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Thin, roughly horizontal low-permeability layers are a common form of large-scale
heterogeneity in geological porous formations. In this paper, the dynamics of a buoyancy-
driven plume in a two-dimensional layered porous medium is studied theoretically, with
the aid of high-resolution numerical simulations. The medium is uniform apart from
a thin, horizontal layer of a much lower permeability, located a dimensionless distance
L� 1 below the dense plume source. If the dimensionless thickness 2εL and permeability
Π of the low-permeability layer are small, the effect of the layer is found to be well
parameterized by its impedance Ω = 2εL/Π. Five different regimes of flow are identified
and characterized. For Ω � L1/3, the layer has no effect on the plume, but as Ω is
increased the plume widens and spreads over the layer as a gravity current. For still
larger Ω, the flow becomes destabilized by convective instabilities both below and above
the layer, until, for Ω � L, the spread of the plume is dominated by convective mixing
and buoyancy is transported across the layer by diffusion alone. Analytical models for
the spread of the plume over the layer in the various different regimes are presented.

1. Introduction

Buoyancy-driven plumes play a fundamental role in many physical processes across a
wide range of scales and environments (Turner 1973). In a fluid-saturated porous medium,
buoyant plumes form a canonical and generic feature of convective flows (e.g. Hewitt
et al. 2012; Slim et al. 2013) and their dynamics play an important role in geothermal
hydrology (Kissling & Weir 2005), the leakage of dense contaminant from landfill sites
(MacFarlane et al. 1983) and the salinization of soil driven by surface evaporation
(Wooding et al. 1997; Bauer-Gottwein et al. 2007). Particular recent interest in the
spread of convective plumes is linked to understanding the long-term fate of geologically
stored CO2 (Huppert & Neufeld 2014). CO2 injected into subsurface porous formations
can dissolve into ambient water within the host rock, increasing its density and driving
downwelling convective plumes; the dynamics, spread and interaction of these plumes
affects the rate of dissolution of CO2, and thus the long-term security of storage.

The theoretical study of buoyancy-driven plumes in a porous medium was pioneered
by Wooding (1963), who derived a similarity solution for an isolated two-dimensional
plume by exploiting its long and narrow geometry. Our aim in the present study is to
explore the effect on such a plume encountering a thin horizontal layer of a much lower
permeability than the surrounding medium. Thin layers of this kind provide a generic
form of large-scale heterogeneity in geological media, being a particularly widespread
feature of sedimentary formations (Phillips 2009).

A number of authors have considered the role of layers of differing permeability in
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the context of laterally spreading immiscible gravity currents (Pritchard et al. 2001;
Pritchard & Hogg 2002; Zheng et al. 2013), while the impact of leakage through discrete
fractures or faults on such currents has also been widely studied (Pritchard 2007; Neufeld
et al. 2011; Farcas & Woods 2013; Pegler et al. 2014). Neufeld & Huppert (2009) focussed
explicitly on the role of a thin, low-permeability horizontal layer on the dynamics of a
spreading immiscible gravity current, and derived a simple model for the spread and rise
of a buoyant fluid across a series of such layers. An alternative vision of layering, in which
the layers are impermeable but contain regular discrete fractures, was studied by Hesse
& Woods (2010) and Rayward-Smith & Woods (2011), who again described the spread
of an immiscible buoyant fluid as it rises through a series of layers, and characterized the
effective dispersion induced by the layered structure.

In contrast to these studies of immiscible or laterally spreading fluids, the effect of
thin low-permeability or fractured layers on a diffusing plume has not been previously
explored. Perhaps the most comparable studies to the present were carried out by Roes
et al. (2014) and Sahu & Flynn (2017). The former provided a detailed theoretical and
experimental study of the dynamics of a descending plume in a porous, confined ‘filling-
box’ environment, in which the plume could partially drain through the base of the
domain as a rough model of a ‘leaking’ or fractured porous medium. Sahu & Flynn
(2017) extended this work to describe the effect of two layers of different permeability
in an enclosed domain. These authors showed that, if the lower layer is less permeable,
a dense, descending plume can spread laterally as a gravity current over that layer, and
drain gradually into it.

The impact of a thin, low-permeability layer on vigorous statistically steady convection
in porous media, rather than on an isolated plume, was considered by Hewitt et al. (2014).
They demonstrated that the effect of a thin layer, of thickness ratio ε � 1 (relative to
the depth of the host medium) and permeability ratio Π � 1 (relative to that of the
host medium), can be parameterized by a single parameter, the impedance Ω ∼ ε/Π of
the layer. They showed that the layer has an increasingly large effect on the convective
dynamics and buoyancy flux as Ω is increased, with the dominant lateral wavelength of
the bulk flow increasing significantly with Ω. They also found that a sufficiently large
impedance leads to a complete shutdown of advective transport across the layer, so that
all the buoyancy is carried across the layer by diffusion. Our main goal in this present
work is to investigate and understand the corresponding dynamics for a single plume in
the presence of such a layer.

After outlining the model in §2, we proceed in §§3-4 to explore the effect of a thin,
horizontal, low-permeability layer on the steady or statistically steady spread of a dense
plume falling across the layer. In §3 we present the results of numerical simulations, and
in §4 we identify and explore the various regimes of spreading at the layer for different
values of its impedance Ω. We summarize our findings and briefly discuss some physical
implications of these results in §5. Throughout this work we focus on the limit in which
the distance to the low-permeability layer is large relative to the distance over which
diffusion and advection balance (that is, on the limit of large effective plume Rayleigh
number), which is generally the appropriate limit in geophysical settings.

2. Physical model and governing equations

2.1. Dimensional equations

Consider an isolated source of negative buoyancy located at the impermeable rigid
upper boundary of a semi-infinite two-dimensional porous medium. The medium is
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Figure 1: A schematic of the setup in dimensionless variables. A dense source (black
circle) is located on the upper boundary of a semi-infinite two-dimensional porous
medium that contains a low-permeability horizontal layer of thickness 2εL � L and
permeability Π � 1, located a distance L below the boundary. The equivalent picture
in dimensional variables has stars on all the length scales and k∗ = k∗0k.

uniform except in a thin, horizontal, low-permeability layer located at some distance
below the upper boundary (figure 1). The medium is initially saturated with a fluid
of uniform density ρ = ρ0, and we assume that the density of fluid containing a
concentration c∗ of solute is described by a linear equation of state

ρ = ρ0 (1 + αc∗) , (2.1)

with α > 0. The buoyancy source, which is assumed to be vanishingly narrow, emits a
buoyancy flux B, which raises the concentration of solute in the medium and so raises the
density of the fluid. There is no volume flux from the source and so, under the Boussinesq
approximation, the total mass in the system is conserved.

The low-permeability layer is located a distance L∗ below the source, and has a
thickness of 2εL∗, where ε � 1 is a constant. The medium has uniform permeability
k∗ = k∗0 except in the low-permeability layer, where k∗ = Πk∗0 and Π � 1 is a constant.
We assume that the porosity φ is uniform throughout the medium, as would be the case if,
for example, the reduction in permeability in the low-permeability layer were due simply
to a reduction in mean grain size (see also the discussion in the Appendix of Hewitt et al.
(2014) about the qualitative effect of a change in porosity in a low-permeability layer).

We introduce a coordinate system (x∗, y∗) with its origin at the negative buoyancy
source, and with the positive y∗ direction pointing downwards. For convenience, we also
introduce an alternative vertical coordinate z∗ = L∗−y∗, centred on the low-permeability
layer (figure 1). The flow u∗ = (u∗, v∗) in the medium is incompressible and obeys Darcy’s
law, while the concentration evolves over time t∗ by advection and diffusion, as described
by

∇ · u∗ = 0, (2.2)

u∗ = −k
∗

µ
(∇p∗ − ρgey) , (2.3)

φ
∂c∗

∂t∗
+ u∗

∂c∗

∂x∗
+ v∗

∂c∗

∂y∗
= φD∇2c∗, (2.4)

where ey is a unit vector in the downwards direction, p∗ is the pore pressure, g is
the gravitational acceleration and µ, φ and D are the viscosity, porosity and effective
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diffusivity, respectively, all of which are assumed to be constant. For the purposes of this
work, we are interested in steady or statistically steady solutions of these equations.

2.2. Nondimensional equations

We define the following scales for the concentration, the buoyancy velocity, and the
length and time scales over which advection and diffusion balance,

ĉ =
B

D
, û =

ρ0αgk
∗
0 ĉ

µ
, ẑ =

φD

U
, t̂ =

φẑ

û
=
φ2D

û2
. (2.5a, b, c, d)

We further introduce dimensionless (unstarred) variables via

u =
u∗

û
, (x, y, z) =

(x∗, y∗, z∗)

ẑ
, c =

c∗

ĉ
, k =

k∗

k∗0
, (2.6a, b, c, d)

t =
t∗

t̂
, p =

k∗0
φDµ

(p∗ − ρ0gẑy) , (2.7a, b)

and the dimensionless distance to the low-permeability layer,

L =
L∗

ẑ
. (2.8)

After introduction of a streamfunction ψ with (u, v) = (−∂ψ/∂y, ∂ψ/∂x), the governing
equations (2.2)–(2.4) reduce to

∇2ψ = k
∂c

∂x
, (2.9)

∂c

∂t
− ∂ψ

∂y

∂c

∂x
+
∂ψ

∂x

∂c

∂y
= ∇2c, (2.10)

with

k =


1 y 6 L (1− ε)
Π L (1− ε) < y < L (1 + ε)

1 y > L (1 + ε) .

(2.11)

Since the pressure must remain continuous throughout the medium, the horizontal
velocity u = −k∂p/∂x will be discontinuous at the edges of the low-permeability layer
y = L(1± ε). The buoyancy source imparts a fixed dimensionless buoyancy flux of unity,
and so, in a steady state, ∫ ∞

−∞

(
c
∂ψ

∂x
− ∂c

∂y

)
dx = 1, (2.12)

at every depth y.
Note that these equations have been scaled in such a way that the dimensionless

parameters L, Π and ε only appear in the structure of the permeability field (2.11).
The distance L, which is the ratio of the dimensional distance L∗ of the layer below
the upper boundary to the advection–diffusion lengthscale ẑ (2.5c), can also be thought
of as an effective Rayleigh number L = L∗/ẑ = ρ0αgk

∗
0 ĉL

∗/(φDµ) for the problem. In
geophysical applications, ẑ is typically of the order of millimetres while L∗ might be tens
of metres (see §5), and so we will focus on the limit L� 1.

2.3. The impedance

For the problem of statistically steady convection in the presence of a thin, low-
permeability layer, Hewitt et al. (2014) showed that the flow across the layer is driven
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Figure 2: Snapshots of the concentration field, showing log10(c) to accentuate the details
of the plumes, for an internal layer with L = 1.28× 106 and impedance (a) Ω = 50, (b)
Ω = 1.02× 106, (c) Ω = 1.64× 107 and (d) Ω = 1.05× 109.

by the local pressure difference across the layer rather than by buoyancy when ε � 1
and Π � 1. We expect the same behaviour here. In this limit, the vertical component of
Darcy’s law (2.3) in the low-permeability layer is

v = Π

(
∂p

∂z
+ c

)
=

Π

2εL

{
p|z=εL − p|z=−εL +O(εL)

}
. (2.13)

For small ε and Π, (2.13) can be written as a jump condition at z = 0 (y = L),

Ωv = [p]z=0 , =⇒ Ω
∂v

∂x
= − [u]z=0 , (2.14)

where the square brackets denote the jump in each quantity, and the effective impedance

Ω =
2εL

Π
(2.15)

describes the ratio of the thickness of the layer to its permeability. Recall that v is the
downwards vertical velocity, whereas z is measured upwards from the layer.

The problem in the limit ε,Π � 1 is thus characterized by two independent param-
eters, L and Ω. We work in this limit for the remainder of this paper. We solved the
governing equations (2.9)–(2.10), together with the jump condition (2.14), numerically,
as outlined in Appendix A.1. We also carried out a series of computations to confirm the
validity of the reduction to the jump condition (2.14), as discussed in Appendix A.2.

3. Phenomenology of numerical solutions

Figure 2 shows a series of steady or statistically steady snapshots from numerical
solutions in which the low-permeability layer is parameterized by (2.14) at y = L. For
sufficiently low impedance Ω, the layer has a negligible effect on the plume, which simply
passes through with no discernible change in its width (figure 2a). For larger values of
Ω, the flow across the layer slows down and the pressure difference required to drive flow
across the layer forces the plume to spread laterally above the layer (figure 2b). After
crossing the layer, the dense fluid below the layer flows back inwards to collect in a single
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Figure 3: Scaled data from simulations showing variations with the impedance Ω for
different L as marked in (b). (a) The root-mean-square horizontal velocity immediately
above the low-permeability layer; (b) the maximum vertical velocity vm across the low-
permeability layer; and (c) the plume width xp at the low-permeability layer (3.1).
Asymptotic model predictions are shown for a plume with Ω = 0 (§4.1; short dashed) and
for (a) the local perturbation to the plume (§4.2) and (b,c) the gravity-current regime
(§4.3) (long dashed).

plume again, so that the steady-state flow profile is roughly symmetric above and below
the layer. As Ω is increased further, there are no longer stable steady solutions: while the
plume extends further above the low-permeability layer as Ω increases, the inwards return
flow below the layer becomes unstable to a convective boundary-layer-type instability.
This instability takes the form of small ‘proto-plumes’ (cf. Hewitt et al. 2012) that are
continually advected towards the central plume (figure 2c) by the mean return flow. The
laterally spreading steady flow above the layer remains stable. For yet larger values of
Ω, the flow extends even further over the layer and convective instabilities also appear
above the layer (figure 2d). These instabilities also take the form of small proto-plumes,
which are advected outwards away from the central plume, in the opposite direction to
those below the layer. As described in §4.5, convection above the layer is driven by the
low concentration imposed at the layer by the efficient downwards transport of buoyancy
by convection below the layer.

In order to characterize the effect of the low-permeability layer on the plume, we define
the plume width xp to be the mean lateral extent over which 95% of the buoyancy flux is
transported across the layer. More precisely, to allow for the possibility of unsteady flow,
the instantaneous plume width x̃p(t) at the low-permeability layer is defined implicitly
by ∫ x̃p

0

(
cv +

∂c

∂z

)∣∣∣∣
z=0

dx = 0.95

∫ ∞
0

(
cv +

∂c

∂z

)∣∣∣∣
z=0

dx, (3.1)

and the mean plume width xp is the long-time average of x̃p(t).

Figure 3 shows data from a series of simulations for different layer depth L and
impedance Ω. For sufficiently low Ω, the velocities and width of the plume at the layer
are independent of Ω: the layer has a negligible effect on the plume, which simply passes
across it. As Ω is increased, the horizontal velocity at the layer increases, the vertical
velocity across the layer decreases, and the width of the plume increases. For very large
Ω, both the horizontal velocity at the layer and the width of the plume appear to become
independent of Ω. In the following section, we identify and explore these different regimes
of flow.
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4. Asymptotic regimes and theoretical solutions

4.1. Negligible perturbation to the plume: Wooding’s plume solution; Ω � L1/3

For sufficiently small values of Ω, the plume is unaffected at leading order by the
impedance of the layer (e.g. figure 2a). In this case, the plume falls and spreads as though
in a homogeneous medium and is described by a similarity solution, which was obtained
by Wooding (1963). This solution, which will be useful for our subsequent analysis, is
briefly described here.

Sufficiently far below the source, the plume is long and thin so x � y and ∂/∂x �
∂/∂y. In this limit, Darcy’s law (2.9) implies that the vertical velocity is proportional to
the concentration, v = ∂ψ/∂x ≈ c, while (2.10) reduces to a balance between advection
and horizontal diffusion. Expressing the velocities in terms of the streamfunction we
obtain

−ψyψxx + ψxψxy ≈ ψxxx, (4.1)

where subscripts indicate partial derivatives. Equation (4.1) is solved together with
conservation of buoyancy flux (2.12), which reduces to

∫∞
−∞ ψ2

x dx = 1 in this limit.
These equations permit a similarity solution with

ψ =

(
9

2

)1/3

y1/3f(η), η ≡ x

481/3y2/3
, (4.2)

and f ′′′ = −2
(
ff ′′ + f ′2

)
,
∫∞
−∞ f ′2 dη = 4/3 and f(0) = f ′′(0) = 0. The solution is

f = tanh η, (4.3)

or

c(x, y) = v(x, y) = 6β2y−1/3 sech2
(
βxy−2/3

)
, (4.4)

where β = 48−1/3.
Thus, for a layer located at a depth y = L, the width of the plume xp at the layer is

xp ∼ L2/3, and the concentration and vertical velocity scale with c ∼ v ∼ L−1/3. The
plume carries a vertical volume flux vx ∼ y1/3 that increases with depth y, and entrains
fluid from the ambient with a velocity u ∼ y−2/3. Within the plume, the pressure scales
with p ∼ ux ∼ O(1).

Given these scalings, the additional condition (2.14) introduced by the low-
permeability layer provides a perturbation of order Ω/L1/3 to the pressure near
the layer. Thus, provided Ω � L1/3, the layer has a negligible effect on the spread of the
plume (as in figure 2a), and the plume simply passes through the layer. This prediction
is corroborated by the collapse of the data in figure 3 for small Ω.

4.2. Local perturbation to plume: L1/3 � Ω � L2/3

If Ω � O(L1/3), the pressure jump induced by the low-permeability layer (2.14) is
larger than the pressure in the plume, and so the plume solution must break down in the
vicinity of y = L. In order to generate sufficient pressure to drive the plume across the
layer, we anticipate that the pressure, and thus the corresponding horizontal velocity,
must increase locally in a region near y = L of a size comparable to the plume width. We
therefore look for a local solution in this region that matches to the similarity solution
in §4.1 sufficiently far above the layer. Motivated by the form of the similarity solution
in (4.3)–(4.4), we introduce scaled variables

P =
p

β−1ΩL−1/3
, U =

u

ΩL−1
, (X,Z) =

(x, z)

β−1L2/3
, (4.5a, b, c)



8 D. R. Hewitt, G. G. Peng, J. R. Lister

Figure 4: (a) A density map and contours of the predicted horizontal velocity U above the
low-permeability layer from the local-perturbation solution (4.10). (b) Density map and
contours of the scaled horizontal velocity L(u−up)/Ω from a full numerical solution with
L = 5.12×106 and Ω = 2×103 (for which parameters Ω/L1/3 ≈ 12 and Ω/L2/3 ≈ 0.07).

and scaled perturbations

(C, V ) =
L

Ω

(
c− 6β2L1/3 sech2X, v − 6β2L1/3 sech2X

)
, (4.6)

where z = L − y and β = 48−1/3 as previously. The leading-order concentration and
vertical velocity 6β2 sech2X in (4.6b) are simply the unperturbed plume solution from
(4.4), but the pressure and horizontal velocity scales in (4.5) are larger than those in the
unperturbed plume. Given these scalings, and provided L1/3 � Ω � L2/3, we obtain

UX − VZ = 0, U = −PX , V = C + PZ , (4.7a, b, c)

2U tanhX + CZ = O(L1/3/Ω,Ω/L2/3), (4.8)

[P ]Z=0 = 6β3 sech2X +O(Ω/L2/3), (4.9)

which imply that the pressure satisfies the elliptic equation

∇2P = −2 tanhX
∂P

∂X
, (4.10)

to leading order. We expect that P → 0 as Z → ±∞ so that this local solution matches to
the plume above and below the layer. Given the vertical symmetry in (4.10) under Z →
−Z and the jump condition (4.9), we expect the pressure to be antisymmetric about Z =
0, and so the jump condition at Z = 0 (4.9) reduces to a boundary condition P (X, 0) =
3β3 sech2X for P in Z > 0. (Equations (4.7)–(4.9) are invariant under (Z,P, U) →
−(Z,P, U), reflecting the fact that a positive pressure perturbation just above the layer
pushes the flow outward a little and a negative perturbation below the layer pulls it back
again.)

Equation (4.10) can be converted into a Helmholtz equation by a change of variables
and solved by a Fourier transform, as outlined in Appendix B. The solution takes the form
of a local build-up of pressure above the layer, which drives a corresponding horizontal
velocity away from the centreline of the plume (figure 4a). Both quantities decay as Z →
∞ and the local solution matches to the plume above. Despite the increased horizontal
velocity above the low-permeability layer, the vertical velocity across the layer and the
width of the plume are both unchanged to leading order by the pressure perturbation.
Figure 4(b) shows a scaled density plot of the steady horizontal velocity field from a
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numerical simulation with parameters lying in this regime, which agrees well with the
asymptotic prediction in figure 4(a).

These predictions are also confirmed by the data in figure 3(a), which shows that
the horizontal velocity at the layer increases as a function of Ω/L1/3, while the vertical
velocity and width (figures 3b,c) remain unchanged at that order. For Ω � L2/3, the
horizontal velocity near the layer becomes sufficiently large to drive significant variations
in the concentration and vertical velocity of the plume; in this regime the assumption
of a local perturbation breaks down and the width of the plume at the layer increases
significantly.

4.3. Gravity current: Ω � L2/3

For Ω � L2/3, the dense fluid cannot readily cross the low-permeability layer and
is diverted sideways away from the main plume to form a gravity current, which has a
larger lateral extent than its height (e.g. figure 2b). The extent of this current is such
that, in a steady state, there is a balance between the buoyancy flux from the plume, the
lateral flow in the current, and the vertical flux across the low-permeability layer.

Within the long, thin, steady current, the pressure is hydrostatic, ∂p/∂z = −c,
and the lateral flow is given by Darcy’s law, u = −∂p/∂x. The flow across the low-
permeability layer is driven by the pressure difference (2.14) and so p ∼ Ωv. Given that
(u, v) = (∂ψ/∂z, ∂ψ/∂x), these balances suggest characteristic horizontal and vertical

length scales x ∼ Ω2/3 (ψ/c)
1/3

and z ∼ Ω1/3 (ψ/c)
2/3

for the current. Provided the
height of the current near the origin is much less than the depth L of the layer, the scales
for the streamfunction and concentration are determined by the incoming plume solution
at depth L, for which ψ ∼ L1/3 and c ∼ L−1/3. We thus introduce scaled variables,

X =
x

β−1/3Ω2/3L2/9
, Z =

z

β−2/3Ω1/3L4/9
, (4.11a, b)

C =
c

6β2L−1/3
, Ψ =

ψ

6βL1/3
, P =

p

6β4/3Ω1/3L1/9
, (4.12a, b, c)

where β = 48−1/3 as in §4.1. Given these scalings, it is straightforward to confirm that
both the aspect ratio of the current x/z ∼ (Ω/L2/3)1/3 and the height ratio L/z ∼
(Ω/L5/3)−1/3 are indeed large provided L2/3 � Ω � L5/3. (We will find below that this
upper bound is not achieved owing to the development of convection first below, and
then also above, the low-permeability layer.)

The ratio of vertical advection to vertical diffusion in the current, which provides a local

Péclet number, also scales with Pe ∼ (cv)/(c/z) ∼
(
Ω/L5/3

)−1/3
. Diffusion is therefore

negligible in the gravity current as long as Ω � L5/3, and buoyancy is transported
only by advection along streamlines. Equivalently, the concentration can be written as a
function of the streamfunction in the current. Given that in the plume C = sech2 η and
Ψ = tanh η from (4.2) and (4.4), we deduce that

C = 1− Ψ2, (4.13)

which should hold throughout the current. This relationship C(Ψ) is verified for a
particular numerical solution in figure 5(a).

Within the current, hydrostatic pressure and Darcy’s law can be combined to give

∂2P

∂X∂Z
= − ∂C

∂X
= −∂

2Ψ

∂Z2
, (4.14)
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increasing L

Figure 5: (a–c) Comparison of the gravity-current model with simulations for L =
1.28 × 106 and Ω = 4.1 × 106 (Ω/L2/3 = 348). (a) A scatter plot of c(x, z) against
ψ(x, z) for all numerical grid cells in the range 0 6 z < L/2, together with the prediction
(4.13) for the gravity current (dashed line). Points are coloured by their z value. (b,c)
Equally spaced contours (red solid) of (b) the time-averaged streamfunction Ψ(X,Z)
and (c) the time-averaged concentration C(X,Z) together with the predictions of the
gravity-current model (black dashed). (d) The vertically integrated concentration in the
current, for simulations with a fixed ratio Ω/L = 3.2 and with L = 3.2 × 105 (blue),
L = 1.28 × 106 (red) and L = 5.12 × 106 (green), together with the prediction of the
gravity-current model (dashed).

or, given (4.13),

∂Ψ

∂X
= − 1

2Ψ

∂2Ψ

∂Z2
. (4.15)

Numerical solutions for moderate Ω show a roughly symmetric concentration profile
above and below the low-permeability layer (e.g. figure 2b). Motivated by this observa-
tion, and by the vertical symmetry in (4.15) under Z → −Z, we look for solutions for
which the streamfunction is symmetric and the pressure antisymmetric across the layer.
Under this assumption [p]z=0 = 2p(x, 0) and (2.14) reduces to

∂Ψ

∂X

∣∣∣∣
Z=0

= 2

∫ ∞
0

1− Ψ2 dZ. (4.16)

Away from the current, the flow matches to a uniform far field with C = 0, and thus
Ψ → 1 as (X,Z) → ∞. On the scale of the current, the plume appears as a source on
the line X = 0, with the limiting values of Ψ(0, Z) giving the flux from the plume and
with Ψ(0, 0) = 0. The profile Ψ(0, Z) is not prescribed, but is determined as part of the
solution by the ‘downstream’ drainage flow in the current.

We solve the non-linear diffusion equation (4.15) numerically by integrating in from
X � 1, using the linearized equation in the limit X → ∞ as an ‘initial’ condition. In
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this limit, we expect Ψ → 1, and so Φ ≡ 1− Ψ � 1 satisfies the linear diffusion problem

− ∂Φ
∂X

=
1

2

∂2Φ

∂Z2
, − ∂Φ

∂X

∣∣∣∣
Z=0

= 4

∫ ∞
0

ΦdZ. (4.17)

Solution of the linear problem gives

Ψ(X →∞) ∼ 1− λe−2X−2Z , C(X →∞) ∼ 2λe−2X−2Z , (4.18)

where the constant λ, and the full non-linear solution, are determined by matching to
(4.15) and integrating inwards numerically to Ψ(0, 0) = 0. This yields λ ≈ 1.14.

Both the predicted scalings of the model and the quantitative predictions of the plume
width and vertical velocity across the layer give good agreement with full numerical
simulations, as shown in figures 3(b,c). In particular, we can extract the width of the
current xp at the layer from the full non-linear solution of the model and combine with
the scalings in (4.11a) to find that

xp ≈ 1.37Ω2/3L2/9, (4.19)

(long-dashed line in figure 3c). Further comparison between the model and numerical
simulations is presented in figure 5. Figures 5(b,c) show streamlines and contours of the
concentration near the low-permeability layer for a particular numerical simulation, each
of which take the form of almost straight diagonal lines through the gravity current.
The model predictions, given by the full non-linear solution of (4.15), provide reasonable
agreement, particularly for the streamlines (figure 5b). Profiles of the vertically inte-
grated concentration through the current (figure 5d) show that the numerical solutions
increasingly approach the prediction of the model as the ratio Ω/L2/3 is increased.

The main discrepancy between the model and simulations can be seen in the concentra-
tion contours of figure 5(c): the concentration at the base of the plume is higher than the
model predicts. This difference occurs because the balance between vertical advection
and horizontal diffusion in the plume breaks down as the buoyancy starts to spread
laterally into the gravity current; horizontal diffusion weakens, and so the concentration
down the centreline decreases more slowly with depth than in the ideal plume solution.

Diffusion also affects the current along its base, where the contours bend around
before crossing the low-permeability layer (figure 5c), smoothing out the sharp jump
in concentration gradient that is predicted by the model. The resultant boundary layer
just above the low-permeability layer has a depth δ given by a balance between vertical
diffusion and downwards advection, δ ∼ 1/v ∼ Ω2/3L−1/9. A simple boundary-layer
analysis in the vicinity of the low-permeability layer indicates that the contribution to
the buoyancy flux across the layer from diffusion is a factor of 1/Pe = (Ω/L5/3)1/3

smaller than the O(1) advective flux. However, we will find below that convection both
below the low-permeability layer and, for larger Ω, above the layer, causes an increase in
the diffusive flux across it. In particular, convection above the layer provides a mechanism
to mix up the gravity current and change the structure of the flow above the layer. We
will return to discuss the scalings associated with the development of convection below
and above the layer in §4.5, after first describing the flow above the low-permeability
layer in the regime for which Ω is sufficiently large that convection is well established
and advection across the layer is negligible.

4.4. Large-scale circulation: ‘ultimate’ regime with Ω � L

For sufficiently large values of the impedance Ω, we expect that the advective transport
across the low-permeability layer is negligible and so the flow above the layer must
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δ

∆c

x = 2L

x = 4L

Figure 6: (a) Time-averaged colour map of the concentration above the low-permeability
layer when the impedance Ω is large (L = 1.28×106 and Ω = 1.05×109, as in figure 2d),
overlain by contours of the time-averaged concentration (blue solid) and time-averaged
streamlines (white dashed). (b) Vertical profiles of the time-averaged concentration at
x = 2L, x = 3L and x = 4L from the same computation. (c) An enlarged plot of the same
data at x = 3L, showing the structure of the concentration field near the low-permeability
layer.

recirculate with a negligible volume flux across the layer. Given this, we also expect that
the flow above the layer becomes independent of Ω. Data from simulations (figure 3a,c)
confirms this prediction as Ω → ∞. Snapshots of the flow in this limit (e.g. figure 2d)
further suggest that the spread of the plume above the low-permeability layer is strongly
affected by convective instabilities, which penetrate an appreciable distance up from the
layer.

A time-averaged plot of the concentration and streamlines (figure 6a) reveals more
clearly the nature of the flow for very large Ω. The lateral flow fills the depth 0 < z < L,
with roughly the lower half flowing away from the central downwelling plume at x = 0
and the upper half being a return flow back towards the plume. The concentration in
the out-flowing lower half varies only weakly with depth (figure 6b), illustrating that it
is well mixed by convection. In the return flow, by contrast, the concentration contours
align roughly with the streamlines (figure 6a), indicating that there is very little mixing
in this region.

Motivated by these observations, we consider a model in which a long, thin gravity
current of depth h(x) flows away from the central plume and is vertically well mixed
with a time-averaged concentration c(x). The current loses buoyancy across the very low
permeability layer at its base by diffusion through a narrow boundary layer of depth
δ � h and concentration drop ∆c (figure 6c). Below the layer, buoyancy diffuses through
another boundary layer and is transported rapidly away from the layer by convection.
With vigorous convection both above and below the layer, we expect that ∆c ∼ c/2, and
so the diffusive flux across the layer scales with ∆c/δ ∼ c/δ. The impedance Ω plays no
role in this construction, since the advective transport across the low-permeability layer
is negligible if Ω is sufficiently large.

Following classical arguments for convection (e.g. Howard 1964), we assume that the
boundary layer just above the low-permeability layer is maintained at a marginally
stable depth: any growth of the boundary layer beyond this marginal depth is rapidly
transported away by high-wavenumber convective instabilities. Equivalently, the local
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boundary-layer Rayleigh number ∼ ∆c δ ∼ cδ is maintained at a critical value cδ ∼ Rc.
The diffusive flux across the layer therefore scales with ∼ ∆c/δ ∼ c/δ ∼ c2/Rc. For
notational convenience, we set the flux to be equal to c2/Rc by suitably absorbing any
O(1) constants of proportionality into our definition of Rc. Comparison with previous
studies of porous convection (e.g. Hewitt et al. 2013; Slim 2014) suggests that Rc =
O(102).

In both the outflowing and returning currents in 0 < z < L, we expect that the pressure
is hydrostatic and the horizontal velocity is driven by Darcy’s law, u ∼ ψ/z ∼ cz/x. A
balance of the lateral buoyancy flux through the current with that diffusing across the
low-permeability layer indicates that ucz ∼ xc2/Rc ∼ 1. Given these scalings, together
with the observation that the flow fills the depth L, we introduce scaled variables

(Z,H) =
(z, h)

L
, X =

x

R
1/2
c L

, C =
〈c〉

R
1/4
c L−1/2

, P =
〈p〉

R
1/4
c L1/2

, (4.20)

Ψ =
〈ψ〉

R
−1/4
c L1/2

, U =
〈u〉

R
−1/4
c L−1/2

, V =
〈v〉

R
−3/4
c L−1/2

, (4.21)

where the angle brackets 〈·〉 signify the long-time average. Note that the horizontal and
vertical scales of the flow both scale with the layer depth L, but differ by a factor of

the (moderately large) parameter R
1/2
c , so the flow remains appreciably longer than it is

deep. Note also that the concentration scale R
1/4
c L−1/2 is weaker than the scale L−1/3

in the plume, which is a consequence of convective mixing of low-concentration fluid at
the low-permeability layer into the flow above, as will be discussed again in §4.5.

We define the height of the current Z = H(X) to be the contour that separates the
out-flow below from the return flow above, so U(Z = H) = 0. In the out-flowing region
Z < H, the concentration C(X,Z) = C(X) is well mixed by convection, and hydrostatic
pressure and Darcy’s law combine to give

∂U

∂Z
= − ∂2P

∂X∂Z
=
∂C

∂X
, (4.22)

or

U = − ∂C
∂X

(H − Z) . (4.23)

Vertical integration of (4.23) yields an outward volume flux −H2CX/2.
Buoyancy in the current is advected laterally away from the central downwelling plume

and is lost both by diffusion across the low-permeability layer at the base of the current
and by advection across Z = H, where it is entrained into the return flow in H < Z < L.
This flux balance is represented in the vertically integrated advection–diffusion equation
(2.10),

∂

∂X

(
CH2

2

∂C

∂X

)
= C

2
+ V |Z=H C, (4.24)

where the vertical velocity at Z = H(X) is given by the vertically integrated equation
of volume conservation (2.2), V |Z=H =

(
H2CX/2

)
X

. Equation (4.24) thus reduces to

H2

2

(
∂C

∂X

)2

= C
2

=⇒ ∂C

∂X
= −
√

2
C

H
, (4.25)

with solution

C(X) = C0 exp

[
−
√

2

∫ X

0

H−1 dX

]
, (4.26)
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Figure 7: Time-averaged vertical profiles at x = 3L of (a) the concentration c, (b) the
streamfunction ψ and (c) the horizontal velocity u from simulations with L = [8, 32, 128]×
104 (blue, red, green) and Ω = [32, 128]×100L in each case. Model predictions from (4.33)
with Rc = 100 are overlaid (dashed black).

where the constant C0 is determined by the constraint of unit total buoyancy flux across

the low-permeability layer,
∫∞
−∞ C

2
dX = 2

∫∞
0
C

2
dX = 1. We can also integrate U = ΨZ

(4.23) using (4.25) to obtain the corresponding streamfunction

Ψ(X,Z) =
HC(X)√

2

[
2Z

H
−
(
Z

H

)2
]
. (4.27)

In particular, streamlines carry fluid across the boundary Z = H and enter into the
return flow in Z > H with

Ψ(X,H(X)) =
H(X)C(X)√

2
. (4.28)

In the return flow (Z > H), we assume that diffusion is negligible and that convective
mixing does not penetrate from Z < H. Concentration is thus advected from the
boundary Z = H(X) along streamlines, and C(X,Z) = C(Ψ), where C(Ψ) is given
by (4.28). Once again, hydrostatic pressure and Darcy’s law combine to give

∂2Ψ

∂Z2
=
∂C

∂X
, (4.29)

in Z > H, with three boundary conditions

Ψ(Z = 1) = 0, ΨZ(Z = H) = 0, C(Z = H) = C, (4.30a, b, c)

which are sufficient both to solve (4.29) and to determine the unknown contour Z =
H(X). In fact, (4.29)–(4.30) have a separable solution with H independent of X, given
by

C(X,Z) =

√
2

H
Ψ(X,Z) = C(X) sin

[√
2 (1− Z)

H

]
, (4.31)

where

H =
2
√

2

2
√

2 + π
≈ 0.47. (4.32)

The division between well-mixed lower fluid and returning fluid is thus independent of
the distance from the central plume, and lies marginally below half way between the
upper boundary and the low-permeability layer.

Given that H is a constant, we deduce that C2
0 =
√

2/H in (4.26), and thus that the
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Figure 8: Time-averaged horizontal profiles of (a) the vertically averaged concentration

c(x) = (1/h)
∫ h

0
cdz with h = HL given by (4.32), (b) the horizontal velocity u(x, 0) and

(c) the flux ∂c/∂z across the layer from simulations with L = [8, 32, 128] × 104 (blue,
red, green) and Ω = [8, 32, 128]× 100L in each case. Model predictions from (4.33) with
Rc = 100 are overlaid (dashed black).

solution throughout the domain is

C = C(X)Ĉ(Z), Ψ =
H√

2
C(X)Ψ̂(Z), C(X) =

21/4

H1/2
exp

[
−
√

2X

H

]
, (4.33a, b, c)

where {
Ĉ = Ψ̂ = sin

[√
2(1− Z)/H

]
in Z > H,

Ĉ = 1 Ψ̂ = 2Z/H − (Z/H)2 in Z < H,
(4.34)

and H is given by (4.32). We thus have a complete analytical solution for the ultimate
regime in which the flow is well-mixed by convection in Z < H and there is only diffusive
transport across the low-permeability layer at Z = 0.

The critical Rayleigh number Rc = O(102), which appears in the rescalings in (4.20)
and (4.21), is a free parameter in this model. Comparison of the diffusive flux across the
layer with c2 from numerical simulations yields a value of Rc ≈ 100, which we use in our
comparisons here. Time-averaged data showing both the vertical structure of the flow
(figure 7) and the horizontal structure of the flow for Z < H (figure 8) for sufficiently large
Ω show a good collapse with the predicted scalings and a very reasonable quantitative
agreement with the model predictions. The largest errors in the model appear in the
concentration profiles for Z > H (figure 7a), and comparison with the corresponding
streamfunction (figure 7b) suggests that there is a slight deviation from the relationship
C(Ψ) (4.29b) in Z > H. We attribute this deviation partly to the boundary condition
∂c/∂z = 0 at the upper boundary in the simulations, and partly to residual convective
motion crossing Z = H and driving cross-streamline mixing.

The corrections to this model associated with a finite impedance Ω come from the weak
advective flux Fa across the low-permeability layer, given by Fa = −

∫
cv dx ∼ cpx/Ω ∼

RcL/Ω. This flux is negligible for Ω � RcL, which we thus identify as the range of the
ultimate regime. The scaling Ω ∼ RcL for the onset of this regime is corroborated by
the collapse of the horizontal velocity at the layer and the plume width in figure 9(a,b).
The same data also shows good quantitative agreement with the model predictions for
Ω � L. In particular, the width of the current at the layer is

xp ≈ 5.3L. (4.35)

We note, in ending the discussion of this regime, that the central plume does not
explicitly enter the model construction outlined here. The numerical simulations suggest
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Figure 9: (a) The root-mean-square horizontal velocity immediately above the low-
permeability layer and (b) the plume width xp, showing the same raw data as in
figure 3(a,c), respectively, but scaled to show the collapse in the ultimate regime. Dashed
lines show the predictions of the model in the ultimate regime.

that the basic structure of the original plume continues to survive near x = 0, with a
width x ∼ L2/3 that is much less than the width of the main current and a concentration
scale c ∼ L−1/3 that is greater than that of the main flow. However, unlike in the gravity-
current regime, the plume scales do not control the dynamics in the main circulating flow
in this regime. Some remnant evidence of the central plume can be discerned near x = 0
in the concentration and horizontal-velocity profiles in figure 8(a,b).

4.5. Transitional regime: R
3/2
c L2/3 � Ω � RcL

If the flow near the layer remained steady, we would expect the gravity-current regime
discussed in §4.3 to apply until diffusion becomes important at Ω ∼ L5/3. However, the
flow does not remain steady as Ω is increased, and, as discussed in §4.4, for Ω � RcL
the flow is in the ‘ultimate’ regime in which vigorous convection mixes up fluid above the
low-permeability layer. Furthermore, the gravity-current regime cannot simply match
smoothly to the ultimate regime when Ω ∼ RcL, because the scalings (in (4.11) and
(4.20), respectively) do not match smoothly. For example, at Ω ∼ RcL the width of the

current predicted by the gravity-current regime in (4.19) is too narrow (xp ∼ R2/3
c L8/9)

relative to that in the ultimate regime (xp ∼ R1/2
c L), while the concentration scale is too

large (c ∼ L−1/3 relative to c ∼ R1/4
c L−1/2).

A different flow regime must, therefore, fill the gap between the gravity-current regime
and the ultimate regime. Relative to the gravity-current regime, the key difference in
this transitional regime is the presence of convective instabilities above the layer which
mix up the fluid. Relative to the ultimate regime, the key difference is that there is a
significant loss of buoyancy by advection across the low-permeability layer, rather than
all of the fluid circulating above the layer without leaking across it.

In this section we briefly outline the scaling balances of the transitional regime,
beginning with a discussion of convection below the low-permeability layer. To help frame
the discussion, figure 10 shows plots of the horizontally integrated concentration across
the layer from a series of computations for different Ω. These range from computations in
the gravity-current regime with stable flow both above and below the layer (figure 10a) to
computations in the ultimate regime with well-mixed fluid above the layer (figure 10e,f).
Between these two limits, the plots reflect the development of instabilities first below,
and then above, the layer, as will be discussed in the following subsections.



Plumes in a layered porous medium 17

0 2 4

0

0.25

0.5

0.75

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

Figure 10: Data from simulations with L = 1.28×106, showing the horizontally integrated
time-averaged concentration as a function of depth, for values of Ω increasing from left
to right by a factor of 4 between each panel, lying between (a) Ω/L2/3 = 86, for which
the flow above the layer is in the gravity-current regime, and (f) Ω/L = 820, for which
the flow above the layer is in the ultimate regime. The horizontal dashed line shows the
location of the low-permeability layer, and the flow above and below the layer is steady
and stable (S) or unsteady and convecting (C) in each case as marked. In (b), convection
affects the flow below the layer only in a relatively localized region near x = 0, outside
of which the flow remains steady (the simulation is the same as that shown in figure 5).

4.5.1. Convection below the layer: Ω � L2/3

While the flow is always unstably stratified below the layer, if Ω is sufficiently small
then the fluid can flow laterally back into the central plume before the instability has
had enough time to develop into convection. A balance between the timescale for lateral
advection of the current ∼ x/u and that for growth of an instability over the depth of
the current ∼ z/c, together with the scalings in (4.11), suggests that the flow becomes
unstable below the layer once Ω & L2/3. Curiously, this is the same scaling of Ω as for
the onset of the gravity-current regime.

Evidence for the onset of convection below the layer at this scaling can be seen in the
total diffusive flux Fd =

∫
∂c/∂z dx across the low-permeability layer (figure 11a). As

Ω is increased, profiles bend round towards the predicted diffusive flux in the gravity-
current regime Fd ∼ (Ω/L5/3)1/3 (discussed at the end of §4.3). However, the profiles
undergo a sharp increase in slope at Ω/L2/3 ≈ 200. Snapshots of the flow reveal that
this transition coincides with the onset of convection below the layer. The transition
can be understood because convection transports buoyancy efficiently away from the
layer, causing the concentration at the layer to decrease. The concentration gradient
thus steepens, and the diffusive flux across the layer increases.

This behaviour is clearly shown in plots of the horizontally integrated concentration
across the layer (figure 10). Comparison of stable flow on both sides of the layer
(figure 10a) with unstable flow below the layer (figure 10c) demonstrates the steepening
of concentration gradients across the layer associated with the onset of convection below
it. Note that the influence of convection below the layer is confined to the boundary-layer
region just above the layer; as long as the flow remains stable above the layer, the bulk
of the gravity current remains unaffected and well described by the model in §4.3.

4.5.2. Convection above the layer: Ω � R
3/2
c L2/3

As a result of the decrease in the concentration at the layer due to convection below it,
the concentration difference ∆c over the boundary layer at the base of the gravity current
must increase. Specifically, we expect it to increase from being negligibly small relative
to the concentration scale within the current itself to being comparable to it (compare
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Figure 11: (a) The time-averaged diffusive flux Fd =
∫
∂c/∂z

∣∣
z=0

dx across the low-
permeability layer with the scalings in the gravity-current regime, and (b) Fd and the
time-averaged advective flux Fa = −

∫
cv
∣∣
z=0

dx = 1 − Fd across the layer with the
scalings in the ultimate regime. The simulations have the same parameters as in figure 3.
The dashed line in (a) shows the scaling indicated, while that in (b) shows the prediction
of the model in the ultimate regime.

figure 10(a) and (c)), and so ∆c ∼ c ∼ L−1/3. This boundary layer at the base of the
current will itself become unstable to convection when the local Rayleigh number, which
scales with the density difference ∆c and layer depth δ ∼ 1/v, exceeds a critical value

Rc = O(102); that is, cδ ∼ Rc or Ω ∼ R
3/2
c L2/3. This is again the same scaling with L

as the onset of the gravity-current regime, although now with a large prefactor R
3/2
c .

Thus, for Ω � R
3/2
c L2/3 convection acts to mix up the concentration in the current

above the layer (as seen in the blunted concentration profiles above the layer in figure 10d–
f), disrupting the balance C(Ψ) in the gravity current. The convective flux associated with
this mixing is∆c/δ ∼ c2/Rc, as in the ultimate regime, which must be at least comparable
to the downwards advective flux vc in order to mix up the current. If we assume that
these fluxes are balanced throughout the current in the transitional regime, then we gain
an additional constraint linking the concentration and velocity in the current, c ∼ Rcv.
This constraint, together with the usual balances of hydrostatic pressure and Darcy’s law
(as in both the gravity-current and ultimate regimes), indicates that the width, height
and concentration of the current in the transitional regime are

xp ∼ ΩR−1/2c , z ∼ ΩR−1c , c ∼ Rcv ∼ Ω−1/2R3/4
c (4.36a, b, c)

which evolve smoothly from the gravity-current scalings in (4.11) at Ω ∼ R3/2
c L2/3. The

diffusive flux and the advective flux across the low-permeability layer are comparable
in this regime, and both contribute to the transport of buoyancy across the layer. Note
that the scalings in (4.36) are independent of the depth L of the layer, because, unlike in
the gravity-current regime, the concentration scale in the current is not imposed by the
incident plume, but is rather determined by a balance between convective mixing and
vertical advection throughout the current.

However, once the height of the current in (4.36b) becomes comparable with the depth
of the layer, z ∼ L, the flow feels the effect of the upper boundary and can no longer grow
unimpeded. In particular, the hydrostatic pressure head required to force fluid across the
very low-permeability layer cannot continue to grow beyond this point, which means that
the advective flux must decrease as Ω is increased further, becoming negligible relative
to the diffusive flux across the layer. This transition occurs when Ω ∼ RcL, which marks

the onset of the ultimate regime discussed above, with x ∼ LR1/2
c and c ∼ L−1/2R1/4

c as
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predicted in (4.20). The advective flux decreases like RcL/Ω in the ultimate regime, as
discussed in §4.4 above and verified in figure 11(b).

It is difficult to obtain clear evidence for the scalings of the transitional regime
in numerical simulations. It is, for example, difficult to discern a clear range of Ω
in figure 11(b) over which the diffusive and advective fluxes are comparable. This is

primarily because the difference between R
3/2
c L2/3 and RcL is relatively small at the

values of L that are attainable in our numerical simulations. In addition, the onset of
convection above the low-permeability layer is not marked by a clear transition at a
critical value of Ω: instead, we observe in simulations that, as Ω is increased, instabilities
first form above the layer only far from the downwelling central plume, from where they
are then advected even further from the central plume and thus play only a minimal role
in mixing the fluid above the layer. As Ω is increased further, the flow becomes unstable
closer and closer to the central plume, and thus convective mixing has a progressively
greater influence on the dynamics of the flow above the layer. We expect this gradual
transition to be reflected in a gradual change in the scalings of the data, which is difficult
to observe because the values of L and Ω are not sufficiently large.

In summary, we predict that a transitional regime lies between the gravity-current
regime of §4.3 and the ultimate regime of §4.4. While all three regimes involve a basic
balance between hydrostatic pressure and Darcy’s law, and are constrained to carry a unit
buoyancy flux, the key physics in each regime is different. In the gravity current, buoyancy
is transported by advection across the layer, and the concentration structure and scale
c ∼ L−1/3 are set by the incident downwelling plume. In the ultimate regime, buoyancy
is transported by diffusion across the layer, and the circulating flow is constrained by
the depth of the layer from the upper boundary z ∼ L. In the transitional regime, both
advection and diffusion contribute to the buoyancy flux across the layer, there remains
a net downwards volume flux across the layer, and neither the incident plume nor the
depth of the layer play a dominant role in the dynamics of the flow.

5. Conclusions

In this paper, we have studied the dynamics of steady or statistically steady buoyancy-
driven plumes in a two-dimensional porous medium that contains a thin, low-permeability
horizontal barrier or layer. If the dimensionless thickness 2εL and the permeability Π
of the thin layer are small relative to the distance L to the layer and the ambient
permeability, respectively, then they can be incorporated into a single parameter Ω =
2εL/Π that measures the layer’s impedance.

We explored the effect of the depth L and the impedance Ω on the spread of the plume
over such a layer, and the results are summarized in table 1. For Ω � L1/3, the layer
has a negligible effect on the plume; for L1/3 � Ω � L2/3 the layer affects the pressure,

but not the width, of the plume; and for L2/3 � Ω � R
3/2
c L2/3 the plume spreads as a

gravity current over the layer, where Rc = O(102) is a critical Rayleigh number. In each
of these cases, we constructed analytic solutions for the spread of the plume above the
low-permeability layer.

For Ω � R
3/2
c L2/3, instabilities above the low-permeability layer disrupt the flow and

mix up lower concentrations from the layer into the over-riding gravity current. The
spreading current continues to widen and deepen with increasing Ω. For Ω � RcL the
flow fills the depth of the region above the layer, diffusion becomes the dominant buoyancy
transport across the layer, and the flow becomes independent of Ω. We also constructed
an analytic solution for the time-averaged flow above the layer in this ‘ultimate’ regime.
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Regime NP LP GC T U

Ω L1/3 L2/3 R
3/2
c L2/3 RcL

xp ∼ L2/3 L2/3 Ω2/3L2/9 R
−1/2
c Ω R

1/2
c L

c ∼ L−1/3 L−1/3 L−1/3 R
3/4
c Ω−1/2 R

1/4
c L−1/2

u ∼ L−2/3 ΩL−1 Ω−1/3L−1/9 R
1/4
c Ω−1/2 R

−1/4
c L−1/2

z ∼ — L2/3 Ω1/3L4/9 R−1
c Ω L

Table 1: A summary of dimensionless scalings for the different regimes of flow over a
low-permeability layer for L� 1: negligible perturbation to the plume (NP: §4.1); local
perturbation to the plume (LP: §4.2); gravity current (GC: §4.3); transitional regime (T:
§4.5); and the ‘ultimate’ regime (U: §4.4). Boundaries between the regimes are given by
the scalings shown for the impedance Ω. The table gives scalings for the width xp of the
plume at the low-permeability layer, together with the concentration c and horizontal
velocity u at the layer and the height scale z over which the flow above the layer is
affected.

The physical implications of these results are clearer if we work in dimensional vari-
ables, considering a plume of buoyancy flux B falling across a thin horizontal layer
located at a depth L∗. Recall that the advection–diffusion length ẑ = φD2µ/(ρ0αgk

∗
0B)

was used as the length scale in this work, and so the dimensionless depth L = L∗/ẑ
can be thought of as a Rayleigh number for the plume. The thin layer has dimensionless
impedance Ω = 2εL∗/ẑΠ, written in terms of the layer width 2εL∗ and permeability
ratio Π. If Ω � (L∗/ẑ)2/3, the layer has a negligible impact on the spread of the
plume, and the half-width of the plume at the layer is x∗p ≈ 4.1L∗2/3ẑ1/3. If instead

(L∗/ẑ)2/3 � Ω � R
3/2
c (L∗/ẑ)2/3, the plume spreads as a gravity current over the

layer, with x∗p ≈ 1.4Ω2/3L∗2/9ẑ7/9. If Ω � RcL
∗/ẑ, convection away from the layer and

diffusion across it control the spread of the plume, and its mean half-width x∗p ≈ 5.3L∗

scales with the distance to the layer.
As an illustration of these results, we consider the effect on a plume of CO2-saturated

brine falling through a saline aquifer in the context of CO2 sequestration. The driving
buoyancy fluxes and convective velocities are typically slow in this context: a relatively
high-permeability aquifer (k∗0 = 3 × 10−12 m2), for example, yields a typical convective
velocity scale of U ≈ 10−6 m/s for this setting (using parameter estimates taken from
the Sleipner field in the North Sea (Hewitt et al. 2013)). Given a molecular diffusivity
D = 10−9 m2/s and ignoring the effects of dispersion (discussed below), the advection–
diffusion length scale is thus ẑ ≈ 1 mm. Suppose a thin layer of width 2ε∗ = 10 cm lies
a distance L∗ = 10 m below the source of dense CO2-saturated brine, so that L = 104.
If the thin layer has a permeability five times less than that of the aquifer, it will have
a negligible effect on the spread of the plume and x∗p ≈ 2 m at the layer. If, instead, the
thin layer has a permeability 500 times less than that of the aquifer, or even lower, it
will have a dramatic effect on the layer: all the buoyancy will be transported across the
layer by diffusion and the plume will spread to x∗p ≈ 50 m. Alternatively, if both layer
and aquifer were ten times larger, so that 2ε∗ = 1 m and L∗ = 100 m, the layer would
only have to be half the permeability of the aquifer to affect the spread of the plume,
but 700 times less permeable to prevent advective transport.
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The results of this work apply to a two-dimensional plume, and the extension to
axisymmetric flow provides a natural future direction of study. One might also consider
extending these models to include the effects of velocity-dependent dispersion, which can
play an important role in the spreading of plumes (Sahu & Flynn 2015, 2016). Perhaps the
most interesting extension to this work, however, would be to explore how the presence
of multiple low-permeability layers affects the spread of a plume, particularly given that
multiple stacked layers are common in geological settings. In particular, one might ask
whether lower layers provide appreciable feedback on the dynamics of the plume at higher
layers. An initial exploration of this question suggests that a system of multiple layers
can give rise to a wealth of interesting dynamics, the investigation of which will be the
subject of future work.

Appendix A. Numerical details

A.1. Numerical modelling

We solved the equations (2.9)–(2.10), together with the jump condition for flow across
a thin low-permeability layer (2.14), numerically. To achieve this, we assumed symmetry
conditions in the line x = 0 and worked in a finite numerical domain 0 6 x 6 lx and
0 6 y 6 ly, for some lx and ly. At the side boundary x = lx, which was chosen to lie far
from the extent of the plume, the pressure and solute concentration were uniform and so
v ≡ ∂ψ/∂x = c = 0.

The buoyancy source was imposed numerically on the upper boundary (y = 0) by a
fixed non-zero vertical concentration gradient over a small region 0 6 x < xb, where
xb � L was chosen to be equal to a few horizontal grid lengths δx. The entire upper
boundary was also impermeable, so

∂c

∂y
=

{
−1/(2xb) 0 6 x < xb,
0 xb 6 x;

v = ψ = 0 on y = 0. (A 1)

Numerical solutions were checked to ensure that they were insensitive to the precise value
of xb. On the lower boundary of the domain we imposed

u ≡ −∂ψ
∂y

= 0;
∂c

∂y
= 0 on y = ly, (A 2)

so that concentration could advect out but not diffuse back in. The boundary ly was
chosen to lie far below the low-permeability layer (in all cases, at least a distance of 6L
below the layer).

In order to generate steady or statistically steady plume solutions, we solved the
full time-dependent equations (2.9)–(2.10), starting either from rest with c(t = 0) = 0
throughout the domain, or from a statistically steady solution for the same value of L but
with a different impedance. The second initial condition led to more rapid convergence
to a new statistically steady state than the first.

The numerical method used a Fourier transform in the x direction, a standard second-
order finite-difference discretization in the y direction, and an alternating-direction-
implicit time-stepping scheme. We employed a flux-conservative discretization, with the
streamfunction and concentration located on staggered grids, and a coordinate transfor-
mation in the vertical direction to ensure that the dynamics near the upper boundary
and at any internal boundaries were fully resolved without prohibitive computational
cost. For the lowest values of the distance to the layer L and the impedance of the layer,
we used approximately (256, 300) grid points in the (x, y) directions, while for the most
extreme parameter settings, we used approximately (4096, 2000). In all cases, we ensured
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Figure 12: (a) The width xp(Π) of the plume as defined by (3.1) from simulations in
which the low-permeability layer is fully resolved, for L = 5 × 103 and different layer
thicknesses ε as marked. (b) The same data plotted as a function of the impedance
Ω = 2εL/Π, together with solutions of the model with a jump condition at the layer
(thick red dots and dashes).

that boundary layers and narrow ‘proto-plumes’ were still well resolved in the vertical
and horizontal directions, respectively.

A.2. Resolving the low-permeability layer

In §2.3, we showed that the low-permeability layer can be parameterized by a jump
condition at y = L and an effective impedance Ω in the limit ε, Π � 1. Here we verify
this parameterization by presenting numerical results from simulations in which the full
low-permeability layer of finite depth 2εL and permeability Π was resolved. Continuity
of pressure at the edges of the layer indicates that the horizontal velocity jumps according
to

u|z=(εL)− = Π u|z=(εL)+ , u|z=−(εL)+ = Π u|z=−(εL)− . (A 3)

We imposed these jumps directly by replacing the relevant rows of the discretized
derivative matrix in the y direction with conditions that enforce the required jump in
the vertical gradient of the streamfunction.

Figure 12(a) shows values of the width of the plume immediately above the layer xp
from simulations with different values of Π and ε. As expected, the width increases as
the thickness ε of the layer is increased and as the permeability Π is decreased. The data
collapse when plotted as a function of Ω (figure 12b), and they agree well with results
from a simulation in which the layer is parameterized by the jump condition (2.14).

Appendix B. Solution for the plume perturbation: L1/3 � Ω � L2/3

Equation (4.10) describes the plume perturbation near the layer. Under the transfor-
mation Q(X,Z) = P (X,Z) coshX/(3β3), (4.10) reduces to the Helmholtz equation

∂2Q

∂X2
+
∂2Q

∂Z2
= Q; Q(X, 0) = sechX. (B 1)

A Fourier transform in the X direction gives

Q̃(k, Z) = Q̃0(k)e−Z
√
1+k2

, (B 2)

where

Q̃0 =

∫ ∞
−∞

e−ikX

coshX
dX =

π

cosh (πk/2)
. (B 3)
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The leading-order pressure is thus

P (X,Z) =
3β3

2 coshX

∫ ∞
−∞

eiXk−Z
√
1+k2

cosh (πk/2)
dk =

3β3

coshX

∫ ∞
0

cos (Xk) e−Z
√
1+k2

cosh (πk/2)
dk, (B 4)

which we compute numerically. The corresponding horizontal velocity is U = −PX , and
is shown in figure 4 together with contours of the pressure P . Both quantities decay
to zero as Z → ∞, where the pressure and horizontal velocity of the plume are much
smaller.
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