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ABSTRACT 21 

A novel analytical expression is derived for the ultimate capacity interaction diagram (i.e., 22 

axial compression, N - bending moment resistance, M) of reinforced concrete (RC) columns 23 

with circular cross-section. To this aim, the longitudinal rebar arrangement is replaced with a 24 

thin steel ring equivalent to the total steel area; moreover, according to modern design 25 
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approaches, simplified stress-strain relationships for concrete and reinforcing steel are used. 1 

Illustrative applications demonstrate that the ultimate capacity computed by the proposed 2 

analytical approach agrees well with the results obtained by rigorous methods based on 3 

consolidated numerical algorithms. The new solution allows for a rapid, accurate assessment 4 

of circular cross-section capacity by means of hand calculations; this is especially useful at 5 

the conceptual design stage of various structural and geotechnical systems. The solution can 6 

be easily extended to more general configurations, such as multiple steel rings and composite 7 

concrete-steel sections.  8 

 9 

Keywords: reinforced concrete, circular cross-section, interaction diagram, simplified 10 

formulation, analytical solution. 11 

 12 

INTRODUCTION 13 

Reinforced concrete (RC) structural members with circular cross-section are widely used in 14 

structural and geotechnical engineering applications. Typical examples include columns in 15 

moment-resisting frames, foundation piles and contiguous pile walls. The widespread use of 16 

circular cross-sections in structural members is mainly due to their simplicity of construction 17 

as well as to their identical stiffness and strength features in all horizontal directions. 18 

However, while the design of rectangular RC cross sections may be easily performed (even 19 

by hand calculations, under some simplifying assumptions), the analysis is more complex in 20 

the case of circular cross-sections. In absence of analytical solutions, the assessment of axial 21 

compression-bending moment resistance (M-N) interaction domains is performed numerically. 22 

Research on the topic includes integration methods for both rectangular and circular RC 23 

cross-sections based on analytical and numerical algorithms (e.g., Bonet et al., 2006; Elevard, 24 

1997; Brondum Nielsen, 1988; Davalath et al., 1988). For instance, Bonet et al. (2006) 25 



  

presented a comparative study of different integration methods (both analytical and 1 

numerical) of stresses in circular and rectangular RC cross-sections subjected to axial loads 2 

and biaxial bending. The constitutive equation used for concrete is a parabola-rectangle from 3 

Eurocode 2 (CEN, 2004). The comparison is performed in terms of accuracy and 4 

computational speed of each investigated method. Similarly, Davalath et al. (1988) developed 5 

a numerical procedure along with a computer code for the analysis of RC circular cross-6 

sections subjected to axial loads (compression or tension) and bending moments. Barros et al. 7 

(2004) derived a closed-form solution for the optimal design of RC cross-sections, but only 8 

for the rectangular shape. This method is valid for ultimate axial and (uniaxial) bending 9 

loading; it relies on the use of a parabola-rectangle diagram for the concrete in compression. 10 

Furthermore, Tumo et al. (2009) have presented an analytical approach for quantifying the 11 

contribution of transverse reinforcement to the shear resistance of RC structural members of 12 

solid and hollow circular cross-section. Recently, Trentadue et al. (2016) proposed closed-13 

form approximations of the M-N interaction domains for RC columns and concrete-filled 14 

steel tubes with circular cross-section. A single analytical expression is provided for both 15 

cases; however, one parameter (which is function of the mechanical ratio of the reinforcing 16 

steel) of the proposed approach has still to be calibrated by means of a numerical 17 

optimization procedure. 18 

This note introduces a fully analytical, code-compatible procedure for the ultimate analysis of 19 

RC circular cross-sections subjected to axial compression and bending. The study constitutes 20 

an improvement over the method proposed in Cosenza et al. (2011). As in the previous study, 21 

the equations are developed by assuming the reinforcement steel area as lumped into an 22 

equivalent steel ring completely yielded, whereas the stress-block diagram is assumed for 23 

concrete. In addition, design yield stress of steel is properly modified to obtain more accurate 24 



  

results. Moreover, an analytical approximation is introduced to derive an analytical solution 1 

for the computation of M-N domains without iterations and/or numerical computation. 2 

The rest of this paper is organized as follows. A review of code-based assumptions and 3 

procedures for the assessment of the ultimate flexural capacity of RC cross-section is 4 

presented first. The proposed analytical method is then described, introducing a simplified 5 

approach for the derivation of M-N domains. This is followed by a validation exercise for the 6 

proposed method through a series of illustrative examples.  7 

 8 

CODE-BASED ASSESSMENT OF ULTIMATE FLEXURAL CAPACITY FOR RC 9 

CROSS-SECTIONS  10 

Eurocode 2 (or EC2; CEN, 2004, Sec. 6.1) provides principles and rules for the assessment of 11 

the ultimate flexural capacity of RC members, with or without axial force. To this end, the 12 

following simplifying assumptions are made: 13 

1. Plane cross-sections remain plane upon deformation, up to failure; 14 

2. Strain in bonded reinforcement (whether in tension or in compression), is identical to that 15 

in the surrounding concrete (i.e., perfect bonding exists between steel and concrete); 16 

3. The tensile strength of the concrete is neglected;  17 

4. Compressive stresses in concrete are derived according to pertinent idealized design 18 

stress/strain relationships (EC2, Sec. 3.1.7); 19 

5. Stresses in reinforcing bars are derived from corresponding design curves (EC2, Sec. 20 

3.2.7); 21 

6. Design strengths for concrete and steel are defined as fcd = cc fck /γc , fyd = fyk /γs , 22 

respectively (EC2, Secs. 3.1.6, 3.2.7), where cc is a coefficient taking into account of long 23 

term effects on compressive strength and of unfavorable effect resulting from the way the 24 



  

load is applied1 , fck is the specified (i.e., characteristic, 5%) compressive strength of 1 

concrete (cylinder strength) and fyk is the specified yield stress of steel, γc and γs are 2 

material safety factor according to Eurocode-like Load and Resistance Factor Design 3 

(LRDF); 4 

7. Material safety factors are γc = 1.5 for concrete and γs = 1.15 for steel (EC2, Sec. 2.4.2.4).  5 

It is worth noting that all the above assumptions also hold in the case of ACI 318-14 (2014). 6 

The main difference is that the Eurocode-based approach to LFRD consists of reducing the 7 

material ultimate strength values using their conservative percentiles (i.e., characteristic 8 

values divided by material safety factors) as design values rather than applying safety factors 9 

directly to the sectional strength (as in the ACI 318-14 - see Iervolino and Galasso (2012) for 10 

an extensive discussion on the topic). On the other hand, the specified compressive strength 11 

of concrete and the specified yield strength for non-prestressed reinforcement in ACI 318-14 12 

are directly used to compute the nominal flexural strength of a cross-section and this is 13 

further reduced by a strength reduction factor in ACI 318-14 (Chapter 21), ranging from 0.65 14 

to 0.9 for moment, axial force, or combined moment and axial force. 15 

According to points 4) and 5), a rigorous assessment of the ultimate flexural capacity may be 16 

performed assuming a parabolic-rectangular relationship between the stress and 17 

corresponding strain in the concrete in compression, whereas the steel may be idealized as an 18 

elastoplastic-material (Fig. 1a). Such an analysis requires the use of integration procedures 19 

and is thereby performed via computer codes such as Biaxial software (Di Ludovico et al., 20 

2010). As a simpler alternative for the analysis and design of circular cross-sections at the 21 

Ultimate Limit State (ULS), simplified stress-strain relationships may be utilized. For 22 

instance, similarly to ACI 318-14, the stress distribution in the concrete may be assumed as a 23 

                                                 

1 According to EC2, the value of cc for use in a Country should lie between 0.8 and 1 and the recommended 

values is 1. 



  

rectangular stress block extended up to a depth, y, smaller than of the actual neutral axis 1 

depth, x, and a magnitude, fʹcd  = fcd equal to some fraction of the concrete compressive design 2 

strength (generally, y = 0.8x and fʹcd  = fcd are assumed). This procedure means, in terms of 3 

constitutive models of the materials, that concrete behaves as a perfectly plastic material after 4 

reaching a specific threshold value of compressive strain whereas, below such a strain value, 5 

it offers no resistance (Fig. 1b). In the framework of simplified methods, an elastic-plastic 6 

stress-strain diagram for reinforcing steel, with a horizontal top branch without a strain limit, 7 

is recommended. This latter assumption is well justified by experimental results (see for 8 

example Galasso et al. 2014). Based on this assumption, the failure of the section always 9 

occurs due to concrete crushing, i.e., when the maximum concrete strain is equal to an 10 

ultimate strain value εcu (maximum concrete compressive strain) or to a second value εc2 11 

when the section is all under compression. These deformation characteristics for concrete 12 

depend on material strength; see for example Table 3.1 in EC2. 13 

Due to these simplified assumptions, the computation of the flexural capacity is quite 14 

straightforward by solving the equilibrium equations; yet, some iterations are necessary to 15 

calculate the position of the neutral axis. A step-by-step presentation of the procedure is 16 

provided in Cosenza et al., (2011). 17 

 18 

PROPOSED METHOD 19 

A rigorous analysis of circular cross-sections should be performed considering the actual 20 

location of the reinforcement longitudinal bars. Such a condition does not allow a simple 21 

analytical expression to be derived for the ultimate bending moment capacity. An 22 

approximate formulation is possible by means of some straightforward idealizations; 23 

specifically (Fig. 1c):  24 



  

1. The actual longitudinal rebar arrangement is replaced by a thin steel ring with 1 

equivalent total area As; 2 

2. The actual distribution of concrete stress is replaced by a rectangular diagram with an 3 

“effective strength” fʹcd = 0.9 fcd . This assumption concerns a specific EC2 provision 4 

for circular cross-section: if the width of the compression zone decreases in the 5 

direction of the extreme compression fiber the value of the effective strength should be 6 

reduced by 10%. 7 

3. The steel is considered to be at a yielding state, both in compression and tension, 8 

contributing an “effective stress” fʹyd = 0.95 fyd. The factor 0.95 has been calibrated 9 

by the authors to minimize the discrepancies between the results from the proposed 10 

approach and those obtained through more rigorous approaches, as discussed later in 11 

in the paper’. 12 

It is worth noting that these assumptions are equivalent to assuming a perfectly plastic 13 

behavior for both steel and concrete, where the threshold strain value (a) separating 14 

compression and tension for steel and (b) below which concrete offers no strength has a given, 15 

positive value. Hence, for the assessment of the ultimate flexural capacity, regardless of the 16 

actual strain profile, materials may be assumed to behave as rigid-plastic, and the resulting 17 

(fictitious) neutral axis depth will coincide with the extension of the compressive zone. 18 

Owing to these hypotheses, the condition of equilibrium between all the internal and external 19 

forces applied to the cross-section may be written as: 20 

( )
2

2 2
2

  −    
   −  + − =   

    
cd s yd s yd Ed

R
sin f  A f A f N      (1) 21 

where NEd is the applied axial force and θ is the angle defining the extension of compression 22 

zone (Fig. 2), ideally varying from 0 (no compression) to  (the section is entirely 23 



  

compressed). In Eq. (1), (θ/π) Αs and (1− θ/π) As are the cross-sectional areas of longitudinal 1 

reinforcement in compression and tension, respectively. 2 

Multiplying each term in Eq. (1) by 
2

2


cdR f

, Eq. (1) may be reformulated as: 3 
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R f
 are the mechanical steel ratio and the design axial 5 

force normalized to the total cross-sectional concrete area of the member (the prime symbol 6 

“ ′ ” indicates that quantities are normalized by effective values of design strength – see point 7 

2 and 3 above). 8 

Due to the transcendental nature of Eq. (2), the exact value of the angle  may be found only 9 

iteratively (e.g., using the Newton's method). Nevertheless, an approximate explicit solution 10 

for  is possible by substituting the term sin2θ in Eq. (2) with the parabola 16 θ (π/2− θ) / π2 11 

(for  θ ≤ π/2). Consequently, Eq. (2) reduces to the second-order algebraic equation: 12 
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which admits the positive solution: 14 
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A comparison between the exact values of θ obtained from Eq. (2) (exact relationship among 16 

, ′ and ′ may be found by fixing the values of  and ′, and calculating ′, or fixing  and 17 

′ and calculating ′) and the correspondent estimates by means of Eq. (4) is offered in Fig. 3, 18 

as a function of dimensionless axial force ′ and reinforcement ratio ′. Clearly, approximate 19 

estimates and exact values are almost coincident. Note that the simplified expression for  is 20 

valid for ′ ≤ 0.5, i.e., θ < π/2. Nevertheless, as the function  (′) presents a symmetry point 21 



  

around (0.5, /2), for ′ > 0.5 the value of  may be easily derived by symmetry 1 

considerations. 2 

Once evaluated , the design flexural capacity MRd is equal to the sum of the design flexural 3 

resistance due to concrete, MRd,c , and the design flexural resistance due to steel, MRd,s. By 4 

employing the quantities in Fig. 2, it is straightforward to show that 2: 5 

( )3 3
, ,

2 2
sin

3
 = + = + −Rd Rd c Rd s cd s ydM M M R  f R c  A  sin  f 


     (5) 6 

where c is the concrete cover of cross-section; multiplying each term by 
3

1

2 
cdR f

, Eq. (5) 7 

may be rewritten as: 8 
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where 
32

=


Rd
Rd

cd

M

R f



 is the dimensionless bending capacity of the cross-section. In this way, 10 

the ultimate flexural capacity is expressed in general form as a function of the relevant 11 

dimensionless parameters  ,   and c/R. 12 

 13 

M-N INTERACTION DOMAINS 14 

The proposed method also allows for a simple computation of the interaction domains in an 15 

analytical way, by simply varying the axial force and, thereby, retrieving the value of the 16 

corresponding ultimate moment capacity by means of Eq. (5) or (6). In addition, the 17 

simplified assumptions adopted here offer insight in the section layout at failure for some 18 

peculiar situations corresponding to specific points on the domain. A sketch of a typical M-N 19 

                                                 

2 Note that due to a clerical error, in the original work by Cosenza et al. (2011) the equation is reported with a 

wrong coefficient of 4/3 instead of 2/3. 



  

(or, in dimensionless form,  −  ) domain is reported in Fig. 4. Five (5) key points can be 1 

identified. 2 

- Point A. This corresponds to the extreme traction load the section can carry. In this 3 

situation, no bending is allowed and the whole tensile force is carried by the steel, due 4 

to the inherent assumption of no tensile strength offered by the concrete. The axial load 5 

is thereby equal to the area of the steel As multiplied by its design strength 
ydf . In 6 

dimensionless terms, it is immediate to derive that  ʹ = − ʹ. 7 

- Point B. This is the point symmetric to point A and corresponds to pure compression. 8 

Both concrete and steel mobilize their strength in any point of the section. The 9 

corresponding axial force is given by the sum of the steel capacity 
yd sf A and the 10 

concrete capacity 
2

cdf R . In dimensionless terms,  ʹ = 1 + ʹ.  11 

- Point C. This point is representative of pure bending. In such conditions, total 12 

compression force associated to both concrete and steel must equal the tensile steel 13 

force. This means that the depth of compression zone yc is less than R. It is 14 

straightforward to derive that yc is an increasing function of the amount of 15 

reinforcement  and tends to R when reinforcement increases up to infinity, as in the 16 

latter case concrete would give a negligible contribution compared to steel. A 17 

simplified expression for the moment capacity under pure bending is presented in 18 

Cosenza et al. (2011). 19 

- Point E. This point corresponds to a failure condition with the same ultimate moment as 20 

in Point C and an associated compressive force. This means that the increase in axial 21 

force due to concrete and steel must not produce any bending moment and, therefore, 22 

the depth of compression zone is equal to (2R − yc). The same result may be obtained 23 

by considering that Point E is the one symmetrical to Point C. The axial force is equal 24 



  

to the ultimate compressive load of an un-reinforced section ( ʹ = 1). The presence of 1 

the steel is, therefore, responsible for the finite moment capacity under normal load. 2 

- Point D. This point is associated with the maximum bending capacity of the section, 3 

occurring under a dimensionless axial force  ʹ = 0.5. It is evident that the stress-block 4 

diagram is extended up to a half cross-section, since any increase or decrease of the 5 

compression zone would lead to a decrease in the bending moment capacity. 6 

 7 

VALIDATION OF THE PROPOSED METHOD 8 

Fig. 5 reports a comparison between the results obtained through the proposed approach and 9 

a rigorous solution in the realm of the aforementioned assumptions 1-7. EC2 is used as the 10 

reference code in this illustrative application; however, similar findings can be obtained by 11 

using the ACI 318-14 design framework. Results, expressed through dimensionless pairs  12 

ʹ :  ʹ, refer to a circular cross-section having a diameter of 50 cm and a concrete cover of 5 13 

cm. Reinforcement is represented by 10, 20, 30 and 40 bars with a diameter  = 16 mm, 14 

corresponding to reinforcement ratios  approximately equal to 1, 2, 3 and 4% (consistent 15 

with detailing rules for local ductility of RC columns in seismic areas). Concrete and steel 16 

have design strengths fcd = 14.2 MPa (εcu = 0.35%) and fyd = 391 MPa, respectively 17 

(corresponding to fck = 25 MPa and fyk = 450 MPa, the latter being the recommended value in 18 

Italy). It is noted, by inspecting Figure 5, that the proposed method matches very closely the 19 

rigorous results obtained by means of freeware Biaxial (available from the website of the 20 

Italian Network of Earthquake Engineering University Labs, or ReLUIS: 21 

http://www.reluis.it/index_eng.html). The discrepancies from the rigorous analysis are of the 22 

order of 1% for  ʹ values relevant to earthquake engineering applications (e.g.,   < 0.55,  ʹ 23 

< 0.61), whereas the method underestimates by 5% to 10% the extreme values corresponding 24 

to a purely axial force. This is due to the simplifying assumption of reducing design strengths 25 

http://www.reluis.it/index_eng.html
http://www.reluis.it/index_eng.html


  

employed in the proposed method. Numerical values, corresponding to  ʹ ratios ranging from 1 

0 to 0.5, are also reported in Table 1 together with other formulations. In the table, Mrd1 is the 2 

most rigorous ultimate flexural capacity value of the cross-section computed by the Biaxial 3 

software; Mrd2 represents the same value but computed using the simplified stress-block 4 

diagram for concrete under compression and assuming the effective strength of concrete 5 

reduced by 10% according to EC2. (To this aim, an ad hoc MATHWORKS-MATLAB® 6 

script was developed by the authors). Finally, Mrd3 is evaluated according to Cosenza et al. 7 

(2011), whereas Mrd4 is the ultimate flexural capacity value of cross-section computed using 8 

the proposed method. The mean absolute error of the proposed approach is 1.43%, on the 9 

conservative side, offering better performance in predicting the flexural capacity over that 10 

provided by both the stress-block analysis (2.61%) and the Cosenza et al. (2011) method 11 

(3.54%). Note that the error provided by the proposed method is lower than the one by the 12 

Trentadue et al. (2016) approach, which report an average discrepancy of 3.2% versus 13 

numerical solutions. Further validation of the proposed approach could also be performed by 14 

using results from experimental tests available in the literature. However, this is outside the 15 

scope of this note. In fact, it can be quite challenging to gather reliable (especially in terms of 16 

sample size, to allow statistically meaningful comparisons) and open (providing the required 17 

input data to implement the proposed numerical solution) datasets of experimental tests for 18 

RC members with circular cross-sections. 19 

 20 

CONCLUSIONS 21 

The choice of a circular cross-section for structural members is popular in both geotechnical 22 

and structural design, due to simplicity of construction and equal strength under horizontal 23 

loading in all directions. In comparison with rectangular cross-sections, no analytical 24 

solutions are available to evaluate flexural capacity under a specified axial load. This paper 25 



  

aimed at providing a simple, approximate analytical solution in the M-N space which could 1 

facilitate routine calculations. Comparison with rigorous numerical analyses indicates an 2 

excellent performance of the proposed approach (maximum discrepancies of less than 5%, 3 

typically less than 1%), outperforms existing simplified formulations, the latter being more 4 

complicated and involving iterative, or even numerical procedures.  5 
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List of Figure Captions 1 

Fig. 1 Assumptions on the constitutive behavior of materials and mobilized strength in the 2 

different analysis methods. 3 

 4 

Fig. 2 Stress distribution and formulae for the proposed method. 5 

 6 

Fig. 3. Comparison between exact and approximate values of , as function of dimensionless 7 

axial force ′ (left) and mechanical reinforcement ratio ′ (right). 8 

 9 

Fig. 4. N - M and ′ - ′ domain through the proposed method. 10 
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Fig. 5. Comparison between results from proposed method and rigorous analysis. 12 
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Table1. Comparison of results obtained by the proposed formula (MRd4) and other 1 

formulations from the literature, including the most rigorous numerical solution using 2 

Biaxial (MRd1). 3 

ν ρ MRd1 MRd2 MRd3 MRd4 
2 1

1

Rd Rd

Rd

M M

M

−
 3 1

1

Rd Rd

Rd

M M

M

−
 4 1

1

Rd Rd

Rd

M M

M

−
 

[-] [%] [kNm] [kNm] [kNm] [kNm] [%] [%] [%] 

0 

1 143.7 141.4 143.6 137.1 -1.60 -0.07 -4.59 

2 258.4 256.2 264.8 253.1 -0.85 2.48 -2.05 

3 365.7 361.2 377.9 361.2 -1.23 3.34 -1.23 

4 467.5 462.2 486.8 465.1 -1.13 4.13 -0.51 

0.1 

1 175.9 170.4 176.9 174.3 -3.13 0.57 -0.91 

2 283.6 277.3 290.2 281.6 -2.22 2.33 -0.71 

3 385.4 378.7 398.4 384.3 -1.74 3.37 -0.29 

4 483.9 475.7 504.0 484.6 -1.69 4.15 0.14 

0.2 

1 204.3 196.4 202.4 201.8 -3.87 -0.93 -1.22 

2 303.4 294.2 309.5 302.6 -3.03 2.01 -0.26 

3 399.2 390.0 414.0 401.4 -2.30 3.71 0.55 

4 494.6 484.7 517.1 499.0 -2.00 4.55 0.89 

0.3 

1 220.7 209.5 220.0 220.3 -5.07 -0.32 -0.18 

2 315.3 304.3 323.0 317.0 -3.49 2.44 0.54 

3 407.6 396.7 424.9 413.2 -2.67 4.24 1.37 

4 500.5 489.6 526.3 509.0 -2.18 5.15 1.70 

0.4 

1 228.0 217.8 229.9 227.3 -4.47 0.83 -0.31 

2 317.9 307.4 330.7 322.5 -3.30 4.03 1.45 

3 409.3 398.6 431.3 417.8 -2.61 5.38 2.08 

4 500.5 489.7 531.8 512.9 -2.16 6.25 2.48 

0.5 

1 224.7 215.2 233.0 227.3 -4.23 3.69 1.16 

2 314.4 304.6 333.2 322.6 -3.12 5.98 2.61 

3 404.4 394.5 433.3 417.8 -2.45 7.15 3.31 

4 494.6 484.6 533.5 512.9 -2.02 7.86 3.70 
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