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Abstract 

During their operational life, offshore wind turbines (OWTs) may be exposed to severe storms, 

resulting in extreme wind and wave loading acting on the OWT structure (and substructure). 

This paper proposes quantifying financial losses associated with an OWT exposed to extreme 

wind and waves using a probabilistic risk modelling framework, as a first step towards 

evaluating offshore wind farm (OWF) resilience. The proposed modelling framework includes 

a number of novel elements: 1) the development of site-specific fragility relationships (i.e., 

likelihood of different levels of damage experienced by an OWT over a range of hazard 

intensities), properly accounting for uncertainties in both structural capacity and demands; 2) 

the implementation of a closed-form technique, based on a combinatorial system reliability 

approach, to assess failure consequences (e.g., financial loss) for both structural and non-

structural components; 3) a coherent treatment of epistemic uncertainties across the framework 

(e.g., sampling variability in fragility estimation), providing loss results accounting for 

uncertainty of estimation. These aspects can allow for more informative comparisons of various 

design solutions in terms of structural fragility and risk and/or an improved evaluation of 

probabilistic losses for decision making. An illustrative application to two case-study sites is 

presented as a simplified walk-through of the calculation steps in the proposed framework, 

discussing possible outcomes. For instance, the results from the illustrative application indicate 

the structural components play an important role in the overall risk profile of an OWT, but this 

depends on the site-specific wind and wave conditions. The calculation of losses provides a 

foundation from which a more detailed assessment of OWT and OWF resilience could be 

developed. 
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1 Introduction  

The offshore wind industry has grown to the point where it supplies 12.6GW [1] of electricity 

within Europe, with a further 24.6GW worth of projects due to be installed by 2020 [1,2]. 

Historically, this form of energy production has been more expensive than others; however, the 

overall cost of offshore wind farms (OWFs) has recently dropped, driven by reductions in the 

cost of debt financing. Nevertheless, cost saving remains an important objective for operators 

who must enter competitive bids for potential OWF sites.  

A recent report by the UK Government [3] highlighted that ‘integrated design’ could potentially 

contribute to cost reduction. However, achieving improved integrated design is challenging as 

offshore wind turbines (OWTs) are unique engineering systems, depending on both electrical 

and mechanical components (such as a generator, gearbox and control system) and structural 

components (tower, monopile, transition piece and blades) to remain operational. Currently, 

structural design of OWTs is undertaken at the component level, with the tower and the 

monopile commonly being designed separately [4]. In this discussion, we focus on OWT 

supported by monopile foundations [5], as these represent about 80% of existing and planned 

offshore wind installations within European waters. Prescriptive, semi-probabilistic approaches 

are used to evaluate (and compare) potential design alternatives. In particular, current state-of 
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practice codes and standards do not prescribe to explicitly assess structural risk due to 

uncertainties associated with physical properties of OWTs (e.g., material, geometry) and 

loading conditions (e.g., wind and wave loading). Instead, they deal with such uncertainties in 

a conservative way, by employing safety factors to ensure a structure (or a structural 

component) does not ‘fail’ with a frequency greater than a pre-defined, target rate. Any 

‘integrated design’ of new OWTs (and integrated assessment of existing ones, for instance, for 

their life extension) should explicitly account for both uncertainty in environmental conditions, 

especially those occurring during extreme events (e.g., severe windstorm), as well as the 

possible complex interdependencies between component-level structural demands and 

capacities. For instance, stopping the rotor affects the loading on the blades which in turn 

influences loads on the tower and monopile. The challenge is how to quantify the risk associated 

with these diverse sub-systems in a harmonized way, accounting for the impact of their failure 

on the overall structural performance and operability of the asset and farm. Also, since both 

aleatory and epistemic uncertainty lies at the heart of risk modeling, they require an 

appreciation at all modeling stages. Thus, a probabilistic approach is the most appropriate one 

to model the complexity of environmental loading and their impact on an OWT. The concept 

of resilience provides an effective framework for assessing an OWT as a system of integrated 

structural and mechanical/electrical components, focusing on the functionality performance of 

the overall system and not just that of individual components.  

The concept of resilience is introduced in Section 2, where it is discussed in relation to the 

specific challenges encountered in assessing OWT performances. The analytical framework 

proposed to assess the combined financial losses due to failure of structural and/or 

mechanical/electrical components is discussed in Section 3. This includes a novel procedure 

for evaluating failure probability of structural components based on structural fragility analysis 

employing dynamic structural simulations and advancing uncertainty modelling to derive 

fragility relationships (i.e., likelihood of different levels of damage experienced by an OWT 

over a range of hazard intensities). A novel closed-form technique, based on a combinatorial 

system reliability approach, is employed to assess failure consequences (e.g., financial loss) for 

both structural and non-structural components. The overall calculation procedure is 

demonstrated through an illustrative example, where a National Renewable Energy Laboratory 

(NREL) 5MW OWT is assessed at two wind-farm sites in the Dutch sector of the North Sea, 

experiencing windstorms (extratropical cyclones), and offshore from the coast of 

Massachusetts, experiencing hurricane-like conditions. Section 4 introduces the input data and 

the simplifying assumptions used in the illustrative application of the proposed framework. 

Finally, Section 5 illustrates the type of results that can be generated through the proposed 

framework and some specific findings. 

2 Structural resilience of OWTs 

The concept of resilience provides an effective framework for enabling integrated design of a 

given engineering system, allowing a rational assessment of the system performance in the 

presence of uncertainties. The term ‘resilience’ has been applied across a large number of 

different fields, ranging from ecology, to preparedness of communities exposed to natural 

hazards and structural design [6]. Therefore, many overlapping definitions for the various 

components of a resilience assessment framework exist, as summarized by Hosseini et al [7] 

and Ayyub et al [8], among others. One possible definition suitable for application to structural 

systems, characterizes resilience through quantifiable metrics [9], also allowing comparison 

between different systems. According to this definition, resilience can be schematically 

described through Figure 1, often referred to as the resilience triangle [10]. The solid line 

indicates the system performance (e.g., in terms of electricity generation, in the case of an 

OWT) which is reduced after a disruptive event (e.g., a windstorm) occurring at 𝑡0; the system 

performance gradually recovers along the time axis, to an ‘as-new’, ‘at-event’, or ‘deteriorated’ 



Towards Resilient OWF: A Probabilistic Framework for OWT Loss Assessment 

10/06/2019   3 of 20 

 

performance level. In this context, an operator has different options for repairing the system, 

depending on specific objectives, including repairing to as-new, at-event or a deteriorate 

functionality (following the original system deterioration path). Resilience is numerically 

quantified as the area below the performance curve, and is quantified through the following 

four metrics which characterizing a given system [11]: 

 Robustness – The capability of the system to withstand a disruptive event. It can be 

quantified as the residual functionality directly after the event occurs and it is therefore 

a measure of the overall system performance. 

 Rapidity – The speed to recover, contain losses, and avoid future disruptions. It can be 

viewed as the rate of recovery (i.e., the slope of recovery in Figure 1), and therefore 

determines the time gap from 𝑡0 to 𝑡𝐷, 𝑡𝐸 or 𝑡𝑁. 

 Redundancy – The extent to which other components can satisfy and sustain functional 

requirements after a disruptive event causing a loss of functionality. 

 Resourcefulness – The capacity to diagnose and prioritize problems that can cause 

reduced functionality, then to initiate measures that will lead to functional recovery. 

This relates to the ability of an organization to react after an extreme event has occurred 

and therefore influences the rapidity.  

 
FIGURE 1. Graphical definition of resilience after an event (at 𝑡0), with different repair 

options (adapted from [11]). 

It may be difficult to quantify some of these metrics, especially at the design stage. For instance, 

information regarding the capacity of an organization to make budget available in the case of a 

disruptive event (i.e., part of resourcefulness) is seldom available to a design engineer. Nor 

would it be clear to a designer whether an operator would decide to restore functionality to the 

original or to a degraded level (i.e., 𝑡𝐷 in Figure 1). Therefore, a methodology for assessing 

structural resilience of OWTs relying on its robustness and redundancy features would allow 

this concept to be directly applied at the design stage. The initial design-stage estimate of an 

OWT robustness could be used in a full resilience calculation at a later stage which also 

considered recovery. An approach, investigated by Bruneau and Reinhorn [12] and applied 

here, assumes that loss of functionality after a disruptive event and the time to recovery are 

highly correlated. This is intuitive as, in general, if an event (e.g. a windstorm) causes more 

damage, it will take longer to repair the considered asset. A similar approach has previously 

been applied to structures experiencing blast [13] by defining a relative resilience indicator 

(𝑅𝑅𝐼), which is correlated to the overall structural resilience (𝑅): 

𝑅(𝐸) ∝ 𝑅𝑅𝐼(𝐸) = 1/𝐶(𝐸) (1) 
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In Eq. (1), RRI can be defined as the inverse of the consequence (C) of a disruptive event (E). 

Under this assumption, a structure experiencing a lower consequence (i.e., less damage and 

lower financial loss) as the result of a hazardous event, is viewed as more resilient. 

This approach is suitable for application to OWTs and OWFs; however, the metric quantifying 

consequence needs to correctly represent the effect of failure of individual components on the 

OWT (or OWF) functionality. Considering a single OWT structure, loss of an important sub-

assembly will completely stop production, resulting in the OWT dropping to zero functionality. 

However, the failure of different components will have different implications in terms of 

recovery time. Therefore, it is not enough to define consequence using the reduction in 

functionality caused by component failure alone. This consideration also precludes the use of 

some common structural consequence measures, such as percentage of the structure collapsing 

[13], or percentage of mechanical components failing, which do not provide sufficiently 

detailed information about the type of failure. Other metrics, such as those relating to life-safety 

are not of primary importance for offshore wind as the turbine is normally unmanned, apart 

from brief periods to allow for maintenance activities [14]. Rose et al [15] quantified resilience 

of an OWT through robustness by estimating the cost incurred by loss of functionality after an 

extreme event. This allows the failure severity of different components to be compared within 

a unified metric, because each has a different material cost (replacement). Financial loss is also 

easy to communicate to stakeholders and is therefore used in this study. However, it neglects 

the operational costs of repair, such as hiring vessels, which are expensive but difficult to 

quantify.  

3 Probabilistic risk modelling framework for OWTs 

A probabilistic risk modelling framework is proposed here to assess structural and, potentially, 

non-structural risk associated with OWTs exposed to extreme environmental conditions. It is 

based on decomposing the total risk into conditional probability distributions which are 

evaluated sequentially (and independently), and finally combined using the law of total 

probability. Similar approaches have been applied to assess structures exposed to seismic [16], 

wind [17,18], tsunamis [19] and blast [13] hazards, among others. It is worth noting that this 

approach is often referred to as catastrophe risk modelling, when the focus in on portfolios of 

assets for (re-)insurance purposes, or performance-based design/assessment, focusing on 

individual assets for design/retrofitting purposes. The proposed framework outputs the annual 

rate of exceedance of a given loss level, L, (𝜆(𝐿)), as a function of various complementary 

cumulative distribution functions (CCDFs; or 𝐺[⋅ | ⋅]): 

𝜆(𝐿) = ∫ ∫ 𝐺[𝐿|𝐷𝑆] ⋅ |𝑑𝐺[𝐷𝑆|𝐼𝑀]| ⋅ |𝑑𝜆(𝐼𝑀)| (2) 

In Eq. (2), the main interface variables are: a measure of the intensity of a natural hazard 

(intensity measure; or IM), e.g., wind speed or wave height; and damage states (DSs), e.g., the 

performance level of the structure and/or its components, as a function of the given IM. This 

framework can be schematically represented through the flowchart in Figure 2, where the 

individual tasks include: 

 Hazard analysis – assessing (extreme) conditions that have the potential to cause 

damage to the system being assessed. The hazard analysis predicts the probability 

distributions of these conditions occurring based on measured site data or physics-

based models, for instance based on large catalogues of simulated events 

capturing the frequency, severity, location, and other characteristics of the entire 

spectrum of plausible real hazardous events 



Towards Resilient OWF: A Probabilistic Framework for OWT Loss Assessment 

10/06/2019   5 of 20 

 

 Exposure (or structural) characterization – characterizing the properties of the 

structure and the value at risk, including information about location, construction 

details (e.g., structural geometry), and replacement costs. 

 Fragility analysis – assessing the probability of damage occurring conditioned on 

the hazard intensity. This also allows to account for the uncertainty in structural 

capacity (e.g., geometry, material properties, and models) and sampling. 

 Loss analysis –estimating financial losses, providing metrics that can be used to 

assess the performance of the system.  

Structural and equipment components need to be treated differently because structural failure 

is usually predicted analytically (or numerically), based on structural simulations, whereas 

equipment failure data can be usually derived from empirical databases, mainly recording the 

rate of failure, usually without (any) reference to specific environmental conditions. 

Consequently, equipment failure is not typically conditional on the IM and does not require 

site-specific analysis. The general probabilistic risk modelling framework shown in Figure 2 

can be adapted to the specific loss analysis of an OWT (Figure 3), considering both structural 

and mechanical/electrical equipment. The elements of Figure 3 are described in more detail in 

the following sub-sections.  

 
FIGURE 2. Probabilistic risk modelling framework for a single OWT structure. 
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FIGURE 3. Proposed probabilistic risk modelling methodology used for the calculation of 

financial losses in this study. 

3.1 Hazard modelling 

The primary hazards threatening an OWT are those relating to severe wind and/or wave 

conditions. Wind and wave conditions are frequently parameterized using a separate variable 

to describe the severity of each (this is further discussed in Section 4.2). Common choices are 

the significant waves height (i.e., the average trough to crest height of the highest one-third 

waves [20]) and mean wind speed (with a 10-minute averaging period). The variables can be 

combined into a single IM by assuming that wind and waves are linked through the mean return 

period (MRP), i.e. the most extreme conditions associated with each MRP are coincident, a 

conservative, yet practical assumption used to assess OWTs [21]. This aspect is further 

discussed below. 

Specific values of mean wind speed and significant wave height can be calculated using an 

appropriate probabilistic model, which describes frequency of occurrence of the environmental 

conditions at a site. Seismic hazards are also relevant for some sites [22], but are considered 

outside of the scope of this study. 

3.2 Exposure modelling 

The structural response of an OWT is highly dependent on turbine-specific parameters 

including the power rating and control system [23]. Consequently, exposure data has to be more 
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detailed than that typically used in a probabilistic risk model for buildings, where only general 

information (e.g., in terms of construction class, height, and age of construction) about a 

portfolio of assets may be included [24]. Exposure data should include all pertinent information 

required to compute loss of the structure being assessed, this includes: location, geometric 

characteristics, material properties, and failure costs (i.e., replacement costs) for the OWT 

components.  

3.3 Structural analysis  

This step involves building a computational model solved using finite-element analysis, which 

predicts the response of the OWT to environmental conditions (wind and waves) represented 

through the selected IMs. For an OWT exposed to stochastic environmental loading, the use of 

dynamic (time-history) analysis is a common approach [23]. A first step consists of specifying 

a set of Engineering Demand Parameters (EDPs) representing the response of structural 

components of interest and computed through structural analysis. A key element of this process 

consisting of specifying a set of limit (or damage) states (DSs) defining structural performance 

criteria. Violation of a limit state indicates (conventional) failure of the structure [25] and these 

conditions are usually formulated as an equation containing a capacity (or resistance) and a 

demand (or load) term. In the ultimate limit state (ULS), for instance, failure of an OWT relates 

to the exceedance of the structure load-carrying capacity [26], where the demand is a function 

of the forces caused by environmental loading and the capacity relates to the ability of the 

structure to withstand these loads. All the structural components are exposed to this form of 

failure and should therefore be assessed by an analytical model as empirical failure data is very 

scarce. This includes the tower, monopile, transition piece and blades; see [27] for a detailed 

discussion on the topic 

3.4 Fragility analysis 

Fragility functions express the probability that a damage state occurs (or is exceeded) for a level 

of hazard intensity (i.e., IM), typically as a conditional CDF, 𝐺[𝐷𝑆|𝐼𝑀] [28]. The structural 

analysis model described previously is typically used to estimate the probability of failure 

conditional on the IM. This is achieved by running the simulation repeatedly over a discrete set 

of IM values, resulting in a set of analysis outputs corresponding to each realization of the IM. 

Scatter in the fragility function parameters is caused by different wind and wave time-series 

causing different structural loading, and the effect of other random variables  modelling 

structural demand and capacity [27]. The probability of failure can be estimated as the mean 

number of structural analyses resulting in the exceedance of the considered limit state (i.e., 

failures) at each IM value. The probability of failure can then be expressed as a functional 

relationship either by fitting a parametric distribution (e.g., lognormal) or directly using the 

output from structural analysis to generate an empirical fragility curve (e.g. [29]). 

To combine the structural and equipment component failure, the structural fragility curves have 

to be converted into a failure rate (𝜆𝑓,𝐷𝑆), for the given damage state (DS), to be compatible 

with equipment failure data. One way to achieve this is to apply the total probability law: 

𝜆𝑓,𝐷𝑆 = ∫ 𝐺[𝐷𝑆|𝐼𝑀] ⋅ |𝑑𝜆(𝐼𝑀)| ≅ ∑ 𝐺[𝐷𝑆|𝐼𝑀𝑖] ⋅ (
1

𝑀𝑅𝑃𝑖
−

1

𝑀𝑅𝑃𝑖+1
)

𝑖=1

(3) 

The term 𝑑𝜆(𝐼𝑀) in Eq. (3) can be computed through the derivative of the hazard curve 

(𝜆(𝐼𝑀)); it can be approximated by converting each MRP into an annual rate of exceedance, 

as shown in Eq. (3) and summing over a discrete set of MRP values, indexed by 𝑖. The fragility 

curves are calculated using a limited sample of structural simulations, therefore are associated 
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with uncertainty. The effect of this statistical error can be quantified by resampling the chosen 

consequence metric (defined in the following section) using bootstrapping [30], as further 

discussed below. 

3.5 Loss assessment 

As already discussed, an OWT consists of different components. In general, for a system with 

a number (𝑁) of independent components, each of which has two discrete states (failure or 

operation), there is a finite number of permutations in the system state, where the total number 

of combinations of component events (leading to system events) is 2𝑁. These combinations of 

operating and failure states can be summarized in a matrix 𝑲 [31], with elements 𝑘𝑖𝑗 ∈ ℤ𝑁⋅2𝑁
, 

using one to indicate that the component fails or zero to indicate that it remains operational. For 

a generic OWT with 11 components (e.g. Table 1), the matrix 𝑲 will have elements𝑘𝑖𝑗 ∈

ℤ11⋅2048; the first column will read [0 0 0 0 0 0 0 0 0 0 0]𝑇 indicating the case in which all 

components are functional, and the last [1 1 1 1 1 1 1 1 1 1 1]𝑇 indicating the case where all 

components have failed. The intermediate columns will contain all other permutations of ones 

and zeros for different system states. 

If each component has a deterministic material cost, the discrete system failure events can be 

combined to assess the probability of incurring a total material cost (𝑐𝑟). The matrix of the 

failure events 𝑲 is converted into a failure cost matrix 𝑲𝒄 by multiplying each column of 𝑲 by 

a vector containing the material cost of each component. This new matrix will contain the same 

number of elements as 𝑲 but the values will equal the material costs as opposed to a logical 

value (1 or 0). Then, 𝑃𝑠𝑦𝑠(𝑐𝑟) can be defined as the probability that a set of components 𝒌∗ ∈

𝑲𝒄 fail whose combined material cost is equal to the target (𝑐𝑟): 

𝑃𝑠𝑦𝑠(𝑐𝑟) = ∑ ∏ 𝑃𝑖
𝑘𝑖(1 − 𝑃𝑖)1−𝑘𝑖

𝑁

𝑖=1𝒌∗∈𝑲𝒄

(4) 

𝑃𝑠𝑦𝑠 (𝑐𝑟) is evaluated over all the columns of the 𝑲 matrix where the total material cost of the 

components equals 𝑐𝑟, i.e., 𝒌∗ is a subset of 𝑲 containing all vectors of system status with an 

equal cost. Assuming statistical independence between the different components, the 

probability of each system material cost is the product of the individual component failure 

probabilities in the matrix of failure events 𝒌∗. When the element of the 𝒌∗ matrix,  𝑘𝑖, is 0 then 

the probability that the component survives is used, i.e., (1 − 𝑃𝑖)1−𝑘𝑖; and if 𝑘𝑖 is 1, then the 

probability that the component fails is used, i.e., 𝑃𝑖
𝑘𝑖. 

In Eq. (5), the overall failure consequence, C (Eq. (1)) or total annual loss, can be calculated by 

multiplying the yearly probability of different failure costs occurring (𝑃𝑠𝑦𝑠(𝑐𝑟)) by the failure 

consequence defined by direct material cost (𝑐𝑟) and summing over all failure costs: 

𝐶𝑠𝑡𝑜𝑟𝑚𝑠 = 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑃𝑠𝑦𝑠(𝑐𝑟) ⋅ 𝑐𝑟
𝑐𝑟

(5) 

4 Illustrative application 

4.1 Case-study sites 

Two OWF locations, which have previously been used by the authors to derive fragility 

relationships for OWTs on monopile foundations [27], are investigated in this paper. These 
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sites are located at Ijmuiden K13, off the coast of the Netherlands, and off the coast of 

Massachusetts (at 40.5°N 69.3°W), USA. These locations are plotted in the inset graph in 

Figure 4 (left).  

The water depth at both sites is around 20m, making them suitable locations for the NREL 

5MW OWT on a monopile foundation. The main elevations of the structure are shown in Figure 

4 (right). As indicated in the figure, the tower terminates at an elevation above mean sea level 

of ~90m. A full list of dimensions and material properties of the turbine are provided by [32]. 

Uncertainties in the parameters defining the OWT and model uncertainties are described in 

[27]. 

The structural components included in this study are the tower and blades, based on previous 

work by the authors [27], as the monopile and transition piece were observed to always fail 

after the tower had reached 100% probability of failure. This indicates that the tower is 

predicted to always fail first. The replacement cost for the tower is estimated through a 

parametric equation described in Section 4.1.1. Data for the non-structural components of the 

OWT (and the replacement costs for the blades) are taken from the work of Carroll et al [33]. 

They analyzed data from maintenance records of ~350 OWTs ranging from 2MW to 4MW in 

European waters and presented the results for different sub-systems. In this work, we focus on 

severe failures associated with either major repairs or full component replacement, and not on 

routine maintenance tasks. Only the failure rates for the top nine components in terms of 

replacement cost (out of a total of 19 sub-systems) are used in this work and are shown in Table 

1. The costs have been rounded to the nearest €1,000, to improve computational efficiency 

when evaluating Eq. (4) numerically, so that step sizes of €1,000 could be used.  

The different failure conditions considered in this paper are shown in Figure 5, which presents 

the considered scenarios through an event-tree diagram. The equipment is lumped together, as 

the failure of these components is assumed to have no impact on the failure of other 

components. Based on Figure 5, it is assumed that if the blades fail, the loads on the tower 

reduce (blades are the main source of aerodynamic loading) and, as a consequence, the tower 

may survive. This simplifying assumption, further tested here, is based on failure observations 

of onshore wind turbines exposed to typhoon conditions [34]. However, it should be noted that 

a blade may impact the tower if it breaks first. If the blades survive but the tower collapses, it 

is assumed that all equipment and the blades fall into the sea and are damaged. 

TABLE 1. Material cost for major replacement and failure rate of OWT components.  
1 Eq. (6) with data – [𝑃𝑊𝑇 = 5𝑀𝑊]. 

Source of 

cost data 
Component 

Major replacement 

[€] 

Failure rate 

[/turbine/year] 

Carroll 

[33] 

Gearbox 230,000 0.154 

Hub 95,000 0.001 

Transformer 70,000 0.001 

Generator 60,000 0.095 

Circuit breaker 14,000 0.002 

Power supply 13,000 0.005 

Pitch system 14,000 0.001 

Yaw system 13,000 0.001 

Controller 13,000 0.001 

Blades (x3) 270,000 
MA: 9.89 ⋅ 10−4  

IJ: 2.32 ⋅ 10−5 
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Parametric 

equations 
Tower 770,0001 

MA: 4.97 ⋅ 10−3  

IJ: 8.36 ⋅ 10−5  

 Total cost 1,562,000  

 

 

 

FIGURE 4. Comparison of the extreme wind and wave conditions associated with different 

MRPs at Massachusetts and Ijmuiden OWF sites (left) where the MRP is plotted beside the 

data points; the inset map shows the locations of both sites. Schematic figure of the case-study 

OWT used in this study, with main elevations highlighted (right). 

 

 
FIGURE 5. Event tree for an OWT combining structural and equipment components 

4.1.1 Structural failure cost 

Total OWT cost (𝑐𝑊𝑇) in k€, including blades and drivetrain but excluding foundations, is 

estimated using a parametric equation [35]. The independent variable in the equation is the 

rated power of the turbine (𝑃𝑊𝑇) in megawatts (MW); and the equation predicts the total turbine 
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cost at various power ratings, i.e., from 2MW through to 5MW. This was converted into Euros 

(from Pound Sterling) by Dicorato et al [36] resulting in: 

𝑐𝑊𝑇 = 2.95 ⋅ 103 ⋅ 𝑙𝑛(𝑃𝑊𝑇) − 375.2 (6) 

Analysis by the NREL [37] reported that cost of an onshore wind turbines tower comprised 

17.6% of the total turbine cost. The cost of the OWT tower is calculated by factoring down the 

wind turbine cost to 17.6% of cWT, assuming consistency in the relative cost between onshore 

and OWT components. Information about the specific cost of OWT towers would improve this 

calculation. 

4.2 Hazard model 

As discussed above, the hazard intensity calculation is simplified in this paper by combining 

the wind and wave conditions into a scalar IM – the mean return period (MRP), as shown in 

Figure 4 (left). This approach is conservative [21] but simplified the analysis substantially, 

reducing the number of required structural simulations. However, Wei et al. [21] have found 

that using environmental conditions coupled through MRP values instead of their joint 

probability distributions has little impact on the computed probability of failure. 

Mean wind speeds and significant wave heights are plotted against their corresponding MRPs, 

in Figure 4 (left); both are evaluated using site-measured data. Ijmuiden has 22 years’ worth of 

wind and wave measurements [38], stored as 3-hour averaged data, and statistical model 

representing the occurrence of different mean wind speeds and significant wave heights [20] 

have been developed by applying linear regression with log correction to the recorded data 

using [38]: 

𝐻𝑠 = 0.479 ⋅ 𝑙𝑛(𝑀𝑅𝑃) + 6.063

𝑉𝑤 = 2.645 ⋅ 𝑙𝑛(MRP) + 31.695
(7) 

In Eq. (7), 𝐻𝑠 is the predicted three-hour significant wave height in meters, and 𝑉𝑤 is the 10-

minutes hub-height mean wind speed in 𝑚/𝑠 (10 minutes averaging is a standard assumption 

based on the observation that mean wind speed is approximately constant over this period of 

time). At the offshore Massachusetts site, hurricane conditions were estimated by Wei et al [39] 

by fitting a generalised extreme value (GEV) distribution to the output from a stochastic 

catalogue of simulated hurricanes over a 100,000 year period (typical length of stochastic 

catalogs in some probabilistic risk models). The GEV probability distribution (𝑓(𝑥|𝑘, 𝜎, 𝜇)) is 

defined: 

𝑓(𝑥|𝑘, 𝜎, 𝜇) =
1

𝜎
⋅ (1 + 𝑘 ⋅

𝑥 − 𝜇

𝜎
)

(−1/𝑘)−1

⋅ 𝑒𝑥𝑝 (− (1 + 𝑘 ⋅
𝑥 − 𝜇

𝜎
)

1/𝑘

(8) 

In Eq. (8), the model parameters are shape (𝑘), scale (𝜎) and location (𝜇); these are defined for 

the Massachusetts site using the values in Table 2. The 𝑥 term is a variable that represents either 

the mean wind speed or significant wave height, depending on which set of parameters are 

used. 

Table 2: GEV parameters for the Massachusetts (MA) wind farm site [39]. 

Parameter Shape (𝒌) Scale (𝝈) Location (𝝁) 

Vw 0.092 6.290 12.226 

Hs 0.038 2.117 2.972 
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4.3 Structural analysis  

Structural analysis is based on dynamic (time-history) simulations with integrated wind and 

wave loading. The sea-state is modelled as a random process by using a wave spectrum, 

representing the frequency content of the sea-state, and is converted into a time-history using 

the inverse Fourier transform [20]. Similarly, the turbulent wind acting on the OWT is 

continuous, but is commonly evaluated numerically at discrete points on a grid overlying the 

structure. The turbulent wind time histories are evaluated using Turbsim [40], which converts 

a Kaimal spectrum into a stochastic time-history using inverse Fourier transforms. Dynamic 

response of the structure to this loading is calculated using the aeroelastic computer-aided 

engineering software Fatigue Aerodynamics Structures and Turbulence (FAST) [41] to run sets 

of time-history analyses. The wave theory used in the software is linear, which under predicts 

the peak wave loads of large storm waves. This simplification can be overcome by inserting 

non-linear waves replacing large waves, poorly assessed by the linear wave theory, for instance, 

by using the approach proposed by Hallowell at al [42]. Given the illustrative nature of the 

application presented here, it is decided to just rely on linear wave kinematics as implemented 

in FAST. Therefore, specific numerical results from this study should be regarded with caution. 

Within FAST, the tower, monopile and blades are modelled as Euler-Bernoulli beams. No 

below seabed foundation is included within the structural analysis. Full details of the analysis 

methodology and the procedure for modelling stochastic wind and wave conditions is described 

in [27].  

The structural limit states considered in this study is the ULS, including failure of the blades 

and tower, as discussed in more detail in Wilkie and Galasso [27]. Specifically, the tower limit 

state (𝐺𝑀𝑐𝑟) is taken from the work of Sorenson et al. [14]: 

𝐺𝑀𝑐𝑟 =
1

6
(1 − 0.84 ⋅

𝐷

𝑡
⋅

𝐹𝑦

𝐸
) (𝐷3 − (𝐷 − 2𝑡)3)𝑋𝑚𝑎𝑡𝑋𝑐𝑟𝐹𝑦 −

𝑀𝑈𝐿𝑇(𝑋𝑎𝑧, 𝑋𝑦𝑎𝑤)𝑋𝑑𝑦𝑛𝑋𝑠𝑖𝑚𝑋𝑠𝑡𝑟

(9) 

In Eq. (9), 𝐷 is the component diameter (m), 𝑡 is the thickness (m). The material properties are 

modelled as random variables through the yield stress (𝐹𝑦) and the Young’s modulus (𝐸). 

𝑀𝑈𝐿𝑇(𝐻𝑠 , 𝑉𝑤) is the EDP selected and is defined as the maximum bending moment in the 

structural analysis depending on the mean wind speed (𝑉𝑤) and significant wave height (𝐻𝑠). 

Additionally, the 𝑋  terms are variables which capture modelling uncertainty including: 

structural dynamics (𝑋𝑑𝑦𝑛), simulation statistics (𝑋𝑠𝑖𝑚), critical load capacity (𝑋𝑐𝑟), material 

model uncertainty (𝑋𝑚𝑎𝑡). The distributions used to model the random variables are described 

in Wilkie and Galasso [27]. 

A blade limit state was used (𝐺𝑏𝑙𝑑 ), using the simplifying assumption that failure can be 

predicted based on the maximum root flapwise moment. The limit state is defined as the blade 

flapwise moment capacity (𝑀𝑐𝑎𝑝) minus the blade flapwise moment demand (𝑀𝑑𝑒𝑚): 

𝐺𝑏𝑙𝑑 =  𝑀𝑐𝑎𝑝 − 𝑀𝑑𝑒𝑚(𝑋𝑎𝑧, 𝑋𝑦𝑎𝑤) ⋅ 𝑋𝑑𝑦𝑛𝑋𝛿𝑙𝑋𝑠𝑡𝑟 (10) 

The flapwise moment capacity is taken as 15,310 kNm and was calculated by Resor [43] using 

FEA analysis for the NREL 5MW OWT blades. The additional modelling uncertainty is blade 

model uncertainty (𝑋𝛿𝑙). Also in this case, the distributions and statistics used to model the 

random variables in Eq. (10) are described in Wilkie and Galasso [27]. 
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5 Results and discussion 

5.1 Fragility curves  

The fragility curves used in this study were developed by the authors [27], by selecting 16 

MRPs and running a total of 400 structural simulations (𝑁𝐴𝑛) at each MRP to calculate the 

probability of failure given the MRP. This analysis includes a set of random variables (referred 

to as X3 in the reference, as discussed in Section 4.3) which modelled variability in material 

properties, model uncertainty and orientation of the blades with respect to the incoming wind 

flow (the 𝑋𝑎𝑧  variable in Eq. (9) and Eq. (10)). The tower fragility is represented by a 

parametric lognormal distribution and the blade fragility by using an empirical cumulative 

distribution function (as the lognormal assumption was found to be a poor fit to the analysis 

outputs). These relationships are shown in Figure 6 for both sites. The large difference between 

the IM-axis scales at the two sites is due to the hurricane conditions which are experienced at 

the MA site, making failure occurring at much lower MRP value than at the IJ site. 

The fragility calculation was implemented by assigning an indicator function to the output from 

structural analyses, run at each MRP. When the limit state (𝐺) was violated i.e., 𝐼(𝐺 ≤ 0), a 

value of one indicated that the structural component (tower or blade) failed during the 

simulation. A fragility function was fit to this discrete data and provided a continuous prediction 

of the probability of failure conditional on the IM. In the case of the tower, maximum likelihood 

estimation (MLE) was used to predict best-fit parameters of the lognormal distribution, the 

lognormal mean 𝜇𝐿𝑁  and lognormal standard deviation 𝜎𝐿𝑁 . In the case of the blades, an 

empirical fragility curve (non-parametric) was derived by using previous neighbor interpolation 

between the 16 MRP analyzed.  

The results in the original study were based on estimating the fragility function parameters 

through MLE based on a sample of structural simulations. This estimation is naturally 

associated with statistical error, and therefore there is uncertainty in the prediction of fragility 

function parameters, i.e. they will vary depending on the sample. For this reason, a large number 

of samples were used in the original paper (a single fragility curve requiring 𝑁𝑀𝑅𝑃 ⋅ 𝑁𝐴𝑛  =
 6,400 simulations). This is a fairly large number for many practical applications and, therefore, 

this study uses statistical resampling to assess the error introduced by using a reduced structural 

simulation size. Epistemic uncertainty is assessed by sampling new sets of fragility data, with 

replacement, from the original set of analysis results. The impact of the uncertainty caused by 

a smaller sample size can be evaluated by quantifying the scatter in failure rates resulting from 

scatter in the fragility curve parameters.  

The original set of indicator functions at each IM (size 𝑁𝐴𝑛) can be resampled with replacement 

for new, reduced number of analyses (𝑁𝐴𝑛,𝑅𝑒𝑑). The impact of analysis sample size can then be 

evaluated by quantifying the scatter in the failure rate that results from scatter in the fragility 

curve parameters. An example of the variability in the fragility curves is shown in Figure 7 for 

the OWT blades at the MA site, comparing the original 𝑁𝐴𝑛 of 400 to a 𝑁𝐴𝑛,𝑅𝑒𝑑 of 50. It can 

be observed that for the larger sample, size the scatter in the curves is reduced, however the 

mean prediction (bold black line) does not vary significantly.  
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FIGURE 6. Fragility curves for the tower and blade at the IJ (left) and MA (right) site. 

The grey lines indicate the empirical fragility curves for individual blades and the black 

line indicates the expectation over the three blades. Brackets on the x-axis labels contain 

(Vw (m/s) / Hs (m)).  

  
FIGURE 7. Resampled fragility curves shown in grey for the blades at the MA site. The 

number of samples used to calculate the probability of failure at discrete IM is 50 (left) 

and 400 (right). Brackets on the x-axis labels contain (Vw (m/s) / Hs (m)). 

5.2 Structural component yearly failure rates  

The integral in Eq. (3) is solved numerically, over the range of MRP values bounded by the 

limits 𝑀𝑅𝑃𝑖 = [10, 106] and using a step size of 1 year. The failure rate is then calculated using 

each of the resampled fragility functions (over a set of 50 ≥ 𝑁𝐴𝑛,𝑅𝑒𝑑 ≥ 400), resulting in 

scatter in the fragility function parameters. The mean annual failure rates are presented in Table 

1, and the individual samples through histograms in Figure 8 for the IJ site and in Figure 9 for 

the MA site, using a small subset of the 𝑁𝐴𝑛,𝑅𝑒𝑑  sampled. These figures show the reduced 

scatter as the number of samples increases. The 𝑁𝐴𝑛,𝑅𝑒𝑑 sample size of 100 is used in remainder 

of this work (by fitting a lognormal distribution to the histogram using MLE) as the maximum 

coefficient of variation is around 0.5% (for the IJ tower). 
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FIGURE 8. Histograms of failure occurrences for tower (left) and blades (right) for the IJ 

site. 

  
FIGURE 9. Histograms of failure occurrences for tower (left) and blades (right) for the MA 

site. 

5.3 Combined loss assessment  

Loss estimation is initially implemented using the mean failure rates from Table 1. As discussed 

in Section 4, if the blades fail, loading pattern on the OWT will change (as the blades are the 

main source of aerodynamic loading). A simplified interpretation of this event is that, if the 

blades fail, the tower will be protected from failure through reduced loading. Conversely, if the 

blades survive but the tower collapses, it is assumed that all equipment and the blades fall into 

the sea and are damaged. To gain insight into the impact of these possible failure scenarios, 

four assumptions relating to failure of the OWT components are tested here:  

 Case 1: Tower and other failures are perfectly correlated – A new matrix 𝑲1  is 

generated where failure of the tower results in the failure of all other components. 

 Case 2: Blade failure prevents failure of the tower – A new matrix 𝑲2 is generated. 

Firstly, failure events that include the blades modified to prevent failure of the tower. 
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Then the remaining cases where the tower fails (but the blades do not) cause failure of 

all other components. 

 Case 3: Uncorrelated components – the 𝑲 matrix left unchanged. 

 Case 4: No structural failure, only equipment components fail, and empirical failure 

rates from Table 1 are used. 

These assumptions about the dependency of the OWT components are encoded within the loss 

calculation by creating an updated matrix of failure events (𝑲). The updated matrix is used to 

evaluate which subset of failure events are used 𝒌∗ ∈ 𝑲𝒄 at each cost level in Eq. (4). Events 

that include failure of the tower can be identified, and the indices relating to all other 

components modified to correspond to a failure state. In the case where blade failure prevents 

failure of the tower, events where the tower and blades fail are first identified – then the tower 

component index is changed so that it survives. In the equipment only case, the probability of 

failure of the structural components is set to zero. 

The annual loss CCDF is shown in Figure 10 (left) for the IJ site and (right) for the MA site. 

These show that losses of individual OWTs occur with relatively large probability driven by 

the more frequently occurring equipment failures, with annual probability of occurrence around 

22% at both sites. Losses that also include structural components occur with annual probability 

of around 0.008% at IJ and 0.5% at MA, indicating the large difference in hazard.  

The failure case which excludes structural components cannot predict material costs above 

€1M, all of which include the tower. Using independent components (Case 3) results in a range 

of failure costs that involve the tower, whereas the correlated failure cases only predicts a 

material cost that is the sum of all equipment and tower costs, $1,562,000 (Table 1). This is 

more accurate, as collapse of the tower will have consequences for all equipment in the hub. 

Differences in assumptions about blade failure (Case 1 and 2) do not make a visible impact, 

due to rarity of blade failures in comparison to the tower at both sites. This is explained by Eq. 

(4), as for each set of failure events the yearly probability of occurrence is the product of the 

probability of failures (for components that fail) and probability of survival (for components 

that survive).  
 

 

 

 

FIGURE 10. Loss CCDF comparing the four assumptions used in calculating loss at the 

IJ site (left) and MA site (right).  
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5.4 Annual loss distribution 

Loss for the OWT is estimated using Eq. (5). Uncertainty in the structural failure rates can be 

included in the loss calculation by sampling the distributions describing failure rates of the 

blades and tower (i.e., Figure 8 and Figure 9) and using the random samples as input to Eq. (3). 

The resulting distribution of annual losses is shown in Figure 11.  

For IJ, little difference is visible in the two cases where perfect correlation in the failure cases 

is assumed; the mean annual loss of both is €3.87e4. The uncorrelated case is not conservative, 

because the mean annual losses are lower; however the difference is only marginal as the mean 

Case 3 annual loss is €3.86e4. Results for the MA site, Figure 12 (right), indicate that the 

structural components have a more important impact on annual loss. The Case 1 and 2 

histograms both have mean annual loss of €4.62e4, whereas the Case 3 (independent results) 

has a lower mean annual loss of €4.25e6. This is due to the hurricane type conditions at the site, 

these differences emphasize the need for a site-specific approach to the structural components 

of OWT. The specific numerical results should be considered with caution, given the 

simplifying assumptions used in the illustrative application. However, the relative importance 

of the different analysis cases suggests that Case 1 provides a conservative estimation of annual 

losses.  

  
FIGURE 11. Histogram of annual loss for IJ (left) and MA (right) when uncertainty in the 

fragility function parameters is modeled. 

6 Conclusion 

This paper proposed a method for estimating structural robustness of an OWT, as a first step 

towards quantifying resilience of OWFs, by applying a probabilistic risk modelling framework 

to quantify financial losses due to extreme environmental conditions. This approach has been 

applied to a wide range of similar problems in civil engineering and therefore has a strong basis. 

However, it has never been used to estimate losses for an OWT, comprised of structural and 

mechanical / electrical components. An illustrative application demonstrated how the 

calculation could be implemented to estimate potential loss associated with the most important 

sub-systems of individual OWTs for two sites. Resilience is simplified here to the estimation 

of the consequence of OWT failure, which is defined in terms of material cost alone. This 

allowed the idea of resilience to be applied by practicing engineers who will not have access to 

data required for a full evaluation of resilience, including potential recovery phases. As 

robustness is a component of a full resilience calculation, the simplified method presented in 

this paper could be used as an input to a more comprehensive resilience assessment. 
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The case-study assessed a turbine comprised of both generation equipment and structural 

components. Although structural failure rates were low in comparison to the mechanical 

components, they are associated with very high material costs. For this reason, they were found 

to have a notable impact on the annual loss at the MA site, where severe hurricane conditions 

occur. This highlights the site specific nature of the structure and emphasizes the need to include 

details of site loading into risk calculation, fragility will vary between sites [27]. It is noted that 

the case study presented here did not include the fatigue limit state, considering only ULS 

failure, in practice it would be feasible to assess both limit states within the framework 

presented. However, focusing only on material costs means that the specific numerical results 

should be interpreted with caution, as neglecting operational costs (such as vessel deployment) 

may skew the computed losses.  

Future steps will involve considering the risk posed to an array or whole OWF in greater detail, 

due to correlated hazards i.e. a wind storm effects the whole installation simultaneously. If the 

framework is to be applied in practice the simplifying assumptions in the walk-through example 

would need to be mitigated through a more complex structural model. Additionally, the 

framework should also encompass the operational load-cases which may contribute 

significantly to the failure of the blade components.  

Many challenges remain to be answered, particularly relating to the choice of performance 

indicators [13]. It is worth noting that validation is an important step to implement the proposed 

framework with confidence in many practical applications. However, structural failure cannot 

be validated through empirical data because it is characterized by very low probability of 

occurrence, as shown in the paper. The proposed framework relies on computer-based 

simulations; each component of this computer-based simulation has been validated in past 

studies. This includes, for instance, verification between different OWT analysis package, see 

Passon et al. [44]. However, if successful, this approach will aid in the development of 

integrated design techniques for OWTs and OWFs.  
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