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Abstract

Future weak lensing surveys will cover larger areas of the sky that necessitate

analysis on the curved sky geometry instead of projections to the plane. This thesis

focuses on reconstructing convergence maps from cosmic shear on the curved sky

geometry. These convergence maps are useful tools for cosmological analysis, in-

cluding probing non-Gaussian properties. The first chapter focuses on evaluating

the performance of different methods of projecting simulated shear data from the

curved sky to the plane, to subsequently undergo Kaiser-Squires reconstruction and

analysis, and drawing comparisons to reconstruction and analysis directly on the

sphere, using peak counts and Minkowski Functionals as the statistics selected for

comparison. It is found that projections to the plane are only effective for small areas

and it is preferable to perform analysis directly on the sphere when possible. Under

ideal circumstances, peak counts derived from data projected using the sine and

orthographic projections are most accurate to the spherical case. For the Minkowski

Functionals there are significant differences that persist even when attempting to

mitigate the projection effects. While certain projections allow reasonable approxi-

mations of the spherical sky geometry, it is impractical to use such projections on

data covering large areas of the sky and performing analysis on the spherical setting

is preferable. The second and third chapters focus on the separation of E-modes

and B-modes through wavelet pure mode estimators on the sphere, which cancel

mode mixing caused by masking of the shear data. The aim is to remove ambiguous
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modes to produce pure E-B modes, providing greater accuracy for studying cosmol-

ogy from them. An evaluation of the accuracy of this method is performed using

simulated data to compare the Kaiser-Squires, harmonic pure estimator and wavelet

pure estimator methods. This finds a significant improvement in the accuracy of

recovering simulated E-modes and B-modes when using the wavelet pure estimator,

over the Kaiser-Squires method and harmonic pure estimator. This wavelet pure

estimator method is applied to DES Y1 data and statistics, including the Minkowski

Functionals, are derived and discussed. The wavelet pure estimator successfully

reconstructs the E-mode and B-mode maps accurate to previous studies of the data.

The Minkowski Functionals of the E-modes and B-modes display distinct differences

to the analytic form for a 2D Gaussian random field. A new problem is discovered

in the apodisation of the data near the mask boundary, and a potential solution is

attempted through identifying and removing apodised pixels with a new mask.



5

Impact Statement

The primary impact of the research performed in this thesis is the potential

improvements over previous techniques in the field of cosmological analysis, which

will be useful in the field of cosmology. The two main focuses of this thesis are the

reconstruction on the sphere and comparison of this to commonly used reconstruc-

tion on the projected plane, and the wavelet pure mode estimator as an extension of

existing pure mode estimator methods.

The importance of performing analysis on the sphere is stressed due to future

surveys covering significantly large areas of the sky such that flat sky approximations

and projections are no longer accurate. This is demonstrated through comparison of

selected statistics (the peak statistic and Minkowski Functionals) on five projected

cases and on the spherical case, hence this research also serves as an illustration

on how these statistics are affected by these different methods of projection from

the sphere to the plane in comparison to the spherical case. The technique of E-B

mode separation will be useful for creating cleaner mass maps and therefore more

accurate cosmological results derived from them.

These techniques are discussed as applied to cosmic shear, but are applicable to

other sources of cosmological data, such as the cosmic microwave background, on

the curved sky geometry. The thesis discusses the challenges involved in analysing

the spin-2 shear fields, such as projection from the sphere to the plane, which could
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potentially be extended to work with spin fields in contexts other than cosmology.

This research is significant in the context future astronomical surveys (eg Euclid,

LSST) that have significant sky coverage and seek to probe dark energy through

weak lensing, hence it is desirable to have highly accurate results free from contami-

nation such as E-B mode mixing. Discoveries made about performing analysis in the

curved sky setting compared to projected data may prove useful for fields outside

astronomy that are also concerned with the geometry of the data, such as medical

imaging or geography. In addition, improving techniques for creating mass maps are

useful for creating better mass maps for outreach and raising public understanding

about cosmological research and the purpose of these surveys.
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Introduction

The study of cosmology seeks to understand the universe on the largest scales,

including its origin, evolution, its physical properties on scales significantly greater

than the galactic scale, and the structures that have emerged as a result of these

properties and its evolution. This thesis focuses on techniques and analysis methods

used for probing dark energy and other cosmological parameters through studying

cosmic shear, the gravitational lensing signal caused by the Large-Scale Structure

(LSS), specifically with regards to the curved sky geometry and the problem of E-B

mode separation. The LSS describes the structure of matter in the universe on the

largest observable scales, where its growth has been influenced by the expansion of

the universe and the effect of dark energy, as it originated from small perturbations

in the early universe. On scales of more than 10 Mpc, the universe is inhomogeneous

and made up of superclusters, walls and filaments, as well as voids of low matter

density separating them. The evolution of the LSS over time is influenced by various

cosmological parameters, so studying cosmic shear, and by extension the LSS, is a

useful way to probe the cosmology of the universe.

Weak lensing and cosmology

The properties and evolution of the universe leave their influence on various

observables, with different observables being more sensitive to different cosmologi-

cal parameters. Among the avenues for cosmological research are observations of



17

the Cosmic Microwave Background (CMB), the use of supernovae as cosmological

probes, redshift surveys to map the large-scale distribution of matter, detection of

gravitational waves, and gravitational lensing. This thesis focuses specifically on

weak lensing, a specific type of gravitational lensing that is analysed in the form of a

weak statistical signal, and is a rapidly growing field of research with upcoming sur-

veys (such as Euclid [Laureijs et al., 2011] and the LSST [LSST Science Collaboration

et al., 2009]) promising a wealth of new data in the coming years.

Gravitational lensing is a lensing effect bending the trajectory of light rays

induced by variations in the gravitational field caused by the presence of matter.

Due to the weakness of the gravitational force, only on the largest scales with

significant masses does this effect become observable. The observed distortion

effects are categorised into strong lensing, displaying noticeable shape distortion

such as the light source becoming an arc, and weak lensing, displaying very slight

shape distortions such that studying it requires analysis of a large number of light

sources on a statistical scale.

Weak lensing provides a useful tool for tracing distributions of matter in the

universe, including dark matter which cannot be observed through direct detection

of electromagnetic waves. In order to accurately study the large-scale distribution of

matter in the universe and its evolution, it is necessary to account for dark matter,

which comprises the majority of matter in the universe. Among the many methods

of indirect observation of dark matter, weak lensing proves extremely useful for

studying dark matter on the largest scales.

Information from weak lensing

Cosmic shear is the weak lensing signal caused by light propagating through the

LSS of the universe and is sensitive to various parameters that govern the evolution

of the universe. Statistics can be derived from the cosmic shear and compared with

those derived from models of the universe to constrain cosmological parameters, and

to provide measurements of the errors on these constraints. The primary parameters

(see Section 1.1.14) constrained by weak lensing are σ8, which defines the amplitude

of the matter power spectrum on 8Mpc scales, and ΩM, the present-day value of the

dimensionless matter over-density parameter. Dark energy influences the growth
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of structure in the universe, and as such cosmic shear can be used to probe the

nature of dark energy [Heavens et al., 2006]. Dark energy is defined by its equation

of state, given as w(z) = ρ
p where ρ is the energy density, p is the vacuum pressure

and the dimensionless factor w(z) is a function of redshift, and by extension, time.

By constraining this parameter, it will be possible to distinguish between various

models for dark energy, such as whether dark energy is the cosmological constant

or an effect of a modified theory of gravity [Amendola et al., 2013]. Overall models

of the universe include these specific models for dark energy, so probing the dark

energy equation of state parameter w, along with other cosmological parameters,

allows us to examine which model most closely matches observations and therefore

is mostly likely to describe the universe.

One major focus of cosmology is to construct and evaluate a model to describe

the universe, including cosmological parameters of the model, using observations

to evaluate the validity of each potential model and to increase precision on values

for the cosmological parameters. This is achieved through a variety of methods

observing different astronomical objects or physical effects that are significantly

influenced by the cosmological properties and evolution of the universe.

Simulations play a significant role in cosmology, as it is not possible to obtain

data on other potential iterations of the universe through observation. Instead, data

from simulations generated through a model and specific parameters are tested

against data from observations, evaluating the likelihood that the model is a fitting

description of the data.

One frequent use of weak lensing data for probing cosmology is the derivation

of various statistical measures, such as the commonly-used power spectrum (see

Section 1.3.2), and comparing them to the statistics calculated from simulations

of the equivalent weak lensing field. Other such statistics include the peak count

statistic (see Section 1.3.4) and Minkowski Functionals (see Section 1.3.5), which are

used in this thesis.

Challenges in weak lensing analysis

The field of weak lensing analysis requires high precision to compensate for

the inherent weakness of the weak lensing signal, and involves many observational
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considerations that influence results. Straightfoward ones such as smearing from the

point-spread function (PSF) can be dealt with through calibration, while effects such

as data masking from incomplete data provide more complicated challenges to deal

with. One of the effects of masking is mode-mixing that results in inaccuracies in E-

modes and B-modes (see Section 1.2.6) recovered from the shear data. An approach

to solve this issue is to use pure mode estimators, which, combined with wavelets,

is the focus of chapter 3 and chapter 4.

Most current studies of cosmic shear are limited to small areas of a few hundred

square degrees (154 deg2 for CFHTLenS [Erben et al., 2013a]), but more recent

surveys will extend this to significantly larger areas, such as Euclid’s planned

15,000 deg2 survey [Amendola et al., 2013] and the currently underway Dark Energy

Survey (DES) with sky coverage of 5000 deg2 [Abbott et al., 2005]. Ground-based

telescopes such as the Large Synoptic Survey Telescope (LSST) [Abate et al., 2012]

have increasingly wide fields of view, 9.6 deg2 in the case of the LSST. These surveys

will gather high quality image data with wider wavelength coverage to allow for

more precise galaxy redshift measurements and will be able to measure to higher

redshifts than previously possible. Existing surveys such as the 1,500 deg2 Kilo-

Degree Survey (KiDS) [de Jong et al., 2013] also provide a significant amount of data

useful for cosmic shear studies. These surveys are designed to gather data suitable

for weak lensing analysis of dark energy as either their primary goal (DES, Euclid)

or as part of a number of their scientific goals (KiDS, LSST), and will produce larger

amounts of high quality data than previous surveys. This makes the development

of weak lensing analysis new techniques an important focus for the cosmological

research in the coming years. The current analysis methods used make several

assumptions that will not be valid for larger scales, necessitating the development

of new methods to fully account for the geometry of the environment the data exists

in, which is why we opt to perform reconstruction and analysis on the sphere over

flat sky approximations or projections to the plane.

Research goals

The two challenges to weak lensing analysis that are the primary focus of this

thesis are the issue of accommodating the curved sky geometry for greater sky
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coverage, and mode-mixing resulting from masked data. We seek to take methods

used to reconstruct the convergence map on the curved sky and compare them with

reconstruction performed on the plane, after the weak lensing data is subject to

projection from the spherical setting to the plane. This project focuses on the peak

count statistic and Minkowsi Functionals as statistics to evaluate the performance

of each method, as these two statistics rely upon the morphology of the data map

and hence are susceptible to influence by geometry used in reconstruction. This also

serves a secondary purpose of evaluating under which conditions projecting the

data to the plane is appropriate and at which point it becomes preferable to work in

the curved sky setting.

The mode-mixing problem is tackled through using wavelet pure mode esti-

mators to perform E-B separation, with the aim of evaluating whether this method

shows an improvement in accuracy of reconstructions. To test this, simulated con-

vergence maps are created and compared with their reconstructions using different

methods. We also apply this wavelet pure estimator E-B separation to the DES Y1

data in order to demonstrate the value of this method for use on real data.

Thesis Outline

In order to fully explain the research done in this thesis, Chapter 1 will sum-

marise the relevant cosmological background. This will cover the terminology,

notation and cosmological concepts and statistical methods that will be used. Rele-

vant details on the notation and mathematics that are not covered in this chapter

will instead be in the Appendix. Other relevant concepts such as wavelets will also

be introduced here.

Chapter 2 will detail the research performed on the subject ’Investigating the

effect of projections on the peak count and Minkowsi Functionals of convergence

maps’, using simulated data as the shear from which the convergence maps are

reconstructed. This research has been published as a paper under the same title. The

cosmic shear data is observed on the spherical surface and is typically projected onto

the 2D plane, with methods of mapping the geometry from the spherical surface to

the plane. After the projection, the planar shear map is used to reconstruct a conver-

gence map tracing the mass distribution in the observed sky. It is expected that this
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mapping of the data to the plane will have a noticeable impact on statistics derived

from the topology of the data map, with the projection effects persisting through the

reconstruction process. The peak count statistic and Minkowsi Functionals (MFs),

described in this chapter, are selected due to their sensitivity to non-Gaussianities

in the convergence map and because they are expected to be influenced by projec-

tion. This research finds that when examining the peak count statistic and the MFs,

projections approximating the spherical sky case hold only under certain small-area

circumstances and it is preferable to perform such analysis on the full sky instead. Of

these the examined projections sine and orthographic projections best approximate

the curved sky for examining the peak count statistic.

Chapter 3 will discuss the separation of E-modes and B-modes from shear

data, and how ambiguous modes introduced by data masking present a problem.

We detail how wavelets can be used in the wavelet pure mode estimator to cancel

ambiguous modes and apply this to simulated weak lensing data. The E-modes

and B-modes are also recovered using the Kaiser-Squires pseudo estimator and the

harmonic pure estimator for the purpose of comparison. As with chapter 2, this

analysis is performed on the curved sky geometry. It is found that the wavelet pure

estimator shows a significant improvement when recovering simulated E-modes

and B-modes, compared to the Kaiser-Squires and harmonic pure estimator methods.

The research and findings of this project have been used to write a paper that is

currently under review.

Chapter 4 will cover the third and final section of research, focused on the ap-

plication of methods used in chapter 3 to DES Year 1 data. We discuss the recovered

convergence maps and calculate the Minkowsi Functionals and other statistics from

them, and seek to find ways to mitigate the problematic effects that arise when using

pure mode estimators. The recovered E-mode and B-mode maps match previous

reconstructions, and an apodisation effect is noted. In order to account for the apodi-

sation, a new mask is used that additionally masks the apodised pixels. The MFs

of the E-modes and B-modes are compared with the analytic form of the MFs a

2D Gaussian random field and show a distinct difference, even accounting for the

apodisation. A paper based on this chapter is currently in prep and is expected to be

submitted for review soon.
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CHAPTER 1

Background



§1.1 − Cosmology 23

1.1 Cosmology

This overview of the field of cosmology will first give a qualitative description

of the currently held consensus of the cosmology of the Universe, followed by

further detail on the mathematics and commonly used formulae and definitions.

Where relevant, further detail will be elaborated upon, and in cases where concepts

are introduced before explanation, the section of the thesis with the full explanation

will be referenced.

1.1.1 The Cosmological Principle

Underpinning the understanding and study of the cosmology of the Universe

is the cosmological principle, which states that the Universe is, on the largest scales,

isotropic and homogeneous. This principle allows the assumption that the properties

of the universe on sufficiently large scales will appear the same to an observer no

matter their location. Isotropy states that the universe looks the same regardless

of the direction observed, and homogeneity states that the universe will look the

same regardless of location observed, in effect stating that the observed universe is

invariant under the observer’s rotation or translation respectively. The cosmological

principle allows the assumption that any understanding of the universe derived

from observations on Earth will also hold anywhere else in the universe.

1.1.2 The Standard Model of Cosmology

The standard model of cosmology currently accepted for the universe is the

ΛCDM model, positing that the universe is comprised of radiation, non-relativistic

matter, which includes baryonic matter, cold dark matter, and dark energy (also

referred to as the cosmological constant in particular circumstances, see 1.1.12).

Observable baryonic matter comprises only ∼15% of the total matter content

and ∼4% of the total energy content of the universe [Aghanim et al., 2018]. ‘Dark

matter’, comprising ∼ 27% of the energy content of the universe and ∼ 85% of

the matter in the universe, is the term used to refer to the portion of matter in the

universe that interacts only gravitationally (and possibly via the weak interaction)

and does not couple with electromagnetic radiation. In comparison to baryonic

matter, which has dimensionless density parameter (see Section 1.1.13) Ωb ∼ 0.045
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[Aghanim et al., 2018], this invisible dark matter has the significantly larger density

parameter of Ωcdm ∼0.259 [Aghanim et al., 2018] and so plays a significant role in

the evolution of the universe. Dark matter does interact via gravity, and as such it

influences light and baryonic matter gravitationally such as through gravitational

lensing, as detailed in Section 1.2. Evidence for dark matter can be found in obser-

vations that cannot be explained by only the visible matter in the system, such as

observations of galactic velocity dispersion as early as 1933 [Zwicky, 1933], obser-

vations of the relationship between galactic mass and radius [Ostriker et al., 1974],

studies of the stability of the galactic disk [Ostriker and Peebles, 1973] and studies

of rotation curves of galaxies [Persic et al., 1996]. The exact nature of dark matter

is not yet known, but several candidates have been proposed, including ‘weakly

interacting massive particles’ (WIMPs) [Roszkowski et al., 2018] and ‘massive astro-

physical compact halo objects’ (MACHOs) [Bennett et al., 1996]. However, recent

research casts doubt on the standard WIMP and MACHO models and favours alter-

natives such as axions [Bergstrom, 2009] and sterile neutrinos [Boyarsky et al., 2019]

among others [Bertone and Tait, 2018]. Models of the universe including dark matter

also leave an impact on the Large-Scale Structure (LSS) and Cosmic Microwave

Background (CMB), which allows comparison between prediction and observation.

The LSS of the universe is comprised of both dark matter and visible matter and

is distributed throughout the universe in a web of filaments around which baryonic

matter coalesces to form stars and galaxies, and understanding its structure and

evolution provides useful insights into the nature of the universe. The term ‘cold’

is used to indicate that the dark matter possesses relatively low thermal energy

and its movement is at velocities far slower than the speed of light, due to greater

hypothesised particle mass than alternative ‘hot’ dark matter candidates. Cold

dark matter has density parameter (see Section 1.1.13) Ωcdm = Ωm − Ωb, where

Ωm is density parameter for the total matter in the universe and Ωb is the density

parameter for the baryonic matter.

The other main component of the ΛCDM model is the inclusion of the ‘cos-

mological constant’ Λ as a theory for dark energy (see Section 1.1.12), to explain

the accelerating expansion of the universe as found by observations of Type 1a

supernovae in 1998 [Perlmutter et al., 1999; Riess et al., 1998]. The ΛCDM model
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has significant observational support in its predictions of the CMB fluctuation being

confirmed by the CMB anisotropies observed by COBE [Smoot et al., 1992], WMAP

[Komatsu et al., 2011] and Planck [Ade et al., 2016a], along with constraints on the

cosmological parameters matching predictions from the model [Ade et al., 2016b],

leading to ΛCDM to be accepted as the standard model of cosmology.

1.1.3 History of the Universe

Most models of the universe extend the expansion of the universe as observed

by cosmological redshift (see Section 1.1.10) to posit that the universe expanded from

a singularity, the ‘Big Bang’. The ΛCDM model is often extended to include a period

of rapid exponential expansion ∼ 10−34 seconds shortly after the Big Bang called

‘inflation’ [Baumann, 2011; Tsujikawa, 2003]. Inflation is believed to be responsible

for many observed properties of the current universe, including its isotropy and

homogeneity. Inflation is also responsible for the observed fluctuations in the CMB

temperature map and LSS, as quantum density fluctuations are amplified during

inflation to macroscopic scales and then seed subsequent evolution of the universe.

Following this period of inflation comes a period of reheating. The temperature

drops due to the expansion during inflation, and after inflation the temperature

returns to the temperature it was before inflation. This occurs by the inflaton field’s

potential energy converting into matter and radiation once inflation has ceased.

The high temperatures during this reheating allow baryogenesis as an asymmetry

emerges between baryons and antibaryons, which leads to the observed predomi-

nance of matter over antimatter in the universe [Canetti et al., 2012].

As the universe further cools, symmetry breaking occurs and the properties of

the fundamental particles and forces of the universe come to behave as observed in

the present day. With the thermal energy of baryons decreasing to the point where

the strong force can predominate, Big Bang nucleosynthesis can now take place as

protons and neutrons combine to form light elements, supported by the observation

of light elements in abundances predicted by models [Alpher et al., 1948]. Then,

the photons and baryons fall out of thermal equilibrium and decouple. Prior to

decoupling, the photons and baryons exist as if a high-pressure fluid propagating

sound waves as a result of density fluctuations. After decoupling, the photons and
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baryons no longer oscillate together and the acoustic waves are ‘frozen out’ and

preserved in the form of ‘baryon acoustic oscillations’ (BAO) that may be observed

in the CMB and LSS. Closely associated with the photon-baryon decoupling is

recombination, where the free electrons are captured by the free nuclei to form

atoms. Before this recombination, it was not possible for light to propagate beyond

short distances due to the scattering from free electrons, and after recombination the

universe became transparent to photons, allowing them to propagate and giving

rise to the CMB. The period of recombination gives rise to the observed CMB,

as temperatures cool sufficiently to allow the universe to become transparent to

photons (see Section 1.1.4).

After recombination, the universe became neutral and opaque to short wave-

length radiation, hence this period is known as the ‘Dark Ages’. During this era,

dark matter interacts gravitationally, with overdense regions collapsing to form

structure. These regions of high mass density in the form of dark matter filaments

attract baryonic matter, leading to the emergence of stars and galaxies, which tend

to trace dark matter distributions. The universe begins to undergo reionisation as

the first stars emit high-energy radiation, which propagates as short wavelength

photons and ionises the intergalactic medium of the neutral universe.

Over time, the universe comes to resemble its state as observed in the present

day, with galaxies and galaxy clusters forming and evolving alongside the LSS and

the expansion of the universe accelerating as the universe enters the era of dark

energy expansion. Prior to the discovery of the acceleration of expansion of the

universe, it was believed that, according to Einstein’s theory of General Relativity,

the universe containing only matter and radiation should eventually stop expanding

and collapse in on itself. However, observations in 1998 of Type 1a supernovae found

evidence that the rate of expansion of the universe was increasing [Perlmutter et al.,

1999; Riess et al., 1998]. This expansion demands the existence of a new quantity

in the universe, dubbed ‘dark energy’, with negative pressure. This dark energy

quantity causes the observed acceleration of the rate of expansion and opposes the

influence of gravity, explaining why the expansion of the universe does not slow

or reverse due to the collective gravitational pull of the matter within the universe.

This dark energy governs the acceleration of the rate of expansion of the universe,
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and therefore influences the formation of the physical structure of matter and its

evolution over time. As with fluctuations in the early universe such as the BAO, the

imprint of dark energy should be observable in the modern day structure of matter

in the universe and therefore in weak lensing observations such as the cosmic shear.

1.1.4 The Cosmic Microwave Background

While the main focus of this work is on weak lensing, observations of the cosmic

microwave background (CMB) share some similarities to weak lensing observables.

Many techniques used can be applied to both CMB and weak lensing data, including

many used in this thesis, hence a very short summary of the CMB is included

for context. The CMB is the earliest observable thermal radiation in the universe,

produced during recombination when the universe cooled to the point where the

electrons and protons combined to form hydrogen atoms. Before recombination,

the universe was opaque to radiation since all electrons existed as free electrons

that scattered photons, causing it to be impossible for photons to propagate over

long distances. After recombination, the universe became transparent to radiation,

allowing radiation to propagate without being scattered. The thermal radiation

from this period immediately after recombination is the CMB we observe today.

The CMB power spectrum is influenced by the early evolution of the universe

and is affected by the same parameters that govern the evolution of the LSS, and

provide complementary approaches to cosmological analysis. The CMB temperature

map has a spin of 0, while the CMB polarisation map has a spin of 2 and can be

decomposed into E and B modes (see Section 1.2.6) much like weak lensing maps.

The spin of these fields describes the rotational symmetry of the observed signal,

with shear possessing a rotational symmetry of order 2, hence a spin of 2.

1.1.5 The Metric Tensor

The universe can be understood on a fundamental level to be comprised of three

spatial dimensions and one temporal dimension. We may represent a spacetime by

the notation xi = (x0, x1, x2, x3), where x0 denotes the time component and x1,x2,x3

denote spatial components. A point on this spacetime is an instantaneous event that

possesses a distinct position in space (x1, x2, x3) at time x0, and the distance between

two events in this spacetime is an interval with a temporal component.
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The metric tensor gµν describes the properties of the spacetime it is associated

with and is used to evaluate the distance between two points in a given space. Using

Einstein’s summation convention (see Appendix A), we write this as

ds2 = gµνdxµdxν. (1.1.1)

Focusing on the use of the metric tensor in general relativity, we use the metric

tensor of the interval ds between two events in spacetime. For the same two events,

this interval remains constant and is independent of the coordinate system used,

hence the metric tensor is linked to the coordinate system.

As an example, the flat Minkowski space with coordinates xi = (t, x,y,z) has

the Minkowski metric, where c denotes the speed of light,

gµν = ηµν =


−c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (1.1.2)

which allows for the calculation of the spacetime interval as

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.1.3)

One can then use the definition of a spacetime interval to define a geodesic. A

geodesic is the minimised distance between two points in a given space, such that

ds = 0 for massless particles. In flat space, this is a straight line. In spacetime, this

is the shortest path between two events in a spacetime, such that the interval ds is

minimised. Particles unaffected by external forces will travel along a geodesic, hence

massless, chargeless photons always travel along geodesics. Curvature of spacetime

induced by massive objects changes the geodesics in the local spacetime, giving rise

to gravitational lensing, which will be discussed in greater detail in Section 1.2.

1.1.6 The Einstein Field Equation

Empty space is not an empty vacuum, but rather contains energy in the form of

matter, radiation and dark energy (see Section 1.1.12). It is the interaction between
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spacetime and the energy content of the universe that gives rise to effects such as

gravitational lensing.

The stress-energy tensor Tµν conveys the information about the energy present

in a given spacetime, including the density and flux of energy, density and flux of

momentum, and pressure. Gravitational fields arise from the matter and energy,

expressed by this stress-energy tensor, hence massive objects produce a gravitational

field. Assuming spacetime behaves as a perfect fluid, the non-diagonal elements

of the tensor are zero, leaving only the energy density ρ and pressure P, hence the

stress-energy tensor can be written as

Tµν =


ρ 0 0 0

0 P 0 0

0 0 P 0

0 0 0 P

 , (1.1.4)

The Einstein Field Equation relates the curvature of spacetime, with metric tensor

gab, to the energy and momentum content in the local volume of this spacetime

through their respective tensors, the Einstein tensor Gab and the stress-energy tensor

Tab, as such

Gab = Rab +
1
2

Rgab + Λgab =
8πG

c4 Tab (1.1.5)

where Rab is the Ricci curvature tensor and R is the curvature tensor, which is the

trace of the Ricci curvature tensor. The constants in this equation are Newton’s

gravitational constant G, the speed of light c in a vacuum and the cosmological

constant Λ, which will be elaborated upon in Section 1.1.12. The Einstein tensor Gab

describes the curvature of spacetime, while the stress-energy tensor contains the

energy density and flux, momentum density and flux, and the pressure. Assuming

spacetime to behave like a perfect fluid, the non-diagonal elements of the tensor are

zero, leaving only the energy density ρ and pressure P. In this case, the stress-energy

tensor can be simplified to Tab = diag(ρ, Px, Py, Pz). Due to the equivalence of energy

and mass, when discussing the energy density the matter density is also included.
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1.1.7 The Friedmann-Lemaître-Robertson-Walker Metric

The exact solution of the Einstein Field Equations in an isotropic and homo-

geneous universe is given by the Friedmann-Lemaître-Robertson-Walker (FLRW)

metric, shown below for polar coordinates

ds2 = −c2dt2 + a(t)2(dχ2 + fK(χ)dΩ2) (1.1.6)

where χ is the radial coordinate, dΩ = dθ2 + sin(θ)dϕ2, k is the curvature parameter

of the universe and a(t) is the dimensionless scale factor which will be elaborated

upon later. The curvature k determines parameter fK(χ) as follows

fK(χ) =


k−

1
2 sin(k

1
2 χ) k > 0

χ k = 0

(−k)−
1
2 sinh((−k)

1
2 χ) k < 0.

(1.1.7)

Curvature k also defines the shape of the universe. Positive curvature (k > 0) defines

the geometry of the universe as closed, negative curvature (k < 0) defines the

geometry of the universe to be hyperbolic and expanding, and k = 0 defines the

universe as flat. If we define Σ(χ) = r, the metric can be written as

ds2 = −c2dt2 + a(t)2
(

dr2

1− kr2 + r2dΩ2
)

. (1.1.8)

1.1.8 The Friedmann Equations

Applying the FLRW metric in Equation 1.1.6 to the Einstein Field Equation in

Equation 1.1.5 gives the Friedmann Equations

(
ȧ
a

)2

=
8πρ

3
+ Λ− k

a2 (1.1.9a)

ä
a
= −4π

3
(ρ + 3P) +

Λ
3

, (1.1.9b)

where a = a(t) is the scale factor (see Section 1.1.9) and the derivatives with respect

to time are denoted as ȧ = da
dt and ä = d2a

dt2 .
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From this, one can insert Eq. 1.1.9a into Eq. 1.1.9b to obtain the continuity

equation denoting the conservation of mass and energy as

ρ̇ + 3
ȧ
a
(ρ + P) = 0, (1.1.10)

which can also be stated in the form of the stress-energy tensor as

∇µTµν = 0, (1.1.11)

where ∇µ denotes the divergence of the tensor.

There are numerous solutions to the Friedmann Equations depending on the

cosmological parameters for the specific hypothetical universe in question. In order

to solve the Friedmann Equations, the energy content of the universe can be treated

as if an ideal fluid, with equation of state

P = wρ, (1.1.12)

where w is referred to as the equation of state parameter. The energy content of

the universe can be differentiated by type, such that it is comprised of radiation,

with pressure Pr and density ρr, and matter, with pressure Pm and density ρm. The

matter in the universe is made up of non-relativistic particles, which have negligible

pressure compared to their density, hence effectively wm = 0 and therefore Pm = 0.

For ultra-relativistic particles, including radiation, the equation of state parameter

is wr =
1
3 , relating the radiation pressure to the radiation density as Pr =

1
3 ρ. Dark

energy can be defined by this equation of state, as described in Section 1.1.12, and is

defined to have a negative value for w to explain the accelerating expansion of the

universe.

1.1.9 The Scale Factor and Hubble parameter

The scale factor a(t) governs the relative expansion of the universe and describes

the proper distance, denoted here as x, through expression

x(t) = a(t)x0, (1.1.13)
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where x0 is the proper distance at time t0. At t0=0, which is defined as the present

time, we define a0 = a(t0) = 1. The proper distance x is defined as the distance

between two positions at a specific time t, which will vary with time due to the ex-

pansion of the universe, while the comoving distance (see Section 1.1.11) is constant.

From the scale factor, the time-dependent Hubble parameter H can be defined as

H =
ȧ
a

. (1.1.14)

The Hubble constant H0 is defined as the Hubble parameter H measured today,

when a = a0. The Hubble constant has been measured to be 67.4 ± 0.5 km s−1

MPc−1 by the 2018 Planck results [Aghanim et al., 2018]. The dimensionless Hubble

parameter h is defined by

H0 = 100 h km s−1MPc−1, (1.1.15)

and current observations place h ∼ 0.674 [Aghanim et al., 2018].

1.1.10 Cosmological Redshift

Redshift is the name given to the effect that occurs when radiation increases in

wavelength due to the distance between the source and the observer increasing while

the light is in transit from the source to the observer. The redshift z can be defined

through the relation of the emitted wavelength λe and the observed wavelength

λo, or alternately the corresponding emitted and observed frequencies fe and fo

respectively, as

1 + z =
λo

λe
=

fe

fo
(1.1.16)

Cosmological redshift z is caused by the expansion of the universe and is defined as

1 + z =
a0

a(t)
(1.1.17)

where a0 is the value of the scale factor at the present time and a(t) is the scale factor

at the time the radiation was emitted. Since a0 = 1, the relation becomes
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a(t)−1 = 1 + z. (1.1.18)

Radiation takes time to travel from its source to an observer, and the further

this light has travelled, the longer the time elapsed since it was emitted from its

source. While the light is traversing the path from source to observer, the universe is

undergoing expansion and so the light is affected by redshift. Hence, even if the light

source and observer remain in fixed comoving position relative to each other, there

is still a change in the distance between them due to the expansion of the universe.

The longer light takes to travel, the greater the degree of this redshift. This means

that cosmological redshift can be used as a measure of the distance of an object

from the observer, and by proxy as a measure of how long ago the radiation was

emitted. Astronomical objects with higher redshift are at further distance from the

observer, and consequently being observed at an earlier time. In effect, redshifted

light observed in the present day on Earth views the source at a time in the past.

Studying various cosmological statistics as a function of redshift can be used to

probe the change of the universe’s statistics over time. Through sorting the light

sources into redshift bins, and therefore by length of time ago the light was emitted,

and performing analyses on these redshift bins, it is possible to study the changing

properties of the universe over time.

Redshift occurs as both the Doppler effect caused by the expansion of the

universe and the Doppler effect of the observer and emitter moving at relativistic

speeds or in sufficiently large gravitational fields, so in cases where these effects

contribute significantly to an object’s redshift, they will need to be considered when

evaluating the distance of an object. However, for the purposes of this thesis, we do

not evaluate objects subject to redshift effects not caused by the expansion of the

universe, hence their inclusion is for completeness only. Unless otherwise specified,

the term redshift and the notation z refers to the cosmological redshift caused by the

recession velocity of galaxies caused by the expansion of the universe, as opposed

to the redshift caused by the peculiar velocities of the observer and emitter.

1.1.11 Distance measures

The Hubble time tH and Hubble distance DH are constants defined as
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tH =
1

H0
, DH =

c
H0

. (1.1.19)

The comoving distance of an object r is a measure of distance that accounts for the

expansion of the universe and as such is always constant, and can be defined as

r =
∫ t0

t
c

1
a(t′)

dt′, (1.1.20)

where t0 is the present day time and t is the time at which light from the object

that is being observed at present day was emitted from the object. The comoving

distance along the line-of-sight from the object to the observer can be rewritten to be

a function of redshift as

r = Dh

∫ z

0

1
E(z)

dz, (1.1.21)

where E(z) is a parameter given by the equation

E(z) =
√

Ωm(1 + z)3 + Ωk(1 + z)2 + ΩΛ, (1.1.22)

[Peebles, 1993]

where Ωm,ΩkandΩΛ denote the density parameters of the matter content of the

universe, of the curvature, and the cosmological constant (see Section 1.1.13).

The angular diameter distance DA of an object is defined as the ratio of the

object’s physical size R to its angular size θ viewed by the observer. It can be written

as below and related to the comoving distance as

DA =
R
θ
=

r
1 + z

(1.1.23)

The apparent magnitude of an astronomical object is the relative brightness as

viewed by the observer. The absolute magnitude M is a method of quantifying

the luminosity of an astronomical object, and is defined as equal to the apparent

magnitude of said object viewed as if positioned at 10 parsecs away.
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Hence, the luminosity distance DL of an astronomical object related to the abso-

lute magnitude M and apparent magnitude m of the object through the following

equation

M = m− 5(log10(DL)− 1), (1.1.24)

so therefore

DL = 10(
(m−M)

5 −1). (1.1.25)

The luminosity distance can also be defined by the bolometric flux F and bolometric

luminosity L, where bolometric denotes they are integrated over all frequencies, as

DL =

√
L

4πF
. (1.1.26)

1.1.12 Dark Energy and the Cosmological Constant

The early universe underwent a period when energy in the form of radiation

dominated over other forms of energy, followed by a period of matter-dominance.

During this era of matter-dominance, the gravitational pull slowed the rate of

expansion of the universe. However, this did not continue until a gravitational

collapse, but rather the rate of expansion stopped decelerating and instead began

to accelerate against the influence of gravity. In order to explain the acceleration of

the rate of expansion of the universe, the existence of a quantity called ‘dark energy’

was posited.

There are a number of proposed models for dark energy, such as the cosmologi-

cal constant [Carroll, 2001] in ΛCDM cosmology, quintessence [Tsujikawa, 2013] and

modified gravity scenarios [Clifton et al., 2012]. The quintessence model proposes a

dynamic scalar field to be the cause of the universe’s expansion, with dark energy

changing over time, in comparison to the cosmological constant which remains

constant over time. Dark energy is defined as having a negative equation of state

parameter wde, producing negative pressure which acts against the attractive force of

gravity and drives further expansion of the universe. One method to determine the



§1.1 − Cosmology 36

most accurate model is to measure w from observations and evaluate which model

it most closely matches. Ideally, one would want to measure how wde(z) varies over

time, where redshift z serves as a proxy for the length of time before the present day,

as this is necessary when considering models where dark energy varies over time.

Its equation of state can be expanded into a Taylor expansion w(z) = w0 + wz
z

1+z ,

giving another method of evaluating w as a function of time.

The cosmological constant is one proposed model behind dark energy and

a possible cause of the acceleration of the rate of expansion of the universe. The

ΛCDM model (see Section 1.1.2) accounts for dark energy through the cosmological

constant Λ, which is closely linked to the energy density of the vacuum. Similar to

matter and radiation, the vacuum energy has an associated pressure and density,

and therefore an equation of state constant. The cosmological constant is favoured

due to neatly accounting for the observed flatness of the universe and discrepancy

between the too young extrapolated age of the universe when compared with the

age of stars and abundance of galaxies.

The cosmological constant is defined to have pressure P = −ρ and equation of

state parameter wΛ =−1, making it a possible cause of the expansion of the universe.

Should observations find the dark energy equation of state parameter w sufficiently

close to −1, it would provide evidence for the validity of the cosmological constant

theory of dark energy over the competing theories.

If we remind ourselves of the continuity equation shown in Equation 1.1.10 and

the equation of state for a fluid as shown in equation 1.1.12 and assume that the

dark energy equation of state parameter is a function of a such that wde = wde(a),

we can replace Pde = wde(a)ρ. Recalling that dx
x = d(ln(x)) and integrating from ρde

to ρde,0, the modern-day value of ρde, we can integrate Equation 1.1.10 to obtain

ρde = ρde,0e−3
∫ 1

a [1+wde(a′)]d(ln(a′))

= ρde,0e3
∫ z

0
[1+wde(z

′)]
1+z′ dz′ ,

(1.1.27)

allowing the derivation of ρde from observations of ρde,0 in the present day.
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1.1.13 The Density Parameter

It is often more convenient to use the dimensionless density parameters Ω for

matter, radiation, the cosmological constant and curvature. The density parameters

are defined as the ratio of the density to a defined critical density Ω = ρ
ρc

, where

the critical density ρc =
3H2

8πG . We denote the density parameters corresponding to

matter, radiation, the cosmological constant and curvature as Ωm, Ωr, ΩΛ and Ωk.

For matter energy density ρm and radiation energy density ρr, these can be written

as

Ωm =
8πG
3H2 ρm,

Ωr =
8πG
3H2 ρr.

(1.1.28)

Dimensionless density parameters also exist for the cosmological constant and the

curvature, and are given as:

ΩΛ =
Λ

3H2 ,

Ωk =
k

a2H2 .
(1.1.29)

The 1st Friedmann Equation from Equation 1.1.9 can be written as

H(a)2 = H2
0(a−4Ωr,0 + a−3Ωm,0 + a−2Ωk,0 + ΩΛ,0) (1.1.30)

where the 0 subscript indicates the values of the density parameters at the present

day when t0 = 0 and a0=1. If we use a(t) = (1 + z)−1 and use Equation 1.1.27 to

represent the uncertainty in the equation of state parameter for the dark energy wde,

we can rewrite it as

H(a)2 = H2
0((1+ z)4Ωr,0 +(1+ z)3Ωm,0 +(1+ z)2Ωk,0 +Ωde,0e3

∫ z
0

[1+w(z′)]
1+z′ dz′ (1.1.31)

From this, it can be seen that the evolution of the universe is governed by these

density parameters, so one would expect that observations of the universe over time
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could be used to study how the density parameters vary over time. We use these

density parameters Ω over the density ρ because they are dimensionless and scaled

by ρc.

1.1.14 Cosmological Parameters

From the various cosmological equations explained in the previous sections,

it is clear that the cosmology of the universe is determined by the values of the

cosmological parameters. A cosmological model makes predictions of observations

based on these parameters, making it possible to evaluate the model by attempting

to constrain these parameters and comparing to predictions. The cosmological model

leaves its influence on the modern day observed universe, so it should be possible

to probe the model through observations of effects that are most clearly influenced

by these parameters.

There are a number of ways to use observation to probe the cosmology of

the universe, but this project focuses on calculating statistics that relate correlation

between pairs of objects to the scale. These correlation statistics are functions of

real space distance or harmonic modes between each possible pair of objects in

the studied dataset. These statistics have distinct shapes that indicate how much

power or correlation is contained at each scale. Specifically, the real space two-point

correlation function and the power spectrum are the most commonly used and will

be detailed in Section 1.3.1.

The Hubble parameter H, the equation of state parameter w and the matter

density parameter Ωm, which is comprised of Ωcdm and Ωb for cold dark matter

and baryonic matter respectively, have been proven to play a role in influencing

the shape of the correlation function and the power spectrum. The derivative of the

equation of state parameter w with respect to scale factor a is frequently written as

wa = −dw
da , and in standard ΛCDM cosmology w = −1 and wa = 0.

Another important cosmological parameter that influences weak lensing is

σ8, the amplitude of mass density fluctuation in the universe on spheres of radius

8h−1MPc at z = 0, which is used as a measure of an unbiased normalisation of the

observed matter power spectrum. Consequently, σ8 influences the CMB and weak

lensing power spectra and is another parameter that we seek to constrain in order



§1.1 − Cosmology 39

to evaluate cosmological models.

Related to σ8 is As, the amplitude of the mass fluctuations in the primordial

power spectrum. It is defined as Pprimordial = Ask−ns , where ns is the spectral in-

dex. The modern day power spectrum is related to the primordial power spectrum

through considering the growth and modulation of the k modes (the Fourier coeffi-

cients of the physical scale) from structure formation, and this relation is approximate

due to the non-linear regime. We obtain

P(k,z) ∼ D(z)T(k)Pprimordial = D(z)T(k)Ask−ns (1.1.32)

where T(k) is the transfer function which modulates the k modes through the

structure formation up until the modern day, and D(z) is the growth factor which

describes the growth of the k modes. As this is another parameter influencing the

observed power spectrum, we can seek to constrain it with weak lensing.

The final relevant cosmological parameter is the reionisation optical depth, τ,

which measures the opacity of the CMB radiation to a free electron and the distance

travelled before electron scattering.
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1.2 Gravitational Lensing

Evaluating techniques of studying cosmology from weak lensing data is the

core focus of this thesis. This section will outline the concepts and equations key to

the field of weak lensing, which is a type of gravitational lensing, and the related

topics. These related topics will include the basic method underpinning the process

of obtaining the convergence (see Section 1.2.4) map from shear data (see Section

1.2.5). However, more specific reconstruction techniques using wavelets, such as the

wavelet pure mode estimator, will be discussed in chapter 3.

Gravitational lensing occurs when the gravitational force of a mass deflects the

path of a light ray from the path it would have taken in the absence of this gravita-

tional force. In the interest of being concise, the intermediate steps of derivations

will not be shown, and full reviews that cover the skipped steps can be found in

Bartelmann and Schneider [2001] and Kilbinger [2015].

1.2.1 Gravitational lensing formalism

In an inhomogeneous universe, varying matter densities cause gravitational

tidal fields that deflect the travel path of light rays. This light deflection also causes

the observed shape of source objects to appear distorted and correlated, which is

the observable effect of cosmic shear.

Figure 1.1: Figure illustrating a simple single lens system. The source galaxy is at position η

on the source plane and has angular position β. The lensed image appears at ξ

on the lens plane and has angular position θ. The deflection angle is represented

by α̂. This diagram was created by Z. M. Vallis for use in this thesis.

A simple single-lens gravitational lensing system is comprised of the back-



§1.2 − Gravitational Lensing 41

ground source image on the source plane, an intervening lensing object on the lens

plane and the observer who detects the lensed image. Fig. 1.1 displays such a system

as an example. Ds represents the distance from the observer to the source, Dd the

distance from the observer to the deflecting lens and Dds the distance from the lens

to the source. The position of the source on the source plane is denoted by η and

the impact parameter on the lensing plane is denoted by ξ. Angle β describes the

position of the source, angle θ the position of the apparent image and angle α̂ is the

deflection angle.

This type of lensing system is common when the lensing is caused by a galaxy

or galaxy cluster, which have small radial extent compared to the distances involved,

so a thin lens approximation can be applied. For cosmic shear the lensing is the

cumulative effect of the infinitesimally small thin lenses comprised of the LSS along

the path of the photon, and the thin lens approximation holds since the volume

of the matter is small compared to the large distances involved. Additionally, the

overall lensing caused by the LSS is small enough that assumption that the deflection

angle is small holds when considering an observer viewing the lensed galaxy.

The deflection angle can further be related to the positions of the source and

image on their respective planes as such

η =
Ds

Dd
ξ − Ddsα̂(ξ). (1.2.1)

Using the definitions η = Dsβ and ξ = Dsθ, and defining the scaled deflection angle

α(θ) = Dds
Ds

α̂(Ddθ), this can be rewritten as the lens equation

β = θ − α(θ). (1.2.2)

Applying Fermat’s principle to the space-time metric and integrating along the light

path allows the deflection angle to be defined as

α̂ = − 2
c2

∫
∇p
⊥φdx (1.2.3)

where c is the speed of light in a vacuum, x is the proper spatial coordinate from the

metric and ∇p
⊥ is the gradient of the gravitational potential φ (not to be confused

with azimuthal angular coordinate ϕ) with respect to proper coordinates, taken

perpendicular to the path the light is travelling along. We use φ to denote the
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gravitational potential of the field causing the lensing, which can be related to the

underlying matter density δ through Poisson’s equation as

∇2φ(r,θ, ϕ) =
3ΩmH2

0
2a(r)

δ(r,θ), (1.2.4)

where r is the comoving radial distance from the observer, (θ, ϕ) denotes the angular

position on the sky, Ωm is the matter density parameter, H0 = H(t = t0) is the

present-day value of the Hubble parameter, and a(r) is the cosmological scale factor

parameter.

1.2.2 The 2D Lensing Potential

The 2D lensing potential ψ is defined such that α = ∇ψ and relates to the

Newtonian gravitational potential φ as

ψ(θ,r) =
2
c2

∫ r

0
dr′

fK(r− r′)
fK(r)

φ( fK(r′)θ,r′). (1.2.5)

The parameter fK is defined depending on curvature K as

fK(r) =


K−

1
2 sin(K

1
2 r), for K > 0 (spherical)

r, for K = 0 (flat)

(−K)−
1
2 sinh((−K)

1
2 r), for K < 0 (hyperbolic)

(1.2.6)

Applying the Fourier-Bessel transform in Eq. D.1 to Eq. 1.2.5 allows the repre-

sentation of the lensing potential ψ, in relation to the gravitational potential φ, in

Fourier-Bessel space,

ψ`m(k) =
4

πc2

∫
R+

drr2 jl(kr)
∫ r

0
dr′ fk(r,r′)

∫
R+

dk′k′2 jl(k′r′)φ`m(k′;r), (1.2.7)

where this value does not weight for the number of galaxies Ngal(z). Subsequently

Eq. 1.2.7 can be combined with Eq. D.2 to relate the lensing potential ψ to the matter

overdensity δ in harmonic space as

ψ`m(k) =
6ΩM H2

0
k2πc2

∫
R+

drr2 jl(kr)
1

a(r)

∫ r

0
dr′ fk(r,r′)

∫
R+

dk′k′2 jl(k′r′)δ`m(k′,r).

(1.2.8)
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1.2.3 Weak lensing

Gravitational lensing can be divided into strong lensing and weak lensing.

Strong lensing occurs when the lensing is strong enough to significantly distort the

observed shape into multiple images, arcs or Einstein rings. Strong lensing can be

used as a probe for studying cosmology and focuses on individual lenses such as

galaxies, which tend to be relatively few in number.

The focus of this thesis is weak lensing of the LSS, which while possessing

a much weaker signal can be observed as a subtle effect caused by the LSS in

all directions on the sky. Weak lensing occurs when the gravitational field is not

sufficient to distort the observed image to the point where there are multiple images

or significant stretching occurs. Cosmic shear, the gravitational lensing caused by

the LSS, is a weak lensing signal where the intervening matter is not dense enough

to lens the light into arcs or rings. In the case of weak lensing, the distortion of the

galaxy’s shape is very small compared to the galaxy’s intrinsic shape and it is not

possible to discern information from only one weakly lensed galaxy. Instead, weak

lensing must be studied statistically over a large number of galaxies, and the signal

is often small enough that it is easily obscured by noise or systematics such that

large data sets are preferable to counteract this.

The Jacobian matrix Aij describes the change in shape caused by the lensing

potential ψ and can be defined by taking the derivative of Eq. 1.2.2

Aij =
∂β

∂θ
=

(
δij −

∂2ψ(θ)

∂θi∂θj

)
=

1− κ − γ1 −γ2

−γ2 1− κ + γ1

 (1.2.9)

where i, j = (1,2). From this, convergence κ and shear γ are defined as

κ = −1
2
(∂1∂1 + ∂2∂2)ψ =

1
2
∇2ψ (1.2.10)

γ1 = −
1
2
(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ (1.2.11)

It can be seen that distortion in shape is defined by two qualities, the convergence κ

and shear γ. The convergence is a scalar that contributes the isotropic part of the

magnification of the galaxy’s observed shape by changing its apparent brightness.

For strong lensing, Ai,j is singular and describes the translation of the source into
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multiple images. For weak lensing, Aij is invertible and maps the source onto only

one image.

The convergence and shear are spin-0 and spin-2 signals respectively, meaning

the convergence and shear signals are a scalar field with spherical symmetry and a

field with two components and hence an order of two rotational symmetry. They

can be related to the lensing potential ψ through

κ =
1
2
[ðð+ ðð]ψ

γ =
1
2
[ðð]ψ,

(1.2.12)

where the operators ð and ð are the spin raising and lowering operators respectively,

defined on the celestial sphere as

ð = −sins θ

(
∂

∂θ
+

i
sinθ

∂

∂ϕ

)
sin−s θ

ð = −sin−s θ

(
∂

∂θ
− i

sinθ

∂

∂ϕ

)
sins θ.

(1.2.13)

In a spherical harmonic representation this becomes

0κ`m = −1
2
`(`+ 1)ψ`m,

2γ`m =
1
2

√
(`+ 2)!
(`− 2)!

ψ`m,
(1.2.14)

where ` and m are the angular harmonic coefficients. The observed shear exists

natively on the surface of the celestial sphere and so in the full sky case 2γ`m can be

decomposed using a spin-weighted spherical harmonic basis ±2Y`m like

±2γ(nnn) =
∞

∑
`=0

`

∑
m=−`

±2γ`m±2Y`m(nnn), (1.2.15)

where ±2Y`m(nnn) are the standard spin-weighted spherical harmonic functions.
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1.2.4 Convergence

Applying and substituting Eq. 1.2.4 and Eq. 1.2.5 into Eq. 1.2.10, the convergence

can be given in terms of the mean matter density δ through

κ(θθθ) =
3H2

0 Ωm

2c2

∫ rlim

0

dr
a(r)

q(r) fK(r)δ( fK(r)θθθ,r), (1.2.16)

where rlim is the limit in the radial direction, q(r) is the lens efficiency that describes

the strength of the lensing on the background galaxies at distance r. It is defined as

q(r) =
∫ rlim

r
dr′n(r′)

fK(r′ − r)
fK(r)

, (1.2.17)

where n(r) is the source galaxy number density.

1.2.5 Shear

The shear describes the anisotropic distortion of the galaxy’s observed shape

and can be written in complex form as γ = γ1 + iγ2 = |γ|e2iϕ. Shear is a spin 2

quantity, meaning that it has rotational symmetry of 2, it is symmetric when rotated

180◦.

As the shear is a spin-2 signal, the shear of an individual galaxy is comprised of

the tangential component γt and the cross-component γ×. These can be defined for

shear with angular direction θ = (θ, ϕ) as

γt = −Re[γe−2iϕ], γ× = −Im[γe−2iϕ]. (1.2.18)

When studying cosmic shear, only the shape of the galaxy is of interest, not the size,

so it is useful to use reduced shear g which is defined as

g =
γ

1− κ
(1.2.19)

Shear can be measured by studying the change in a galaxy’s ellipticity. There are

several ways of defining the ellipticity of a galaxy, the most common of which are

through quadrupole moments of a source galaxy[Schneider and Seitz, 1995], which

are defined as
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Qij =

∫
dθq(I(θ))(θi − θi)(θj − θj)∫

dθq(I(θ))
(1.2.20)

where i, j = (x,y) denote the Cartesian coordinates of observed galaxy, (θ) is the

surface brightness distribution of of the source galaxy, θ denotes the centre of the

source galaxy and q(I) is a distribution function such as the Heaviside step function.

Galaxies have an intrinsic source ellipticity εs that would be observed in the

absence of intervening lensing mass. This allows the observed ellipticity ε to be

defined as

ε =
εs + g

1 + g∗εs (1.2.21)

which in the weak lensing regime approximates to

ε ≈ εs + γ (1.2.22)

[Bartelmann and Schneider, 2001]

When assuming that the intrinsic ellipticities are randomly oriented, 〈εs〉 = 0,

so the observed ellipticity acts as an unbiased estimator of shear as 〈ε〉 = γ.

1.2.6 E-B modes

The shear components γ1 and γ2 are not independent and can be alternately

described by E-mode and B-mode signals, which are fields analogous to the electric

field and magnetic field respectively. The E-modes and B-modes arise from the

spin-2 nature of the shear signal and are a measure of the observed alignments of

the shear around matter over- or underdensities caused by gravitational lensing.

A representation of the E-modes and B-modes is shown in Fig. 1.2 [Amara and

Kitching, 2016], with the lines indicating the alignment of the distorted galaxies.

Gravitational lensing should only produce E-mode signals, but observations may

display the presence of a B-mode field due to various systematic errors and biases.

From the spherical harmonic representation of the shear field in Eq. 1.2.15, we

can write the E- and B-mode fields as comprised of the spin-2 harmonic coefficients
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Figure 1.2: Diagram representing E-modes and B-modes. [Amara and Kitching, 2016]

E`m = −1
2
(2γ`m +−2 γ`m),

B`m =
i
2
(2γ`m −−2 γ`m),

(1.2.23)

which for a spin-2 signal, in harmonic representation, gives

±2γ`m = (γ1 ± iγ2)`m = −(E`m ± iB`m). (1.2.24)

These E/B modes can also be related to the E/B modes of the lensing potential ψ by

a normalisation

ψE
`m = 2N`,−2E`m,

ψB
`m = 0.

(1.2.25)

where N`,−2 is the normalisation arising from applying the Fourier-Bessel transform

defined as

N`,k =

√
(`+ k)!
(`− k)!

. (1.2.26)

These preliminaries can be used to construct various estimators for 0κ(nnn) i.e. a con-

vergence/‘mass’ map. Recalling that ψB should be zero for a pure lensing potential

with no systematics and inserting Eq. 1.2.25 into Eq. 1.2.23, the shear can be related

to the Fourier-Bessel transform of the lensing potential ψ`m [Castro et al., 2005] to

match Eq. 1.2.14
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2γ`m =
1
2

N`,2ψE
`m. (1.2.27)

1.2.7 The Weak Lensing Power Spectrum, Cψψ
l (k,k′)

The means of convergence and shear are zero because they average out on the

large scale, so it is necessary to look at the second-order moments of the convergence

and shear. The 2D lensing potential power spectrum of the signal on spherical

geometry Cψψ
l can be defined through the second-order moment of the lensing

potential in spherical harmonic space 〈ψ̃E
`mψ̃E∗

`′m′〉, where the angular brackets denote

average over spatial position,

〈ψ̃E
`mψ̃E∗

`′m′〉 = Cψψ
l (k,k′)δK

ll′δ
K
mm′ , (1.2.28)

where δK denotes the Kronecker delta function, and ` and m are the spherical

harmonic coefficients of θ and ϕ respectively.

Extending this, the 3D lensing potential power spectrum Cψψ
l (k,k′) uses the

same formalism in Fourier-Bessel space with 〈ψ̃E
`m(k)ψ̃

E∗
`′m′(k

′)〉, giving

〈ψ̃E
`m(k)ψ̃

E∗
`′m′(k

′)〉 = Cψψ
l (k,k′)δK

ll′δ
K
mm′ , (1.2.29)

where k, ` and m are the spherical-Bessel variables corresponding to radial distance

r and spherical harmonic θ and ϕ respectively. The lensing potential ψ is statistically

homogeneous and isotropic in the angular direction, but not in the radial direction,

as it is a 2D projection of the Newtonian potential along the radial direction.

The 3D lensing potential combines the 2D lensing potential with a radial element

r, and is homogenous and isotropic in the 2D angular sphere component but is not

in the radial component. Relating Eq. 1.2.27 to Eq. 1.2.29 it is possible to relate the

cosmic shear to the 3D lensing power spectrum in Fourier space as

〈γ̃`m(k)γ̃∗`′m′(k
′)〉 = 1

4
(N`,2)

2Cψψ
l (k,k′)δK

ll′δ
K
mm′ . (1.2.30)

More explicitly, the shear power spectrum Cγγ
l can be related to the matter density

power Cκκ
l through a Fourier transform of Eq. 1.2.16 and applying the Limber
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approximation (see Appendix E and Lemos et al. [2017]; Limber [1953]; LoVerde

and Afshordi [2008]) to give

Cκκ
l =

9H4
0 Ω2

0
4c4

∫ rH

0
dr

W2(r)
a2(r)

Pδ

(
`

fk(r)
,r
)

, (1.2.31)

where Pδ is the matter power spectrum and rH is the horizon distance defined as

the comoving distance for infinite redshift. See Bartelmann and Schneider [2001]

and Kitching et al. [2011] for more details on how the Limber approximation was

applied. The weighting function W(r) is defined as

W(r) =
∫ rH

r
G(r′)

fk(r′ − r)
fk(r′)

dr, (1.2.32)

where source-distance distribution G(r)dr = pz(z)dz with pz(z) being the galaxy

redshift probability distribution function. It should be noted that Eq. 1.2.31 shows

the projected power spectrum that integrates along the radial component, mixing

the 3D k-modes into the 2D `-modes and losing radial information and muddying

some important 3D features, making it less sensitive to cosmological parameters

[Kilbinger, 2015].

Transforming Eq. 1.2.10 and 1.2.11 into Fourier space (see Appendix B) and

equating the ψ̃, the following relation is obtained

γ̃l =
(l1 + il2)2

`2 κ̃l = e2iθκl , (1.2.33)

where l1 and l2 are the complex components of the ` mode corresponding to the

γ1 and γ2 components of the shear γ and θ is the polar angle of the complex

representation of `. This finds that Cγγ
l = Cκκ

l , hence the shear power spectrum is

equivalent to the convergence power spectrum in the flat-sky limit and relates to

the density power spectrum through 1.2.31 similarly.

There exist other higher-order statistics such as the bi-spectrum and tri-

spectrum, but these are more computationally intensive to calculate and are less

efficient in probing cosmology, so the power spectrum is typically used as the stan-

dard statistic for analysis. The real space correlation function is commonly used

in weak lensing studies and is not significantly affected by masks in the data, but
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has more complicated covariance properties and the dependence of the correla-

tion function on the matter power spectrum varies between real space angles and

redshift bins. The 3D cosmic shear signal has a radial component in addition to

the angular components and there are correlations between redshifts of the signal,

not just between angular distances. Future research in the field of 3D cosmic shear

therefore seeks to take into account the radial component. However, for this thesis

we concern ourselves primarily with shear data in projection. When accounting

for the redshift typically approximations such as the Limber approximation and

tomographic binning are used (see Section 1.2.8).

1.2.8 Observational Considerations

There are a number of complications with using weak lensing that must be

accounted for. The source galaxies possess intrinsic shape and alignment which

cannot be observed, so it is unknown how much the observed ellipticity deviates

from the intrinsic ellipticity. This can be compensated for when using large numbers

of galaxies by assuming that their intrinsic ellipticities are randomly oriented and

therefore the mean averages to zero. However there is also the possibility that nearby

galaxies might have been influenced by their shared environment that caused their

intrinsic ellipticities to become aligned [Joachimi and Bridle, 2010; Troxel and Ishak,

2014]. Additionally, if a galaxy is close to a lensing mass, the tidal field of the

lensing mass could cause this galaxy’s alignment to correlate with the lensing effect.

One possible way of dealing with the problem of intrinsic alignment is the nulling

technique developed by Joachimi and Schneider [2010].

As another example, the image of the galaxy will also be smeared by the point-

spread function (PSF) due to effects from the atmosphere and by the mechanics

of the detector, which presents an issue due to the weakness of the weak lensing

signal. The PSF can be accounted for with various methods which employ a point-

like object such as a star to calibrate, and calculations have been performed to

evaluate the required accuracy of calibration required for cosmic shear analysis

[Paulin-Henriksson et al., 2008].

The redshifts used for weak lensing surveys are photometric redshifts, which

are derived from the photometric data of the galaxies. The observed Spectral Energy



§1.2 − Gravitational Lensing 51

Distribution (SED) of a galaxy is compared with a library of templates (of simulations

or galaxies with known redshifts) and fitting methods, such as χ2 minimisation or

Bayesian statistics, are applied to determine the closest match and therefore the

estimated redshift [Bolzonella et al., 2000][Benitez, 2000].

Weak Lensing Approximations

The observed data exist on the sky, which has the shape of a curved surface of a

sphere, so any studies performed on this data must take this geometry into account.

There are several approximations that are often applied to account for this, but as

we will see these approximations have their limitations and it would be preferable

to develop a technique to fully encapsulate the 3D geometry of the data.

For many current observations (e.g. galaxy groups or clusters) the information

in the weak lensing signal occurs on small angular scales. This allows the flat-sky

approximation [Bernardeau et al., 2011] to be used, treating the sky as a flat 2-

dimensional plane and for analysis of the weak lensing data replacing the spherical

harmonic transforms (see Appendix C) with Cartesian Fourier transforms (see

Appendix B), which are easier to calculate. However, the cosmic shear exists on

larger scales, and future surveys will expand the scale of observations and cover

larger areas of the sky, where the flat-sky approximation may no longer hold.

The Limber approximation (see Appendix E and LoVerde and Afshordi [2008]),

typically applied to correlation functions such as the power spectrum, is valid

over small angular scales, where the radial modes vary little over the volume

being surveyed. It approximates the spherical Bessel functions with Dirac delta

functions during analysis of the weak lensing data, simplifying the integrations

to be performed and making the calculations significantly less computationally

intensive. The Limber approximation holds on the scales used for cosmological

analysis where ` ≥ 100 in the power spectrum where ` is the harmonic coefficient of

the angle.

One of the issues with 3D lensing studies is that the radial component provides

another element of computation and, if treated as continuous, calculations involving

it can get computationally intensive. The tomographic binning can be used to try and

get around this by dividing the observations into redshift bins in order to simplify
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calculations involving the radial component. The drawback of this is that redshift

binning does not capture information on radial scales smaller than the bin widths,

so it is necessary to establish a balance between precision and efficiency. Using

tomographic redshift bins only approximates the true 3D properties of the data, so

attempts have been made to study the data in spherical harmonic space instead in

order to fully utilise the 3D information of the observations.

For the research in this thesis, the focus is on analysis of the data on 2D surface

of the 3D sphere, representing the curved sky, not accounting for the range of redshift

data, although this provides a promising avenue for future research.

Data Masks

Real data will usually be incomplete, missing data in certain areas of the sky

due to flaws in the observation method. Also, masking usually occurs when areas

of the sky cannot be observed due to limitations of the observation method or

when sections of data must be discounted due to flaws in the observation that

cannot be removed. The most straightforward cause of masks is from improperly

functioning pixels in the observation equipment used, giving incorrect data that

must be removed. Another source of masks is point sources, typically bright stellar

objects with a circular profile that obscure neighbouring galaxies. For sufficiently

large point-sources, their light may cause ‘saturation spikes’ that contaminate the

light from the nearby galaxies [Hikage et al., 2011].

Masks cause mixing of power on different scales due to the missing data as

the lack of data gives an incorrect representation of the statistics of the real signal.

Another effect of masks is they cause the mixing of E-modes and B-modes, which

causes problems for analysis methods that rely on the signal being primarily E-

modes and systematic effects causing B-modes. This effect on E-modes and B-

modes (and one potential method of dealing with this) is the focus of chapter 3 and

discussed in further detail there. Masks also affect the Fourier transform, which

needs the presence of all of the data to be fully accurate. These combined effects

result in a significant effect on the derived correlation function and power spectrum.
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Cuts in Fourier Space

Analogous to data masks in real space, Fourier/spherical harmonic space cuts

are another way sections of data may be absent from the data. These cuts manifest

as sections of data with a range of ` or k modes not being present, which correspond

to missing data on certain angular scales or radial scales respectively. It is expected

that cuts in data should have a noticeable effect on the derived power spectrum, as

removing data on certain scales limits the sampling of the power spectrum. Cuts in

harmonic space do not translate directly to cuts in real space, so correlation functions

should be less significantly affected by such cuts than the power spectrum. In the

3D case, cuts on the radial k mode and angular ` mode can influence each other if

tomographic redshift bins are used. Specifically, the impact of k mode cuts are felt

by the ` modes when k ≥ `
rmax

& `/3000zmaxh−1Mpc for distances probed up to zmax,

limiting the ` modes that can be probed for a given k mode cut [Kitching et al., 2014].

1.2.9 Reconstruction on the Plane - the Kaiser-Squires estimator

The most commonly used method used to reconstruct the convergence map is

the Kaiser-Squires (KS) reconstruction/inversion [Kaiser and Squires, 1993]. Trans-

forming the convergence and shear, as defined in equations (1.2.12), into Fourier

space allows the relation of the convergence and shear to be expressed. On the plane,

provided that the planar approximation holds, this is done by solving the inverse

equation of Eq. 1.2.33, which is often stated as

γ̃l = E κ̃l , (1.2.34)

where f̃ denotes the Fourier transform of f , `x,`y are the Fourier coefficients of the

spatial coordinates on the plane and

E = `2
1 − `2

2 + i2`1`2

`2
1 + `2

2
. (1.2.35)

This is inverted and uses the property E−1 = E∗ to obtain a the KS estimator for the

convergence in Fourier space,
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κ̃l = E∗γ̃l . (1.2.36)

Applying the inverse Fourier transform to this κ̃l estimator will give the convergence

in real space, which can be used to construct a map of convergence from shear

observations.

It should be noted that the KS method makes no attempt to accommodate

any masking of data, treating the masked areas as absence of relevant data. While

this is useful in its simplicity, it has drawbacks as cosmic shear analysis is heavily

influenced by the mask and this can result in inaccurate results if one fails to consider

the mask, some of which will be discussed in later chapters.

In addition to this, reconstructing the convergence map through the KS estima-

tor effectively is a method of separating the E-modes and B-modes as described in

Section 1.2.6. However, as shall be later discussed in Section 3.3 in chapter 3, this

does not fully account for the incomplete data caused by masking and hence the

E-modes and B-modes recovered this way are inaccurate. In effect, the KS estimator

method corresponds to the harmonic pseudo estimator with masking neglected, as

described in Section 3.3.

1.2.10 Reconstruction on the Sphere

An analogous equation can be obtained in the spherical case [Wallis et al., 2017]

by using the spherical harmonic transform to give

γ̂`m = D`κ̂`m, (1.2.37)

where ` and m are the harmonic coefficients of the spatial coordinates and

D` =
−1

`(`+ 1)

√
(`+ 2)!
(`− 2)!

. (1.2.38)

The process of reconstructing the convergence map involves inverting this relation

in spherical harmonic space in a similar method to the Kaiser-Squires estimator on

the plane, in order to find the Kaiser-Squires estimator on the sphere
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κ̂`m = D−1
` γ̂`m. (1.2.39)

Finally, performing the inverse spherical harmonic transform on κ`m allows the

convergence map κ to be recovered.
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1.3 Statistics and Analysis Methods

1.3.1 Basic statistics

The statistics relevant to this are detailed in this section for the purpose of

reference and clarity. In this project, the data sets under observation are either galaxy

catalogues containing observed properties of each individual galaxy, or simulated

shear maps. In the case of using galaxy catalogues, the data is converted into shear

maps based on sorting galaxies into different pixels based on their sky location and

finding the weighted mean of the ellipticity at each pixel. The use of these statistics

can apply to a set of data maps, simulated or resampled, or to an individual data

map when considering the statistics as applied solely to the map over its constituent

pixels. When discussing a population of data sets, whether real or simulated, these

are characterised by their underlying true statistics and it is through estimators that

one seeks to find the true values of these statistics.

This section will cover the statistics used throughout all chapters, and in cases

where certain methods are used only in one chapter, these will be detailed in that

specific section.

Mean

Given a set of data x of size N, the mean x is the expected value when sam-

pling from x, and as the number of samples tends towards infinity the true mean

of the data set µ. The expectation value E(x) is an estimator of the true mean µ

over repeated samples, and frequently is used interchangeably with the mean. The

expectation value for x is also written as 〈x〉, which also denotes the ensemble mean.

When discussing a probability distribution, where each possible value xi has

associated probability pi, the expectation value E(x) is

〈x〉 = x =
N

∑
1=i

xi pi. (1.3.1)

In this thesis, we primarily use the arithmetic mean as each possible outcome xi has

equal pi = 1/N. The arithmetic mean of data set x is defined as
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x =
1
N

N

∑
1=i

xi. (1.3.2)

When discussing the mean of an individual data map, Eq. 1.3.2 is used, where the

data set x is the set of pixels in the data map under consideration.

Standard deviation and variance

The standard deviation σ of data set x is a measure of the dispersion of the

data set, specifically the degree to which the data points deviate from the mean. The

standard deviation is the square root of the variance, which is defined as

σ2(x) = 〈x− x〉

= 〈x2〉 − 〈x〉2

=
1
N

N

∑
1=i

x2
i − x2.

(1.3.3)

It should be noted that in this thesis, the notation σ will be used for other quantities,

in most cases the degree of smoothing, and care will be taken to distinguish these

quantities from the standard deviation through subscripts.

Covariance

The covariance is a two-point statistic measuring the correlation between two

data sets x and y, and when y = x the covariance reduces to the variance. The

covariance is defined as the expectation value

Cov(x,y) = 〈x− x〉〈y− y〉

= 〈xy〉 − xy

=
1
N

N

∑
0=i

(xi − x)(yi − y)∗,

(1.3.4)

where the asterisk indicates complex conjugation if the data is complex.

Root-mean square

The root-mean-square (RMS), also known as the quadratic mean, of a data set x

is the square root of the arithmetic mean of the square of the data points in x.
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xRMS =
√
〈x2〉 =

√√√√ 1
N

N

∑
0=i

x2
i . (1.3.5)

The RMS is related to the arithmetic mean x and standard deviation σ by

x2
RMS = x2 + σ2, (1.3.6)

hence if the variance of the data is σ ∼ 0, the RMS is close to the mean, and if the

mean of the data is x∼ 0, the RMS is close to the variance. The latter case is expected

when finding the RMS of shear and convergence maps, as by definition the mean of

these maps is close to 0.

1.3.2 Two-point Statistics

Here we describe the relevant higher order two-point statistics.

The Correlation Function

Given an independent variable, if one measures a data set sampled from points

along this variable, one can find the correlation between any two points on this signal.

The correlation between two points is the extent to which they have a statistical

relationship with each other, and if uncorrelated then they are independent of each

other. In context of this thesis, the variable under consideration is a signal or data

map. The correlation function ξ is a two-point statistic containing information of the

correlation between each pair of points in the analysed signal, for all pairs of two

points, as a function of the distance between each pair of points. Some examples of

the signal f being considered may be the CMB temperature variation, the cosmic

shear signal or the matter overdensity signal. The general form of the correlation

function for signal f is

ξ(θ,θ′) = 〈 f (θ) f (θ′)〉, (1.3.7)

where ∗ indicates the conjugate, θ = (θ, ϕ), θ′ = (θ′, ϕ′) are the spatial coordinates of

each point, and ` and m are the spherical harmonic coefficients. If the signal f is in

the form of a data map on the curved sky, this can be expanded to
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ξ(θ,θ′) = 〈 f (θ) f (θ′)〉

=
〈

∑
`m

a`mY`m(θ) ∑
`′m′

a`′m′Y∗`′m′(θ
′)
〉

,
(1.3.8)

where where a`m is the value of the spherical harmonic transform of the signal

f at specific `,m and Y`m are the spherical harmonic functions (see Appendix C).

The correlation function is in effect a function of spatial separation that quantifies

the correlation between two points on the signal at different physical distances of

separation. The definition in Eq.1.3.8 gives the auto-correlation function, which

is what the term ‘correlation function’ is used to mean in this thesis. If instead

two different signals f and g were used to find 〈 f (θ)g(θ′)〉, this gives the cross-

correlation function.

This is frequently applied to the weak lensing signal to find the shear correlation

function. Due to the shear being comprised of the tangential and cross components

as in Eq. 1.2.18, one can obtain two autocorrelations, 〈γtγt〉 and 〈γ×γ×〉, and one

cross-correlation, 〈γtγ×〉. As the cross-correlation is zero provided the universe is

parity-symmetric, the 2-point correlation function of the shear can be given as

ξ±(θ) = 〈γtγt〉(θ)± 〈γ×γ×〉(θ). (1.3.9)

The advantage of the correlation function is its ease of use and straightforwardness.

However, the most commonly used formulations do not fully take into account the

3D dimensions of the astronomical data observed on the sky, including the redshift

coordinate. The correlation function preserves only information relating to the real

space distances, neglecting the information that can be derived from scale properties

of the data in harmonic space. Unlike the power spectrum, where the modes are

uncorrelated, the strength of correlation function at different values of the spatial

angle parameter is more likely to be correlated, making it more difficult to handle

the data. Additionally, masking caused by incomplete data has a significant effect

on the accuracy of the correlation function.
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Power Spectrum

The power spectrum is a two-point statistic measuring the power of a signal

as a function of frequency through evaluating the auto-correlation of the signal in

spherical harmonic, or frequency, space. From this, it is possible to calculate which

frequencies contain the most power in a signal.

The lensing power spectrum Cl can be calculated from the lensing signal in

harmonic space a`m through

Cl = 〈a`ma∗`m〉 =
1

2l + 1

l

∑
m=−`

|a`m|2. (1.3.10)

Therefore, observed data in real space can undergo a spherical harmonic trans-

form to obtain a`m and this can be used to recover the power spectrum Cl . Equation

1.3.10 can be inverted to obtain

〈a`ma∗`′m′〉 = Clδ
K
ll′δ

K
mm′ , (1.3.11)

where δK is Kronecker delta. Relating this back to Equation 1.3.8, it is possible

to calculate the correlation function from the power spectrum as

ξ(θ,θ′) = ∑
l

Cl ∑
m

Y`m(θ)Y∗`′m′(θ
′)

= ∑
l

2l + 1
4π

Cl Pl(θ · θ′),
(1.3.12)

where Pl(θ · θ′) is the Legendre polynomial and θ · θ = cos(β) with β being

used to refer to the angle between θ and θ′. Using Equation 1.3.12, the correlation

function can be calculated from a given power spectrum Cl . This can be used to take

a model Cl and find the corresponding correlation function, and then compare this

theoretical correlation function to the correlation function recovered from the data

through a certain analysis method. By comparing the theoretical correlation function

with the recovered correlation function with a particular analysis method, it should

be possible to measure how accurately the analysis method performs. However,

caution must be taken when deriving these two-point correlation statistics from
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data if the true values of the data under consideration are unknown, as they can be

significantly affected by masks and cuts in harmonic space.

The power spectrum has the advantage that on the large, linear scales, where

the matter overdensity is significantly smaller than 1, the modes are uncorrelated

and grow independently. However, the independence of the different modes does

not hold on small scales, where the non-linear regime begins, as the modes begin

to interfere with one another and the influence of complex structure growth and

baryonic feedback come to dominate the signal. Despite this, there has been much

study into understanding the power spectrum at these scales and from simulations

its properties at these scales can be understood [Cooray and Hu, 2001; Hu and

White, 2001; Pielorz et al., 2010a; Takada and Jain, 2009a]. The power spectrum is

also affected by cuts in harmonic space or masks in real space. Cuts in harmonic

space remove specific modes and data masks cause mixing of power on different

scales and presenting misleading information due to limited data, both of which

cause inaccuracies and bias in the power spectrum. Like the common formulations

for the two-point correlation function, most usages of the power spectrum neglect

to account for the full 3D nature of the data and rely on approximations.

1.3.3 Convergence Map Analysis Methods

In addition to correlation functions such as the power spectrum, there are a

number of analysis methods that can be performed directly on the convergence

maps. These include using higher-order spectra [Munshi et al., 2012], measuring

the degree of isotropy of the map [Marques et al., 2018], evaluating correlation with

locations of galaxy cluster locations and galaxy distribution maps [Chang et al.,

2017; Vikram et al., 2015], identification of peaks and voids [Chang et al., 2017], peak

count statistics [Lin and Kilbinger, 2015a] and Minkowski Functionals [Mecke et al.,

1994a]. The last two of these will be the main focus of chapter 2, and the Minkowski

Functionals will also be used in chapter 4.

1.3.4 Peak counts

The peak count of a mass map is simply the number of local maxima that can be

identified. This can be used as a statistic by evaluating the number of peaks above a
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certain threshold. The convergence map peaks trace matter overdensities and are

closely associated with galaxy clusters and halo structures, hence the peak count

statistic as a function of threshold proves a useful tool for constraining cosmological

parameters [Kacprzak et al., 2016a; Lin and Kilbinger, 2015a,b; Lin and Kilbinger,

2018; Marian et al., 2009; Peel et al., 2017] and probing the halo mass function and

non-Gaussian features of the LSS [Shirasaki, 2017]. The main drawback to peak

count analysis is the presence of noise, which can produce false peak detections and

obscure the identification of true peaks. We attempt to deal with the noise through

smoothing the data, as detailed individually for each chapter. Full details on how

the peaks are defined and identified are given in Section 2.2.3.

The peak count function is an evaluation of the number of peaks at a given

SNR threshold, which is sensitive to the cosmological parameters and evolution

of the universe [Shirasaki, 2017]. The SNR map, also used for the computation of

Minkowski functionals, is derived from the convergence map κ, its mean κ and its

standard deviation σ as

ν(θθθ) =
κ(θθθ)− κ

σ
. (1.3.13)

From an SNR map on a pixel grid, the local peaks are identified by evaluating if

for a given pixel, the SNR value is greater than the eight surrounding pixels that

are orthogonally and diagonally adjacent. Further detail on this definition we use is

given in Section 2.2.3.

1.3.5 Minkowski Functionals

The Minkowski Functional (MF) is a function characterising the geometrical

properties, such as distance measures, of a space. When extended to higher dimen-

sions, they are functions containing information about the morphological properties

of the space and provide a statistical measure of the morphological features of ran-

dom fields. In this thesis and in the wider field of MF analysis for cosmology [Petri

et al., 2013; Schmalzing et al., 1996], the MFs are used to interpret and describe the

topological features of a field, in this case focusing on the 2D field unless otherwise

noted.
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Using the MFs this way as a tool for understanding the topology of the uni-

verse and its constituent matter [Kerscher et al., 1997; Mecke et al., 1994a] allows

probing of high-order non-Gaussian properties [Munshi et al., 2012; Petri et al., 2013;

Schmalzing and Buchert, 1997] arising from the random fluctuations in the cosmo-

logical data. For a 2D random field, three MFs V0, V1 and V2 can be obtained, which

respectively serve as a measure of the area, boundary length and Euler characteristic

of the excursion set of the 2D field as a fraction of the total area of the field. Typically

the MFs are derived from the SNR map as described in Eq. 1.3.13, which is the

definition we opt to use. These MFs are defined for a field ν through the following

equations [Petri et al., 2013]

V0(ν0) =
1
A

∫
Θ(ν(x)− ν0)da, (1.3.14)

V1(ν0) =
1
A

∫
δ(ν(x)− ν0)

√
ν2

xν2
yda, (1.3.15)

V2(ν0) =
1
A

∫
δ(ν(x)− ν0)

2νxνyνxy − ν2
xνyy− ν2

yνxx
ν2

xν2
y

da, (1.3.16)

where Θ is the Heaviside step function, δ is the Dirac delta function, νx and νy

denote partial differentiation of ν on the horizontal and vertical (or latitudinal and

longitudinal) coordinate directions respectively, A is the total area of the map, da

denotes the area element of the map, ν is the SNR map and ν0 is the SNR threshold.

When integrating over the area with da, we integrate along the x and y axes and

then divide the result by the total area of the map calculated from the pixel array, as

we want the Minkowski functionals expressed as a fraction of the overall area. We

make the Dirac delta functions more appropriate for computation by dividing the

range of SNR values into bins νi and using

δ =


1, if νi − 1

2 ∆νi ≤ ν(x) ≤ ν+
1
2 ∆νi

0, otherwise
(1.3.17)

where νi is the SNR threshold of bin i and ∆νi is the width of the SNR threshold

bins. For Gaussian random fields, the power spectra can be constructed from the

Minkowski functional and vice versa. Non-Gaussian fields require approximations
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or perturbation methods to relate the power spectra to the Minkowski functionals

[Petri et al., 2013].

The MFs are used in chapter 2 and chapter 4 to quantify the morphological

information of the reconstructed convergence maps. First, the convergence map is

converted into SNR map ν through Eq. 1.3.13 and equations 1.3.14, 1.3.15, 1.3.16

are used to construct the MFs from the SNR map. When dealing with data maps

projected to the 2D plane in chapter 2, the gradient map is straightforward to

calculate. The spherical case requires us to account for the geometry of the data on

the sphere when calculating the partial derivatives, this is done using the following

equations [Wandelt et al., 1998]

∂

∂ϕ
Y`m(θ, ϕ) = imY`m(θ, ϕ), (1.3.18)

∂

∂θ
Y`m(θ, ϕ) = −mcotθY`m(θ, ϕ)− [`(`+ 1)−m(m− 1)]

1
2 Y`m−1(θ, ϕ), (1.3.19)

∂2

∂ϕ2 Y`m(θ, ϕ) = −m2Y`m(θ, ϕ), (1.3.20)

∂2

∂θ2 Y`m(θ, ϕ) =

(
`(`+ 1)− m2

sinθ2 + cotθ
∂

∂θ

)
Y`m(θ, ϕ), (1.3.21)

∂2

∂θϕ
Y`m(θ, ϕ) =

(
im2 cotθ − im[`(`+ 1)−m(m− 1)]

1
2 eiϕ

)
Y`m−1(θ, ϕ). (1.3.22)

The code HEALPix [Górski et al., 2005] is used to calculate the derivatives

in spherical harmonic space on the sphere for the spherical case. The SNR maps

retain the sampling scheme (see McEwen and Wiaux [2011b]); they are converted

into a HEALPix map for analysis, and subsequently the calculated gradient fields

are converted back into a map with equiangular sampling. The band limits are

selected such that minimal information is lost in the conversion. In all cases, the

integrations are performed on the pixelised array, hence the total area used is given

as the total number of pixels examined. When the data is masked, we evaluate only

the unmasked subsection of the map and treat the number of unmasked pixels as

the total area.
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1.4 Wavelets

We make use of wavelets for the E-B separation method applied in chapter 3

and chapter 4. This section will cover the wavelet formalism, with more detail on

how wavelets are used for weak lensing analysis being given in the aforementioned

chapters. A signal can be converted into a series of wavelets and associated scaling

function through the use of wavelet transforms, analogous to the Fourier transform

and spherical harmonic transform as described in the Appendix. The use of scale-

discretised wavelets allows the structure of the map to be preserved at each relevant

angular scale, and in the presence of masks this allows extraction of greater detail

than the harmonic method. A spin scale-discretised directional wavelet is used,

which allows for the localised capture of information in both real and harmonic

space. Further details of the construction of these wavelets are given in McEwen

et al. [2015], McEwen et al. [2018] and Leistedt et al. [2017].

Wavelets provide a way of representing a signal through a series of basis

functions, analogous to a Fourier series [Antoine et al., 2008; Graps, 1995]. Using a

signal with time and frequency information as an example, a Fourier series of this

signal has only frequency resolution but no time resolution. Wavelets are localised

in both time and frequency domains and so can capture both the time and frequency

information of the signal.

The wavelet basis functions are all derived from translations and dilations of

a ‘mother wavelet’ Ψ(x). For a given scaling factor λ and translation factor τ, a

derived wavelet is defined as

Ψλ,τ(x) =
1√
λ

Ψ
(

x− τ

λ

)
. (1.4.1)

These derived wavelets yield a window that is applied to a section of the signal

to calculate the wavelet transform. The window is shifted along the signal and the

wavelet coefficient is calculated at each point to capture the time information. To

capture the scale information, the wavelet is dilated by a set amount and the wavelet

coefficient is calculated for each dilation. A scaling function Φ is used to capture the

signal information at the lowest scales (this should not be confused with the symbol

φ used to denote the gravitational potential).
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Wavelets on the plane

On a 2D plane, the wavelet coeffcients for each scale and translation factor are

given by the continuous wavelet transform, which convolves the original signal

with the wavelet as

Wλ,τ = ( f ~ Ψ)(x) =
∫

f (x)Ψ∗λ,τ(x)dx, (1.4.2)

where f (x) is the real space signal, ∗ denotes the complex conjugate and ~

denotes convolution. The inverse wavelet transform reconstructs the original signal

from the wavelet coefficients and the wavelets as such

f (x) =
∫

Wλ,τΨλ,τ(x)dτdλ. (1.4.3)

The wavelet transforms must fulfil certain admissibility conditions for the

forward and inverse transforms to be exact and able to reconstruct the original

signal with no information lost. The admissibility condition for a wavelet is

∫ |Ψ̃(ω)|2
|ω| dω < +∞, (1.4.4)

where Ψ̃ is the Fourier transform of Ψ. The admissibility condition implies that

Ψ̃ is zero when frequency ω = 0.

Wavelets on the sphere

In the case of the cosmic shear the signal exists on the curved sky, so frequency is

replaced by angular scale and the time coordinate is replaced by spatial coordinates

ω = (θ, ϕ) on the sphere, where θ ∈ [0,π] and ϕ ∈ [0,2π). Leistedt et al. [2015]

have constructed wavelets on the ball, which prove useful for analysing the weak

lensing signal as it exists on the curved sky. Wavelet scaling is governed by the

angular modes ` and m. The scaling factor λ remains the same, but the translation

is replaced by a rotation around the sphere, denoted by rotation operatorRω that

is parameterised by angular position ω only in the axisymmetric case. In the non-

axisymmetric case, direction plays a role and the rotation operator becomes Rρ

where ρ = (α, β,γ) where α ∈ [0,2π), β ∈ [0,π],γ ∈ [0,2π) are Euler angles.
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Previously the wavelet scaling has been continuous, but this is impractical

as it would require integrating over an infinite number of scales in order to fully

capture all of the information. Scale-discretised wavelets [Wiaux et al., 2008] do

not treat the scale as continuous, but split it into discrete integer scales that are

each associated with a specific wavelet coefficient. This allows each scale wavelet to

probe the different scales and combine contributions from all terms, which is much

more efficient. The maximum wavelet scale J is defined as dlogλ(L− 1)e, where

d·e denotes the ceiling function, λ is the wavelet scaling factor, and the minimum

wavelet scale J0 can be freely selected provided that the scaling function sΦ(nnn)

covers the signal at low `-mode.

The S2LET code [Leistedt et al., 2013] used throughout this thesis implements

the fast spin spherical harmonic transform code SSHT [McEwen and Wiaux, 2011b]

to facilitate the wavelet transform and form scale-discretised wavelets on the sphere.

For the function s f (nnn) with spin s, the wavelet forward transform is given as

the convolution of s f (nnn) with the wavelet sΨj(nnn) and a scaling function sΦ(nnn) as

W sΨj

s f (ρ) =
∫

S2
dΩ(nnn)s f (nnn)[RρsΨj]∗(nnn),

W sΦ
s f (nnn

′) =
∫

S2
dΩ(nnn)s f (nnn)[Rnnn′ sΦ]∗(nnn),

(1.4.5)

where W sΨj

s f (ρ) denotes the wavelet coefficient of the wavelet sΨj(nnn) at a discrete

scale j = J0, J1, ..., J, where J0 and J are the minimum and maximum wavelet scales

respectively, and W sΦ
s f (nnn

′) denotes the wavelet coefficient of the scaling function

sΦ(nnn), which captures the information on the largest scale. The integration is defined

over the surface of the sphere S2 where dΩ(nnn) = sinθdϕdθ. The rotation operators on

rotation group SO(3) and on the sphere S2 are denoted byRρ andRnnn′ respectively,

with nnn = (θ, ϕ) ∈ S2 and ρ ∈ SO(3) parameterised by the Euler angles (α, β,ξ).

Conversely, the original function s f (nnn) is reconstructed exactly through a con-

volution of the wavelet and scaling function and the corresponding coefficients

as

s f (nnn) =
∫

S2
dΩ(nnn′)W sΦ

s f (nnn
′)[Rnnn′ sΦ](nnn)

+
J

∑
j=J0

∫
SO(3)

dµ(ρ)W sΨj

s f (ρ)[RρsΨj](nnn),
(1.4.6)
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where dµ(ρ) = sin βdαdβdξ denotes integration over the Euler angles. Here, J de-

notes the maximum wavelet scale, λ is the wavelet scaling factor, and the minimum

wavelet scale J0 can be freely selected provided that the scaling function sΦ(nnn)

covers the signal at low `-mode. Further information on the construction of spin

scale-discretised wavelets is found in McEwen et al. [2015].

The wavelets sΨj(nnn) and scaling function sΦ(nnn) must have their harmonic

coefficients fulfill the following conditions for all ` if the transform is to be invertible

and to contain the full information of the original function:

4π

2`+ 1
|sΦ`0|2 +

8π2

2`+ 1

J

∑
j=J0

`

∑
m=−`

|sΨj
`m|

2 = 1, (1.4.7)

where sΦ`m and sΨ
j
`m are the spherical harmonic transforms of sΨj(nnn) and sΦ(nnn).
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CHAPTER 2

Investigating the effects of projections on the peak count and

Minkowski Functionals of convergence maps
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2.1 Introduction

Gravitational lensing has proven to be a useful tool for probing the cosmology of

the Universe and the field is a rapidly growing one, with current surveys providing

a wealth of weak lensing data (e.g. the Kilo Degree Survey [de Jong et al., 2013],

the Dark Energy Survey [The Dark Energy Survey Collaboration, 2005]) and future

surveys (e.g. Euclid [Laureijs et al., 2011], the Large Synoptic Survey Telescope [LSST

Science Collaboration et al., 2009], the Wide Field Infrared Survey Telescope [Spergel

et al., 2013]) promising to further expand the potential of the field. Gravitational

lensing occurs when light from distant galaxies passes through mass overdensities,

causing a distortion in the galaxy ellipticities detectable by observers. Cosmic shear

refers to the weak lensing distortion caused by the Large Scale Structure (LSS) –

intermediate matter between the galaxies and the observer. The distribution and

evolution of the LSS is governed by the cosmological model of the Universe, hence

the suitability of weak lensing studies of the LSS for probing cosmology. We can

probe the structure of the LSS through cosmic shear to analyse dark energy, evaluate

different cosmological models and constrain cosmological parameters; for a recent

review see Kilbinger [2015].

Among the most commonly used cosmic shear analysis methods are two-point

statistics (see Section 1.3.2) – the power spectrum or the correlation function – which

probe the second-order properties of the cosmic shear. However, the power spectrum

and correlation function average over phase information on the sky, and thereby

reduce spatial information to a single angular or scale dependence, and cause

mixing of angular modes. These statistics do not fully capture the non-Gaussian

properties of the lensing matter and perform best on linear scales, where the modes

are uncorrelated and grow independently, but lose effectiveness on smaller non-

linear scales. Studies have been done attempting to model the resulting two-point

statistics in the non-linear regime and to model the non-Gaussian properties with the

power spectrum [Pielorz et al., 2010b; Takada and Jain, 2009]. Furthermore, partial

sky coverage and masking of the data cause inaccuracies resulting from mixing of

the E-modes and B-modes of the cosmic shear [Kilbinger et al., 2006] (see chapter 3

and chapter 4).
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The increased precision and sky coverage of upcoming surveys can help to

mitigate the drawbacks of these two-point statistics, but will not help to capture the

non-Gaussian properties of the LSS. The non-linear and non-Gaussian properties

of the LSS can potentially be better analysed by alternative statistics such as the

peak counts of the convergence map [Lin and Kilbinger, 2015a] and Minkowski

functionals (MFs) [Mecke et al., 1994a] (covered in Sections 1.3.4 and 1.3.5) such

as the genus statistics [Matsubara and Jain, 2001], as well as higher-order spectra

[Munshi et al., 2012].

The reconstructed convergence map is a useful tool in studying the non-

Gaussian statistics, as it captures the non-Gaussian properties of the underlying

matter density distribution [Bergé et al., 2010b; Pires et al., 2010b; Vikram et al.,

2015]. The peak count statistic is a straightforward evaluation of the number of

detected peaks of the reconstructed convergence map as a function of their SNR. The

convergence map represents the line-of-sight integration of the gravitational lensing

effect caused by the underlying matter field, and so their peaks trace the locations of

maximum projected overdensities in the lensing structure and are associated with

high-density galaxy clusters and halos, and hence are sensitive to the halo mass

function and cosmological parameters [Marian et al., 2009]. The low SNR peaks are

frequently contaminated by noise, so studies seeking solely to identify the locations

of true peaks focus on high SNR peaks with SNR ≥ 3. However, peaks at SNR 1− 2

contain valuable cosmological information, provided the noise is accounted for

[Kratochvil et al., 2010]. By binning the observed galaxies by redshift, it is possible to

trace the evolution of the LSS over time. Previous studies have measured the effec-

tiveness of peak count statistics at constraining cosmological parameters [Kacprzak

et al., 2016a; Lin and Kilbinger, 2015a,b; Lin and Kilbinger, 2018; Peel et al., 2017].

For a range of SNR values the peaks can be used as tracers of dark matter halos

and structure, and so therefore the non-Gaussianities in the matter distribution [Fan

et al., 2010; Shirasaki, 2017].

There are a number of approaches to recovering mass maps from a catalogue

of measured galaxy shapes. The most commonly used method for analysis of large

weak lensing data sets is the Kaiser-Squires method [Kaiser and Squires, 1993],

which is based on the direct inversion of observed shear field to the convergence
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field. There are a number of well known draw backs to this method including noise

growth on small scales, and errors due to survey boundaries. Due to its simplicity

the Kaiser-Squires method is the standard method to recover mass-maps from data

on large scales. For example, the Cosmic Evolution Survey (COSMOS; [Scoville

et al., 2007]), the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS;

[Heymans et al., 2012]) and the Dark Energy Survey (DES; [Flaugher et al., 2015])

Science Verification (SV) data [respectively, Chang et al., 2015; Massey et al., 2007;

Van Waerbeke et al., 2013] all use this method. Other mass mapping techniques

have also been developed. On the galaxy cluster scale parametric models [e.g. Jullo

et al., 2007]) and non-parametric methods [e.g. Lanusse et al., 2016; Massey et al.,

2015] have been presented. Other methods have been developed for 3D mass map

reconstruction, to deal with masking and heavy noise-domination of the shear signal

[Bacon and Taylor, 2003; Leonard et al., 2012, 2014; Massey et al., 2004; Simon, 2013;

Simon et al., 2009; Taylor et al., 2004; VanderPlas et al., 2011]. Recently peak counts

have been used to measure cosmological parameters from the DES Kacprzak et al.

[2016b], where a planar projected mass map was used.

The methods discussed above performing reconstruction on the 2D plane all

require a projection of the shear. Wallis et al. [2017] demonstrated the extension

of the commonly used ‘Kaiser-Squires’ method to the sphere (see Section 1.2.10)

and performed a comparison with projections, and this method was subsequently

applied to DES data by Chang et al. [2017]. Wallis et al. [2017] have made their

python code massmappy1 publicly available and will be used in this project. Along

with the publicly available SSHT2 [McEwen and Wiaux, 2011b], this allows one to

evaluate the comparative performance of different projections for the purpose of

convergence map reconstruction on the 2D surface of the celestial sphere and we

build upon their study for the analysis of projection effects on peak count statistics.

The Kaiser-Squires inversion applies non-locally to transform the dataset as a

whole and does not take into account the mask. The common way of dealing with

masked data when using the Kaiser-Squires method is to exclude data falling within

the masked regions, but this breaks down when the masking covers large areas of

1http://www.massmappy.org
2http://www.spinsht.org

http://www.massmappy.org
http://www.spinsht.org
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the sky, as investigated by Wallis et al. [2017]. We choose to use a simple mask that

removes a solid area of the sky, and seek to investigate how it impacts the projected

cases compared to the spherical case. This simple circular mask was chosen for ease

of implementation and to more intuitively understand the results in context of the

mask.

Future surveys will provide greater sky-coverage than before, with the upcom-

ing Euclid survey covering 15,000 deg2 [Amendola et al., 2013; Laureijs et al., 2011]

and LSST [LSST Science Collaboration et al., 2009] covering 20,000 deg2, compared

to current surveys DES [The Dark Energy Survey Collaboration, 2005] at 5000 deg2

CFHTLenS [Erben et al., 2013b] at 154 deg2. As we move towards greater sky cover-

age in these upcoming surveys, it becomes necessary to fully understand the effects

of planar projection and to seek possible alternatives to reconstruction on the plane.

These surveys will cover larger areas of the sky, necessitating that we take the sky

geometry into account and providing an incentive to move towards analysis directly

on the sphere over planar approximations.

Previous analysis of peak counts and MFs have been performed on the projected

plane because current surveys cover small areas of sky where a planar approximation

holds. However with future surveys covering significantly larger areas of the sky,

the geometry of the sky must be accounted for and it is expected that the projections

will no longer accurately capture the full information of weak lensing data on the sky.

While planar projection analysis has the advantage of being less computationally

demanding than performing analysis on the sphere, the movement of research

towards analyzing full-sky data necessitates examination of the performance of

planar projections used for deriving statistics containing cosmological information

compared to the spherical case.

In this chapter we investigate the effect of projections on peak count statistics

and Minkowski functionals. Peak count statistics rely on accurate mass map recon-

structions and minimisation of noise, which is a significant problem at low peak

thresholds. Projections to the plane cannot preserve all the features of the spher-

ical map and prioritise accuracy to different map properties, such as preserving

angles or relative area. High resolution is required to detect the fine structure of the

convergence map and to minimise the merging of closely positioned peaks during



§2.1 − Introduction 74

projection. It is expected that these factors will influence the peak counts, resulting

in distinct differences between projection methods. The Minkowski functionals

[Kratochvil et al., 2012; Mecke et al., 1994a; Munshi et al., 2012; Petri et al., 2013;

Schmalzing and Buchert, 1997] and genus statistics [Matsubara and Jain, 2001; Sato

et al., 2003], may also be affected by how projections affect the geometry of the

shear data. Alternative methods of deriving statistics from the convergence map

involve additional data sets such as the CMB-LSS cross-correlation [Liu and Hill,

2015; Pearson and Zahn, 2014].

The focus of this chapter is to evaluate how the peak count statistic and

Minkowski Functionals are affected for different projections to the plane. This

is done by making convergence map reconstructions on the sphere from simulated

data based on a CosmoSIS-generated power spectrum [Zuntz et al., 2015]. The peak

counts are calculated from the SNR map instead of the convergence map itself, to

allow for more natural thresholding. Most of the relevant background information

is covered in Section 1, but Sections 2.2.1, 2.2.2 and 2.2.3 detail new important in-

formation. Section 2.3 will outline the methods used, including the reconstruction

of the convergence map, details on smoothing the map during reconstruction, and

method of peak detection and MF calculation. We present our findings in Section

2.4 and draw our conclusions in Section 2.5.
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2.2 Background

2.2.1 Convergence map reconstructions

The most commonly used method of reconstructing the convergence map from

shear data is the Kaiser-Squires (KS) estimator [Kaiser and Squires, 1993]. The KS

estimator can be applied on the plane using Fourier transforms, or on the sphere

using spherical harmonic transforms (see Appendices B and C). Details on the

reconstruction of the convergence map on the plane and on the sphere are covered

in Sections 1.2.9 and 1.2.10 respectively. We opt to use the straightforward KS

method on the plane and sphere in order to keep the focus of this study on the effect

of projection as the performance of these methods are well-studied, rather than

adding in another factor of a newer and less well-tested reconstruction method. The

reconstruction of the convergence map from simulated shear maps are performed

with the massmappy code [Wallis et al., 2017] that uses equations (1.2.36) and (1.2.39),

as well as for the reconstruction on the plane.
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2.2.2 Projection from the 2D spherical surface to the 2D plane

When using standard planar Kaiser-Squires reconstruction (see Section 1.2.9) a

projection from the sphere to a plane is required. As discussed in Wallis et al. [2017]

such a projection can cause changes in the structure of the reconstructed convergence

map, that increases as the angular size of the reconstructed area increases, and is

dependent on the projection used. Here we test whether projections also impact the

peak counts and Minkowski funcational measurements obtained from such maps,

and to what extent.

For this study, five projections were used: two equatorial projections (Mercator,

sine), and three polar projections (orthographic, stereographic, gnomonic). In this

section we describe each projection and give visual examples 3 based on projections

of the Earth from the globe to the plane with Tissot’s indicatrices displayed to

illustrate the distortion of shape for each projection. The lines used to indicate the

latitude and longitude display the same values across the examples given.

The Mercator projection is given by

x = ϕ− ϕ0,

y = ln[tan(π/2− θ/2)], (2.2.1)

where (x, y) are the planar coordinates, (θ, ϕ) are the spherical angular coordinates,

and ϕ0 is the central meridian. Typically, ϕ0 is selected to be π. We define θ as the

polar angle and ϕ as the azimuthal angle. This translates to θ representing latitude

and ϕ, often represented by λ, representing longitude. An example of the Mercator

projection applied to the Earth is displayed in Fig. 2.1. The Mercator projection is

conformal, so the local angles are preserved in the projection, and does not include

the poles. This can be seen in Fig. 2.1, where we also observe the consistency in scale

along the equator and magnification further from the equator, independent of the

longitude.

3Produced using the Basemap python package [Hunter, 2007], https://matplotlib.org/

basemap/

https://matplotlib.org/basemap/
https://matplotlib.org/basemap/
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Figure 2.1: Example of the Mercator projection as applied to the map of the Earth, with Tis-

sot’s indicatrices displayed as orange circles. Created using Matplotlib Basemap

toolkit [Hunter, 2007].

The sinusoidal projection is defined by

x = (ϕ− ϕ0)sin(θ)

y = θ.
(2.2.2)

The sinusoidal projection preserves the relative areas of features on the spherical

map, but is not conformal so distorts their shape and affects directionality. An

example of the sinusoidal projection applied to the Earth is displayed in Fig. 2.6.

In comparison to the Mercator projection, there is less observed magnification and

along the equator it can be seen that there are no changes in shape or directionality,

but diverging from the equator results in drastic changes in shapes on the map.

The polar projections display the map on the plane in polar coordinates, defined

on the plane in the form x = ρ cos(ψ) and y = ρ sin(ψ). The polar projections do

not cover the entire sphere in one plane, but instead are split into north and south

hemispheres which are centred on the poles. On the southern hemisphere, the polar

coordinate parameter θ for the northern hemisphere is replaced with π − θ. The
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stereographic projection, is a conformal polar projection, and defined by

ρ = 2tan
(

θ

2

)
ψ = ϕ.

(2.2.3)

The orthographic projection projects the sphere as if viewed from an infinite

distance and is given by

ρ = sin(θ)

ψ = ϕ.
(2.2.4)

The gnomonic projection is given by

ρ = tan(θ)

ψ = ϕ.
(2.2.5)

The gnomonic projection is a projection that maps points on the surface of the sphere

along a line through the centre of the sphere to the tangent plane. As a result, the

Figure 2.2: Example of the sinusoidal projection as applied to the map of the Earth, with

Tissot’s indicatrices displayed as orange circles. Lines indicating longitude de-

note the same positions as in the Mercator projection example. Created using

Matplotlib Basemap toolkit [Hunter, 2007].
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Figure 2.3: Example of the stereographic projection as applied to the map of the Earth, with

Tissot’s indicatrices displayed as orange circles. Lines indicating latitude and

longitude denote the same positions as in the Mercator projection example. The

projections display the north and south hemisphere for the globe, including the

equator. Created using Matplotlib Basemap toolkit [Hunter, 2007].

Figure 2.4: Example of the orthographic projection as applied to the map of the Earth, with

Tissot’s indicatrices displayed as orange circles. Lines indicating latitude and

longitude denote the same positions as in the Mercator projection example. The

projections display the north and south hemisphere for the globe, including the

equator. Created using Matplotlib Basemap toolkit [Hunter, 2007].

maximum viewing angle is limited to be θ < π/2, as θ = π/2 is at infinity. As

the viewing angle approaches π/2, the shape distortions become significant to the

point of obscuring the original map data, hence we selected the viewing angle to

be θ = π/4. Therefore, the peak counts and the Minkowski Functionals are scaled

accordingly to be proportional to the sky coverage of the other projections.
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Figure 2.5: Example of the gnomonic projection as applied to the map of the Earth, with

Tissot’s indicatrices displayed as orange circles. Lines indicating latitude and

longitude denote the same positions as in the Mercator projection example. The

gnomonic projection cannot display the equator from the position centred on the

poles, hence there must always be a degree of zooming in on a region. Created

using Matplotlib Basemap toolkit [Hunter, 2007].

Examples of the polar projections applied to the Earth are displayed in Fig. 2.3,

Fig. 2.4 and Fig. 2.5 for the stereographic, orthograpic and gnomonic projections

respectively. From these examples it can be seen that the stereographic projection

best preserves directionality and shape of the map, while the orthographic and

gnomonic projections are reasonably accurate at the centrepoints of the projection

while showing significant distortion further from the centre. The orthographic and

gnomoic projection also display a more prominent cut-off around the projection’s

equator, due to the orthographic projection’s more significant compression at its

equator, and the gnomonic projection’s cut-off being defined by the viewing angle

used.

While we do not use the Mollweide projection in this chapter, chapter 3 and

chapter 4 make use of it and hence it will be introduced here. The Mollweide

projection, also called the elliptical projection, prioritises accurately preserving the

relative area sizes on the map and is given by
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x =
1
π

√
22(ϕ− ϕ0)cos(ϑ),

y =
√

2sinϑ, (2.2.6)

where ϑ here is defined as

2ϑ + sin(2ϑ) = πsin(θ), (2.2.7)

where we assume that the radius of the sphere is set to 1, and λ is the longitude,

Figure 2.6: Example of the Mollweide projection as applied to the map of the Earth, with

Tissot’s indicatrices displayed as orange circles. Lines indicating longitude de-

note the same positions as in the Mercator and sinusoidal projection examples.

Created using Matplotlib Basemap toolkit [Hunter, 2007].

When projecting a spin−2 quantity, for example shear or galaxy ellipticities,

one must take account for the local rotations. A formalism for calculating these local

rotations is outlined in Wallis et al. [2017] for both polar and equatorial projections

and is implemented in the projection functions as part of the software package SSHT.
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Each of these projections are displayed applied to convergence signal-to-noise

maps in Fig. 2.7. Observing this figure and previous examples of the projection

methods illustrate where the most significant degree of shape distortion occurs

when compared to the original map. While these distortions may appear significant,

it must also be kept in mind that often analysis is performed only on a smaller

section of the sphere, which the projection will be centred on and therefore will be

less distorted.

We use the fast and exact sampling theorem of [McEwen and Wiaux, 2011b] to

sample the spherical signal, defining upper bandlimit L, to define the convergence

map on the sphere. The projections are all centered on the same point and the polar

projections display only the northern hemisphere. The planar convergence maps

were constructed on the planes from the projected shear, allowing one to see the

effect of each projection on the reconstruction. We can see that in all cases, the

projected image becomes more distorted further from the centre of the projection,

in the manner also illustrated by the projection example figures. Factors that are

expected to affect the peak detection include the amount of distortion of the original

image and how successfully the noise is smoothed in each projection. As it can

be seen that the centres of each projection display less distortion, it is expected

that the differences between projection methods will become significant only when

evaluation of peak counts and MFs include these areas.
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Figure 2.7: The Signal-to-Noise Ratio map obtained from convergence maps simulated from

a template power spectrum, using the method described in Section 2.3 with a

standard ΛCDM cosmology. The initial convergence map, which is not displayed,

is generated on the sphere. The five displayed convergence maps are the original

convergence map projected onto the plane through each of the five projections

chosen to be analyzed. This is done by mapping each pixel on the sphere to the

corresponding pixel on the planar representation, and taking the mean value

when multiple pixels on the sphere are mapped to one pixel on the plane. The

center of the projected map is defined as a point on the equator selected to be at

the center of the flattened spherical map. From these convergence maps κ, the

SNR maps are defined as ν(θθθ) = κ(θθθ)−κ
σ . The maximum bandlimit is selected to

be L = 2160, to match that used in Vikram et al. [2015], and the resolution for the

projections (except the Mercator) is 2160, in order to ensure that the projections

closely match the spherical map in detail and number of pixels.
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2.2.3 Peak counts and Minkowski functionals

The two statistics we investigate are peak statistics and Minkowski functionals

(MFs), which have been outlined in Sections 1.3.4 and 1.3.5. These statistics can

be seen to be clearly influenced by the topology of the convergence map, hence

why we choose to use these statistics to evaluate the influence of projection on

reconstruction of said convergence map. Peak statistics refers to the number of

local maxima in the reconstructed maps as a function of signal to noise of the peak.

Minkowski functionals are descriptors of the topological features, which for 2D

fields correspond to the area, boundary length and Euler characteristic as functions

of SNR (signal-to-noise ratio) thresholds.

Peak counts in cosmology

The detection of convergence peaks has the straightforward purpose of identi-

fying local maxima for the underlying matter density observed, but are also used

for probing the halo mass function and placing constraints on cosmological models.

This is typically done through evaluating the peak count density as a function of

the signal-to-noise (SNR) value of the field, which is commonly referred to as the

‘peak function’. This section will summarise how peak count statistics are used in

cosmological analysis, although greater detail can be found in the papers referenced.

Convergence maps are tracers of matter density, with regions of greater con-

vergence indicating higher matter densities. Therefore peaks in convergence maps

should indicate the of regions centre of high matter density, such as dark matter

halos. Hence the convergence peak count of the cosmic shear is expected to show

influences of the universe’s evolution and should vary for different cosmological

models, especially at the ‘tail’ of the peak count distribution corresponding to very

high mass peaks. Early examples of probing the non-Gaussian properties involved

evaluating dark matter halos and their mass functions using the aperture mass for

different cosmological models [Kruse and Schneider, 1999, 2000; Reblinsky et al.,

1999]. These analyses that evaluate the peaks of halo masses are concerned with

the true peaks and avoid false peaks; however including false peaks induced by

noise and other effects can still allow for useful cosmological studies [Jain and

Van Waerbeke, 2000; Van Waerbeke, 2000].
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The two main purposes are peak count analysis are ‘cluster-oriented’ and

’cosmology-oriented’ [Lin et al., 2016], with a degree of overlap between them.

Cluster-oriented research focus on peaks with high SNR (typically > 4) and examine

offset in position, variations in peak height, purity and completeness in order to

identify galaxy clusters and their local maxima and cross-correlate them with galaxy

cluster data from other sources. Cosmology-oriented peak count research focuses on

peaks across a wider range of SNR ratios in order to constrain cosmology through

comparison with predictions of peak counts from models. The lower SNR peaks are

more likely to be false detections or caused by projections of the LSS rather than

from dense matter halos, but nonetheless are included in models and hence useful

for analysis.

Peak counts are non-Gaussian and not predicted through a single equation, but

rather there are three common approaches to modelling the peak count: analytical

formalism [Fan et al., 2010; Maturi et al., 2010; Shirasaki, 2017] , N-body simulations

[Dietrich and Hartlap, 2010; Kratochvil et al., 2010] and the fast stochastic model

[Lin and Kilbinger, 2015a,b; Lin et al., 2016] . The analytical formalism approach

allows the modelling of the peak count function through an analytical formula.

However, it has difficulties accommodating observation conditions found in real

data such as masking and bias in photometric redshift and shape measurement,

relies on separate external simulations to evaluate its errors, and the model has

trouble to integrating physical astrophysical properties such as baryons and intrinsic

alignment. The N-body simulation and fast stochastic model approaches are able to

incorporate these observational problems and astrophysical influences, although

the N-body simulation has the significant drawback of high computational times.

The purpose of evaluating the peak count statistic using these models is to

compare with observations in order to constrain cosmology. Hence it is important

to reduce potential error in results derived from observations, of which projection

effects may be a cause.

Local peak identification

In order to identify peaks first we need to construct a signal-to-noise (SNR)

map. The SNR map is the map containing the ratio of the convergence map at each
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point to the standard deviation of the convergence map. In this thesis we apply peak

finding to the SNR map in order to more intuitively define the peak thresholds and

to account for different maximum values and variance between maps. This also

holds the advantage of being able to distinguish true peaks with higher SNR from

the lower SNR peaks that will be heavily noise-dominated. To reiterate from Section

1.3.4, the SNR map is constructed from the convergence map as

ν(θθθ) =
κ(θθθ)− κ

σ
, (2.2.8)

where κ and σ denote the mean and standard deviation of the convergence map

respectively. In the case of the polar projections, where the sphere is projected onto

two separate planar maps (one for the north hemisphere and one for the south

hemisphere), we calculate the mean and standard deviation over both projected

hemispheres.

Peak count statistics typically evaluate the counts above a specific SNR thresh-

old over a range SNR thresholds to extract cosmological information [Shirasaki,

2017]. For a selected SNR threshold, only peaks with values above this threshold are

included in the final count.

A pixel is defined as being at a peak if the SNR value at this pixel is greater

than the SNR values in the eight neighboring pixels. This requires the following

conditions to be satisfied

ν(θxy) > ν(θij) for


x− 1 < i < x + 1;

y− 1 < j < y + 1;
∀(i, j) 6= (x,y) (2.2.9)

The advantage to this method is that it is straightforward to use and understand,

but can result in false detection if the noise is not fully accounted for. This method

is highly local and considers only a block of 9 pixels to determine if there is a peak

or not, so therefore is expected to be less affected by large-scale shape distortions

from projection. More sophisticated methods in the literature, such as the aperture

mass detection [Dietrich and Hartlap, 2010; Marian et al., 2012; Schneider, 1996]

have used tangential alignment of the shear map to identify peaks. We choose to

use the 8-neighbour peak definition over these other methods because of its ease of

use, and discuss the importance of pixelisation and image resolution for projection.
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There are several potential drawbacks relating to this definition of a peak. It is

relatively easy for noise to be falsely categorized as a peak, which we attempt to

reduce by applying appropriate smoothing. We also expect to find that as the SNR

threshold is increased, the proportionate effect of noise is reduced. It is possible that

there will be cases where a distinct peak is spread out over neighboring pixels that

have the same value, leading to no pixel being detected as a peak by this definition.

Due to the way we evaluate peaks with our code, the calculations are performed

to such a precision that this event is unlikely. Should such failures to detect a peak

occur, we expect them to occur in low numbers compared to the total number of

peaks. In cases where there are multiple smaller peaks in an area of high SNR, we

treat each as separate peaks by this definition, which is valid as we are measuring

distinct peaks regardless of height at which they occur. We also seek to minimise

these effects by obtaining our results over a significant number of iterations such

that any of these spurious peaks or undetected peaks are small in number compared

to the real peaks. It is possible for some of these instances to occur as a result of

shape distortion from projection, so if a projection leads to a high number of these

instances such that there is a distinct impact, then it must be taken into account

when evaluating said projection.

2.2.4 Minkowski functionals

Minkowski functionals in cosmology

In addition to peak count statistics we analyse the effect of projection on the

Minkowski functionals (MFs). Minkowski functionals provide a statistical measure

of the morphological features of random fields. They allow probing of high-order

non-Gaussian properties [Munshi et al., 2012; Petri et al., 2013; Schmalzing and

Buchert, 1997] arising from the random fluctuations in the shear data. The purpose

of using MFs over more commonly used methods of probing non-Gaussian features

is to directly analyse the topology of the 2D field. In this case, the field is the

convergence field of the cosmic shear, which traces the LSS in the universe and

hence MF analysis allows evaluation of the topology of the LSS projected along the

line-of-sight to a 2D form. As the properties of the LSS are influenced by different

cosmological models, so are the derived MFs, allowing the MFs to place constraints
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on potential models through comparison with observations.

The MFs also provide a very simple and direct evaluation of the Gaussianity of

the 2D random field under analysis, as the 2D Gaussian random field has a defined

analytic form for the MFs (see Eq. 4.2.2 in Section 4.2) that can be compared directly

to the field under consideration. The smaller the deviation from the analytic form

of the MFs for the 2D Gaussian random field, the greater the Gaussianity of the

evaluated field.

Minkowski functional definition

For a 2D random field, we can obtain three Minkowski functionals V0, V1 and

V2, which respectively serve as a measure of the area, boundary length and Euler

characteristic of the excursion set of the 2D field as a fraction of the total area of

the field. We refer to Section 1.3.5 for definition of the MFs, specifically Eq. 1.3.14,

Eq. 1.3.15 and Eq. 1.3.16 for definitions of V0, V1 and V2 respectively.

Minkowski functional evaluation

To calculate the MFs from the SNR map ν, we use equations 1.3.14, 1.3.15,

1.3.16. On the projected SNR maps, we simply take the gradient of the map at

each point. For the spherical case, we make use of equations Eq. 1.3.18 through

Eq. 1.3.22, using HEALPix [Górski et al., 2005] to perform these calculations in

spherical harmonic space. As detailed in Section 1.3.5, the MFs are normalised by

the size of the evaluated area, considering both the pixel grid and physical sky area

covered, for projected and spherical cases.
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2.3 Method

In this section, we describe the approach taken to assess the impact of any

projection on peak count statistics and MFs. The details on how peak counts and

MFs are evaluated are covered previously in Section 2.2.3. The general approach

we take is to 1) make simulations of shear fields on the sphere, then 2) project these

using each of the five selected projections, we then 3) reconstruct the convergence

maps either on the sphere, or using planar Kaiser-Squires, and finally 4) measure

the peak count statistics and Minkowski functionals in both cases.

Shear map generation

The simulations are produced by generating a simulated power spectrum by

adding Gaussian noise to a template cosmic shear power spectrum generated with

CosmoSIS [Zuntz et al., 2015] using a standard ΛCDM cosmology [Ωm = 0.3, h0 =

0.72, Ωb = 0.04, τ = 0.08, ns = 0.96, As = 2.1e− 9, Ωk = 0.0, w = −1.0, wa = 0.0].

We use massmappy to generate the convergence map in harmonic space from the

simulated power spectrum, such that the convergence map is based on a Gaussian

random field. The angular size of each pixel depends on the bandlimit L used,

such that the angular width of each pixel is 360◦
2L−1 and the angular height of each

pixel is 180◦
L . We then apply smoothing to the convergence signal in harmonic space

to mitigate the effect of noise and pixelisation, using Gaussian kernel Gl = e−`
2σ2

where σ = π/256, which provides sufficient, but not excessive, smoothing. The code

SSHT uses the theoretically exact spin spherical harmonic transform with McEwen-

Wiaux (MW) sampling [McEwen and Wiaux, 2011b] to transform this harmonic

representation of the convergence into the simulated convergence map on the sphere.

The reduced shear map is then obtained from this simulated convergence map, and

then random noise, in the form of a Gaussian distribution with µ = 0 and σ = 1

multiplied by the standard deviation of the shear map which has average value

of ∼ 0.01, is added to each pixel at this stage. This value of ∼ 0.01 is selected in

order to correct the standard deviation of the shear, σγ, for the number of galaxies

per pixel, Ngal , such that the corrected standard deviation is σγ

Ngal
. At this point, the

convergence map can be recovered and the peak counts calculated on the sphere. To

evaluate the projections, the reduced shear data on the sphere is projected into one of
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the five projections under examination. Following the projection onto the plane, the

convergence map reconstruction is performed natively on the plane using standard

Kaiser-Squires reconstruction. During the reconstruction step, another Gaussian

smoothing is applied to account for noise, with a user-defined σ. In each case, the

smoothing at this step is performed either on the spherical or projected data. We

perform the smoothing in the same geometry as that in which the statistical analysis

takes place. This reflects what would be done in practice: the projection of the data

onto a geometry first in which all subsequent smoothing and data analysis then

takes place.

The maps are processed as pixel arrays, with the dimensions being defined by

the maximum bandlimit parameter L for the sphere and the user-defined resolution

parameter for the projections. We select the maximum bandlimit to be either L = 2160

to match Vikram et al. [2015] (for the peak count function) or L = 512 (for the MF

analysis). Hence, for L = 2160 the angular pixel size given as width by height is

0.083◦ × 0.083◦ and for L = 512 the angular pixel size given as width by height

is 0.352◦ × 0.352◦. The number of pixels in each projected map is defined by the

resolution parameter and this differs between projections. For each projection, we

seek to select resolution parameters that give similar numbers of pixels to the

spherical case, to have similar image fidelity and deg2 per pixel. The projection

results in a rectangular array of pixels defined by the resolution parameter. However,

the sine and orthograpic maps are not rectangular. This results in the number of

pixels on these maps being smaller than the total number of pixels produced by

the rectangular array that the resolution parameter predicts. We select a resolution

parameter equal to 2160 for the stereographic, orthographic, gnomonic and sine

projections.

In order to ensure that the number of pixels for the projections closely matches

the number of pixels for the sphere, the resolution was set to be equal to L for all

projection methods, except the Mercator projection4.

4The dimensions of the Mercator projection are defined differently, so we select an equivalent

resolution as R =
√

Nsphere/0.7377 where Nsphere is the number of pixels in the spherical map, such

that and the total number of pixels for the Mercator map is similar to the spherical case. This is because

we define the dimensions of the Mercator projection array as R× 0.7377R, that maps a declination

range from −7π/16 to 7π/16, selected to avoid major projection effects at the poles.
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Smoothing and Pixelisation

The second Gaussian smoothing occurs when the convergence map κ is

reconstructed from the shear map γ. This uses a default smoothing of 20 ar-

cminutes based on the Full-Width Half-Maximum (FWHM), which converts to

σ = 2× 20.0× π/(60× 180× 2.355)× σs, where 2.355 is from the definition of the

FWHM and σs is a multiplication factor introduced to allow greater ease when

discussing adjustments to the smoothing. When the default smoothing based only

on the FWHM is used, we set σs = 1 and this corresponds to a smoothing of 20

arcmin in real space, selected to match the smoothing used in Vikram et al. [2015].

However, it was found that when combined with the significant distortion from

projections the smoothing had a distinct effect on the results, hence we selected

σs = 5 as the ‘default’ when the smoothing is kept constant across projections while

examining other parameters. This value allowed sufficient smoothing to reduce the

effect of the noise, without blurring the underlying structure of the convergence

map. Section 2.3 discusses the smoothing in further detail.

The projected maps do not loop around at the boundaries, so therefore the

pixels at the edges of the map are not compared against the full 8 pixels they would

neighbor on the sphere but instead only the pixels they neighbor in the planar

projection. This would result in uncertainty over the validity of such a pixel being

a peak, as it is not compared to all of the neighboring pixels as required by the

definition of a peak we use. In order to avoid this uncertainty, we do not count any

of the boundary pixels as peaks. The boundary pixels are neglected in calculations

of the total area of each projection, but used for evaluating their neighboring pixels

as peaks. The number of peaks on the boundary pixels is negligible compared to

the number of non-boundary peaks due to the large overall number of pixels for

each map compared to the number of pixels along each boundary. The number of

boundary pixels scale ∝ L, while the total number of pixels in the map scale ∝ L2,

hence this effect is only prominent at small values of band-limit L.

The convergence maps differ in size and number of pixels due to the projection

method and resolution selected. The application of masks will also decrease the

number of pixels available for peak detection. As a result, the projection and masking
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will have a significant effect on the peak counts that is not due to the distortion

caused by the projection itself. To account for this and to evaluate the relative shapes

of the peak count statistics, we normalise the peak counts by the number of pixels

in each map. The projections are performed to produce maps with similar total

numbers of pixels, and therefore similar resolution scales5.

Smoothing scale for reconstruction

We used a smoothing parameter s = 20 arcmin = 2× 20.0× π/(60× 180×

2.355) × σs for both the peak counts and Minkowski functional analysis on the

sphere. Due to the differences in resolution between the spherical case and projected

cases the smoothing parameter needs to be adjusted for each projection to ensure

that the degree of smoothing applied produces an equivalent mass map.

Applying masks

The presence of masking must be taken into account when analysing simulated

data, in order to more accurately represent real data. In order to evaluate the effect of

projection to the 2D plane on masked data, we used a simplified method of applying

varying sized rectangular masks. The masks are defined on the sphere, such that

the whole sphere is masked except for a circle centered on the defined centerpoint

of the map with radius defined by the opening angle. The original mask on the

sphere is projected with each of the five projection methods, and then applied to the

corresponding projected shear map. The convergence reconstruction is applied after

the masking. The projections apply a rotation such that the centre of the unmasked

area is at the centre of the projection, and at the centre of the north hermisphere for

the polar projections. It can be seen that the degree of distortion is more significant

for the polar projections. As the shape distortion increases further from the centre,

5Additionally, the gnomonic projection does not cover the full sky and has maximum opening angle

of θ = π/2, π/4 on either side of the pole. Therefore it is necessary to scale the gnomonic projection

peak counts by an appropriate factor to account for this. The surface area of sky covered by viewing

angle π
4 from the pole is (

√
2 + 2)πr2, and the surface area with full sky coverage, at viewing angle π,

is 4πr2. Hence we take the ratio of area with π
4 opening angle to the full sky area to obtain the factor

(
√

2 + 2)/4, which we divide the raw gnomonic peak counts by to scale to the full sky case. In the

masked case, we still apply the projection to the full map and the resolution scale of the gnomonic

projection still differs from the other polar projections, so the normalisation is still required.
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Figure 2.8: Example of the circular mask used in this chapter, using resolution L=1024. Black

indicates the masked area and white indicates the unmasked area. In the case of

the mask on the sphere, the 3D sphere is not projected but represented in 2D.

the unmasked area’s shape is more greatly changed and this occurs at a different rate

for different projections given the same initial mask on the sphere. Fig. 2.8 illustrates

this mask on the sphere and on the projections.
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2.4 Results

2.4.1 Peak counts

Full Sky Case

The normalised peak counts for the sphere and the projections are displayed

in Fig. 2.9. These are the mean values across 20 realisations of randomly simulated

shear maps and for maximum bandlimit L = 2160. The peak counts Pi have been

normalised by dividing by the total area of sky covered by each projection, Asky, and

scaling by ratio of the number of pixels in each projection to the number of pixels

in the spherical map, so the peak counts we see are NMW
Ni

Pi
Asky

. Here, the subscript

‘MW’ is used to denote the spherical map which uses the pixelisation scheme from

McEwen and Wiaux [2011b]. We can see that the five projection methods produce

higher peak counts at low SNR and drop off more rapidly than the spherical case.

Given that the peak counts are normalised by the area of sky covered for peak

identification, the projected peak counts are within one to two order of magnitude

of the spherical peak counts. We display the results for three cases of smoothing,

with smoothing scales σs = 1,2,5 for baseline smoothing of σs × 20 arcminutes on

the sky, and observe that greater smoothing brings the projected peak counts closer

to the spherical case peak counts at low SNR thresholds. However, at high SNR

thresholds the peak counts are significantly smaller with large errors due to the

low number of peaks, so they are often not used for analysis due to unreliability.

Additionally, the SNR thresholds close to SNR= 0 are dominated by noise and

hence less reliable for analysis, hence the accuracy of peak counts at medium SNR

thresholds are prioritised and we focus on these intermediate ranges when con-

sidering the similarity of projected and spherical peak counts. In our case, at low

SNR thresholds none of the projections closely match the spherical case, although

the gnomonic comes the closest. However, since low SNR thresholds are heavily

noise-dominated and high SNR thresholds exhibit low peak count numbers, it is

more appropriate to compare at moderate SNR thresholds, where we observe that

the sine and orthographic projections are reasonably close to the spherical case. It

must be noted that the gnomonic projection does not cover the full sky but only the

areas up to 45◦ from the poles, and we accommodate this by scaling the peak counts
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Figure 2.9: Peak counts divided by cov-

ered sky area as a function

of SNR threshold for differ-

ent projections on the full

sky of 41253 deg2. The dis-

played results are the mean

of 20 realisations for each

projection for the full sky

case. We use bandlimit L =

2160 for the spherical case

and corresponding resolu-

tions for each projection.

The peak counts are scaled

to the area of sky covered

and by the ratio of the num-

ber of pixels in each projec-

tion to the number of pixels

on the sphere. The smooth-

ing is σs × 20 arcminutes on

the sky, converted to σ =

2× 20.0σs × π/(60× 180×

2.355) in pixel space, where

σs is the Gaussian smooth-

ing scale factor. The three

panels show three different

Gaussian smoothing scales

for the projected maps.
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to the reduced area covered.

The ratio of the projected peak counts to the spherical peak counts is displayed

in Fig. 2.10 for σs = 5. A smoothing scale of σs = 5 is used as it shows decreased

divergence between the peak counts of each projection case while not being signifi-

cant enough to obscure the structure of the convergence map. There is a consistent

trend across all projections that at low SNR threshold the number of peaks is over-

estimated in comparison to the spherical case. In the threshold range between 1.5

and 3.0, the orthographic and sine projection peak counts are comparable to the

spherical peak counts.

Figure 2.10: Ratios of the peak counts vs SNR thresholds for different projections to the peak

counts of the sphere for the full sky case. The peak counts used are the mean of

20 realisations for the unmasked case with smoothing σs = 5, corresponding to

a Gaussian smoothing factors of σs × 20 arcminutes on the sky, and have been

scaled to the area of sky covered.

The MW-sampled sphere produced by ssht is assumed to be a close approx-

imation of the true underlying data on the celestial sphere. For the case with no

masking, the gnomonic projection has the smallest overestimation of the peak count
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at low SNR thresholds, and is preferred. However the gnomonic projection does not

cover the full sky and only the area close to the centre of the projection is undistorted

enough to be properly analysed, so it is possible that the extreme distortion far from

the centre of projection results in lower peak counts. The peak counts at low SNR

thresholds are likely to be dominated by Gaussian noise and cosmological analysis

frequently requires detection of higher SNR threshold peaks, so projections that

are closer to the spherical case at a middle SNR range, such as the orthographic

and sine, are useful alternatives for peak count analysis; although performing the

reconstruction on the sphere is preferable, as the results demonstrate.

Examination of the locations of detected peaks on the SNR maps finds that the

most common cause for difference in peaks is how projections map features from the

sphere to the plane. In cases where more than one pixel on the sphere are mapped

to the same projected pixel, the method we used takes the average of these pixels as

the value of the projected pixel. Different projection methods may map pixels in a

manner such that a pixel that would be identified as a peak in one projection may

have a lower value in relation to its neighbours in other projections and so therefore

is not defined as a peak. In addition, features on the sphere are scaled differently

on the plane for each projection, as can be seen in Fig. 2.7. This means that for a

given area of analysis on the sphere, the corresponding area under analysis on the

projected plane will vary in size between projections, leading to the detail being

compressed on certain projections compared to others.

Partial Sky Case

We examine the partial sky case by finding peak counts for the full sky case and

then applying masks of differing sizes, such that we throw away peaks located in

the masked area and keep only the peaks in the unmasked area. We assume that

boundary effects are negligible. The opening angles are defined as the total angle

covered by the unmasked area defined in Section 1.2.8.

We can see the overall effect of increasing the unmasked area in Fig. 2.11, where

the values are the peak counts normalised in the same way as for the full sky

case. When examining the peak count as a function of increasing opening angle

for selected SNR thresholds, we find that the peak count grows as a function of
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Figure 2.11: Peak counts divided by

covered sky area as a func-

tion of SNR threshold for

three cases of masked pro-

jections covering opening

angles 15◦, 45◦ and 90◦.

The displayed results are

the mean of 20 realisations

for each projection and

use smoothing scale σs = 5

and bandlimit L = 1260 for

the spherical case and cor-

responding resolutions for

each projection. The peak

counts are scaled to the

area of sky covered and

by the ratio of the number

of pixels in each projection

to the number of pixels on

the sphere.
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sky coverage at approximately the same rate for all projections and the spherical

case. The projected peak counts do not converge exactly to the spherical case for any

projection, but for certain opening angles and smoothing scales the peak counts of

polar projections closely approach the spherical case for SNR thresholds between

1.5-3, which are the SNR thresholds of most interest for analysis. We observe a

consistent pattern that the stereographic and Mercator peak counts remain greater

than the other peak counts, while the orthographic and gnomonic peak counts are

closer to the spherical case, for opening angles less than 45◦ in the gnomonic case.

The sine projection, in contrast, diverges from the spherical case at smaller opening

angles, but is closer to the spherical case at greater opening angles. However, the

gnomonic projection is unsuitable for opening angles between 90◦ and 270◦, as the

gnomonic projection only applies to angles less than 45◦ which translates to a 90◦

opening angle.

2.4.2 Minkowski functionals

The Minkowski Functionals (MFs) described in equations 1.3.14, 1.3.15, 1.3.16

for the spherical case and the five projections for L=512 with sigma scale σs = 1

are displayed in Fig. 2.12 for the full sky case and 3 masked cases with opening

angles 15◦, 45◦ and 90◦. We see that V0 has the least difference between the spherical

case and projected cases, while the MFs that incorporate the Dirac delta function

and derivatives of the 0κ maps – V1 and V2 – show a significant difference. This is

primarily due to the Dirac delta function, which traces contours at a given threshold,

that contributes most significantly to the differing values of the MFs. In maps with

more noise, V1 and V2 are inflated due to false detections at the examined SNR

thresholds. The resolution used also has a significant influence, as maps with a

greater number of pixels resulted in lower values of V1 and V2. The projection

method also affects the MFs through the presence of noise and distortion of shapes,

which can be mitigated by using appropriate smoothing and high resolution. These

factors heavily influence the contouring of the map, which impacts V1 and V2.

However, we wish to identify and minimise other potential causes of the difference

in MFs that are not due to the projected geometry, and we discuss this below. We

find that V0 is not significantly affected by the projection method, so subsequent

analysis will focus on V1 and V2.
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Figure 2.12: Minkowski Functionals of the 2D field V0, V1 and V2, with smoothing using

σs = 1,5 and opening angles 15◦, 45◦ and 90◦ for masked cases and the full sky

case, at L=512 and for 100 iterations.
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As with the peak counts, the degree of smoothing significantly impacts the

MFs V1 and V2. When the smoothing is not sufficient, significant noise may still be

present in the SNR map which leads to amplified values for V1 and V2. We find that

the presence of noise has a greater impact on the MFs V1 and V2 than the choice

of projection. The projected maps have significantly greater noise than the map on

the sphere due to how the smoothing is performed. We stress the importance of

accounting for noise and using appropriate smoothing. Further discussion of the

effect of smoothing is detailed in Section 2.3.

We expect to find that on small scales projection effects are minimised and

the projected MFs will more closely match the spherical MFs. However, we find

that the effects of pixelisation and smoothing have a significant impact on the MFs

V1 and V2 for different projections for all opening angles of observed area. Using

smaller opening angles leads to significantly greater error, as seen in Fig. 2.12, which

is caused by the reduced number of pixels observed, hence pixelisation effects

are more prominent. The effect of the number of pixels used to calculate MFs is

significant enough to dominate over any distortion caused by projection. However,

even with large errors it is still clear the manner in which projection affects the MFs

on different scales. This can be mitigated by increasing the number of iterations or

using greater resolution to achieve higher pixel count.

Variable smoothing for Minkowski functionals

One possible solution to this issue is to use projection-dependent smoothing

i.e. applying a different smoothing scale for each projection in order to produce

SNR maps that are more closely matched to the spherical case for small opening

angles. The MFs measure the areas and contours of the map and not individual

peaks, so increased smoothing does not remove significant information as it does

with the peak counts. Under the assumption that there will be no projection effects

on very small scales, we evaluate the maximum values of V1 across a range of σs,

as shown in Fig. 2.13, and for each projection we select a σs that corresponds to a

value of V1 closest to a selected V1 maximum for the spherical case on small scales.

The MF V2 is slightly less affected by σs used than V1, so we use V1 to define the

projection-dependent smoothing.
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The MFs are significantly influenced by noise in a different manner to the peak

counts because V1 and V2 measure the contours of a 2D map which are distorted

by projection, hence the degree of smoothing must be carefully considered for the

MFs and handled separately to smoothing for peak counts. We also know that the

shapes and heights of the MFs are expected to be similar under ideal conditions,

while this cannot be done for the peak counts as the peak count function is much

more variable and does not have an underlying analytic form, hence it is risky to

implement projection-dependent smoothing for the peak count statistic. Increasing

smoothing tends to decrease the maximum value of V1 and V2 due to reduced noise,

bringing several projection MFs closer to the MFs measured in the spherical case.

Using smaller opening angles for observed area of sky increases in error on the MFs,

but there is no significant difference in the mean of the shape of observed MFs V1

and V2 for low smoothing with σs = 1, since the projected map MFs are dominated

by noise regardless of observed area.

Figure 2.13: Maximum value of Minkowski Functional V1 over a range of smoothing scales

σs for window with opening angle 15◦ and 20 iterations, using a map with

L=512.

In Fig. 2.13 we display the maximum value of the MF V1 as a function of

smoothing scaling parameter σs for the masked case with a window of opening
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angle 15◦. The maximum V1 values decrease at a similar rate across the projections

and spherical case, with little overlap other than the orthographic and gnomonic

cases. While the maximum V1 values consistently decrease, they eventually reach a

plateau and do not converge even for high σs. A similar pattern is observed with the

maximum and minimum values of V2. This implies that even for high smoothing the

spherical and projected MFs will not converge, hence there is an inherent difference

in the MFs in each geometry after the noise is removed even for small opening

angles. In the small area case, where we expect projection effects to be minimised,

we still do not find convergence and this is suspected to be due to pixelisation effects

due to lower relative resolution, assuming both the small angle and full sky case use

the same maximum bandlimit.

We use Fig. 2.13 to identify an appropriate σs for each projection to match

σs = 1 for the spherical case in order to perform projection-dependent smoothing.

For this projection-dependent smoothing, we select the sphere smoothing as the

standard σs = 1, and then use σs = 10 for the stereographic projection, σs = 4 for the

orthographic projection, σs = 4 for the gnomonic projection, σs = 8 for the Mercator

projection and σs = 2 for the sine projection.

The MFs obtained using projection-dependent smoothing are displayed in

Fig. 2.14 for the masked case with opening angle 15◦ and the full-sky case. With the

projection-dependent smoothing, the MFs of the full-sky case should more accurately

reflect the influence of the projections not caused by noise. We see examples of this

displayed in Fig. 2.14 for the masked case with opening angle 15◦ and for the full sky

case. We observe that using projection-dependent smoothing causes the small-angle

projected MFs to more closely align with the spherical case. However, in many

cases the projected MFs, while matching the spherical case for small angles, are now

reduced below the spherical MFs on larger angles. In the full-sky case, although it is

not possible to separate the effect of increased smoothing from the influence of shape

distortions from projection, using the assumption that the smoothing used produces

equivalence for the MFs on small scales, the resulting MFs should approximately

reflect the effect of each projection separated from the effects of noise. Since the MFs

do not match the spherical case exactly, even with projection-dependent smoothing,

analysis of each MF should be performed separately for each projection.
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Figure 2.14: Minkowski Functionals of the 2D field V0, V1 and V2, using projection-

dependent smoothing for opening angles 15◦, 45◦ and 90◦ for masked cases and

the full sky case, at L=512 and for 100 iterations. We define smoothing scale for

each case to be σs = 1 for the spherical case, σs = 10 for the stereographic projec-

tion, σs = 4 for the orthographic projection, σs = 4 for the gnomonic projection,

σs = 8 for the mercator projection and σs = 2 for the sine projection
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2.5 Conclusion

Whenever a planar approximation is made to the spherical celestial sphere a

projection must be chosen. Here we investigate the effect of five different projections

on the peak count statistic and Minkowski functionals of weak lensing convergence

maps.

We use the software packages SSHT and massmappy to generate simulated

recovered convergence maps. This is done using the following perscription; first we

simulate shear maps on the sphere, project these shear maps to the plane, reconstruct

the convergence maps natively on the plane, construct the SNR map from the

convergence map, and identify peaks for a range of Signal-to-Noise Ratio (SNR)

thresholds to obtain peak count statistics.

In the five examined projections (see Section 2.2.2) the peak counts derived from

planar projected maps are greater than peak counts for the spherical case at low SNR

thresholds and lower than the spherical case for high SNR thresholds; provided

that the peak count numbers are adjusted for the differing number of pixels in the

map and area of sky covered. We find that all of the examined projections have

drawbacks in comparison to peak counts evaluated on the sphere. The projected

peak counts tend to have lower maximum for the SNR thresholds where peaks are

detected than the spherical case. The orthographic projection produces peak counts

that are most similar to the spherical case for high SNR thresholds when accounting

for differences in pixelisation. While the peak counts from the orthographic and

gnomonic projections most closely match the spherical case over the greatest range

of SNR thresholds, the peak counts are still overestimated at low SNR thresholds

and underestimated at high SNR thresholds. While increasing the smoothing and

reducing observed area improves the peak count accuracy, the peak count statistics

for the projected data cannot be made to match the peak count statistics for the

data on the sphere at all SNR thresholds. Further smoothing to further reduce

noise would result in the obscuration of real peaks, and a loss of signal. Thus we

recommend that peak count analysis of large areas of sky be performed on the

sphere if possible.

We also evaluated the Minkowski Functionals on the five projections in com-
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parison to the spherical case. Assuming the same parameters used in the projections

as the spherical case, we found large differences in V1 and V2 between the spher-

ical case and the projected cases. This difference is primarily due to the greater

noise in the maps reconstructed after projection caused by smoothing being applied

unevenly (locally asymmetrical compared to the pixel coordinate system) on the

projected map in comparison to the evenly applied smoothing on the sphere. This

noise effect is significantly greater than other projection effects such as the distortion

of shapes from the projection and must be accounted for when evaluating MFs

on projections. One possible method of reducing the influence of noise is to apply

projection-dependent smoothing, by establishing a smoothing scale for which the

MFs match the spherical case on small areas of sky (where the influence of projection

is minimised), and subsequently applying these smoothing scales to the projected

data for larger areas.

While we find that the projected peak counts, and MFs, resemble the spherical

values at small sky areas of sky coverage, as the sky coverage increases they diverge.

Planar projections remain appropriate for analyses over small areas of sky, but

for future experiments with greater sky coverage the approximations break down

and we caution against using the planar projection for analysis and emphasise the

necessity of moving towards analysis on the sphere. We must conclude that care

must be taken when using projected MFs and peak statistics, and comparisons to

simulated fields should be done in the same geometry as the observations.
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CHAPTER 3

Pure mode E- and B-mode separation of weak lensing mass

maps using scale-discretised spin wavelets
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3.1 Introduction

Observations of cosmic shear, the weak lensing signal produced by large-scale

structure matter perturbations along the line-of-sight, can provide useful insights

into the nature of the Universe. Cosmic shear enables us to probe the underlying dis-

tribution of matter in the Universe and its evolution over time, allowing constraints

to be placed on cosmological parameters [Refregier, 2003]. Cosmic shear can also

be used to infer the total matter present in galaxy clusters [Broadhurst et al., 1995]

and make convergence/mass maps of the total matter distribution of the large-scale

structure (LSS). Mass maps are useful tools for probing cosmologically sensitive

statistics [Bergé et al., 2010a; Pielorz et al., 2010a; Pires et al., 2010a; Takada and Jain,

2009b], for example mapping of the mass distribution in clusters [Taylor et al., 2004],

measuring Minkowski functionals [Mecke et al., 1994b], measuring peak statistics

[Lin and Kilbinger, 2015a,b] and cross-correlating the convergence maps with CMB

lensing and galaxy clustering data [Delabrouille et al., 2018; Hu and Okamoto, 2002;

Vikram et al., 2015].

There are a number of existing mass mapping approaches, including the Kaiser-

Squires (KS) method [Kaiser and Squires, 1993], sparse reconstruction methods

[Leonard et al., 2014; Price et al., 2018a,b,c], reconstruction through Bayesian model-

ing such as LensTool [Jullo et al., 2007], and mapping of cluster mass distributions

[Broadhurst et al., 1995; Taylor, 2001]. Any use of convergence maps for subsequent

analysis will require high precision and low contamination from systematic effects

caused by the mass mapping algorithm itself.

Mass mapping algorithms attempt to reconstruct a scalar (spin-0) field from

the observed spin-2 cosmic shear data. Because of its spin-2 nature the cosmic

shear field can be decomposed into two scalar fields, a curl-free E-mode signal and

a divergence-free B-mode signal. In the absence of systematic effects, the cosmic

shear signal should only be comprised of an E-mode signal, with the presence of

the B-mode signal frequently being used to identify systematic effects or probe the

possibility of new physics [Barreiro et al., 1997; Barreiro and Hobson, 2001; Davis and

Kibble, 2005; Durrer et al., 1999; Feeney et al., 2011; Hobson et al., 1999; Namikawa

et al., 2012; Schneider et al., 2010].
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One problem encountered in mass mapping is the issue of mode mixing (from

E to B-mode, ‘E-B mixing’, and vice versa) caused by masking of the data; for

masked data the E-B separation is not unique and ambiguous modes are introduced.

Consequently, standard E-B reconstruction results in leakage between E- and B-

modes, which leads to inaccurate reconstructions. Several analysis methods attempt

to minimise the effect of this mode mixing, e.g. Hikage et al. [2011]. However, when

evaluating weak lensing data on the full sky the geometry of this setting needs to

be accounted for, which is exacerbated as the masks in weak lensing surveys can

cover significant fractions of the sky. Dealing with mode mixing is also a persistent

challenge in the field of CMB polarisation analysis, with similar attempts at a

solution [Bunn and Wandelt, 2017; Smith and Zaldarriaga, 2007], many of which are

also applicable to the weak lensing case.

There have been various attempts to deal with the problem of mode mixing,

such as applying weights to the pure mode function, and apodisation of the mask

to minimise ambiguous modes in order to obtain estimators for the power spectra

or correlation functions of the E- and B-modes [Becker and Rozo, 2016; Chon et al.,

2004; Hivon et al., 2002; Lewis et al., 2002; Pen et al., 2002; Schneider et al., 2010].

However it is also of interest to reconstruct clean E- and B-mode convergence maps

directly in order to apply various methods of direct analysis to these convergence

maps. The existing methods of reconstructing convergence maps from weak lensing

data, and analogous methods of reconstructing the E- and B-mode maps from CMB

data [Bowyer and Jaffe, 2011; Bowyer et al., 2011; Namikawa et al., 2012], typically

do not attempt to remove the E-B leakage. Extensive work has been performed

seeking to address this issue through the use of pure mode estimators [Bunn et al.,

2003; F. Gruetjen and P. S. Shellard, 2012; Ferté et al., 2013; Lewis, 2003; Smith, 2006a;

Smith and Zaldarriaga, 2007], as pure E-modes (B-modes) are orthogonal to all

B-modes (E-modes). These mode pure estimators cancel ambiguous modes and

can be further extended to using wavelets and direct reconstruction of the E- and

B-mode maps [Leistedt et al., 2017].

Another factor to take into account in convergence map reconstruction is the

geometry in which the mass mapping occurs, with most previous mode separation

methods being performed on projections where the flat-sky approximation holds
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[Van Waerbeke et al., 2013; Vikram et al., 2015]. Upcoming weak lensing surveys,

including Euclid1 [Laureijs et al., 2011], the Large Synoptic Survey Telescope [LSST

Science Collaboration et al., 2009] and the Wide Field Infrared Survey Telescope

[Spergel et al., 2013], will offer a greatly improved view of the Universe in both

sky coverage and depth of field, aiming to cover almost the full sky. With this

increased sky coverage it becomes necessary to account for the geometry of the sky

(the celestial sphere), as projection methods are no longer adequate for accurately

capturing mass map-derived statistics when observing data on the full sky [Vallis

et al., 2018; Wallis et al., 2017]. Therefore methods of E-B separation must aim to

evaluate the data in a spherical geometry, as we do in this chapter.

The extraction of E- and B-mode field maps using pseudo and pure harmonic-

based [Bunn et al., 2003; Kim, 2011; Smith, 2006b] and wavelet-based [Leistedt et al.,

2017] estimators has been established for the CMB, and it is our intent to apply

these methods to the weak lensing shear signal for the first time. This previous work

using the E-B separation on CMB maps displays the effectiveness of the additional

terms in the pure estimator in canceling E-B leakage. We apply this method to

cosmic shear data in the form of simulations of Gaussian random field based on

the weak lensing spectrum Cl , including masking that approximates expected weak

lensing observations from Euclid. Using the wavelet pure mode estimator, we will

draw comparisons with both the harmonic pure mode estimator approach and

the standard smoothed Kaiser-Squires method which uses only pseudo modes.

The method we employ uses both harmonic and wavelet transforms to perform

pure estimator E-B separation, with the wavelet pure estimator allowing greater

precision in cancelling the E-B leakage by being applied on different scales separately.

We display the residual maps for the E-modes and B-modes to draw comparison

between the methods used, defining the residual maps as the difference maps

between the masked true data and the masked reconstructions. In addition to these

maps, the error maps are shown through using the standard deviation of each point

on the map across the simulations generated. We give the ratio of the RMS values

of the reconstructed convergence map to the true convergence map, and similarly

the ratio of the RMS values of the residual maps to RMS of the reconstructed maps.

1http://euclid-ec.org

http://euclid-ec.org
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The power spectra of these reconstructed maps are displayed to illustrate how the

reconstruction methods handle masking on different scales, comparing both the

pure harmonic and wavelet methods to the smoothed KS method.
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3.2 Background

Most of the relevant background information for this chapter are detailed in

chapter 1, which will be referred back to. Any important concepts not covered

previously will be introduced in this chapter. Details on the weak lensing formalism

can be found in Section 1.2.3, with the Eq. 1.2.12 and Eq. 1.2.14 relating convergence

κ and shear γ to the scalar lensing potential φ through the spin raising and spin

lowering operators in real space and harmonic space respectively.

This chapter focuses on the accurate reconstruction of E-modes and B-modes

from the shear signal, as detailed in Section 1.2.6. The spin-2 shear behaves akin to a

polarisation field and can therefore be decomposed into a constituent spin-0 even-

parity scalar E-mode field and an odd-parity pseudo-scalar B-mode field, equivalent

to the curl-free and divergence-free gradient fields respectively [Kilbinger, 2015].

Weak lensing should only generate a scalar E-mode signal, with any observed B-

mode signal arising from systematic effects. The lensing potential ψ can be written

as the corresponding components ψ = φE + iψB, and the pure weak lensing signal is

expected to produce ψB = 0. Refer to Eq. 1.2.23 for the definitions of the E-B modes

in harmonic space, which will be used to construct estimators of the E- and B-mode

fields in the spherical setting.



§3.3 − E-B mode separation methods 113

3.3 E-B mode separation methods

As detailed in Leistedt et al. [2017], E-B reconstruction by separation of E-modes

and B-modes can be performed in either a (spherical) harmonic space or in wavelet

space. Using the definition of the E- and B-modes following Eq. 1.2.23, analogous

definitions can be constructed for the wavelet and harmonic cases. The following is

used on the CMB in Leistedt et al. [2017] and adapted to the weak lensing case here.

3.3.1 The harmonic pure estimator

We use both the harmonic and wavelet transforms to reconstruct the conver-

gence maps from the masked shear, to attempt to improve upon the limitations of

the Kaiser-Squires method in the case of dealing with the masked full sky data. The

KS estimator on the sphere as detailed in Eq. 1.2.39 is a harmonic pseudo estimator

that does not account for the map. Here we extend this to form the pure estimator

method.

In the case of the harmonic estimators, we use the harmonic transform to obtain

the coefficients of the signal in harmonic space. The forward harmonic transform of

function f (nnn) to harmonic coefficients f`m is

f`m =
∫

S2
dΩ(nnn) f (nnn)Y∗`m(nnn), (3.3.1)

where nnn denotes the angles (θ, ϕ) on the sphere , dΩ(nnn) = sinθdθdϕ and Y`m(nnn) are

the spherical harmonic functions. The inverse harmonic transform of the harmonic

coefficients f`m to a function f (nnn) performed on the sphere is given as

f (nnn) =
∞

∑
`=0

`

∑
m=−`

f`mY`m(nnn). (3.3.2)

We consider only the values of ` < L, where L is the bandlimit set in the analysis.

In harmonic space, we can formulate the harmonic pseudo-estimator of the E-

and B-modes, denoted as Ẽharm and B̃harm, as [Kim, 2011]

Ẽharm
`m =0 E`m,

B̃harm
`m =0 B`m,

(3.3.3)

where in general we define



§3.3 − E-B mode separation methods 114

sE`m = −1
2
(sγ̃`m +−s γ̃`m),

sB`m =
i
2
(sγ̃`m +−s γ̃`m),

(3.3.4)

where ±sγ̃`m represent the harmonic transforms of the shear field multiplied by

spin-0, spin-1 and spin-2 masks defined as

±2γ̃(nnn) =0 M(nnn)±2γ(nnn), ±1γ̃(nnn) =∓1 M(nnn)±2γ(nnn), 0γ̃(nnn) =∓2 M(nnn)±2γ(nnn),

(3.3.5)

where the mask M and its derivatives using the spin-raising and spin-lowering

operators (see Eq. 1.2.13) are denoted by

0M(nnn) = M(nnn), ±1M(nnn) = ð±M(nnn), ±2M(nnn) = ð2
±M(nnn). (3.3.6)

The harmonic pseudo-estimator does not account for ambiguous modes caused by

masking, leading to the leakage of the E- and B-modes. Hence, we extend Eq. 3.3.3

to the harmonic pure estimator by introducing additional terms to cancel out the

ambiguous modes and reduce leakage with

Ẽharm
`m = 2E`m + 2N`,−2N`,1[1E`m] + N`,−2[0E`m],

B̃harm
`m = 2B`m + 2N`,−2N`,1[1B`m] + N`,−2[0B`m],

(3.3.7)

where we make the assumption that the mask and derivatives vanish at the mask

boundaries, thus satisfying the Dirichlet and Neumann boundary conditions. The

Dirichlet boundary condition imposes a restriction on the value of the function at

the boundary, while the Neumann boundary condition imposes a restriction on the

derivative of the function at the boundary. For spin s the N`,s represents the factor

N`,s =

√
(`+ s)!
(`− s)!

. (3.3.8)

As discussed in Leistedt et al. [2017], the power spectra of these estimators,

C̃E
` and C̃B

` , can be related to the power spectra of the true E- and B-modes on the

full sky, CE
` and CE

` , using the coupling matrix M̃±``′ , contains the angular power

spectrum of the mask, denoted W`′′ , through the following relation
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C̃E
`

C̃B
`

 = ∑
`′

M̃+
``′ M̃−``′

M̃−``′ M̃+
``′

CE
`

CB
`

 , (3.3.9)

where

M̃±``′ =
2`′ + 1

16π ∑
`′′
(2l′′ + 1)W`′′ J±0 (`,`′,`′′), (3.3.10)

with

J±s (`,`′,`′′) =

 ` `′ `′′

s− 2 2 −s

±
 ` `′ `′′

2− s −2 s

 . (3.3.11)

Using this relationship, one can obtain the E-modes and B-modes and their power

spectra. The pseudo estimator method has mode mixing that is indicated by the

off-diagonal elements M̃−ll′ . In order to fix this, the pure harmonic estimators given

in Eq. 3.3.7 have additional terms that cancel the ambiguous modes and therefore

remove the E-B mode leakage. The relationship of the power spectra of the true E-

and B-modes and the power spectra of the pure estimators is the same as Eq. 3.3.9,

but the coupling matrix is now

M̃±``′ =
2`′ + 1

16π ∑
`′′
(2`′′ + 1)W`′′

(
N`,−2N`′′,2 J±2 (`,`′,`′′)

+2N`,1N`,−2N`′′,1 J±1 (`,`′,`′′) + J±0 (`,`′,`′′)
)
,

(3.3.12)

which cancels the ambiguous modes when the true E-modes and B-modes are

recovered from the estimators.

3.3.2 The wavelet pseudo estimator

We use the wavelet pure estimator method used in Leistedt et al. [2017] for the

CMB, adapted for weak lensing. We will start the discussion of the wavelet pure

estimator by first covering the wavelet pseudo estimator. The use of scale-discretised

wavelets allows the structure of the map to be preserved at each relevant angular

scale, allowing extraction of greater detail than the harmonic method in the presence

of masks. For the purpose of this analysis, a spin scale-discretised directional wavelet
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is used; this allows for the localised capture of information in both real and harmonic

space. Further details of the construction of these wavelets are given in McEwen

et al. [2015], McEwen et al. [2018] and Leistedt et al. [2017].

Restating Eq. 1.4.5, the wavelet transform of function s f (nnn) with spin s is the

convolution of s f (nnn) with the wavelet sΨj(nnn) and a scaling function sΦ(nnn) as follows

W sΨj

s f (ρ) =
∫

S2
dΩ(nnn)s f (nnn)[RρsΨj]∗(nnn),

W sΦ
s f (nnn

′) =
∫

S2
dΩ(nnn)s f (nnn)[Rnnn′ sΦ]∗(nnn),

(3.3.13)

where W sΨj

s f (ρ) denotes the wavelet coefficient of the wavelet sΨj at a discrete scale

j = J0, J1, ..., J, where J0 and J are the minimum and maximum wavelet scales re-

spectively, and W sΦ
s f (nnn

′) denotes the wavelet coefficient of the scaling function sΦ,

which captures the information on the largest scale. The integration is defined over

the surface of the sphere S2 where dΩ(nnn) = sinθdϕdθ. The rotation operators with

domain on rotation group SO(3) and on the sphere S2 are denoted byRρ andRnnn′

respectively, with nnn = (θ, ϕ) ∈ S2 and ρ ∈ SO(3) parameterised by the Euler angles

(α, β,ξ).

Similarly, restating Eq. 1.4.6 here, the inverse wavlet transform is used to re-

construct the original function s f (nnn) from the wavelet and scaling function and the

corresponding coefficients as

s f (nnn) =
∫

S2
dΩ(nnn′)W sΦ

s f (nnn
′)[Rnnn′ sΦ](nnn),

+
J

∑
j=J0

∫
SO(3)

dµ(ρ)W sΨj

s f (ρ)[RρsΨj](nnn),
(3.3.14)

where dµ(ρ) = sin βdαdβdξ denotes integration over the Euler angles. The maxi-

mum wavelet scale J is defined as dlogλ(L− 1)e, where λ is the wavelet scaling

factor, and the minimum wavelet scale J0 can be freely selected provided that the

scaling function sΦ(nnn) covers the signal at low `-mode. Further information on the

construction of spin scale-discretised wavelets is found in McEwen et al. [2015];

McEwen et al. [2018].

For the transform to be invertible, the harmonic coefficients of the wavelets
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sΨj(nnn) and scaling function sΦ(nnn) must fulfil the wavelet conditions in Eq. 1.4.7.

From these preliminaries we can now obtain the E-mode W̃0Ψj

ε (ρ) and B-mode

W̃0Ψj

β (ρ) wavelet pseudo-estimators, for a shear field ±2γ as [Leistedt et al., 2017]

W̃0Ψj

ε (ρ) = −Re
[
W±2Ψj

±2γ̃ (ρ)
]
,

W̃0Ψj

β (ρ) = ∓Im
[
W±2Ψj

±2γ̃ (ρ)
]
,

(3.3.15)

where maps can be obtained via an inverse wavelet transform. ε and β in this case

denote the E and B fields rescaled with ε`m = N`,2E`m and β`m = N`,2B`m (where E`m

and B`m are defined in Eq. 1.2.23, and N`,2 in Eq. 3.3.8).

3.3.3 The wavelet pure estimator

Now we consider the pure mode estimator. In the presence of a mask, the mode

leakage necessitates the addition of further terms to Eq. 3.3.15 to accommodate the

E-B leakage.

Considering the scalar wavelet transform of the masked underlying E and B

fields, which by definition are pure modes, and performing integration by parts

to move the action of the spin raising/lowering operator to a masked wavelet, we

recover

W0Ψj

ε (ρ) = −Re
∫

S2
dΩ(nnn)±2γ(nnn)ð2

∓
[
M(nnn)(Rρ0Ψj)(nnn)

]
,

W0Ψj

β (ρ) = Im
∫

S2
dΩ(nnn)±2γ(nnn)ð2

∓
[
M(nnn)(Rρ0Ψj)(nnn)

]
,

(3.3.16)

where the masked term can be expanded to

ð2
±
[
M(nnn)(Rρ0Ψj)(nnn)

]
=

0M(nnn)(Rρ±2Υj)(nnn) + 2±1M(nnn)(Rρ±1Υj)(nnn) +±2 M(nnn)(Rρ0Υj)(nnn),
(3.3.17)

where ±sΥj(nnn) = ðs
±[0Ψj(nnn)]. In harmonic space

2Ψj =
±2Υj

`m
N`,2

=
±1Υj

`m
N`,1

=0 Υj
`m. (3.3.18)
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From this, the wavelet pure estimators can be written in a compact form as

Ŵ0Ψj

ε (ρ) = −Re
[
W±2Υj

±2γ̃ (ρ) + 2W±1Υj

±1γ̃ (ρ) + W0Υj

0γ̃ (ρ)
]
,

Ŵ0Ψj

β (ρ) = ∓Im
[
W±2Υj

±2γ̃ (ρ) + 2W±1Υj

±1γ̃ (ρ) + W0Υj

0γ̃ (ρ)
]
,

(3.3.19)

where

W sΥj

±s γ̃
(ρ) =

∫
S2

dΩ(nnn)±sγ̃(nnn)[RρsΥj]∗(nnn), (3.3.20)

and ±sγ̃(nnn) are defined in Eq. 3.3.5.

Similarly to the harmonic pure estimator, the first term in Eq. 3.3.19 behaves as

the pseudo-estimator while the additional two terms cancel the ambiguous modes

to minimise E-B leakage. From these pure estimator wavelet coefficients, one can

use the inverse wavelet transform to reconstruct the E- and B-mode maps.

An advantage of a wavelet analysis is the ability to apply the mask at each

angular scale discretely, taking advantage of the localisation of wavelets in both

real and harmonic space. Additionally, the use of directional wavelets allows the

mask to be applied at different orientations examined by the wavelets. From the

original mask M a set of masks, that are both scale-dependent and orientation-

dependent, denoted Mjn(nnn) = Mj(ϕ,θ,ξn), can be derived where Mj are the scale-

dependent masks over the range J0 < j < J and ξn denotes the orientation of the

wavelet coefficients over range ξ1, ..., ξN , where N is the number of directions probed.

The equations remain the same, with Mjn(nnn) replacing M(nnn) and the scale- and

orientation-dependent masked γ̃jn(nnn) replacing γ̃(nnn).
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3.4 Method

We apply the previously outlined method to simulations, as this allows us to

control the parameters generating the initial map, and to have access to the initial

convergence map κ with which to compare the reconstructed convergence maps κrec.

We consider reconstruction by E-B separation using both the pure harmonic and

wavelet techniques. The initial cosmic shear power spectrum Cin
` used to generate

the simulated shear field uses CosmoSIS [Zuntz et al., 2015] with a ΛCDM [Ade

et al., 2016b] cosmology in high redshift bin 1 < z < 2 with a uniform number density

distribution.

Over N iterations, a Gaussian random field shear map γi is generated using the

ebsep code [Leistedt et al., 2017], with additional noise for i = 1, . . . , N, a mask is

applied to the shear map, and the three methods of reconstruction are applied: the

pure harmonic E-B separation, the pure wavelet E-B separation and the smoothed

Kaiser-Squires reconstruction (recalling the KS estimator is the harmonic pseudo

estimator that ignores the mask). The mask we use is a simplified approximation

of a Euclid-like mask [Laureijs et al., 2011] based on the mask used in Taylor et al.

[2019], where we include a galactic plane cut and an ecliptic plane cut. In the wavelet

case the mask is transformed into a set of scale-dependent masks applied to the

map at each wavelet scale during reconstruction. Fig. 3.1 and Fig. 3.2 illustrate the

application of the mask in angular space, and wavelet masks for each wavelet scale,

where the angular mask is used as M(nnn) and the wavelet masks on each scale are

Mjn(nnn), using n = 1 as we do not probe directionality in this case.

We select the relevant wavelets to have a scaling factor λ = 2, a minimum

wavelet scale Jmin = 5, a maximum wavelet scale J = 9 and directionality of 1. These

parameters are selected in order to give a reasonable number of wavelet scales

that can probe the a reasonable number of scales that cover the relevant shape

information of the data map and mask. As can be seen in Fig. 3.2, these parameters

analyse 5 different scales, in addition to the scaling function, that cover the full

range of detail for the mask and hence the data map. The directionality is set to

be 1 as while probing the directional features of the spin-2 shear data is of value,

the key aim of this chapter is to examine the basic performance of the wavelet



§3.4 − Method 120

Figure 3.1: Angular simulated Euclid-like [Laureijs et al., 2011] mask. The map is displayed

at maximum bandlimit L = 512, and therefore has dimensions of 512× 1023

using MW-sampled pixels.

Figure 3.2: Wavelet form of the simulated Euclid-like [Laureijs et al., 2011] mask used in

wavelet E-B separation, separated by wavelet scale j. Maps displayed with

dimensions 512× 1023 using MW-sampled pixels, set by maximum bandlimit

L = 512, and wavelet scaling factor λ = 2, and therefore minimum wavelet scale

J0 = 5 and maximum wavelet scale J = 9.
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pure estimator, hence it was decided to keep the directional properties simple. For

each simulation, the E- and B-modes are reconstructed with the KS method, pure

harmonic E-B separation method and pure wavelet E-B separation method. We

evaluate the residual differences between the reconstructed convergence maps and

the masked true convergence map, for each iteration. From each residual map

power spectra are also calculated for each iteration. The reconstructed maps display

a degree of leakage into the masked area, hence when calculating the residual maps

and subsequent power spectra this leakage is neglected by removing the masked

area from evaluation.

Due to the use of spin-2, spin-1 and spin-0 wavelet transforms in Eq. 3.3.19,

we use the spin directional wavelets on the sphere 2. However, we do not probe

directionality for this study, hence we use axisymmetric wavelets, and set the direc-

tionality parameter to 1. The scale-discretised wavelets we use in harmonic space

fulfill Eq. 1.4.7 and are detailed in McEwen et al. [2015]. For the simulated maps

and subsequent reconstruction, we work in the sampling scheme in [McEwen and

Wiaux, 2011a], where we select bandlimit L = 512.

The initial convergence map is generated in harmonic space from the input

power spectrum Cin
` , which is generated using CosmoSIS [Zuntz et al., 2015], and

an initial Gaussian smoothing is applied to the κ`m with Full-Width Half-Maximum

(FWHM) σ = π
10L . We transform this κ`m to real space and consider this the true

convergence map. From κ`m, we obtain the shear in harmonic space, γ`m. Following

this, both κ`m and γ`m undergo the inverse spherical harmonic transform to obtain

the convergence 0κ(nnn) and shear 2γ(nnn) in real/angular space using the Kaiser-

Squires equation as shown in Eq. 1.2.39. We opt to perform reconstruction without

added noise, in order to evaluate the effect caused solely by leakage.

When considering the power spectra of the residual maps, we evaluate the

KS reconstruction with smoothing applied during the reconstruction step, where

the smoothing is σs =
20×π

60×180×2.355 and 2.355 is the Half-Width Half-Maximum con-

version factor which corresponds to a smoothing size of 20 arcmin on the sphere,

chosen to match Vikram et al. [2015] and Wallis et al. [2017]. We also evaluate the KS

2We use the code S2LET to perform the transform using the spin directional wavelets on the sphere.

Details of these wavelets can be found in McEwen et al. [2015]
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reconstruction without smoothing, to more closely match the E-B separation method

which does not apply smoothing.

One final note is that while the resulting maps are displayed in the Mollweide

projection (see Section 2.2.2), the analysis is all performed on the spherical setting

and these projections are used solely to illustrate the results.
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3.5 Results

In Fig. 3.3 we show the mean of the residual convergence maps over 100

realisations of the simulations, where the residuals for each reconstruction method

are calculated by subtracting the reconstructed convergence map from the true

convergence map with the corresponding masking method applied. The harmonic

residual maps show clear differences on the largest scales, caused by the inability of

the harmonic approach to cancel E-B leakage on these scales. The scale of the biases

is approximately that of the largest masked areas. The wavelet approach shows a

clear advantage over the harmonic approach with consistently smaller residuals and

a lack of large-scale biases. This is due to the wavelet approach allowing correction

of the E-B leakage on individual scales.

The most prominent difference between the KS and wavelet cases is the han-

dling of the mask boundaries, resulting in distinctly lower residuals for the wavelet

case in the regions at or close to the mask boundary. In the areas of the map far from

the mask boundary we observe little difference between the KS and wavelet cases,

but this effect is pronounced in the smaller unmasked regions, where the boundary

effect is noticeable and significantly reduced in the wavelet case compared to the KS

case. The KS reconstruction is also limited in the same manner that the harmonic

is when compared with the wavelet method, being unable to probe the data on

different scales and directions, and requires smoothing to account for the noise.

We note the size of the mean root-mean-square (RMS, see Eq. 1.3.5 in Section

1.3.1) values of the reconstructed convergence maps in comparison to the mean

RMS of the true convergence maps as a measure of evaluating the size of the

reconstructions in comparison to the original map. The same is shown for the ratio

of the residuals to reconstructed maps, to demonstrate the relative size of the residual

maps. The ratios are shown in Table. 3.1, where we observe that for the E-modes the

reconstructed and residual ratios both show the pure wavelet estimator is superior

to other the approaches used.

In Fig. 3.4, the wavelet residuals for the E-mode and B-mode maps are displayed

on a smaller scale in order to show the details that cannot be distinguished on the

scale of Fig. 3.3. It can be seen that there are some distinct errors with the wavelet
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Figure 3.3: Maps of the E-mode and B-mode residuals for the smoothed KS reconstruction,

pure harmonic E-B separation reconstruction and pure wavelet E-B separation

reconstruction. These residuals are calculated as the mean of the true map with

corresponding masking applied minus the reconstructed masked map over 100

realisations for maps with L = 512.
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E-mode RMS ratio Reconstruction Residual

KS 0.9868 0.0966

Pure Harmonic 1.0836 0.3624

Pure Wavelet 1.0025 0.04425

Table 3.1: Table displaying the ratios of the mean RMS value of reconstructed convergence

map to the mean RMS value of the true map, and of the RMS of the residual

map to the RMS of the reconstructed convergence map, over N = 100 iterations

for bandlimit L = 512. The RMS values for the reconstruction ratio are defined

〈κ2
rec〉

1
2 /〈κ2

true〉
1
2 and for the residual ratio as 〈(κtrue − κrec)2〉 1

2 /〈κ2
rec〉

1
2 , where the

relevant mask is applied to both κ maps. Ideal values are 1 and 0 respectively.

Only the ratios for the E-modes are displayed, the B-mode ratios are not displayed

as the generated convergence map has B-mode set to zero.

Figure 3.4: Maps of the E-mode and B-mode residuals over 100 iterations for maps with

L = 512, for the pure wavelet E-B separation reconstruction, set on a different

colour map scale to Fig. 3.3.

method, such as some slight apodisation at the mask boundaries, but these only

become noticeable on scales much smaller than for the KS and harmonic pure cases.

However this becomes more prominent in the work done in chapter 4, which is why

here we illustrate the difference between the wavelet pure estimator reconstructed

maps and the true maps.

Fig. 3.5 displays the standard deviation maps corresponding to each residual

map computed across the 100 iterations. The KS error maps are relatively flat with

slight increase at the mask boundary. The harmonic errors display a slight but

noticeable increase along the boundaries of the mask in the E-mode case, which is
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Figure 3.5: Maps of the standard deviation of the E-mode and B-mode residuals over 100

iterations for maps with L = 512, for the smoothed KS reconstruction, pure

harmonic E-B separation reconstruction and pure wavelet E-B separation recon-

struction.
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avoided in the wavelet case due to scale-dependent masking allowing the detail at

the boundary the mask to be more finely preserved.

Figure 3.6: Power spectra of the residuals of the E-mode and B-mode reconstructions, dis-

playing on which scales the power of the residuals is concentrated. Solid lines

indicate the mean value across 100 iterations, and filled area denotes the standard

deviation.

In Fig. 3.6 we display the angular power spectra of the residuals of the KS

reconstructions, including both with and without additional smoothing during the

reconstruction, and the pure mode reconstructions. This allows a measure of how

the reconstruction method affects different scales. The weakness of the harmonic

method to capture the large scale information is further demonstrated here, along

with the wavelet method’s distinct advantage at low and intermediate `-modes.

At high `-modes we observe that the power spectra of residuals of the pure

E-B separated E-modes are consistently lower than the residual power spectra of

the KS reconstruction method, with the wavelet case consistently producing the

lowest residual power. For comparison, we also include the KS case with smoothing

applied during the reconstruction step, where the smoothing is σs = 20 π
60×180×2.355

and 2.355 is the Full-Width Half-Maximum, which corresponds to a smoothing size

of 20 arcminutes on the sphere. It should be noted that the effect of smoothing on

the KS residuals leads to distinctly different effects between the E-mode and B-mode

residual power spectra, due to smoothing removing some of the information at high

`. This only applies at high `-modes and is a consequence of the smoothing scale

used rather than an indicator of the performance of the KS method itself. There is
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a distinct difference between the power spectra of harmonic and wavelet methods

on large scales, while they become more similar on smaller scales; this is expected

as the masks considered for harmonic pure estimators are most effective for small

scales.
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3.6 Conclusion

One of the main contributors to errors in the field of convergence (mass) map-

ping are ambiguous modes introduced by masks. These ambiguous modes may

contribute to either the E-mode or B-mode fields, causing E-B mixing and contami-

nating the pure E- and B-modes. Being able to isolate the E- and B-modes entirely

would present an important new technique in the field of weak lensing analysis.

We use a pure mode wavelet-based method of separating the E- and B-modes

through cancellation of ambiguous modes in wavelet space, previously evaluated

on CMB simulations [Leistedt et al., 2017], and apply this to the weak lensing case.

We compare E-B separation using harmonic and wavelet transforms, and compare

both to the KS reconstruction method which is the standard convergence mapping

method.

While the KS case performs better than the harmonic case on larger scales far

from the mask boundary, the harmonic pure case performs better than the KS case

on smaller scales, and the wavelet case shows an improvement over all scales. The

primary cause of the difference between the harmonic and wavelet pure estimator

cases is the use of scale-dependent masks used in the wavelet method, that allows the

wavelet method to probe and mask each scale separately, leading to more accurate

reconstructions. It can be clearly seen in both residual maps and power spectra of

the residuals that the harmonic method results in distinct large scale residuals, and

both the harmonic and KS cases display larger errors along the boundaries of the

mask. This effect does not appear when using the wavelet method due to the ability

to mask each evaluated scale independently.

One potential avenue for future analysis would be to make use of the directional-

ity of the wavelets in order to capture directional information during reconstruction.

Using different masking schemes, on both smaller and larger scales, could also

provide insight into the comparative performance of different methods, given the

differences in reconstructions on different scales.

Using wavelet-based E-B separation for mass mapping demonstrates a promis-

ing method for weak lensing analysis, as it shows a clear improvement over the

KS reconstruction used previously, and pure harmonic E-B separation methods,
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being able to more effectively cancel ambiguous modes at each scale. The pure

wavelet-based method consistently performs better than the pure harmonic method

at large scales and the KS method at all scales.
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CHAPTER 4

The application of E-B pure mode separation using wavelets to

DES Y1 data
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4.1 Introduction

Of the many available observables for cosmological analysis, cosmic shear is

a flexible and robust one, which provides many possible approaches to extracting

cosmological information from it. Cosmic shear is the cumulative weak lensing

effect of perturbations in the gravitational field caused by large-scale structure (LSS)

in the Universe. The distribution of the LSS can be computed from cosmic shear

observations, and by using galaxy redshift as an indicator of age of source galaxies

this can be extended to studying the evolution of the LSS over time. This can be

used to place constraints on cosmological parameters [Refregier, 2003], calculate or

map the total matter content of galaxy clusters [Broadhurst et al., 1995; Taylor et al.,

2004], and to directly construct maps of the convergence itself [Kaiser and Squires,

1993].

These convergence maps themselves provide a useful tool for cosmological

research, as they trace the mass distribution of the Universe and can be used to

probe certain cosmological parameters [Bergé et al., 2010a; Pielorz et al., 2010a; Pires

et al., 2010a; Takada and Jain, 2009b]. Convergence maps are observed 2D fields with

their own topological properties that can be used to probe non-Gaussian features

of the cosmic shear, such as Minkowski functionals [Mecke et al., 1994b] and peak

statistics [Lin and Kilbinger, 2015a,b]. Convergence map data can also be used to

compliment other cosmological methods such as CMB lensing and galaxy clustering

observations through cross-correlations [Delabrouille et al., 2018; Hu and Okamoto,

2002; Vikram et al., 2015].

The shear is a spin-2 signal that can be decomposed into a curl-free E-mode

signal and a divergence-free B-mode signal. Weak lensing only produces an E-mode

signal, hence a B-mode signal detected from the shear arises either from systematic

effects during observation, or is a potential indicator of new physics [Barreiro et al.,

1997; Barreiro and Hobson, 2001; Davis and Kibble, 2005; Durrer et al., 1999; Feeney

et al., 2011; Hobson et al., 1999; Namikawa et al., 2012; Schneider et al., 2010].

Straightforward reconstructions of convergence maps can be done in a number

of different ways, such as the harmonic transforms in the most commonly used

Kaiser-Squires method [Kaiser and Squires, 1993], sparsity-based methods [Leonard
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et al., 2014] and through the use of Bayesian modelling [Jullo et al., 2007]. The weak

lensing signal is comparatively low signal-to-noise and susceptible to contamination

from systematic effects, hence when performing reconstruction of the convergence

maps from cosmic shear the method used should ideally be precise and aim to

accommodate these problems. The major sources of contamination are noise (often

dealt with through smoothing or sparsity-based methods), and mode mixing.

The presence of masks induces mode mixing through the introduction of am-

biguous modes that cannot be clearly identified as either E-mode or B-mode. This

mode mixing produces contamination of the E-mode and B-mode signals, leading

to inaccurate results for both statistics derived from the shear signal and direct

reconstruction of convergence maps. Methods for mitigating the effect of this mode

mixing have been applied both to statistics such as the correlation function or power

spectrum [Becker and Rozo, 2016; Chon et al., 2004; Hikage et al., 2011; Hivon et al.,

2002; Lewis et al., 2002; Pen et al., 2002; Schneider et al., 2010] and CMB polarisation

analysis [Bunn and Wandelt, 2017; Smith and Zaldarriaga, 2007]. Such methods

typically do this through the application of weighting to reduce the ambiguous

modes while separating the pure mode to obtain estimators for the E-mode and

B-mode signals for reconstruction. The use of these pure estimators have been ap-

plied to successfully to the analogous CMB data [Bunn et al., 2003; F. Gruetjen and

P. S. Shellard, 2012; Ferté et al., 2013; Kim, 2011; Leistedt et al., 2017; Lewis, 2003;

Smith, 2006a,b; Smith and Zaldarriaga, 2007]. One extension to this pure mode esti-

mator approach is to use scale-discretised wavelet transforms instead of harmonic

transforms [Leistedt et al., 2017], that we applied to simulations of weak lensing

data in chapter 3.

Masking arises from sky surveys containing incomplete or contaminated data,

where unusable sections are removed from the map or weighted to zero. While

future weak lensing surveys strive towards greater sky coverage with improved

observation techniques to minimise sections of unusable data, it is improbable that

an observed survey will be entirely without masking and current weak lensing

surveys contain a wealth of cosmological information that should not be ignored,

hence the importance of developing methods that can accurately account for the



§4.1 − Introduction 134

mask. Upcoming wide field surveys (including Euclid1 [Laureijs et al., 2011], the

Large Synoptic Survey Telescope [LSST Science Collaboration et al., 2009] and the

Wide Field Infrared Survey Telescope [Spergel et al., 2013]) cover large areas that

require the curved sky geometry to be considered during the reconstruction, as the

flat-sky approximations do not apply and projections to the plane are inadequate

[Vallis et al., 2018; Wallis et al., 2017].

This chapter focuses on extending the work in chapter 3 to the application to

real data. The aim in chapter 3 was to provide a measure of the accuracy of the

reconstruction methods, made possible by using simulations that allowed access

to the true convergence map that the shear is observed from. When working with

real data, it is desired that the values derived from the observations are as similar

as possible to the true values, hence the need for a high accuracy in the method,

but the true underlying field in inaccessible. Referring to the comparison between

the KS, harmonic pure mode and wavelet pure mode reconstruction methods done

in chapter 3, the wavelet pure mode is expected to provide a reasonably accurate

reconstruction of the convergence map comparable to, if not superior to, the KS case.

We use the shear data from the DES Y1 data release [Abbott et al., 2018], which has

sufficiently large sky coverage to necessitate using the curved sky reconstruction

methods [Wallis et al., 2017]. Mass maps have been obtained for the DES Y1 obser-

vations in Chang et al. [2017] using the KS method applied to the curved sky setting,

and it is our intention to provide a complementary analysis of the DES Y1 galaxy

data using the wavelet pure mode estimator approach. In this chapter we will assess

the topology and the extent to which the constructed fields are well approximated

by a Gaussian field by measuring the Minkowski Functionals from the data.

This chapter will first detail the background of the research and outline the

method used. As much of the background and science behind this chapter is shared

with chapter 3, the background and method sections will refer back to previous

sections where relevant while introducing any new concepts and equations relevant

only to this chapter. The results will be divided into a discussion of the conver-

gence maps themselves and a section on the various statistics derived from these

convergence maps, including the Minkowski Functionals.

1http://euclid-ec.org

http://euclid-ec.org
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4.2 Background

The background on cosmic shear and its use in cosmology are detailed in

chapter 1, with the key sections being Section 1.2.3. The projections used in this

chapter are the Mollweide and stereographic projections, which are detailed further

in Section 2.2.2. To summarise the relevant information, observations of galaxy

ellipticities can be used to construct a map of the cosmic shear in the observed

area. Cosmic shear is the weak lensing signal induced by the intervening matter

between the observed galaxy and the observer. From this cosmic shear data, one

can reconstruct the convergence map and in the process separate the E-modes and

B-modes (see Section 1.2.6). These convergence maps trace the distribution of mass

in the universe, including both visible matter and dark matter.

Weak lensing is expected to produce only an E-mode signal and B-mode signals

are expected to arise from systematic effects, hence, once these systematic effects

are accounted for, the study of the B-mode signal can provide insight into potential

new physics. However, issues arise during the observation of the cosmic shear,

most prominently in the form of masking. Masking occurs when the data cannot

be obtained, is incomplete or unusable due to contamination, and therefore this

part of the map is masked out. Masking leads to mode mixing and the creation of

ambiguous modes that contaminate the reconstructed E-mode and B-mode fields.

Therefore it is desirable to remove the consequences of masking and therefore mode

mixing. Methods attempting to do so are detailed in Section 3.3, and in this chapter

we focus on the use of the wavelet pure mode estimator as covered in Section 3.3.3

in chapter 3.

We also note that while the harmonic pure mode estimator is a possible alter-

native to the wavelet pure mode estimator for E-B separation, its performance is

sub-par when compared to using wavelets. These drawbacks are outlined in chap-

ter 3 and are why we opt to focus on only the KS method and the wavelet-based

pure mode method.

DES Y1 data discussion

The Dark Energy Survey (DES) [Abbott et al., 2018] is an international large

scale survey covering the southern hemisphere and gathering data from galaxies,
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supernovae and other astronomical objects, from the beginning of its operation

in 2013 to 2019. The purpose of DES is to provide accurate observations suited to

analysis of dark energy through studies of supernovae, weak lensing [Chang et al.,

2017], galaxy clustering [Elvin-Poole et al., 2018] and baryon acoustic oscillations,

across a wide and deep field spanning a wide area of 5000 square degrees. DES

has seen three releases of survey data, the Science Verification (SV) data release

[Jarvis et al., 2016], the first public data release (DR1) [Abbott et al., 2018] and the

year 1 data release (DES Y1) [Zuntz et al., 2018]. The DES Y1 data catalogue is

the focus of this chapter as it contains weak lensing relevant data in the galaxy

shapes, ellipticities and redshifts across a wide field of ∼ 1500 square degrees. Mass

maps have been produced of the DES Y1 data in Chang et al. [2017], performing

harmonic KS reconstruction on the curved sky geometry and additionally providing

cross-correlation of the mass maps to light distribution and evaluating the peaks

and voids present in the mass maps. These mass maps have seen use in research

of weak lensing ratios [Prat et al., 2018] and constraining cosmological parameters

[Troxel et al., 2018].

We use the DES Y1 data downloaded from here http://desdr-server.

ncsa.illinois.edu/despublic/y1a1_files/shear_catalogs/. From

these catalogues we extract RA, dec, e1 and e2 the two coefficients of the elipticity

of a galaxy, mcorr (the multiplicative bias correction), c1 and c2 (the additive bias

corrections for e1 and e2), weight, and signal-to-noise. We also extract imerror and

imflag that flag poor regions of the data. We use the im3shape DES Y1 catalogue,

since this was also the one used in Chang et al. [2017]. For redshifts we use the Gold

BPZ redshifts provided at the same address.

We make selections of this data based on Table I of [Jarvis et al., 2016], using the

“conservative additive” cuts. This results in small additive systematic uncertainties,

and it is hoped that moderate multiplicative systematic uncertainties are mitigated.

For im3shape, this removes galaxies with signal-to-noise < 15. We also select all

galaxies in the redshift range 0.6 < z < 1.2, and remove any galaxies with imerror

and imflag equal to zero.

To construct the ellipticity maps – from which the mass maps are constructed

for each HealPix pixels we find all galaxies within the pixel and compute the

http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/shear_catalogs/
http://desdr-server.ncsa.illinois.edu/despublic/y1a1_files/shear_catalogs/
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average like

〈ei〉pix =
∑g∈pix Wg(e1,g − ci,g)

∑Wg(1 + mg)
(4.2.1)

where i = (1,2), Wg is the weight, ei,g are the measured ellipticities of each galaxy,

ci,g are the additive corrections, and mg are the multiplicative corrections. This is the

same approach taken in [Jarvis et al., 2016] and Chang et al. [2017]. In the following

we will use γ and e interchangeably since we assume that 〈ei〉 ≈ γi.

Figure 4.1: DES Y1 shear data displayed in MW pixelisation scheme for L=1024. Images

have been zoomed in on the relevant region with the stereographic projection.

Both Fig. 4.1 and Fig. 4.2 display the DES Y1 shear data γ = γ1 + iγ2 converted

to the MW pixelisation scheme used in this project. Fig. 4.2 illustrates the position

of DES Y1 observations on the full sky; this wide field coverage of ∼ 1500 square

degrees is significant enough that the spherical geometry of they sky must be

accounted for. The E-B separation and analysis will be performed natively on this

curved spherical geometry, but for the purposes of illustrating our results in a

straightforward manner we opt to display our reconstructions in the stereographic

projection in the manner shown in Fig. 4.1.

Minkowski Functionals

In the interest of evaluating the Gaussianity of a 2D field, one may evaluate

associated Minkowski Functionals, as given by Eq. 1.3.14, Eq. 1.3.15 and Eq. 1.3.16,

and calculated as described in Section 2.2.4. As discussed in this earlier section, MFs

can be used as a probe of the non-Gaussian information contained weak lensing
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Figure 4.2: DES Y1 shear data displayed in MW pixelisation scheme for L=1024. Displayed

on the full sky with Mollweide projection.

fields, with non-Gaussian features being more pronounced on smaller scales. The

convergence field κ is converted to the signal-to-noise ratio (SNR) field ν, defined as

ν = κ−κ
σκ

. The MFs describe the topological features of the field as a function of given

SNR threshold ν0, where V0 describes the area above the threshold, V1 describes the

boundary length at the threshold, and V2 describes the Euler characteristic.

The analytic form of the MFs for a Gaussian random field is not given in Section

2.2.3, hence will be detailed here. The analytic form for the MF of a 2D field f is

given as [Matsubara, 2003]
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Vk(ν0) =
1

(2π)(k+1)/2

ω2

ω2 − kωk

(
σ1√
2σ

)
e−ν2

0 /2vk(ν0), (4.2.2)

where ν = f− f
σ0

is the SNR field of the field under consideration f , ν0 denotes the

SNR threshold across the examined range, σ0 = 〈 f 2〉 1
2 and σ1 = 〈(∇ f )2〉 1

2 , and ωk =

πk/2

Γ(k/2+1 denotes the volume of the unit ball in k dimensions, hence ω0 = 1, ω1 = 2,

ω2 = π. For a Gaussian random field, Tomita’s formula [Tomita, 1986] is used to

define vk(ν0)

vk(ν0) = Hk−1(ν), (4.2.3)

where Hn denotes the Hermite polynomials,

Hn(ν0) = eν2
0 /2
(
− d

dν0

)n

e−ν0/2; (4.2.4)

and for the instance of k = 0, we use

H−1(ν0) =

√
π

2
eν0/2 erfc

(
ν√
2

)
, (4.2.5)

where erfc(x) denotes the complimentary error function. This will also allow us to

compare the measured MFs with the expectation from a Gaussian random field.
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4.3 Method

The reconstruction is performed using the code EBsep which implements the

pseudo and pure E- and B-mode estimators as outlined in Section 3.3. In order to

keep the evaluations consistent, we obtain the KS reconstructions with the same

method as the wavelet pure estimators, including the method of smoothing. We

focus on reconstruction using KS and the wavelet pure mode estimator, both with

and without smoothing. The reconstructions are performed on the 2D surface of the

3D sphere as outlined in Section chapter 2.

Each galaxy from the catalogue is sorted into the pixel corresponding to its

position on the sky. The shear map 2γ = γ1 + iγ2 is constructed with each pixel

containing the mean of the component γ1 and γ2, for all galaxies falling within the

pixel, as defined in Eq. (4.2.1). The reconstruction method is performed using the

McEwen-Wiaux sampling scheme [McEwen and Wiaux, 2011b], hence the full sky

map is constructed to fit the required parameters, having dimensions of L× (2L− 1),

where L is the bandlimit which governs both the pixelisation scheme and resolution

of the map, and the maximum harmonic and wavelet modes used. The shear map is

constructed on the full sky and the reconstruction is applied to the full map on the

sphere, but the DES Y1 observational data is only obtained for a small section of the

sky. The reconstruction method requires taking into account the full sky geometry

and cannot be focused solely on this relevant area, hence it is necessary to maximise

L as it determines the pixelisation resolution of the full sky map used. The bandlimit

is selected to be L = 1024, giving high resolution for the reconstructed maps while

keeping computation time reasonable, as increasing the bandlimit beyond L = 1024

provides diminishing returns to improvements to the quality of results.

The shear map is reconstructed through the KS method, as given on the sphere

by Eq. 1.2.39, and the E-B separation via pure mode estimators, as given by Eq. 3.3.19.

Further details for the method of reconstruction using the KS estimator are found in

Section 1.2.10 and for the E-B mode separation Section 3.3.

The wavelet parameters used, as detailed in Section 1.4, are wavelet scaling

factor λ = 2 and minimum wavelet scale Jmin = 5, which for L = 1024 gives maximum

wavelet scale Jmax = 10. We do not use directional wavelets in this study, so the



§4.3 − Method 141

directionality of the wavelets is set to 1 to use axisymmetric wavelets. In order to

probe the possibility of using more wavelets for greater accuracy, we performed

reconstructions with B = 1.5, however the differences did not prove significant

enough to justify using the smaller wavelet scale factor.

Smoothing

In order to apply smoothing to reduce the impact of noise from the final re-

constructions the signal is smoothed once before the reconstruction method is ap-

plied. The smoothing is applied by convolving the signal with the Gaussian kernel

G` = e`
2σ2

s , where σs is used to denote the smoothing factor. This smoothing factor is

selected to correspond to the Half-Width at Half-Maximum of 20 arcmin as used

by Vikram et al. [2015] and Wallis et al. [2017], hence σs =
2×π

60×180×2.355 × 20 arcmin.

This smoothing is applied to the shear map before the reconstruction, to mitigate

the effect of noise on the shear data. It would be possible to further smooth the data

post-reconstruction, but this was found to be unnecessary as the initial smoothing

step removed most of the influence of the noise.

Masking

The key purpose of using wavelet pure estimators over the standard KS is to

accommodate the mask and the resulting mode mixing. In the previous project in

chapter 3, it was necessary to approximate a mask appropriate for the simulated

data. In this chapter we have access to observational data and we can construct the

sky mask from the data itself. A pixel mask is constructed with same dimensions as

the data map by simply evaluating at each pixel the presence or absence of galaxy

data (where if the number of galaxies Ngal,pix < 1 we label this as a masked pixel).

The resulting pixel mask is displayed on the full sky in Fig. 4.3.
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Figure 4.3: Pixel mask for the DES Y1 data as shown in Mollweide projection.
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4.4 Results

4.4.1 Reconstructed convergence maps

In this section we display and discuss the convergence maps reconstructed

from the DES Y1 shear data. Discussion of statistical analysis of these maps is found

in Section 4.4.2. The convergence maps are displayed in the stereographic projection

rotated to centre on the relevant area, but the E-B separation itself is performed on

the sphere. Reconstruction both with and without smoothing are considered, but

the noise contamination in the data necessitates smoothing and hence conclusions

drawn from the smoothed data should be prioritised. While it is certainly possible

to perform analysis on the unsmoothed data, it is heavily noise-dominated and this

must be taken into consideration. The unsmoothed results are also examined for the

purpose of comparison, but are to be considered less accurate due to the unaccounted

for noise. The results are displayed with the observation mask applied over the

convergence reconstructions to remove any leakage of the reconstructed data in

the masked areas. Drawing comparison between prior mass mapping performed

in Chang et al. [2017] and our mass maps obtained with the wavelet pure mode

estimators, we observe that the same features of the convergence maps are present

in both.

First we consider the unsmoothed case, as displayed in Fig. 4.4 and Fig. 4.5,

for the KS method and wavelet pure estimator methods respectively. The most

prominent difference between the two is this distinct apodisation effect at the mask

boundary found in the wavelet case but not the KS case. The KS method does

not consider the mask during the reconstruction, hence there is no apodisation

at the mask boundaries, although not accommodating the mask introduces other

problems in the reconstruction.. The resulting convergence map can be seen to be

uninfluenced by the mask. In contrast, the purpose of the pure mode estimator

is to remove the effect of mode mixing induced by the mask, hence the mask

influences the reconstruction as shown. The difference between the reconstructions

is more directly displayed in Fig. 4.6, which shows the difference between the two

convergence maps at each pixel. Aside from the apodisation at the mask boundary,

the two convergence maps display the same features, which are more evident in the
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(a)

(b)

Figure 4.4: Reconstruction of convergence maps using the KS method from DES Y1 shear

data. No smoothing is applied. Displayed in stereographic projection rotated to

centre on the area shown.
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subfloat[]

(a)

Figure 4.5: Reconstruction of convergence maps using the wavelet pure mode separation

method from DES Y1 shear data. No smoothing is applied. Displayed in stereo-

graphic projection rotated to centre on the area shown.
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reconstructed maps where smoothing is applied, displayed in Fig. 4.7 and Fig. 4.8.

There is a very slight difference in the exact values of the convergence for the same

features, but this is relatively minor compared to either the overall amplitude of the

maps, or the differences caused by the apodisation effect.

In Fig. 4.7 and Fig. 4.8 we now compare the smoothed case. It can be seen that

the same observations hold as for the unsmoothed case, albeit in a more obvious

manner due to the removal of noise. Compare to the unsmoothed case it, can

seen that the convergence maps of each method share the same features indicating

the same underlying mass distribution. There are some large differences in the

amplitudes of the maps, as can be observed in Fig. 4.9, and these differences are

proportionately larger compared to the unsmoothed case. Observing Fig. 4.7 and

Fig. 4.9 more closely, it can be seen that the differences in the central regions, not

caused by apodisation, closely mirror the features of the smoothed KS convergence

map, hence most of the differences are caused by the smaller overall amplitude of

the wavelet convergence map, although the same features are preserved. Another

side effect of the smoothing is the increase in the extent of apodisation at the mask

boundaries, leading to further loss of information as more of the convergence map

is obscured by this apodisation. This proves especially problematic for the parts of

the observed sky that are smaller in area, as the apodisation obscures most of the

convergence map information in these regions.

Most of this apodisation effect occurs at the boundary between the main area

of observation and the large masked part of the sky, and does not appear to apply

for very small masked areas, such as small areas in the larger body of the observed

area. This suggests that the presence of small masked areas within the observed area

does not significantly impact the reconstructed convergence maps or the E-B mode

mixing.

This apodisation effect at the mask boundaries remains relatively consistent in

extent for the same wavelet parameters, regardless of mask size and shape, so for a

larger unmasked area it can be expected that the proportion of the map unaffected

by this apodisation will increase (i.e. the boundary effects should decrease). Future

surveys with improved sky coverage should produce data covering significantly

larger areas and hence smaller masked areas, and so should see greater benefit
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(a)

(b)

Figure 4.6: Difference between the reconstructed convergence maps displayed in Fig. 4.4

and Fig. 4.5 from DES Y1 shear data. Defined as ∆ = κKS − κwav. No smoothing

is applied. Displayed in stereographic projection rotated to centre on the area

shown.
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from the wavelet method as the apodisation effect will be a comparatively smaller

downside. Referring back to chapter 3, we observe this to be the case where effects

at the masked boundary are proportionately smaller and the main body of observed

data is minimally affected. However, it is still of importance to attempt to mitigate

this effect in order to apply this method of wavelet pure mode E-B separation to

current data such as the DES Y1 observations here.

From both the smoothed and unsmoothed cases, we observe the two main

differences are the apodisation effect at the mask boundary and the slightly lower

values across the entire map for the wavelet method convergence map in comparison

to the KS method convergence map. While the loss in information at the mask

boundaries is a distinct drawback to using wavelet-based E-B mode separation

techniques, it must be balanced against the advantages in removing mask-induced

mode-mixing through the use of pure mode estimators to fully separate the E-modes

and B-modes by removing ambiguous modes. The primary alternative to the wavelet

pure mode estimator is to use the harmonic pure mode estimator, the problems of

which are discussed in chapter 3.
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(a)

(b)

Figure 4.7: Reconstruction of convergence maps using the KS method from DES Y1 shear

data. Smoothing is applied to the shear map in the form of a Gaussian kernel

before the reconstruction is performed. Displayed in stereographic projection

rotated to centre on the area shown.
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(a)

(b)

Figure 4.8: Reconstruction of convergence maps using the wavelet pure mode separation

method from DES Y1 shear data. Smoothing is applied to the shear map in the

form of a Gaussian kernel before the reconstruction is performed. Displayed in

stereographic projection rotated to centre on the area shown.
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(a)

(b)

Figure 4.9: Difference between the reconstructed convergence maps displayed in Fig. 4.7

and Fig. 4.8 from DES Y1 shear data. Defined as ∆ = κKS − κwav. Smoothing

is applied. Displayed in stereographic projection rotated to centre on the area

shown.
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4.4.2 Analysis of the convergence maps

We now discuss the various statistics derived from the convergence maps in

Section 4.4. While we have derived the power spectra of maps in chapter 3, we opt

not to do this here, as we do not know the true power spectra of the maps to draw

comparison to.

Mean, standard deviation and RMS

First we consider the most straightforward statistics that can be derived from

the given field: the mean in Table 4.1, standard deviation in Table 4.2 and root mean

square (RMS) in Table 4.3. The statistics used are defined in Section 1.3.1 for clarity.

For these statistics, we consider only the unmasked data.

As expected, the means are found to be close to 0, showing no significant bias

in mean of the reconstructed maps, and the standard deviation and RMS values are

very similar, which is to be expected if the mean of the field is close to 0. The standard

deviation and RMS are of the field itself and provide a measure of the fluctuations

present in the field. The lower standard deviation and RMS of the wavelet cases

is expected due to both the apodisation effect and the decreased amplitude of the

values of the convergence maps in comparison with the KS case.

Reconstruction Method E-mode mean B-mode mean

KS 1.4473 ×10−5 -9.3939 ×10−5

Smoothed KS 3.8503 ×10−5 1.0446 ×10−4

Wavelet EBsep -1.4093 ×10−6 -1.0873 ×10−6

Smoothed Wavelet EBsep 4.2751 ×10−7 6.3675 ×10−7

Table 4.1: Table displaying the mean values of the reconstructed fields.

Minkowski Functionals

The MFs derived from the convergence fields reconstructed from the DES

Y1 data are displayed for various cases: the unsmoothed KS case in Fig. 4.10, the

smoothed KS case in Fig. 4.11, the unsmoothed wavelet pure mode case in Fig. 4.12,

and the smoothed wavelet pure mode case in Fig. 4.13. For comparison, the analytic

form of the MFs is calculated with Eq. 4.2.2 for each convergence map reconstruction,
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Reconstruction Method E-mode s.d. B-mode s.d.

KS 0.01451 0.01401

Smoothed KS 0.00250 0.00194

Wavelet EBsep 0.00869 0.00833

Smoothed Wavelet EBsep 0.00076 0.00062

Table 4.2: Table displaying the standard deviation values of the reconstructed fields.

Reconstruction Method E-mode RMS B-mode RMS

KS 0.01451 0.01401

Smoothed KS 0.00250 0.00194

Wavelet EBsep 0.00869 0.00832

Smoothed Wavelet EBsep 0.00076 0.00062

Table 4.3: Table displaying the RMS values of the reconstructed field.

with the properties of each analytic MF adjusted to match each convergence map.

These analytic MFs are the form expected of a Gaussian random field and provide a

benchmark to test against which the Gaussianity of the reconstructed convergence

fields can be tested.

Considering first the unsmoothed KS case MFs, as shown in Fig. 4.10, it is

observed that the shape of the MFs adheres closely to the analytic form, although

differing in size at the peaks and troughs for V1 and V2. This is likely caused by the

presence of noise, as the smoothed case, displayed in Fig. 4.11, shows significantly

less difference in the size of the MFs compared to the analytic form. Though the MFs

of the smoothed KS adhere closely to the analytic form, there are slight differences

that could potentially indicate non-Gaussianity, although influence from the KS

reconstruction method would also have to be considered.

Now considering the MFs of the convergence maps reconstructed using the

wavelet pure mode estimator, there is a distinct difference not only in size of the

MFs but also the shapes. This difference is clear across all MFs and is much more

significant in the smoothed case. Comparing the unsmoothed case to the KS method
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Figure 4.10: Minkowski Functionals of unsmoothed convergence maps reconstructed with

the KS method, as shown in Fig. 4.4.
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Figure 4.11: Minkowski Functionals of smoothed convergence maps reconstructed with the

KS method, as shown in Fig. 4.7.
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MFs, the unsmoothed wavelet MFs similarly display the increased amplitude over

the analytic forms caused by noise. However, smoothing results in an increase in

the divergence from the analytic case, the opposite of what is found with the KS

method. Examining the convergence maps themselves, in Fig. 4.5 and Fig. 4.8, it is

observed that the extent of the apodisation is increased and thus is likely to be the

cause of the observed features of the MFs for the smoothed wavelet case.

From this MF comparison, we observe that the wavelet pure mode reconstruc-

tion is significantly non-Gaussian, with the source of this non-Gaussianity easily

traced to the apodisation effect at the mask boundary, which is absent in the KS

case. While the wavelet method has the advantage of producing cleaner maps with

mode-mixing eliminated, the mask boundary apodisation is a significant drawback

that results in a loss in information. This becomes especially problematic when the

areas under consideration are small enough such that a significant proportion is

affected by the apodisation, as can be seen in the DES Y1 reconstructed convergence

maps. While useful information may still be obtained from the larger unmasked

sections of the map, the smaller unmasked areas are almost entirely reduced to zero

due to this effect.

While it is necessary to apply smoothing to reduce influence from the noise,

post-recostruction smoothing has the adverse effect of increasing the extent of the

apodisation at the mask boundary.

Removing the apodisation at mask boundaries

In order to better isolate the effect of the boundary apodisation on the MFs,

we create an altered version of the original mask Mold. This altered mask Mnew is

constructed to remove additional pixels close to the original masked area that fall

below a certain absolute threshold and to be considered excessively apodised. This

new altered mask is displayed in Fig. 4.14, with Fig. 4.15 illustrating the difference

between the original mask and the altered mask. The altered mask is based on the

smoothed wavelet pure mode reconstructed convergence maps as these display

increased apodisation over the corresponding unsmoothed maps.

The construction of the altered mask is performed by evaluating each pixel in

a wavelet pure mode reconstructed convergence map κ. Each pixel is evaluated to
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Figure 4.12: Minkowski Functionals of unsmoothed convergence maps reconstructed with

wavelet pure estimators, as shown in Fig. 4.5.
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Figure 4.13: Minkowski Functionals of smoothed convergence maps reconstructed with

wavelet pure estimators, as shown in Fig. 4.8.
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check if it fulfils two conditions:

• The value of the convergence in this pixel falls below threshold κ0,

• The pixel is within range D of a pixel that is part of the original mask Mold.

The first condition identifies pixels that are potentially apodised, while the

second condition rules out pixels that have low convergence value but are not

apodised due to not being in range of the mask boundary. For the second condition

we must consider the distinction between the main continuous masked body at the

boundary of which significant apodisation is observed, and small masked areas of a

few pixels within the main body of unmasked data. These small masked areas do

not produce noticeable apodisation like at the boundaries of the continuous masked

area, hence they are neglected for the second condition and pixels within range of

these are not counted as potentially apodised. This is done analytically, but the two

parameters, the threshold κ0 and pixel range D, are to be adjusted to appropriately

match the value range of the convergence map and the pixel dimensions of the map

respectively, and were selected to be κ0 = 0.01 and D = 20

Observing the smoothed convergence map in Fig. 4.16 it can be seen that most

of the apodisation is removed, at the expense of the removal of some sections of the

data. Comparison between this unapodised area with the corresponding part of the

KS convergence map shows little difference in key features.

The effect of apodisation at the mask boundary on the Minkwoski functionals

is most clearly illustrated through comparing Fig. 4.13, corresponding to the con-

vergence map in Fig. 4.8, and Fig. 4.17, corresponding to the convergence map in

Fig. 4.16. With the removal of the apodised sections of the maps, the MFs show an

increase in resemblance to the analytic Gaussian random field MFs, while still retain-

ing the differences characterising the wavelet-based reconstruction. This marked

difference to the MFs of the smoothed wavelet case without adjusting for the apodis-

ation as shown in Fig. 4.13 suggest that it is preferable to remove the apodisation this

way if seeking to analyse the topology of the convergence field under such circum-

stances. While this accounts for the loss of information caused by the apodisation

that results in inaccurate results, this method is impractical to apply to observa-

tional data covering smaller areas as in such cases removing the apodised area may
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Figure 4.14: The new mask altered to remove the pixels affected by the boundary apodisa-

tion. This is constructed based on the apodisation found in the wavelet pure

mode smoothed convergence maps. The masked area is indicated in black, the

observed area is indicated in white.

remove too large a proportion of the data. Additionally, it is difficult to precisely

determine the extent of the apodisation as it does not apply in a way that can be

easily determined through an analytic formula, hence one must make a judgement

on how much to remove until the new map is deemed acceptably free from the mask

boundary apodisation.

Returning to the earlier derived statistics of the mean, standard deviation and

RMS, the values of these statistics for the smoothed wavelet pure mode convergence

map with the altered mask applied are given by Table 4.4. The new values display

a slight increase over the smoothed wavelet convergence maps with the unaltered

mask, as expected, but are still consistently below the corresponding values for the
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Figure 4.15: Comparison between original mask of DES Y1 shear data and new altered mask

constructed by deleting apodised pixels near the boundary. The altered mask is

constructed from data of the wavelet pure mode smoothed convergence maps.

The masked area is indicated in black, the observed area is indicated in white

and the grey area indicates removed pixels.

smoothed KS convergence maps. This indicates that apodisation influenced these

statistics, but is not enough to account for the entire difference with the KS map

statistics.
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(a)

(b)

Figure 4.16: Reconstruction of convergence maps using the KS method from DES Y1 shear

data, with additional new mask applied. This new altered mask is constructed

to remove the apodised pixels. Smoothing is applied in the form of a Gaussian

kernel. Displayed in stereographic projection rotated to centre on the area

shown.
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Figure 4.17: Minkowski Functionals of smoothed convergence maps reconstructed with

wavelet pure estimators, as shown in Fig. 4.16, with additional masking to

remove apodised area at boundary of original mask.
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E-mode B-mode

Mean 7.12751 ×10−6 4.28727 ×10−6

Standard deviation 0.00110 0.00091

RMS 0.00110 0.00091

Table 4.4: Table displaying the mean values of the reconstructed field.
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4.5 Conclusion

The use of the wavelet pure mode estimator for removing mode-mixing errors

in the convergence map reconstruction has been previously demonstrated in chap-

ter 3. The E-B mode separation is performed by applying a weighting function to

remove ambiguous modes, and the use of scale-discretised wavelets allows this

to be performed on different scales, alongside scale-dependent masking. Here we

demonstrate its application to existing data in the form of the DES Y1 weak lensing

catalogue. We find agreement between the wavelet pure mode estimator conver-

gence maps and mass maps obtained in Chang et al. [2017], with significant map

features matching and keeping in mind differences caused by the apodisation effect

at mask boundaries.

The most significant difference is the introduction of this apodisation effect

at mask boundaries, arising from the method of separating the E- and B-modes

with scale-dependent masking. While the KS convergence maps do not have this

apodisation, the KS case also neglects to account for masking and does not attempt

to remove ambiguous modes. However, the corresponding harmonic pure mode

estimator that accounts for the mask is poor at accurate reconstruction on the largest

scales as previously discussed in chapter 3. The apodisation effect can be seen in

chapter 3 through the pure wavelet residual maps showing greater difference along

the mask boundaries, although it is not as noticeable due to the much broader

masks used. It is probable that this apodisation is due to the wavelet pure estimator,

however similar issues arise from the harmonic pure mode estimator, as seen in

chapter 3, implying that this is an issue inherent to E-B estimators that incorporate

masking rather than neglecting the mask as the KS estimator.

The mean, standard deviation and root mean square of the convergence fields

are as expected, with means close to 0 and for all three the statistics for the wavelet

case are lower than for the KS case. In addition, we obtain Minkowski Functionals

for the convergence maps and observe close adherence to the analytic functions with

minor differences for the KS case, but more significant deviations for the wavelet

case. We apply further masking to the wavelet case maps to remove most of the

apodisation at the mask boundary, and see an improvement in the MFs, with the
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amplitudes of the MFs now being comparable to the analytic forms but retaining

some differences in shape that could provide further investigation.

While the use of wavelet pure mode estimators for E-B separation holds promise,

the apodisation effect at the mask boundary proves a challenge for data of large

enough sky coverage to demand reconstruction on the sphere and small enough

that the apodisation affects a significant proportion of the total area. This effect was

not as noticeable in chapter 3 due to the much larger unmasked areas used, and the

apodisation extent remains relatively constant independent of the mask. The most

straightforward method of dealing with this would be to increase sky coverage, but

in the interest of applying this method to existing data, it is also of interest to reduce

the apodisation at the mask boundary. It would be useful for future research to

further investigate the cause of this apodisation and potential methods of removing

or reducing it, using simulations in order to compare the original and reconstructed

E-modes and B-modes. In addition, future research could be performed for finding

the MFs of the E- and B-modes under such circumstances, to evaluate how probable

it is that the findings in this chapter indicate a potential deviation from the Gaussian

random field MFs.
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Conclusion

The aim of this thesis is to explore and evaluate new experimental techniques

in the field of weak lensing, with focus on the curved sky setting that will be

increasingly applicable to newer surveys as sky coverage increases. In this thesis

we have discussed the advantages and disadvantages of various techniques used

in extracting cosmological information from cosmic shear data. The results found

in chapter 2 favour performing peak count and MF analysis on the sphere when

sky coverage is significant enough to consider the spherical geometry of the data. In

chapter 3 we evaluate the wavelet pure mode estimator as a method of mass map

reconstruction and compare it with the KS estimator and the harmonic pure mode

estimator. In chapter 4, the use of the wavelet pure mode estimator is demonstrated

through application to DES Y1 data.

In chapter 2, we discussed how the act of projection from the sphere to the plane

distorts the topography of the data and analysed how this impacts the peak count

statistic and Minkowski functionals (MFs). Five planar projections were examined:

the Mercator, sinusoidal, stereographic, orthographic and gnomonic. The weak

lensing shear data used was simulated from the weak lensing power spectrum

using standard cosmology, across a set number of iterations. The analysis was

performed for the spherical and projected cases for each iteration of the map, using

the variance across these iterations to evaluate the error on the maps. The shear
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maps are constructed with additional noise in order to represent realistic conditions.

The reconstruction on the plane uses the standard Kaiser-Squires (KS) estimator for

each projected case. For the spherical case, the KS estimator is extended via spherical

harmonics to the geometry of the surface of the sphere at fixed radius. The mask

used has the full sphere masked except a simple circular area left unmasked, with

the size of this unmasked area being quantified by the opening angle on the sphere.

Smoothing is applied to the data at two stages - first during the generation of the

simulated data and then during the KS reconstruction to mitigate the effect of noise.

The degree of smoothing in the reconstruction step has a significant impact on the

convergence maps, and thus the peak counts and MFs.

Both the full sky and partial sky case are studied, with the partial sky case

being defined as the data with the mask applied. Both the opening angle for this

mask and the degree of smoothing during reconstruction are examined as variables,

as it is found that the projections perform better under different parameters for

masking and smoothing. The peak count statistic of a convergence map is the

number of detected peaks as a function of the signal-to-noise ratio (SNR) of the map.

The peak counts used are the density of detected SNR peaks over the area of sky

examined. Detection of the peaks is performed on the planar reconstructed maps for

the projected cases and on the sphere for the spherical case. Likewise, the MFs are

evaluated on the plane and sphere for the projected and spherical cases respectively.

It is found that for the peak counts in the full sky case, the number of peaks are

overestimated for the projected cases in comparison to the spherical case. This is

more significant at low SNR values and with less smoothing, indicating that this

effect is most likely caused by the detection of false peaks induced by the noise.

At higher SNR values, the peak counts converge for the cases, indicating that the

number of true peaks of the highest mass densities are less affected. However, at

high SNR there are very few peaks detected, leading to increased error. Peaks at

medium SNR values provide the most useful range of data for evaluation, lacking

the significant noise contamination at low SNR and high error due to low peak

count at high SNR. Increasing the smoothing brings the projected peak counts better

in line with the spherical case, although the Mercator projection still consistently

overestimates peak counts and excessive smoothing leads to underestimation in
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the gnomonic case. With an appropriate degree of smoothing, it is found that the

sinusoidal, stereographic and orthographic projections display a reasonable approx-

imation of the spherical case for peak counts for the full sky setting. The gnomonic

case is especially unsuited for the full sky setting due to tending to infinity at the

equator and significant distortion further from the projected poles.

The partial sky case examines only a circular area at the centre of the projection,

with the rest of the map being masked. The size of the unmasked circle is determined

by the opening angle as observed from the centre of the sphere. The projected maps

exhibit less shape and angular distortion closer to the centre of the projection, there-

fore it is expected that for smaller opening angles the projections and spherical map

will have a closer resemblance. With appropriate smoothing, on the smaller opening

angles examined, the peak counts of the gnomonic and orthographic projections

most closely match the spherical case. Comparing this with the figures in Section

2.2.2, the stereographic projection compresses the area focused on the north pole

more than the orthographic or gnomonic projections, implying a loss in information.

However, as the opening angle increases, provided the smoothing is kept the same,

the gnomonic projection becomes less accurate.

Considering now the MFs, V0,V1 and V2, there are visible, although minor,

differences between the cases for V0, which is reasonable as this corresponds to the

area at different SNR thresholds. The differences are more pronounced with V1 and

V2, measures of the boundary length and Euler characteristic respectively, with error

increasing for smaller opening angles examined. It was found that this difference

was caused by the influence of noise impacting the boundary lengths and Euler

characteristic of the maps, corresponding to V1 and V2 respectively. In addition, the

act of projection amplifies noise and performing reconstruction on the plane applies

uneven smoothing when compared to reconstruction on the sphere.

In an attempt to accommodate this, we tested using projection-dependent

smoothing. This evaluates maxima and minima of V1 and V2 for small opening

angles, where the projected MFs are expected to more closely match the spherical

MFs, and find the values of smoothing for which the MFs match across the examined

cases. This reduces the noise to an appropriate degree and decreases the differences

between the MFs on smaller opening angles. At larger opening angles and for the
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full sky case, the impact of noise should be reduced and therefore the differences

in MFs seen are expected to be caused by shape distortions due to the projections

themselves, rather than caused by the noise.

The differences between the projected cases and spherical cases for peak counts

and MFs can be mitigated through appropriate use of smoothing to reduce problems

such as noise effects being amplified in the projection. However this approach does

not deal with the underlying problems inherent to projection to the plane, especially

in the full sky setting. Hence when the sky coverage of the data is sufficient that the

spherical geometry must be considered, it is preferable to perform analysis on the

sphere rather than projecting to the planar setting.

The examination of the partial sky case used simple masks with a single circular

unmasked area, which do not accurately portray a realistic situation. While this is

suitable for the work done in chapter 2, further investigation into projection effects

using more realistic masks would be insightful, as non-circular masks would also

undergo shape distortion during projection.

The peak count statistic and MFs were selected for analysis due to probing the

non-Gaussianity and their clear dependence on the topology of the convergence

field. Investigating the effect of projection on two-point statistics (such as the corre-

lation function and power spectrum), genus statistics and higher-order spectra and

comparison between the spherical case and different projected cases could provide

a potential avenue for future study.

In chapter 3, we focus on reconstructing mass maps through E-B separation

using wavelet pure estimators. The presence of a mask induces ambiguous modes

which cannot be easily distinguished as E-modes or B-modes, leading to mode-

mixing and inaccuracies in recovered convergence maps. We explore the use of

wavelet pure estimators to separate E- and B-modes, drawing comparison with

the KS estimator (equivalent to a harmonic pseudo estimator which neglects the

mask) and harmonic pure estimator. The pure mode estimators work by applying a

weighting function to remove ambiguous modes, with the addition of the wavelet

estimator using scale-discretised wavelets allowing this, and the masking, to be

performed separately on distinct scales to allow greater precision. The harmonic
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pure and wavelet pure estimators incorporate data masking, while the KS does not.

Residual maps are constructed by taking the difference between the true convergence

map and the reconstructed convergence map at each pixel, with both maps being

appropriately masked. It is found that the KS residuals appear smaller on larger

scales, while the harmonic pure estimator residuals perform better on smaller scales

such as at mask boundaries, but display distinct bias on large scales. In comparison

to these, the wavelet pure estimator has significantly smaller residuals, hence less

difference between the true E- and B-modes and the reconstructed E- and B-modes.

Considering the mean ratios of the residuals to the reconstructed maps, the wavelet

pure estimator has the best performance, followed by the KS estimator. Despite its

apparent accuracy, the KS estimator neglects the mask and does not remove the

ambiguous modes correctly.

Possible avenues for future investigation would include using directional

wavelets and masks of different complexity and scale, in order to probe the key

features of the wavelet pure estimator, the use of scale-discretised wavelets with

scale-dependent masking.

The next step in the application of wavelet pure estimators is to apply them to

real data, which is done in chapter 4. We used the DES Y1 weak lensing data due

it being an example of a wide field survey with large sky coverage that techniques

such as the wavelet pure estimator is expected to be applied to. In terms of visible

features and mass distribution of the convergence map, we find good agreement

between reconstruction performed through other methods [Chang et al., 2017]

and our method using pure wavelet estimator E-B separation. However we find

a distinct drawback to the wavelet-based method in the form of apodisation at

the mask boundaries, which results in the loss of data in pixels close to the mask

boundaries. This can also be seen in the pure wavelet residual maps in chapter 3,

suggesting that this is inherent to the wavelet-based method. However, we have

seen that the harmonic pure estimator also has distinct drawbacks and its own slight

degree of apodisation, suggesting that such problems are inherent to estimators

attempting to accommodate the mask. This was not noticed in chapter 3 due to

the much larger area of analysis, in comparison to the smaller sky coverage for the

DES Y1 data. The extent of the apodisation was found to be consistent throughout
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a range of varied wavelet parameters and is most likely to be independent of the

mask or wavelets used.

The mean, standard deviation and RMS of the convergence fields are as expected

and indicate no significant bias. The MFs are also examined to compare the topology

of the wavelet pure estimator E-modes and B-modes to the Gaussian random field

case, displaying distinct deviation. However, it is almost certain that this deviation is

due to the aforementioned apodisation, making it unsuitable for analysis. We applied

an altered version of the mask to remove the apodised region and subsequently

analysed this smaller area with reduced apodisation. This gives more reasonable

MFs and with the adpodisation reduced it is more probable that the difference to

the Gaussian random field MFs is either caused by the reconstruction method or

indicates non-Gaussianity of the convergence field.

The use of wavelet pure estimators on data proved successful in that the recov-

ered fields agree with other reconstructed methods and have reduced contamination

due to mode-mixing. However, the mask boundary apodisation presents a major

problem and future work on the wavelet pure estimators as an E-B separation tech-

nique should focus on understanding the cause of this apodisation and reducing the

effect. As the range of the area apodised appears to be constant and unaffected by

altering the wavelet parameters, it is expected to perform better on surveys with

larger continuous sky coverage, but it is still of interest to find a way to reduce the

apodisation so the method can be applied to surveys of smaller sizes.

This thesis has investigated the application of various techniques for recon-

structing the convergence map from cosmic shear, with focus on performing this

reconstruction in the curved sky setting. Our findings support moving from perform-

ing reconstruction on the 2D plane to performing reconstruction on the spherical

setting in cases where the sky coverage is too large for flat-sky approximations to

hold. We demonstrated the application of the wavelet pure estimator as a means

of E-B separation to both simulated shear data and the DES Y1 shear data. While

its performance is good with the simulated data on the full sky with a broad mask

mimicking the Euclid mask, on smaller scales, such as for DES Y1, a distinct apodis-

ation around the mask boundary is observed and dealing with this will be necessary

if the wavelet pure estimator is to be applied to such data. Despite these drawbacks,
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the wavelet pure estimator still holds promise as an analysis tool for weak lensing

and should prove useful for upcoming large sky surveys.
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A Einstein Notation

When summing over tensors, the Einstein summation convention is often

used as shorthand. For two tensors xi = (x1, x2, ..., xN) and yi = (y1,y2, ...,yN), the

summation over the index i can be written as

xiyi =
N

∑
i

xiyi = x1y1 + x2y2 + ... + xNyN . (A.1)

B The Fourier Transform

Fourier analysis allows a given signal to be decomposed into a series of eigen-

functions in Fourier space. The Fourier transform of signal f (x) is denoted as (̃k)

where k is the Fourier coefficient of coordinate x, and is given by

f̃ (k) =
∫

f (x)e−2πixkdx (B.1)

and the corresponding inverse Fourier transform is

f (x) =
∫

f̃ (x)e2πixkdk. (B.2)

C The Spherical Harmonic Transform

The weak lensing signal exists natively on the curved sky geometry, hence

transformations of the signal between real and harmonic space should use spherical

coordinates. Extending the Fourier transform to the spherical setting involves sepa-

rating the angular coordinates (θ,φ) and radial coordinate r respectively. Subsequent

work in later chapters makes use of the spherical harmonic transform due to the

need to perform tasks on the data in both real and harmonic space.

A scalar signal on the sphere f (θ,φ) can be expanded into spherical harmonic

representation as

f (θ,φ) =
inf

∑
`=0

l

∑
m=−`

f`mY`m(θ,φ), (C.1)

where f`m are the spherical coefficients representing the signal in harmonic space,
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` and m are the harmonic coefficients corresponding to θ and φ respectively, and

Y`m(θ,φ) are the scalar spherical harmonic functions given by

Y`m(θ,φ) =

√
2l + 1

4π

(`−m)!
(`+ m)!

Pm
l (cosθ)eimφ, (C.2)

where Pm
l (x) are the Legendre polynomials. The harmonic coefficients f`m are ob-

tained through forward spherical harmonic transform with

f`m =
∫ 2π

φ=0

∫ π

θ=0
f (θ,φ)Y∗`m(θ,φ)sinθdθdφ. (C.3)

It can be seen from inserting Eq. C.2 into Eq. C.3 that the integration over φ is the

Fourier transform, hence Eq. C.3 becomes a Legendre transform as

f`m =
∫ π

θ=0
fm(θ)Pm

l (cosθ)sinθdθ. (C.4)

D The Fourier-Bessel Transform

Introducing the Fourier-Bessel transform allows representation in harmonic

space, with ` and m representing angular Fourier-Bessel coefficients and k represent-

ing the radial Fourier-Bessel coefficients. The Fourier-Bessel transform applied to

the sphere is

f`m(k) =
∫

S2
dΩ(nnn)

√
2
π

∫
R+

drr2 f (nnn,r)Y∗`m(nnn)j∗l (kr) (D.1)

where n = (θ,φ) denotes the angular position, dΩ(nnn) = sin(θ)dθdφ denotes inte-

grating over the sphere S2, R+ denotes all positive real numbers, Y∗`m denotes the

spin spherical harmonics and jl(kr) denotes the spherical Bessel function. Apply-

ing the Fourier-Bessel transform to Equation 1.2.4 allows the representation of the

Newtonian potential in Fourier-Bessel space as

Φ`m(k;r) =
3ΩM H2

0
2k2a(r)

δ`m(k;r). (D.2)

For reference, the inverse Fourier-Bessel transform is
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f (n,r) = ∑
`m

√
2
π

∫
R+

dkk2 f`m(k)Y`m(n)jl(kr) (D.3)

E The Limber Approximation

The Limber approximation (see Lemos et al. [2017]; Limber [1953]; LoVerde

and Afshordi [2008] for greater detail) is to simplify calculations of properties of a

3D homogeneous isotropic random field (e.g. the convergence or mass overdensity

fields) by relating said properties to those of the field’s 2D projection. Derived

originally in Limber [1953] for the 3D field representing counts of extragalactic

nebulae, it has been adapted to other fields of astrophysical research, including weak

lensing analysis. The approximation is usually used for computation of correlation

functions such as the power spectrum. The Limber approximation substitutes Bessel

functions with the following Dirac delta, δD, as ` tends towards infinity, [Kitching

et al., 2011]

lim
`→∞

j`(kr)→
√

π

2(`+ 1
2

(
kr−

(
`+

1
2

))
(E.1)

where r is the comoving radial distance coordinate, k is the harmonic coefficient of r

and ` is the harmonic coefficient of anglular position θ. Application of the Limber

approximation requires the integration be performed over small angular scales and

that the quantities being integrated vary at different rates, such that some of said

quantities vary slower than others.
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