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We present a variational data assimilation method in order to improve the accuracy of
velocity fields ṽ, that are measured using particle image velocimetry (PIV). The method
minimises the space-time integral of the difference between the reconstruction u and ṽ,
under the constraint, that u satisfies conservation of mass and momentum. We apply
the method to synthetic velocimetry data, in a two-dimensional turbulent flow, where
realistic PIV noise is generated by computationally mimicking the PIV measurement
process. The method performs optimally when the assimilation integration time is of the
order of the flow correlation time. We interpret these results by comparing them to one-
dimensional diffusion and advection problems, for which we derive analytical expressions
for the reconstruction error.
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1. Introduction
The particle image velocimetry (PIV) technique measures a fluid velocity field by

seeding the fluid with micron sized particles, and imaging their positions in a plane,
using a laser sheet (e.g. Adrian & Westerweel 2011). The measured fluid velocity ṽ(x, t)
at time t and position x is obtained from two consecutive images I (y, t− 1

2∆tPIV) and
I (y, t+ 1

2∆tPIV), with time difference ∆tPIV, by maximising for each x the correlation
function:

C (x) =

∫
fℓ(|x− y|)I (y, t− 1

2∆tPIV)I (y + ṽ(x, t)∆tPIV, t+
1
2∆tPIV)d

2y, (1.1)

where fℓ(x) is a (two dimensional) mask function, whose size ℓ2 is referred to as the
interrogation window. As an effect, PIV does not resolve the eddies that are smaller than
ℓ, i.e. the measured velocity field ṽ is a filtered version of the actual field v. Besides
filtering, PIV introduces additional noise, which depends in a complicated way on the
structure of the unresolved eddies, and on the out of plane velocity component of v,
as well as on the particle seeding density, particle image diameter, non-uniform laser
illumination and camera limitations, e.g. pixel locking and resolution.

Various methods have been proposed to mitigate the PIV noise. Some methods are
based on the data assimilation technique. This technique reconstructs a velocity field u
by minimising the difference between u and ṽ, under the constraint, that u satisfies con-
servation of mass and/or momentum. There are principally two distinct data assimilation
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methods, being the space integral method (SIM) (e.g. Humphrey 1993; Ruhnau et al.
2007; Suzuki 2012; Foures et al. 2014; Symon et al. 2017), and the space-time integral
method (STIM) (e.g. Talagrand & Courtier 1987; Gronskis et al. 2013; Mons et al. 2016;
Gillissen et al. 2018). In both methods the mismatch between the reconstructed field
u and the observed field ṽ is translated into a force field, that drives u towards ṽ. In
SIM the force at time t = t1 depends only on measurements ṽ at t1, while in STIM the
force at t1 depends on ṽ in a time window t1 < t < t1 + τ , where τ is referred to as
the assimilation time. In this approach the observations ṽ from t > t1 are propagated
backward in time to t1, to update the initial conditions of u at t1. As an effect STIM is
more computationally intensive and more accurate than SIM.

To our knowledge STIM has not yet been applied to improve PIV data. In this work
we fill this gap, and apply STIM to improve the accuracy of synthetic PIV data for a two-
dimensional (2-D) turbulent flow. In particular we study, how the reconstruction error ϵ
depends on the assimilation time τ , and the PIV measurement error, where the latter is
controlled by the size of the PIV interrogation window ℓ2. We interpret these numerical
results, by comparing them to one-dimensional diffusion and advection problems, for
which we derive analytical relationships between ϵ and the above mentioned parameters.

2. Data Assimilation Methods
In this work, we study the performance of a space-time integral method (STIM), to

improve the accuracy of synthetic PIV data for a two-dimensional (2-D) turbulent flow.
In order to evaluate its performance, we compare STIM to a space integral method
(SIM), which is less computationally intensive, but also less effective in reducing the PIV
measurement error. We derive the STIM and SIM in Secs. 2.1 and 2.2 below.

2.1. Space-Time Integral Method
We consider a PIV velocity field ṽ, which is a measurement of an actual velocity field

v, at evenly distributed time instances ti = i∆t, where i = 1, 2, 3, · · · , and ∆t is the
sampling time. We construct an improved velocity field u, by minimising the difference
between u and ṽ under the constraint that u satisfies the Navier–Stokes equations:

R(w) =

(
∂tu+ u ·∇u+∇p− ν∇2u

∇ · u

)
= 0, (2.1)

where w = (u, p) is referred to as the ‘state variable’, p is the fluid pressure and ν is the
fluid kinematic viscosity. We therefore minimise a constrained cost functional, referred
to as the Lagrangian L :

L =

∫ tP

t1

(
1
2 ||u− ṽ||2

P∑
i=1

δ(t− ti) + ⟨ŵ,R (w)⟩
)
dt, (2.2)

which involves a set of P measurements, taken from an assimilation window t1 < t < tP ,
where τ = tP − t1 is the assimilation time. The Lagrange multiplier ŵ = (û, p̂) is
introduced to enforce the constraint [Eq. (2.1)]. Note, that a hatˆabove a field variable
denotes, that the field variable is a Lagrange multiplier. In Eq. (2.2) time integration
is performed from the first to the last (P th) measurement, δ(·) denotes the Dirac delta
function, and || · || is the norm based on the standard inner product ⟨·, ·⟩, which, when
applied to two complex vector fields a and b, reads:

⟨a, b⟩ =
∫

dV a∗ · b. (2.3)
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Here V is the spatial domain size, on which a and b are defined, and the superscript ∗

denotes complex conjugation.
The goal is to find u, that minimises L [Eq. (2.2)]. Since u is determined by its initial

conditions u1, we determine u by minimising L w.r.t. u1. It is noted, that subscript
indices refer to time instances, e.g. u1 = u(t1). To minimise L w.r.t. u1, we need the
gradient of L w.r.t. u1, i.e. δL /δu1. To derive an expression for δL /δu1 we start by
writing the variation of the cost functional δL due to infinitesimal variations of the state
variable δw = (δu, δp):

δL =

∫ tP

t1

(
⟨ u− ṽ, δu⟩

P∑
i=1

δ(t− ti) + ⟨ŵ, δR (w)⟩
)
dt. (2.4)

We rewrite the Lagrange multiplier term in Eq. (2.4) using integration by parts (e.g.
Gunzburger 2003):

δL =

∫ tP

t1

(
⟨ u− ṽ, δu⟩

P∑
i=1

δ(t−ti)+⟨R̂(w, ŵ), δw⟩
)
dt+⟨ûP , δuP ⟩−⟨û1, δu1⟩, (2.5)

where R̂ is the adjoint of the linearised Navier–Stokes equations R [Eq. (2.1)]:

R̂(w, ŵ) =

(
−∂tû− u ·

(
∇û+∇ûT

)
−∇p̂− ν∇2û

−∇ · û

)
, (2.6)

where a hat ˆ above an operator denotes the adjoint of the linearised version of that
operator, and ∇ûT is the transpose of ∇û. In Eq. (2.5) the terms involving ûP and û1

are time-boundary terms, that are obtained by integrating by parts the time derivative
term in ⟨ŵ, δR(w)⟩ in Eq. (2.4). These terms determine the initial and final conditions
for û at t = tP and at t = t1, respectively. We do not consider similar spatial boundary
terms, as we assume spatial periodicity, for simplicity.

We find the initial value u1 that minimises the cost functional L [Eq. (2.2)], using
a conjugate gradient method, by iteratively updating u1 in a search direction, that is
related to the functional derivative of L w.r.t. u1. From Eq. (2.5) we find that:

δL

δu1
= −û1. (2.7)

To find the Lagrange multiplier û1 at instant t1, we use the equation of motion for û.
This equation is derived from Eq. (2.5), by demanding that the Lagrangian L is at an
extremum w.r.t. the state variable w, i.e. δL is zero under infinitesimal variation δw:

−∂tû− u ·
(
∇û+∇ûT

)
−∇p̂− ν∇2û+ (u− ṽ)

∑P
i=1 δ(t− ti) = 0,

−∇ · û = 0.

(2.8a)

According to Eq. (2.8a), the Lagrange multiplier û is incompressible and is advected by
u and is subjected to a (negative) viscosity −ν and is driven by a source term, which is
the difference between the measurement ṽ and the reconstruction u, at discrete sampling
times ti. Due to the negative viscosity, the equation is integrated backward in time. The
corresponding ‘initial’ conditions at time tP and ‘final’ conditions at time t1 are found
from Eq. (2.5), by demanding that δL is zero under infinitesimal variations δuP and
δu1, giving:

ûP = 0, (2.8b)



4 J.J.J. Gillissen et al.

and:
û1 = 0. (2.8c)

The conjugate gradient update direction û1 [Eq. (2.7)] is found by integrating Eq.
(2.8a) backward in time, using ‘initial’ conditions given by Eq. (2.8b). After updating
the initial conditions for the forward problem u1, Eq. (2.1) is integrated (forward in
time), which gives a new source term for the Lagrange multiplier equation [Eq. (2.8a)].
This procedure is repeated until L is at an extremum, w.r.t. u1, which, according to Eq.
(2.7), corresponds to Eq. (2.8c) being satisfied, to a certain degree of accuracy.

2.2. Space Integral Method
In this work we compare the performance of the space-time integral method [STIM;

Eq. (2.2)] to a space integral method (SIM), which is similar to previously used methods,
to improve PIV data (e.g. Ruhnau et al. 2005). The SIM minimises, at each instant t = ti,
the following cost functional, which penalises the difference between the reconstruction
u and the measurement ṽ, under the constraint that u is divergence free:

L = 1
2 ||u− ṽ||2 + ⟨p̂,∇ · u⟩+ 1

2κ∥∇
2u∥2, (2.9)

and where a regularisation term κ∥∇2u∥2 is added to suppress the noise at large
wavenumbers (e.g. Tikhonov & Arsenin 1977). Here κ is referred to as the regularisation
strength. Minimising L w.r.t. u involves computing the variation of L due to a variation
in u:

δL = ⟨u− ṽ, δu⟩ − ⟨∇p̂, δu⟩+ ⟨κ∇4u, δu⟩, (2.10)
where we have applied integration by parts. To find the reconstructed velocity field u,
we demand that δL is zero under infinitesimal variation δu:(

1 + κ∇4
)
u = ṽ +∇p̂. (2.11)

Here the term ∇p̂ ensures that u is divergence free:

∇ · u = 0. (2.12)

The solution to Eqs. (2.11, 2.12) in Fourier space reads:

uk =
ṽk

1 + κk4
·
(
δ − kk

k2

)
, (2.13)

where the superscript indices refer to the wavevectors of the spatial Fourier modes.
Equation (2.13) shows, that the regularisation term in the cost functional [Eq. (2.9)]
effectively applies hyper diffusion to the measurement field ṽ. The order of the hyper
diffusion, which in this case equals four, depends on the exponent on the velocity gradient
in the κ-term in Eq. (2.9), which in this case equals two. For a unit exponent we would
have recovered normal, second order diffusion (see e.g. Ruhnau et al. 2005). Fourth order
diffusion is chosen above second order diffusion however, since the former affects more
selectively the large wavenumbers, while leaving the small wavenumbers intact.

3. Linear Problems
3.1. General Considerations

In this work we study the performance of the space-time integral method [STIM;
Eq. (2.2)] to improve the accuracy of synthetic PIV data. Before considering two-
dimensional (2-D) turbulent flow cases in Sec. 4, we start in this section by considering
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one-dimensional (1-D) linear problems, for which analytical expressions can be derived
for the method performance. In general, the linear equation of motion reads:

∂tu− S(u) = 0, (3.1)

where S is a linear spatial operator. We decompose the spatial part of u into the Fourier
modes exp(ikx), where k is the wavenumber and where i =

√
−1:

u = uk(t) exp(ikx). (3.2)

Here uk(t) are the time-dependent Fourier coefficients, and summation of repeated indices
is assumed. It is noted, that superscript indices refer to Fourier coefficients. Inserting Eq.
(3.2) into Eq. (3.1) and taking the inner product [Eq. (2.3)] of the result with exp(ilx)
and using the orthogonality property of exp(ikx), gives the equation of motion of ul:

∂tu
l −M lkuk = 0, (3.3)

where M lk = ⟨exp(ilx), S exp(ikx)⟩ is the Fourier representation of S. Similarly we
decompose the Lagrange multiplier into: û = ûk(t) exp(ikx), where it is recalled, that a
hatˆabove a field variable denotes, that the field variable is a Lagrange multiplier. The
evolution equation for the Fourier coefficients ûl is derived, following similar lines as for
Eq. (2.8), and is given by:

−∂tû
l −M∗lkûk +

(
ul − ṽl

) P∑
i=1

δ(t− ti) = 0, (3.4a)

where M∗lk is the complex conjugate of M lk. The initial and final conditions for Eq.
(3.4a) read:

ûl
1 = 0, (3.4b)

and:
ûl
P = 0. (3.4c)

To allow for an analytical treatment of the problem, we assume, in this section, that
the PIV measured velocity field ṽ is related to the actual velocity field v as follows:

ṽ = v + v′, (3.5a)

where v′ is white noise with standard deviation σv, and (·) is the following spatial filter:

v(x) =

∫
fℓ(|x− y|)v(y)dy. (3.5b)

Here fℓ(x) is a mask function of width ℓ. In Fourier space, the PIV measurement
operation [Eq. (3.5)] reads:

ṽl = F lk
(
vk + v′k

)
, (3.6)

where F lk is the Fourier representation of the filter operator [Eq. (3.5b)], which is assumed
to be a sharp cutoff filter, with a width of kfilter = 2π/ℓ:

F kl = δkl
{

1 if k ⩽ kfilter
0 if k > kfilter

. (3.7)

It is noted, that actual PIV noise is more complex than white noise. Assuming white
noise is necessary however to make analytical progress. In Sec. 4.3 we consider more
realistic noise when applying the method to 2-D turbulent flow cases.
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Without loss of generality, we assume that t1 = 0 and we introduce the following
notation for the forward integration, from t = t1 to t = ti, of the linear equation [Eq.
(3.3)]:

ul
i = Glk

i uk
1 , (3.8a)

where Glk
i is given by:

Glk
i = exp(M lkti). (3.8b)

It is recalled, that subscript indices refer to time instances. With this notation, the
backward in time integration of Eq. (3.4a), from t = tP to t = t1, starting at t = tP with
ûk
P = 0, is written as:

ûl
1 =

P∑
i=1

G∗lk
i

(
uk
i − ṽki

)
, (3.9)

Using Eqs. (3.6, 3.8a):
ṽli = F lk

(
Gkm

i vm1 + v′ki
)
,

we rewrite Eq. (3.9) into:

ûl
1 =

P∑
i=1

G∗lm
i

[
Gmk

i uk
1 − Fmn

(
Gnk

i vk1 + v′ni
)]

. (3.10)

It is recalled that superscript indices refer to spatial Fourier modes. For the ease of
notation, we replace these superscript indices with vector notation, such that Eq. (3.10)
reads:

û1 =

P∑
i=1

G∗
i · [Gi · u1 − F · (Gi · v1 + v′

i)] . (3.11)

Minimisation of the cost functional corresponds to û1 = 0, which results in the
following reconstruction error:

u1 − v1 =

( P∑
i=1

G∗
i ·Gi

)−1

·
P∑
i=1

G∗
i · F ·Gi − δ

 · v1

+

(
P∑
i=1

G∗
i ·Gi

)−1

·
P∑
i=1

G∗
i · F · v′

i. (3.12)

The error [Eq. (3.12)] consists of two terms. The first term is referred to as the filter
error, and the second term is referred to as the noise error. In the next subsections, we
analyse the behaviour of these two terms, as a function of the assimilation time τ , for
the cases of diffusion and advection.

3.2. Diffusion
We consider scalar diffusion with diffusivity ν on a domain of size 2π. The Fourier

representation of the corresponding operator S(u) = ν∂2
xu reads:

Mkl = −νk2δkl, (3.13)

which is diagonal, meaning that the Fourier modes evolve independently. Inserting
Gkl

i = exp(−k2νti)δ
kl and Eq. (3.7) into Eq. (3.12), gives that for a single mode with

wavenumber k ⩽ kfilter, the filter error is zero [first term on r.h.s of Eq. (3.12)], while the
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Figure 1. (a) Theoretical standard deviation of the reconstruction error σϵ [Eq. (3.16)] for a
diffusing Fourier mode, relative to the standard deviation of the measurement error of that mode
σv as a function of the dimensionless assimilation time 2νk2τ for various dimensionless sampling
times 2νk2∆t. (b) The evolution of a scalar profile, with u(t = 0) = cos(x), that is advected by
an inhomogeneous velocity field U cos(x). (c) Theoretical standard deviation σϵ and absolute
value of mean |µϵ| of the reconstruction error [Eq. (3.12)] for the k = 1 mode in non-uniform
advection [Eq. (3.17)] based on a measurement filter, that only passes the k = 1 mode [Eq. 3.7].

noise error is nonzero [second term on r.h.s of Eq. (3.12)], and is given by:

uk
1 − vk1 =

∑P
i=1 exp

(
−k2νti

)∑P
j=1 exp (−2k2νtj)

v′ki . (3.14)

Assuming that v′ki has a zero mean and a non-zero standard deviation σv, the mean of
the error ϵ = uk

1 − vk1 is zero, and its standard deviation σϵ equals:

σϵ =

√√√√ P∑
i=1

(
exp (−k2νti)∑P

j=1 exp (−2k2νtj)
σv

)2

=
σv√∑P

i=1 exp (−2k2νti)
. (3.15)

By recalling that ti = ∆t(i − 1), where ∆t = τ/(P − 1) is the sampling time, and
τ = tP − t1 is the assimilation time, and by using that

∑P−1
i=0 xi = (xP − 1)/(x− 1), we

find:

σϵ = σv

√
exp (−∆t′)− 1

exp (−τ ′ −∆t′)− 1
, (3.16)

where τ ′ = 2τνk2 and ∆t′ = 2νk2∆t are the assimilation time and the sampling time,
non-dimensionalised with the correlation time T = (2k2ν)−1. For ∆t′ ≪ τ ′ ≪ 1, Eq.
(3.16) predicts the expected behaviour, that the standard deviation of the noise error σϵ

scales inversely with the square root of the number of samples P , i.e. σϵ = σv

√
∆t′/τ ′ =

σv/
√
P . For τ ′ ≫ 1 ≫ ∆t′ on the other hand, the reconstruction is affected only by a

fraction of the total number of samples P , whose time distances are smaller than the
correlation time. The number of contributing samples is then equal to the correlation
time divided by the sampling time, which in non-dimensional units reads: 1/∆t′ ≪ P .
In this case σϵ scales inversely with the square root of this number, i.e. it grows with the
square root of the sampling time σϵ = σv

√
∆t′.

Eq. (3.16) is plotted in Fig. 1a as a function of τ ′ for various ∆t′ showing the transition
from inverse square root to constant. The graph illustrates, that the reconstruction does
not improve when information is added beyond the correlation time of the system T =
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(2k2ν)−1, i.e. measurements at time ti ≫ T do not influence the reconstruction at time
t = 0.

3.3. Advection
Next we consider the advection of a scalar u in an inhomogeneous velocity field

U cos(x), with an amplitude U and a unit wavenumber on a domain of size 2π. The
evolution of a scalar profile u(x, t) with u(x, t = 0) = cos(x) is sketched in Fig. 1b. The
Fourier representation of the corresponding operator S(u) = −U cos(x)∂xu is given by:

Mkl = − ilU

2

(
δl,k−1 + δl,k+1

)
. (3.17)

We compute the error [Eq. (3.12)] in the small time limit τ ||M || ≪ 1, such that Gi [Eq.
(3.8b)] is approximated by:

Gi ≈ δ + i∆tM , (3.18)
which to leading order in τ ||M || gives:

u1 − v1 =
[
F − δ +

τ

2
(F ·M −M · F )

]
· v1 + P−1

P∑
i=1

F · v′
i, (3.19)

where we have used that τ = ∆tP . Using Eqs. (3.7, 3.17), we see that the noise error
[second term on the r.h.s. of Eq. (3.19)] equals:

P−1
P∑
i=1

F klv′li =

{
P−1

∑P
i=1 v

′k
i if k ⩽ kfilter

0 if k > kfilter
, (3.20)

and the leading order of the filter error [first term on the r.h.s. of Eq. (3.19)] equals:

[
F kl − δkl +

τ

2

(
F kmMml −MkmFml

)]
vl1 =


0 if k < kfilter

− 1
4 iUτ(k + 1)vk+1 if k = kfilter

vk1 if k > kfilter

.

(3.21)
Equation (3.21) shows a 0% and a 100% error for k < kfilter and k > kfilter, and an
intermediate error for k = kfilter, which is explained as follows. When acting on the kfilter
mode at t = 0, the advection operator [Eq. (3.17)] creates kfilter +1 and kfilter − 1 modes
at t = τ . Since the kfilter +1 mode is cut off by the filter [Eq. (3.7)], the resulting filtered
signal at t = τ contains insufficient information, to fully reconstruct the kfilter mode at
t = 0, which explains the intermediate filter error for k = kfilter in Eq. (3.21). Combining
Eqs. (3.20, 3.21), we write for the total reconstruction error ϵ = ukfilter

1 − vkfilter
1 for the

k = kfilter mode:

ukfilter
1 − vkfilter

1 = − iUτ(kfilter + 1)

4
vkfilter+1
1 + P−1

P∑
i=1

v′kfilter
i . (3.22)

The mean of the error µϵ is due to the filtering:

µϵ = − iUτ(kfilter + 1)

4
vkfilter+1
1 , (3.23a)

and the standard deviation of the error σϵ is due to the noise:

σϵ = σv

√
∆t

τ
, (3.23b)
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where we have used that P = τ/∆t, and that v′kfilter
i are uncorrelated random variables

with a standard deviation σv. The (absolute value of the) filter error [Eq. (3.23a)]
increases with the assimilation time τ , since the advection operator [Eq. (3.17)] re-
distributes the Fourier modes from the resolved part of the spectrum k ⩽ kfilter to the
unresolved part k > kfilter. The noise error [Eq. (3.23b)], on the other hand, decreases
with τ , i.e. it decreases as the inverse square root of the number of samples P ∼ τ , similar
as in the diffusion problem [Eq. (3.16)].

It is recalled, that µϵ and σϵ in Eq. (3.23) are obtained by linearly expanding Gi in
i∆t [Eq. (3.18)]. In Fig. 1c we plot µϵ and σϵ, based on the full non-linear operator
[Eq. (3.8b)], and by numerically evaluating Eqs. (3.7, 3.12, 3.17), where we have used
kfilter = 1. In agreement with Eq. (3.23), the figure shows, that, the (absolute value of
the) filter error |µϵ| increases, and the noise error σϵ decreases, as functions of τ .

4. Two-Dimensional Turbulence
4.1. Setup

In this section we study the performance of the space-time integral method [STIM;
Eq. (2.2)], to improve the accuracy of synthetic PIV data for a two-dimensional (2-D),
incompressible, decaying turbulent velocity field v, on a square, bi-periodic domain of
size L = 2π. The flow starts at t = 0 from a random velocity field, with a norm of
U = ||v|| = 1.

It is emphasised, that the present test case is a purely 2-D flow, which may be realised in
the laboratory using large aspect ratio flow cells (e.g. Shats et al. 2007) or soap films (e.g.
Gillissen et al. 2018). Since the reconstruction principles are equivalent in 2-D and 3-D,
these principles are studied most effectively in 2-D. Purely 2-D flow is not to be confused
with planar PIV measurements of a 3-D flow. In this context, it is noted, that measuring
turbulence in a single plane is insufficient to reconstruct volumetric turbulence, which
instead requires three-dimensional PIV, involving for instance the use of four cameras,
and tomographic reconstruction algorithms (e.g. Scarano 2012). It is further noted that
the characteristics of the measurement errors in tomographic PIV are different than in
standard PIV, and the ability of STIM to reduce these errors deserves further study.

We non-dimensionalise our variables using the velocity scale U , and the length scale
L/(2π), which corresponds to a time scale L/(2πU ). Starting from random conditions
at t = 0, the flow takes a few time units to develop physical structures. We apply the
reconstruction thereafter, i.e. within the period 2 < t < 2 + T , where the reconstruction
interval is chosen to be T = 10. We define the following PIV errors for the kinetic energy
ϵ̃K :

ϵ̃K = T−1

∫ 2+T

2

∫
(ṽ − v)

2
dV∫

v2dV
dt, (4.1)

for the pressure ϵ̃p:

ϵ̃p = T−1

∫ 2+T

2

∫
p2 (ṽ − v) dV∫
p2 (v) dV

dt, (4.2)

and for the energy dissipation ϵ̃D :

ϵ̃D = T−1

∫ 2+T

2

∫
D (ṽ − v) dV∫

D (v) dV
dt, (4.3)

where it is recalled, that v is the true velocity field and ṽ is the synthetic PIV velocity
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field. The dissipation field is given by:

D (u) = ν∇u : ∇u, (4.4)

and the pressure field is computed from the equation of state:

∇2p(u) = −∇∇ : uu, (4.5)

and reads in Fourier space:

pk (u) = −kk : ukuk

k2
, (4.6)

where the superscript indices refer to the Fourier wavevectors. Similarly we define the
following reconstruction errors for the kinetic energy ϵK :

ϵK = T−1

∫ 2+T

2

∫
(u− v)

2
dV∫

v2dV
dt, (4.7)

for the pressure ϵp:

ϵp = T−1

∫ 2+T

2

∫
p2 (u− v) dV∫
p2 (v) dV

dt, (4.8)

and for the energy dissipation ϵD :

ϵD = T−1

∫ 2+T

2

∫
D (u− v) dV∫

D (v) dV
dt, (4.9)

where it is recalled that u is the reconstructed velocity field.
The reconstruction time interval 2 < t < 2+T is split into segments of size τ , referred

to as the assimilation time. In each of these segments, a reconstruction problem is solved,
which finds the velocity field at the start of that segment u1. While the initial guess for
the initial conditions of the first segment is zero: u1 = 0, a considerable improvement
of the reconstruction is achieved by using for the initial guess for the initial conditions
of the following segments, the final conditions of each previous segment (Gillissen et al.
2018). Figure 3a illustrates this improvement, by plotting the time dependence of the
instantaneous reconstruction error in the kinetic energy ϵ′K :

ϵ′K =

∫
(u− v)

2
dV∫

v2dV
. (4.10)

In this figure each line segment corresponds to one assimilation window with a time
interval of τ .

The synthetic PIV data ṽ are generated by adding noise to the true velocity field v.
The true velocity field is generated by numerically simulating the Navier–Stokes equations
[Eq. (2.1)], which in the absence of forcing mechanisms, and starting from random initial
conditions, results in freely decaying turbulence. The numerical method uses Fourier
functions to compute spatial derivatives (e.g. Canuto et al. 1988). Time integration is
performed using the second-order, explicit Adams–Bashforth scheme for the advection
terms and the second-order, implicit Crank–Nicolson scheme for the diffusion terms. The
number of grid points is N2 = 1282, which is sufficient to resolve all length scales, and
the numerical integration time step is 1× 10−3, which is sufficiently small, such that the
numerical solution does not change, upon reducing the time step. The initial random
velocity field is constructed by assigning random numbers to the Fourier modes, whose
absolute wavevectors |k| ⩽ 8, while the remaining Fourier modes are assumed zero. The
initial velocity field is normalised, such that U = ||v|| = 1 at t = 0. The viscosity is
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Figure 2. (a) Auto-correlation C of the various modes (with absolute wavevector k), of the true
vorticity field ∇×v, as a function of the time-distance t between the pair of values, obtained by
analysing data in the time interval 2 < t < 12. (b) Vorticity field at time t = 2 of the synthetic
PIV data ∇ × ṽ using a noise level of σv = 0.3, and a reciprocal filter width of kfilter = 32.
(c) Vorticity field at time t = 2 of the corresponding STIM reconstruction ∇ × u, using an
assimilation time of τ = 0.16 and a sampling time of ∆t = 5× 10−3.

ν = 7.3 × 10−4, which corresponds to a Reynolds number, based on the velocity scale
U = 1 and on the domain size L = 2π, of Re = U L/ν = 8.6× 103. The correlation time
of the resulting turbulent flow is around T ∼ 1, see Fig. 2a.

To generate synthetic PIV data ṽ, we add noise to the simulated, true velocity field v.
In this work we consider two types of noise. First, we consider in Sec. 4.2 white PIV noise,
which is an idealisation compared to realistic PIV noise. This simplification, however,
allows for a systematic variation of the noise properties and a clear interpretation of
the method performance, through a comparison with the analytical results in Sec.
3. In addition, we consider in Sec. 4.3, realistic PIV noise, that are generated by
computationally mimicking the PIV measurement process. To this end we employ a
rather crude synthetic PIV algorithm, which excludes state of the art noise reduction
technologies. The resulting synthetic PIV error is highly correlated, which provides an
extremely stringent test case for STIM. This is opposite to the white noise error in Sec.
4.2, which is tackled effectively by STIM. We expect that in practical situations, the
effectiveness of the STIM is in between these two extreme cases.

4.2. White PIV Noise
First we consider idealised PIV data ṽ, which are constructed by adding white noise

to the true velocity field v, and subsequently applying a filter [Eq. (3.5)]. The standard
deviation of the noise σv is referred to as the noise level, and the reciprocal filter width
is denoted kfilter = 2π/ℓ.

Figure 2b visualises the resulting synthetic PIV vorticity field ∇ × ṽ at t = 2, using
a noise level of σv = 0.3, and a reciprocal filter width of kfilter = 32. The corresponding
reconstructed vorticity ∇×u, that is produced by the space-time integral method (STIM)
is shown in Fig. 2c, where we have used an assimilation time of τ = 0.16, and a sampling
time of ∆t = 5 × 10−3. The noise in the reconstruction is significantly reduced, as
compared to the synthetic PIV data in Fig. 2b.

Figure 3b shows the PIV error in the kinetic energy ϵ̃K [Eq. (4.1)] as a function
of the reciprocal filter width kfilter for a noise level of σv = 0.9. It is seen that ϵ̃K
depends non-monotonically on kfilter, i.e. an initial decrease is followed by an increase.
This non-monotonicity reflects, that low wavenumber modes, contain more flow structure
than noise, while large wavenumber modes contain more noise than structure. Low
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Figure 3. STIM performance for idealised synthetic PIV data with white noise. (a)
Instantaneous STIM reconstruction error in the kinetic energy ϵ′K [Eq. (4.10)] as a function
of time t, using a reciprocal filter width of kfilter = 16, a noise level of σv = 0.3, an assimilation
time of τ = 0.16, and a sampling time of ∆t = 5× 10−3. (b) PIV error in the kinetic energy ϵ̃K
[Eq. (4.1)] (triangles) and reconstruction error in the kinetic energy ϵK [Eq. (4.7)] using STIM
(circles) and SIM (squares), as functions of kfilter, using σv = 0.9, τ = 0.16 and ∆t = 5× 10−3.
(c) STIM reconstruction error ϵK as a function of ∆t, using kfilter = 32, τ = 0.64, and varying
σv. (d) STIM reconstruction error ϵK as a function of τ , using kfilter = 32, ∆t = 5× 10−3, and
varying σv. In subfigures (b-d), ϵK and ϵ̃K are averaged over five reconstructions, using different
true velocity fields v, with different (random) initial conditions.

wavenumber modes therefore improve the measurement, while high wavenumber modes
deteriorate the measurement.

Figure 3b also shows the corresponding STIM reconstruction error in the kinetic energy
ϵK [Eq. (4.7)] as a function of kfilter, where we have used an assimilation time of τ = 0.16,
and a sampling time of ∆t = 5×10−3. It is seen that ϵK follows the non-monotonic trend
of the PIV error ϵ̃K . For kfilter ⩽ 4, the STIM does not improve the PIV data, i.e. ϵ̃K ≈ ϵK ,
while for kfilter ⩾ 4, the STIM improves the accuracy of the data, with a maximum error
reduction of two decades in the absence of spatial filtering, i.e. for kfilter = N = 128.

Next we compare the performance of the space-time integral method [STIM; Eq.
(2.2)] to that of the space integral method [SIM; Eq. (2.9)]. Whereas STIM reduces
measurement noise by fitting a solution to the Navier-Stokes equation to time-dependent
measurement data, SIM achieves this, by applying a hyper diffusion process to the
measurement data. The hyper diffusivity is referred to as the regularisation strength κ.
This parameter must be chosen sufficiently large, as to dampen the small scale noise, and
sufficiently small, as to not affect the large scale, energy containing eddies. A parametric
study (not shown) revealed that κ = 10−6 U [L/(2π)]3 is a suitable value, for the test
case at hand. Figure 3b shows the resulting SIM reconstruction error in the kinetic energy
ϵK [Eq. (4.7)] as a function of kfilter. As expected, SIM is less effective in reducing the
measurement error than STIM. In the absence of spatial filtering (kfilter = N = 128) SIM
achieves a ten-fold reduction in measurement error, whereas STIM achieves a hundred-
fold reduction under identical conditions.
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As STIM fits a solution to the Navier-Stokes equation to time-dependent measurement
data, the performance of STIM increases with the sampling frequency, i.e. the STIM
reconstruction error ϵK [Eq. (4.7)] increases with the sampling time ∆t. This feature is
illustrated in Fig. 3c, where we plot ϵK as a function of ∆t, and where we have used
a reciprocal filter width of kfilter = 32, an assimilation time of τ = 0.64, and various
noise levels σv. The data in Fig. 3c show, that the error in the kinetic energy ϵK depends
linearly on ∆t, which is consistent with the square root dependence of the scalar error
on ∆t, for the linear diffusion problem [Eq. (3.16)].

Figure 3d shows the STIM reconstruction error ϵK [Eq. (4.7)] as a function of the
assimilation time τ , for a reciprocal filter width kfilter = 32, a sampling time of ∆t =
5 × 10−3, and for various noise levels σv. It is seen that ϵK depends non-monotonically
on τ , where for small τ , the error decreases, while for large τ the error increases, in
qualitative agreement with linear theory [Eqs. (3.16, 3.23)]. This error increase reflects
that information de-correlates over long times, making the inverse problem of minimising
Eq. (2.2) ill-posed. In the linear advection problem, a similar increase in the reconstruc-
tion error ϵK with τ was observed [Eq. (3.23b); Fig. 1c], which is related to the loss
of information from the resolved modes into the unresolved (filtered) modes. This loss
of information therefore bears an analogy with the de-correlation of information in the
2-D turbulent flow, which corresponds to a dissipation of kinetic energy, via the energy
cascade, into heat.

4.3. Realistic PIV Noise
Next we generate synthetic velocimetry data with realistic PIV noise by computing

trajectories of passive point particles. The total number of particles Np(L/ℓ)
2 is chosen

such, that there are on average Np particles inside the PIV interrogation window of size
ℓ. The interrogation window corresponds to 322 image pixels. The image size of the total
domain is therefore (32L/ℓ)2 pixels. Each particle generates a light intensity image, which
is a Gaussian function with a standard deviation of 0.7 pixels. A PIV image is constructed
by superimposing the Gaussian images of all the particles. To compute the PIV velocity
field at t = ti, we generate two particle images at t = ti − 1

2∆tPIV and t = ti +
1
2∆tPIV.

The image time difference equals ∆tPIV = 0.02ℓ/U . To find the PIV velocity vector at
position x we apply a mask of width ℓ and center x to these images, and maximise the
correlation between the masked images at t = ti − 1

2∆tPIV and t = ti +
1
2∆tPIV, as given

in Eq. (1.1). The PIV velocity field is determined using a sliding interrogation window,
on N2 = 1282 spatial points, which is the same spatial grid, as is used in the fluid
flow simulations. The location of the correlation maximum is determined with sub-pixel
accuracy by fitting a paraboloid to the correlation function in a region of 3 × 3 pixels
around the pixel with the largest intensity.

We apply the PIV algorithm described above, to the simulated two-dimensional tur-
bulent flow, which is described in Sec. 4.1. The resulting synthetic PIV error ṽ − v is
correlated with the true velocity v, as shown by the joint probability density function
(JPDF) of ṽ − v and v in Fig. 4a. Figures 4b, c, d compare the corresponding true
velocity field v, the synthetic PIV velocity field ṽ, and the reconstructed velocity field u
using STIM, respectively. The comparison shows, that STIM significantly improves the
accuracy of the PIV data. The data in Fig. 4 are taken at time t = 4, using a reciprocal
filter width of kfilter = 2π/ℓ = 32, a PIV particle density of Np = 2, an assimilation time
of τ = 0.64, and a sampling time of ∆t = 5× 10−3.

In Fig. 5a, we study the PIV error in the kinetic energy ϵ̃K [Eq. (4.1)] as a function of
Np, using kfilter = 32, τ = 0.64, and ∆t = 5 × 10−3. As expected Np < 1 is ineffective,
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b) c) d)

Figure 4. (a) Joint probability density function (JPDF) of ṽ−v and v, where ṽ is the synthetic
PIV velocity field and v is the true velocity field. (b) Snapshot of the true velocity field v.
(c) Snapshot of the synthetic PIV velocity field ṽ. (d) Snapshot of the STIM reconstructed
velocity field u. The data in (a-d) are taken at time t = 4, using a reciprocal filter width of
kfilter = 2π/ℓ = 32, an assimilation window of τ = 0.64, and a sampling time of ∆t = 5× 10−3.
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Figure 5. STIM performance for synthetic velocimetry data with realistic PIV noise. (a) The
PIV error in the kinetic energy ϵ̃K [Eq. (4.1)] as a function of the PIV particle density Np, using
a reciprocal filter width of kfilter = 2π/ℓ = 32, an assimilation time of τ = 0.64, and a sampling
time of ∆t = 5 × 10−3. (b) The PIV error in the kinetic energy ϵ̃K [grey circles; Eq. (4.1)], in
the pressure ϵ̃p [grey squares; Eq. (4.2)], and in the energy dissipation ϵ̃D [grey triangles; Eq.
(4.3)], and the STIM reconstruction error in the kinetic energy ϵK [white circles; Eq. (4.7)],
in the pressure ϵp [white squares; Eq. (4.8)], and in the energy dissipation ϵD [white triangles;
Eq. (4.9)], as functions of kfilter, using Np = 2, τ = 0.64, and ∆t = 5 × 10−3. (c) The STIM
reconstruction error in the kinetic energy ϵK [Eq. (4.7)] as a function of ∆t, using kfilter = 32,
Np = 2, and τ = ∆t. In subfigures (a-c), the presented errors are averaged over five simulations,
using different true velocity fields v, with different (random) initial conditions.

resulting in a 100% error ϵ̃K ≈ 1. When Np exceeds unity, ϵ̃K drops sharply, and for
large NP the error saturates at ϵ̃K ∼ 10−2.

In Fig. 5b we study the PIV error in the kinetic energy ϵ̃K [Eq. (4.1)], in the pressure
ϵ̃p [Eq. (4.2)], and in the energy dissipation ϵ̃D [Eq. (4.3)], as functions of kfilter, using
Np = 2. The PIV error in the pressure ϵ̃p is similar to that in the kinetic energy ϵ̃K ,
and these errors increase with decreasing kfilter. This reflects, that a larger interrogation
window ℓ cuts off more energy, resulting in larger errors. The PIV error for the dissipation
ϵ̃D is two orders of magnitude larger than that for the energy and the pressure, and ϵ̃D
is independent of kfilter. This independence reflects, that the dissipative scales are poorly
captured by the PIV image correlation algorithm, irrespective of kfilter, in the range
considered.

In addition to the PIV errors, we also plot in Fig. 5b, the corresponding STIM
reconstruction errors for the kinetic energy ϵK [Eq. (4.7)], the pressure ϵp [Eq. (4.8)]
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and the dissipation ϵD [Eq. (4.9)], where we used τ = 0.64, and ∆t = 5 × 10−3. It is
seen, that STIM reduces the PIV error by a factor of around three for both the energy
and the pressure, while it reduces the error for the dissipation by a factor of up to 100.
This result illustrates, that STIM significantly improves the structure of the dissipating
eddies, which are generally poorly represented by PIV. This conclusion is also supported
by the snapshots in Fig. 4.

STIM [Eq. (2.2)] fits a solution of the Navier-Stokes equations to time dependent
measurement data. We have seen in Fig. 3d, that, in the case of white measurement
noise, the accuracy of the fit can be made arbitrarily small, by increasing the data
density, i.e. by reducing the sampling time ∆t. For realistic PIV noise, the situation is
different, however. This is illustrated in Fig. 5c, showing, that for synthetic velocimetry
data with realistic PIV noise, the STIM reconstruction error in the kinetic energy ϵK
does not depend on ∆t, provided that ∆t is smaller than the flow correlation time T ∼ 1
(Fig. 2a). This means, that the maximum sampling time, that still produces a reasonable
reconstruction, is of the order of the flow correlation time, and adding more intermediate
samples does not necessarily improve the reconstruction.

5. Conclusions
We have derived a space-time integral method to reduce the PIV measurement noise.

The performance of the method is studied using synthetic PIV data in a 2-D turbulent
flow. Under the assumption of white measurement noise, there is a non-monotonic
relationship between the reconstruction error ϵ and the assimilation time τ , where ϵ
decreases with τ , when τ is smaller than the turbulent correlation time T , while ϵ
increases with τ , for τ ≳ T . This supports the notion that predicting the flow at time
t based on flow measurements at time t+ τ is an ill-posed problem, when τ exceeds the
flow correlation time.

To interpret these numerical results, we compare them to linear problems, for which
we have derived analytical expressions for ϵ, which show a similar non-monotonic de-
pendence on τ . This non-monotonicity is explained by a decomposition of ϵ into a noise
contribution, which decreases with τ , due to an increase in the number of samples, and
a filter contribution, which increases with τ , due to a loss of information from resolved
to unresolved modes.

We also apply the method to synthetic velocimetry data with realistic PIV noise in a
2-D turbulent flow. The method is shown to reduce the realistic PIV noise and to improve
the small scale structures, although to a lesser extent as for the idealised PIV data, with
white measurement noise.
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