37 — 60)Bi, implying that the pressure in the fan must be
p = po + 2Bi¢ — (7w — 809)Bi. On returning to the a-line = 0 cutting through the base
of the fan (now with ¥ = 27 + %77), we therefore find the pressure p = py — 2(7 — 40)Bi.
Eliminating the pressure drop then demands that © = %7‘(.

In z > 0, the involutes of circles that extend the S—lines from the centred fan above
y = —1 can be taken to have the parametric form, x = sind + (a — ¥) cos¥ and y =
(a — ) sind — cos ¥, where a is the horizontal location of the curve along y = —1 (with
¥ = 0), which also determines the polar angle § = %7‘(’ — a at the intersection with the
cylinder (where ¢ = a). Given that the a—line BC has ¥ = %ﬂ', the geometry demands
that the radius of the rigidly rotating plug is R = 1 + %yo\/i and that of the centred
fan is iﬂ' + %yoﬁ.

We now quote the local force and torque along the closed contour ABCDEA, whose
integrals set the total force and torque upon the cylinder (without inertia, there can be
no net force or torque on the rigid plug attached to the cylinder). A key feature of this
computation is that along the sliplines the normal force is given by the pressure p and
the tangential (anti-clockwise) force is the shear stress —Bi. Thus, the local force and
torque in a line element of length ds are

_( —BicosvY —psind
f= < _Bisin® + pcos )ds and rxf, (B1)
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where the position vector r, pressure p and line element ds break down into

e e () LTRTGIL e
BC: r= = ( zt 1 ) g :Op0<—: %ﬂfyim%;)}m (9)
o e (i) WY
pee s (NTh) PRGBS o
EA: r= ( ,Si;fﬁ ) ’ df::clqu(;,i (;Tr ; 3919)<B;77r (B6)

These furnish the net force and torque quoted in the main text.

Appendix C. Translation inside the axial yield surface

When flow is contained within the yielded region generated by axial motion, for %’/T -
¢ = 0 < 1, we have the axial velocity field given in §3.2: w ~ 14+ Bi(r —1 —r, logr). Let
(¢ - %777’“’1}) = (5(1,’[1,1, Ul) + ceey W= wo('l") + (5211}2 and (u17U1) = (¢0/7"7 —¢r) Thena

Bi4? 521 wag

_ 2 L ~ P20

Bl +§ ( + 2w(2)r> 9 T0z ’I"(’f‘p —’I“)’ (C 1)
Trr Tp 2(%/7’%
(Tm) Tp—T (7/1r/7’1/)rr+1/190/7”2 (©2)

and

'72 ~ (U)Or + 62w2r)2 + 62'3/?_; ’Yi = 4(1%/7‘)3 + (wrr - ’(/}’I‘/T - 1/)00/7“2)2- (C 3)
The boundary conditions at r = 1 still imply ws = 0 and (¢, —t),) = (cos 8, —sinb),
but the corrections perturb the position of the plug to r = r, + 6%r,2. Given that
u=7v=w=0 and 7 =0 on this boundary, an expansion about r = r;, furnishes

w2:wgr—i-rpgwwr:@/}:@/}r:”'yi:()atr:rp. (C4)
After eliminating the pressure from the planar force balance equations, we find
010 r*2 0 490 1 1 6] 8(&?)_0

-2 o

arrar(rp—r)ar_;a(rp—r)+r(rp—r)5 (C5)

given that a separable solution is possible with ¢ = ¥(r)sinf, ¥(1) = ¥,(1) = 1 and
U(rp) =¥, (rp) = 0. At the following order, the axial problem gives

3:2
Tp _ (e
(rway), + 77’(1"1, ) W09 [2Bi(rp = T)J ) ) (C6)

with wa(1,0) = wa(rp,8) = 0 and rpe = —rpwar(rp, 0)/Bi, illustrating how the lateral
translation perturbs the axial flow and yield surface.
For Bi > 1, the solution is more directly obtained and explicit: the axial velocity is

~(1-¢)2%  r=14Bi"Y%V2 (C7)
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Continuity, planar force balance and the constitutive law demand that, at leading order,

Bi'/? op op Bi'/? o Bi*? [ v
ug +vg ~ 0, — ~0 and o~ ———Tpg ~ ( ) , (C8)
V2 23 2 2 0 2v2 \1-¢/,

with boundary conditions, u = dcosf and v ~ 0 at £ = 0, and (u,v) = (0,0) at £ = 1.
Various integrals therefore give

u=(1—-&31+3¢)dcosh and v = 6v2Bi/2¢(1 — )25 sin 6. (C9)

It follows that the pressure is p ~ 9Bi?d cos 6, and the drag force is

o~ M [87—7"9
V2 0§

(see figure 8d). The §%wq correction (C7) now satisfies

] d ~ — %pcos@ df ~ —97Bi%§ (C'10)
=0

wage ~ —9V2BY? [(1 - 3¢)*]  sin” 6. (C11)

Hence, given wy; =0 at £ =0 and 1,
w~ (1 — €)% +27V28°Bi*/2€2(1 — €) sin? 0, (C12)
which implies a shift in the yield surface of

vy~ 1+ Bi /2 (\/i + 2782Bi%/? sin? 9) . (C13)

Note that the pressure solution p ~ 9Bi?§ cos is only much less than O(Bi) when
§ < Bi~t. For § > O(Bi™!), the continuity of the axially varying pressure into the region
outside the boundary layer and the force balance suggest that the stress components
cannot remain below the yield stress, regardless of the indeterminacy of the stress state
if 7 < Bi. In other words, once the angle ¢ becomes further from %w, the stress exerted
by the boundary-layer flow must force the fluid to yield over an order-one region beyond.

The flow pattern which then emerges combines the boundary layer around the cylinder
in which the axial velocity mostly remains localized, with an almost perfectly plastic
region beyond, as seen in figure 6(i). As » — 1, the outer plastic flow satisfies the stress
conditions 7,, — —Bi with all other 7;; — 0, and is forced purely by the radial velocity of
the cylinder u — ¢ cos 8, tolerating an arbitrary slip in v and w. The plastic flow speeds
are therefore O(4), with O(Bi) deviatoric stress components and pressure.

Although the boundary layer retains the O(Bi_l/ %) thickness of the planar viscoplastic
boundary-layer problem (Appendix A), it is dominated by the axial shear stress 7, ~
—Bi rather than the planar component 7.4. It follows that, to O(J), the axial velocity
profile is again given by (C7). Moreover, the planar boundary-layer equations in (C8)
remains valid, but with continuity with the outer plastic flow demanding that p = O(Bi).
Thus, 7., ~ Bive/|we| = O(Bi'/?), and the angular velocity is v = O(Bi~/?), which
greatly exceeds O(8) cylinder motion for § < O(Bi~'/2). However, the contribution of the
boundary-layer flow to the radial velocity is O(Bi_l) and cannot correct the leading-order
term u ~ & cos @ due to the cylinder motion if § > O(Bi™*). Thus, for 1> 6 > O(Bi™!),
F, ~ —27Bi and F} is dictated by the O(Bi) pressure distribution stemming from the
outer O(4) plastic flow (cf. figure 8c). Evidently, when 6 = O(Bi™!) the boundary-layer
flow adjusts the radial velocity and consumes the outer plastic flow.
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FIGURE 15. Snapshots (unequally spaced in time) of the centrelines of the four heaviest screws
during sample falls. The spacing in time was roughly inversely proportional to the fall speed (cf.
figure 9d), and ranged from a few hundred seconds for the less tilted screws to a few seconds at
higher inclinations.

Appendix D. Sedimentation experiments

For a laboratory study of the fall of inclined rods, we conducted experiments using
headless machine screws immersed in an acqueous solution of Carbopol Ultrez 21 (con-
centration of about 0.5% by weight, neutralized with sodium hydroxide). The screws
had lengths of L ~ 4.9cm and varying maximum radius R, ranging from 1.5 mm to
3.9mm. A Herschel-Bulkley fit to the flow curve measured in a rheometer (MCR501,
Anton Paar, with roughened parallel plates) suggested a yield stress of about 38 Pa. The
Carbopol was placed in a small tank (length 33 cm, depth 12cm and width 5cm), the
screws introduced at varying orientations, and the fluid surface levelled with a scraper.
A camera took photographs of the fall of the screws, and the time-dependent position of
the centre was extracted from the images.

In experiments of this kind, one practical concern is that effective slip may occur over
the surface of a smooth rod (e.g. Poumaere et al. 2014; Jalaal et al. 2015) and thereby
change the sedimentation dynamics. This motivated our use of steel screws for which
the grooved surface, though complicating the detailed geometry, likely clogs up with
Carbopol. A no-slip condition is thereby introduced at a position close to the maximum
radius of the screw R. The clogged Carbopol slightly modifies the effective mass of the
rod: if the screw originally has mass M, and assuming that the grooves are fully clogged,
the effective mass can be estimated as

M*=M (1 - Z”) + mpR2L, (D1)
S

where p. and p, are the density of Carbopol and steel, respectively (1 and 8 g/cm?). The

adjusted Oldroyd number is Od = 7vRL/(M*g).

If the screw had not noticeably fallen over a time of about 103 secs, that inclination
of the rod was noted as being below the critical value Od.. Otherwise, the fall speed
was measured as a function of orientation angle from consecutive images. There are a
number of potential issues with these measurements: although the geometry of the screw
may eliminate slip, the object is not truly cylindrical and small bubbles can become
trapped on the surface. The screws also have finite length, which potentially introduces
additional dynamical effect from the ends. More awkwardly, Carbopol is known to have
a non-ideal rheology that may affect sedimentation (Tabuteau et al. 2007; Putz et al.
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2008). Finally, the flow curve measured in the rheometer may not provide a particularly
accurate estimate of the yield stress (even were there a unique value for this property).
These issues potentially explain a significant amount of scatter in the measurements of
fall speed. They may also contribute to another observed effect: the gradual tilting of the
screws towards the vertical as they fall. This effect, which is illustrated in figure 15, is not
expected in our Re— 0 theory, and may well have an inertial origin: the slower, lighter
rods re-orientate less than the faster, heavier ones. From an experimental perspective, the
tilt is convenient, allowing multiple speed values for different inclinations to be extracted
during a single fall. Aside from this effect, and in agreement with theoretical predictions,
rods with appreciable inclinations fall nearly along their axes, whereas almost horizontal
rods fall in a wider range of directions.
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