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What determines where we look? Theories of attentional guid-
ance hold that image features and task demands govern fixation
behavior, while differences between observers are interpreted as
a “noise-ceiling” that strictly limits predictability of fixations. How-
ever, recent twin studies suggest a genetic basis of gaze-trace
similarity for a given stimulus. This leads to the question of how
individuals differ in their gaze behavior and what may explain
these differences. Here, we investigated the fixations of >100 hu-
man adults freely viewing a large set of complex scenes containing
thousands of semantically annotated objects. We found system-
atic individual differences in fixation frequencies along six seman-
tic stimulus dimensions. These differences were large (>twofold)
and highly stable across images and time. Surprisingly, they also
held for first fixations directed toward each image, commonly
interpreted as “bottom-up” visual salience. Their perceptual rele-
vance was documented by a correlation between individual face
salience and face recognition skills. The set of reliable individual
salience dimensions and their covariance pattern replicated across
samples from three different countries, suggesting they reflect
fundamental biological mechanisms of attention. Our findings
show stable individual differences in salience along a set of fun-
damental semantic dimensions and that these differences have
meaningful perceptual implications. Visual salience reflects fea-
tures of the observer as well as the image.
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Humans constantly move their eyes (1). The foveated nature of
the human visual system balances detailed representations with

a large field of view. On the retina (2) and in the visual cortex (3)
resources are heavily concentrated toward the central visual field,
resulting in the inability to resolve peripheral clutter (4) and the
need to fixate visual objects of interest. Where we move our eyes
determines which objects and details we make out in a scene (5, 6).
Models of attentional guidance aim to predict which parts of

an image will attract fixations based on image features (7–10)
and task demands (11, 12). Classic salience models compute
image discontinuities of low-level attributes, such as luminance,
color, and orientation (13). These low-level models are inspired
by “early” visual neurons and their output correlates with neural
responses in subcortical (14) and cortical (15) areas thought to
represent neural “salience maps.” However, while these models
work relatively well for impoverished stimuli, human gaze be-
havior toward richer scenes can be predicted at least as well by
the locations of objects (16) and perceived meaning (9). When
sematic object properties are taken into account, their weight for
gaze prediction far exceeds that of low-level attributes (8, 17). A
common thread of low- and high-level salience models is that
they interpret salience as a property of the image and treat in-
terindividual differences as unpredictable (7, 18), often using
them as a “noise ceiling” for model evaluations (18).
However, even the earliest studies of fixation behavior noted

considerable individual differences (19, 20), which recently
gained wide-spread interest, ranging from behavioral genetics to
computer science. Basic occulomotor traits, like mean saccadic
amplitude and velocity, reliably vary between observers (21–28).

Gaze predictions based on artificial neural networks can improve
when being trained on individual data (28, 29), or taking ob-
server properties like age into account (30). The individual de-
gree of visual exploration is correlated with trait curiosity (31,
32). Moreover, twin-studies show that social attention and gaze
traces across complex scenes are highly heritable (33, 34). Taken
together, these recent studies suggest that individual differences
in fixation behavior are not random, but systematic. However,
they largely focused on “content neutral” (32) or agnostic mea-
sures of gaze, like the spatial dispersion of fixations (32, 34, 35),
the correlation of gaze traces (33), or the performance of indi-
vidually trained models building on deep neural networks (28,
31, 29). Therefore, it remains largely unclear how individuals
differ in their fixation behavior toward complex scenes and what
may explain these differences. Here, we explicitly address this
question: Can individual fixation behavior be explained by the
systematic tendency to fixate different types of objects?
Specifically, we tested the hypothesis that individual gaze re-

flects individual salience differences along a limited number of
semantic dimensions. We investigated the fixation behavior
of >100 human adults (36) freely viewing 700 complex scenes,
containing thousands of semantically annotated objects (8). We
quantified salience differences as the individual proportion of
cumulative fixation time or first fixations landing on objects with
a given semantic attribute. In free viewing, the first fixations after
image onset are thought to reflect “automatic” or “bottom-up”
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salience (37–39), especially for short saccadic latencies (40, 41).
They may therefore reveal individual differences with a deep
biological root. We tested the reliability of such differences
across random subsets of images and across retests after several
weeks. We also tested whether and to which degree individual
salience models can improve the prediction of fixation behavior
along these dimensions beyond the noise ceiling of generic
models. To test the generalizability of salience differences, we
replicated their set and covariance pattern across independent
samples from three different countries. Finally, we explored
whether individual salience differences are related to personality
and perception, focusing on the example of face salience and
face recognition skills for the latter.

Results
Reliable Salience Differences Along Semantic Dimensions. We
tracked the gaze of healthy human adults freely viewing a broad
range of images depicting complex everyday scenes (8). A first
sample was tested at the University College London, United
Kingdom (Lon; n = 51), and a replication sample at the University
of Giessen, Germany (Gi_1; n = 51). This replication sample was
also invited for a retest after 2 wk (Gi_2; n = 48). Additionally we
reanalyzed a public dataset from Singapore [Xu et al. (8); n = 15].
First, we probed the individual tendency to fixate objects with

a given semantic attribute, measuring duration-weighted fixa-
tions across a free-viewing period of 3 s. We considered a total of
12 semantic properties, which have previously been shown to
carry more weight for predicting gaze behavior (on an aggregate
group level) than geometric or pixel-level attributes (8). To test
the consistency of individual salience differences across inde-
pendent sets of images, we probed their reliability across 1,000
random (half-) splits of 700 images. Each random split was identical
across all observers, and for each split individual differences seen

for one-half of the images were correlated with those seen for the
other half. This way we tested the consistency of relative differences
in fixation behavior across different subsets of images, without
confounding them with image content (e.g., the absolute frequency
of faces in a given subset of images). We found consistent indi-
vidual salience differences (r > 0.6) for 6 of the 12 semantic at-
tributes: Neutral Faces, Emotional Faces, Text, objects being
Touched, objects with a characteristic Taste (i.e., food and bever-
ages), and objects with implied Motion (Fig. 1, gray scatter plots).
Observers showed up to twofold differences in the cumulative

fixation time attracted by a given semantic attribute and the
median consistency of individual differences across image splits
for these six dimensions, ranged from r = 0.64 P < 0.001 (Motion)
to r = 0.94, P < 0.001 (Faces; P values Bonferroni-corrected for 12
consistency correlations) (SI Appendix, Table S1, left hand side).
Previous studies have argued that extended viewing behavior is

governed by cognitive factors, while first fixations toward a free-
viewed image are governed by “bottom-up” salience (37–39),
especially for short saccadic latencies (40, 41). Others have found
that perceived meaning (9, 42) and semantic stimulus properties
(8, 43) are important predictors of gaze behavior from the first
fixation. We found consistent individual differences also in the
proportion of first fixations directed toward each attribute. The
range of individual differences in the proportion of first fixations
directed to each of the six attributes was up to threefold, and
thus even larger than that for cumulative fixation time. Impor-
tantly, these interobserver differences were consistent for all
dimensions found for cumulative fixation time except Motion
(r = 0.34, not significant), ranging from r = 0.57, P < 0.001 (Taste)
to r = 0.88, P < 0.001 (Faces; P values Bonferroni-corrected for 12
consistency correlations) (green scatter plots in Fig. 1 and SI
Appendix, Table S1, right hand side).
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Fig. 1. Consistent individual differences in fixation
behavior along six semantic dimensions. For each se-
mantic attribute, the gray scatter plot shows individual
proportions of cumulative fixation time for the odd
versus even numbered images in the Lon dataset. The
green scatter plot shows the corresponding individual
proportions of first fixations after image onset. Black
inset numbers give the corresponding Pearson correla-
tion coefficient. For each dimension, two example im-
ages are given and overlaid with the fixations from one
observer strongly attracted by the corresponding at-
tribute (orange frames) and one observer weakly
attracted by it (blue frames). The overlays show the first
fixation after image onset as a green circle; any sub-
sequent fixations are shown in purple. The two data
points corresponding to the example observers are
highlighted in the scatter plot, corresponding to the
color of the respective image frames. All example stimuli
from the OSIE dataset, published under the Mas-
sachusetts Institute of Technology license (8). Black bars
were added to render faces unrecognizable for display
purposes only (participants saw unmodified stimuli).
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These salience differences proved robust for different splits of
images (Fig. 2A) and replicated across datasets from three dif-
ferent countries (SI Appendix, Fig. S1 and Table S1). For the
confirmatory Gi_1 dataset, we tested the same number of ob-
servers as in the original Lon set. A power analysis confirmed
that this sample size yields >95% power to detect consistencies
with a population effect size of r > 0.5. For cumulative fixation
time (gray histograms in Fig. 2A), the six dimensions identified in
the Lon sample, closely replicated in the Gi_1, Gi_2 samples, as
well as in a reanalysis of the public Xu et al. (8) dataset, with
consistency correlations ranging from 0.65 (Motion in the Gi_1
set) to 0.95 [Faces in the Xu et al. (8) dataset] (SI Appendix,
Table S1, left column, and SI Appendix, Fig. S1). A similar pat-
tern of consistency held for first fixations (green histograms in
Fig. 2A), although the consistency correlation for Emotion
missed statistical significance in the small Xu et al. dataset (8)
(SI Appendix, Table S1, right column, and SI Appendix, Fig. S1).
The individual salience differences we found were consistent

across subsets of diverse, complex images. To test whether they
reflected stable observer traits, we additionally tested their retest
reliability for the full image set across a period of 6–43 d (aver-
age 16 d; Gi_1 and Gi_2 datasets). Salience differences along all
six semantic dimensions were highly consistent over time (Fig.
2B). This was true for both cumulative fixation time [retest re-
liabilities ranging from r = 0.68, P < 0.001 (Motion) to r = 0.85,
P < 0.001 (Faces)] (gray bars in Fig. 2B and left column of SI
Appendix, Table S1) and first fixations [retest reliabilities ranging
from r = 0.62, P < 0.001 (Taste) to r = 0.89, P < 0.001 (Text)]
(green bars in Fig. 2B and right column of SI Appendix, Table S1).
Additional control analyses confirmed that individual salience

differences persisted independent of related visual field biases
(SI Appendix, Supplementary Results and Discussion and Fig. S6).

Individual Differences in Visual Exploration. Previous studies
reported a relationship between trait curiosity and a tendency for
visual exploration, as indexed by anticipatory saccades (31) or
the dispersion of fixations across scene images (32). The latter
was hypothesized to be a “content neutral” measure, independent
of the type of salience differences we investigated here. Our data
allows us to explicitly test this hypothesis. We ran an additional
analysis, testing whether the number of objects fixated is truly
independent of which objects an individual fixates preferentially.
First, we tested whether individual differences in visual explo-

ration were reliable. The number of objects fixated significantly
varied across observers, with a maximum/minimum ratio of 1.4
[Xu et al. (8)] to 1.9 (Lon) within a sample. Moreover, these indi-
vidual differences were highly consistent across odd and even images
in all four datasets (all r > 0.98, P < 10−11) and showed good test-
retest reliability (r =, 80, P < 10−11 between Gi_1 and Gi_2).
Crucially, however, we observed no significant relationship

between the individual tendency for visual exploration and the
proportion of first fixations landing on any of the six individual
salience dimensions we identified (SI Appendix, Table S2, right
hand side). For the proportions of cumulative dwell time, there
was a moderate negative correlation between visual exploration
and the tendency to fixate emotional expressions, which was
statistically significant in the three bigger datasets (Lon, Gi_1,
and Gi_2; all tests Holm-Bonferroni–corrected for six dimen-
sions of interest) (SI Appendix, Table S2, left hand side). This
negative correlation was not a mere artifact of longer dwelling on
emotional expressions limiting the time to explore a greater
number of objects. It still held when the individual proportion of
dwell time on emotional expressions was correlated with the
number of objects explored in images not containing emotional
expressions (r < −0.52, P < 0.001 for all three datasets).

Individual Predictions Improve on the Generic Noise Ceiling.We took
a first step toward evaluating how individual fixation predictions
may improve on generic, group-based salience models. If individual
differences were noise, then the mean of many observers should be
the best possible predictor of individual gaze behavior. That is, the
theoretical optimum of a generic model is the exact prediction of
group fixation behavior for a set of test images, including fixation
ratios along the six semantic dimensions identified above.
Could individual predictions improve on this generic optimum?
We pooled fixation data across the 117 observers in the Lon, Gi,

and Xu et al. (8) samples and randomly split the data into training
and test sets of 350 images each (random splitting was repeated
1,000 times, with each set serving as test and training data once,
totaling 2,000 folds). For each fold, we further separated a target
individual from the remaining group, iterating through all individ-
uals in a leave-one-observer-out fashion. For each fold and target
observer, the empirical fixation ratios of the remaining group served
as the (theoretical) ideal prediction of a generic salience model
for the test images. We compared the prediction error for this
ideal generic model to that of an individualized prediction.
The individual model was based on the assumption that fixation

deviations from the group generalize from training to test data. It
thus adjusted the prediction of the ideal generic model, based on
the target individual’s deviation from the group in the training
data. Specifically, the target individual’s fixation ratios for the
training set were converted into units of SDs from the group mean.
These z-scores were then used to predict individual fixation ratios
for the test images, based on the mean and SD of the remaining
group for the test set. Note that the individual model should per-
form worse than the ideal generic one if deviations from the group
are random (see SI Appendix, Supplementary Methods for details).
Averaged across folds and cumulated across dimensions, the

individual model reduced the prediction error for cumulative dwell
time ratios for 89% of observers (t116 = 11.39, P < 0.001) and for
first fixation ratios for 77% of observers (t116 = 8.32, P < 0.001).

A

B

Fig. 2. Consistency of results across images and time. (A) Distribution of
bootstrapped split-half correlations for each of the 12 semantic dimensions
tested (as indicated by the labels on the x axis in B). The gray left-hand leaf
of each distribution plot shows a histogram of split-half correlations for
1,000 random splits of the image set, the green right-hand leaf shows the
corresponding histogram for first fixations after image onset. Overlaid dots
indicate the median consistency correlation for each distribution. High split-
half correlations indicate consistent individual differences in fixation across
images for a given dimension. The dashed red line separates the six attrib-
utes found to be consistent dimensions of individual differences in the Lon
sample. Data shown here is from the Lon sample and closely replicated
across all datasets (SI Appendix, Fig. S1). (B) Retest reliability across the Gi_1
and Gi_2 samples. The magnitude of retest correlations for individual dwell
time and proportion of first fixations is indicated by gray and green bars, re-
spectively. All correlation and P values can be found in the SI Appendix, Table S1.
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Across the group, this corresponded to a reduction of the mean
cumulative prediction error from 10.09% (± 0.42% SEM) to
5.33% (± 0.10% SEM) for cumulative dwell time ratios and from
14.31% (± 0.56%, SEM) to 9.61% (± 0.10% SEM) for first fixa-
tion ratios. Individual predictions explained 74% of the error
variance of ideal generic predictions for cumulative dwell time
ratios and 58% of this error variance “beyond the noise ceiling” for
first fixation ratios (again, averaged across folds and cumulated
across dimensions) (see Fig. 3 and SI Appendix, Fig. S2 for
individual dimensions).

Covariance Structure of Individual Differences in Semantic Salience.
Having established reliable individual differences in fixation
behavior along semantic dimensions, we further explored the
space of these differences by quantifying the covariance between
them. For this analysis we collapsed neutral and emotional faces
into a single Faces label, because they are semantically related
and corresponding differences were strongly correlated with
each other (r = 0.74, P < 0.001; r = 0.81, P < 0.001 for cumulative
fixation times and first fixations, respectively). Note that we
decided to keep these two dimensions separated for the analyses
above because the residuals of fixation times for emotional faces
still varied consistently when controlling for neutral faces (r =
0.73, P < 0.001), indicating an independent component (however,
the same was not true for first fixations, r = 0.24, not significant).
The resulting five dimensions showed a pattern of pairwise

correlations that allowed the identification of two clusters (Fig.
4B). This was illustrated by the projection of the pairwise (dis)
similarities onto a 2D space, using metric dimensional scaling (SI
Appendix, Fig. S3). Faces and Motion were positively correlated
with each other, but negatively with the remaining three attrib-
utes: Text, Touched, and Taste. Interestingly, Faces, the most
prominent dimension of individual fixation behavior, was strongly
anticorrelated with Text and Touched, the second and third most
prominent dimensions [Text: r = −0.62, P < 0.001 and r = −0.47,
P < 0.001 for cumulative fixation times and first fixations, re-
spectively (Fig. 4 A, Upper); Touched: r = −0.58, P < 0.001 and
r = −0.80, P < 0.001 (Fig. 4 A, Lower)]. These findings closely
replicated across all four datasets (SI Appendix, Fig. S3). Pair-wise
correlations between (z-converted) correlation matrices from
different samples ranged from 0.68 to 0.95 for cumulative fixa-
tion times and from 0.91 to 0.98 for first fixations.

Perceptual Correlates of Salience Differences. If salience differences
are indeed deeply rooted in the visual cortices of our observers,
then this might have an effect on their perception of the world.
We aimed to test this hypothesis by focusing on the most prom-
inent dimension of salience differences: Faces, as indexed by the
individual proportion of first fixations landing on faces (which is
thought to be an indicator of bottom-up salience). Forty-six

observers from the Gi sample took the Cambridge Face Memory
Test (CFMT) and we tested the correlation between individual
face salience and face recognition skills. CFMT scores and the
individual proportion of first fixations landing on faces corre-
lated with r = 0.41, P < 0.005 (SI Appendix, Fig. S4, Right).
Interestingly, this correlation did not hold for the individual
proportion of total cumulative fixation time landing on faces,
which likely represents more voluntary differences in viewing
behavior (r = 0.21, not significant) (SI Appendix, Fig. S4, Left).
Additionally, we explored potential relationships with per-

sonality variables, but found no significant correlations between
gaze behavior and standard questionnaire measures (SI Appen-
dix, Supplementary Results and Discussion and Fig. S5).

Discussion
Individual differences in gaze traces have been documented
since the earliest days of eye-tracking (19, 20). However, the
nature of these differences was unclear, and therefore traditional
salience models have either ignored them or used them as an
upper limit for predictability (“noise-ceiling”). Our findings show
that what was thought to be noise can actually be explained by a
canonical set of semantic salience differences. These salience
differences were highly consistent across hundreds of complex
scenes, proved reliable in a retest after several weeks, and per-
sisted independently of correlated visual field biases. This shows
that visual salience is not just a factor of the image; individual
salience differences are a stable trait of the observer, not only the
set of these differences, but also their covariance structure rep-
licated across independent samples from three different coun-
tries. This may partly be driven by environmental and image
statistics (for example, faces are more likely to move than food).
But it may also point to a neurobiological basis of these differences.
This possibility is underscored by earlier studies showing that the
visual salience of social stimuli is reduced in individuals with autism
spectrum disorder (33, 44, 45). Most importantly, recent twin
studies in infants and children show that individual differences in
gaze traces are heritable (33, 34). The gaze trace dissimilarities
investigated in these twin studies might be a manifestation of

Fig. 3. Individual and generic prediction errors for fixation behavior. Pre-
diction errors for proportions of fixations along the six semantic dimensions
of individual salience. The (theoretical) ideal generic model predicted the
group mean exactly, while individual models aimed to adjust predictions
based on deviations from the group (seen for an independent set of training
images). Prediction errors for the individual and generic models are shown in
blue and red, as indicated. The line plots (shades) indicate the mean pre-
diction error (±1 SEM) across observers. First fixation data shown on the Left,
and cumulative dwell time on the Right, as indicated by the axis labels. For
corresponding predictions and empirical data see SI Appendix, Fig. S2.
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Fig. 4. Covariance of individual differences along semantic dimensions. (A)
Gray scatter plots show the individual proportion of cumulative fixation time
(in %) for Faces versus Text (Left) and Faces versus objects being Touched
(Right). Green scatter plots show the corresponding data for the individual
proportion of first fixations after image onset. (B) Correlation matrix for in-
dividual differences along five semantic dimensions (left hand side; note that
the labels for emotional and neutral faces were collapsed for this analysis).
Color indicates pairwise Pearson correlation coefficients as indicated by the
bar.Motion and Face are positively correlated with each other, but negatively
correlated with the remaining dimensions. This was also reflected by a two-
cluster solution of metric dimensional scaling to two dimensions (SI Appendix,
Fig. S3). All data shown are based on individual proportions of fixation time in
the Lon dataset. For the corresponding consistency of this pattern for first
fixations and across all four datasets, see SI Appendix, Fig. S3.
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the salience differences we found here, which would imply a
strong genetic component for individual salience differences.
Individual differences in gaze behavior have recently gained

attention in fields ranging from computer science to behavioral
genetics (28, 32–35). Previous findings converged to show such
differences are systematic, but provided no clear picture of their
nature. Our results show that individual salience varies along a set
of semantic dimensions, which are among the best predictors of
gaze behavior (8). Nevertheless, we cannot exclude the possibility
of further dimensions of individual salience. For example, for
some of the dimensions for which we found little or unreliable
individual differences (watchable, touch, operable, gazed, sound,
smell), such differences may have been harder to detect because
they carry less salience overall (8). Lower overall numbers of fix-
ations come with a higher risk of granularity problems. However,
given that our dataset contains an average of over 5,000 fixations
per observer for a wide range of images, it seems unlikely we
missed any individual salience dimension of broad importance due
to this problem. Future studies may probe the (unlabeled and
potentially abstract) features of convolutional neural networks
that carry weight for individual gaze predictions and may inform
the search for further individual salience dimensions (17, 28).
Recent findings in macaque suggest that fixation tendencies

toward faces and hands are linked to the development and
prominence of corresponding domain-specific patches in the
temporal cortex (46, 47). It is worth noting that most of the reliable
dimensions of individual salience differences we found correspond
to domain-specific patches of the ventral path [as is true for Faces
(48–50), Text (51, 52), Motion (53), Touched (46, 54, 55), and
maybe Taste (56)]. This opens the exciting possibility that these
differences may be linked to neural tuning in the ventral stream.
Our findings raise important questions about the individual nature

of visual perception. Two observers presented with the same image
can end up with a different perception (5, 6) and interpretation (57)
of this image when executing systematically different eye movements.
Vision scientists may be chasing a phantom when “averaging out”
individual differences to study the “typical observer” (58–60), and
vice versa perception may be crucial to understanding individual
differences in cognitive abilities (61, 62), personality (63, 64), social
behavior (33, 44), clinical traits (65–67), and development (45).
We only took a first step toward investigating potential observer

characteristics predicting individual salience here. Individual face
salience was moderately correlated with face recognition skills.
Interestingly, this was only true when considering the proportion
of first fixations attracted by faces. Immediate saccades toward
faces can have very short latencies and be under limited voluntary
control (68, 69), likely reflecting bottom-up processing. This raises
questions about the ontological interplay between face salience
and recognition. Small initial differences may grow through mu-
tual reinforcement of face fixations and superior perceptual pro-
cessing, which would match the explanation of face processing
difficulties in autism given by learning style theories (70).
We also investigated potential correlations with major per-

sonality dimensions, but found no evidence of such a relation-
ship. Individual salience dimensions also appeared largely
independent of the general tendency for visual exploration. How-
ever, one exception was the negative correlation between visual
exploration and cumulative dwell time on emotional expressions,
which may point to an anticorrelation of this salience dimension
with trait curiosity (31, 32, 71). Future studies could use more
comprehensive batteries to investigate the potential cognitive,

emotional, and personality correlates of individual salience.
Individual salience may also be influenced by cultural differences
(72), although it is worth noting that the space of individual differ-
ences we identified here seemed remarkably stable across culturally
diverse samples. Finally, our experiments investigated individual
salience differences for free viewing of complex scenes. Perceptual
tasks can bias gaze behavior (11, 20) and diminish the importance of
visual salience, especially in real world settings (12). It would be of
great interest to investigate to which degree such differences persist
in the face of tasks and whether they can affect task performance.
For example, does individual salience predict attentional capture by
a distractor, like the text of a billboard seen while driving?
In summary, we found a small set of semantic dimensions that

span a space of individual differences in fixation behavior. These
dimensions replicated across culturally diverse samples and also ap-
plied to the first fixations directed toward an image. Visual salience is
not just a function of the image, but also of the individual observer.

Methods
Subjects, Materials, and Paradigm. The study comprised three original datasets
[the Lon (n = 51), Gi_1 (n = 51), and Gi_2 (n = 48) samples (36)] and the
reanalysis of a public dataset [the Xu et al. sample (8), n = 15]. The Gi_2
sample was a retest of participants in the Gi_1 dataset after an average of
16 d. The University College London Research Ethics Committee approved the
Lon study and participants provided written informed consent. The Justus
Liebig Universität Fb06 Local Ethics Committee (lokale Ethik-Kommission des
Fachbereichs 06 der Justus Liebig Universität Giessen) approved the Gi study
and participants provided written informed consent.

Participants in all samples freely viewed a collection of 700 complex everyday
scenes, each shown on a computer screen for 3 s, while their gaze was tracked.
Participants in the Lon sample additionally filled in standard personality ques-
tionnaires and participants in theGi_1 sample completed a standard test of face
recognition skills (see SI Appendix, Supplementary Methods for more details).

Analyses. We harnessed preexisting metadata for objects embedded in the
images (8) to quantify individual fixation tendencies for 12 semantic attributes.
Specifically, we used two indices of individual salience: (i) the proportion of
cumulative fixation time spent on a given attribute and (ii) the proportion of
first fixations after image onset attracted by a given attribute (both expressed
in percent) (see SI Appendix, Supplementary Methods for details).

We tested the split-half consistency of these measures across 1,000 random
splits of images and their retest reliability across testing sessions of theGi_1 and
Gi_2 samples. Additionally, we tested whether individual deviations from the
group mean for a set of training images could be used to predict individual
group deviations for a set of test images and to which degree such individual
predictions would improve on an ideal generic model. To investigate the co-
variance pattern of the six most reliable dimensions, we investigated the
matrices of pairwise correlations and performed multidimensional scaling. The
generalizability of the resulting pattern was tested as the correlation of sim-
ilarity matrices across samples. We further tested pairwise correlations be-
tween dimensions of individual salience and personality in the Lon sample and
between face salience and face recognitions skills in the Gi sample (see SI
Appendix, Supplementary Methods for further details).

Availability of Data and Code. Anonymized fixation data and code to re-
produce the results presented here are freely available at https://osf.io/n5v7t/.
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