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Abstract—Detecting clusters defining a specific shape or man-
ifold is an open problem and has, indeed, inspired different
machine learning algorithms. These methodologies normally
lack scalability, as they depend on the performance of very
sophisticated processes, such as extracting the Laplacian of a
similarity graph in spectral clustering. When the algorithms
need not only to identify manifolds on large amounts of data or
streams, but also select the number of clusters, they failed either
because of the robustness of their processes or by computational
limitations. This paper introduces a general methodology that
works in two levels: the initial step summarizes the data into a set
of relevant features using the Euclidean properties of manifolds,
and the second applies a robust methodology based on a co-
evolutionary multi-objective clustering algorithm that identifies
both, the number of manifolds and their associated manifold.
The results show that this method outperforms different state of
the art clustering processes for both, benchmark and real-world
datasets.

Index Terms—Clustering, Map Reduce, Evolutionary Compu-
tation, Big Data, Stream

I. INTRODUCTION

On this new era of Big Data algorithms, analysts need to
deal not only with the problem of extracting patterns from
data, but also with the efficiency required by the markets
demands. These challenges are known as the five V’s [1]:
velocity, variety, volume, veracity and value extracted.

As Big Data is an area that covers several different fields
[2], [3], in this work, I focus on the problem of clustering large
datasets, i.e. a dataset with a large number of samples. Besides,
the main goal of this work is not only the discrimination of
clusters, but also identifying specific structures hidden into the
clusters. These structures, called manifolds, have the property
of continuity. Consequently, every clustering algorithm target-
ing these kinds of structures needs not only to deal with the
stress associated with high volumes of data, but also with the
notion of continuity immerse inside the manifolds.

There are several methodologies that deal with the manifold
extraction problem [4]. The most relevant are continuity-based
clustering techniques. These methodologies try to separate the
data according to the form they define in the space [5]. The
most representative technique is Spectral Clustering [6]. This
technique defines a similarity graph among the data in order
to find the best way to cut it. The resulting components after
the cutting process are the manifolds.

Spectral Clustering has several problems according to its
robustness [5] and memory consumption [7]. The latter is
specially important for large data analysis, due to the algorithm
consumes a lot of memory during the search process. There
are some methodologies, such as the Nyström extension [8],
which tries to reduce the memory usage of Spectral Clustering,
however, this technique makes the algorithm more sensitive to
noisy data.

Other techniques which are gaining importance in large data
analysis are online clustering algorithms [9]. These analytical
techniques are focused on data streams. Data streams generate
data continually. The idea behind online clustering algorithms
is to analyse these data using real-time analysis [9]. These
techniques usually need to deal with large data quantities that
produce several limitations on the algorithm representation.
One of the main tools used for online clustering analysis is
the Massive On-line Analysis (MOA) tool [10].

This work is focused on combining a co-evolutionary Multi-
Objective Genetic Algorithms (MOGA) [11] and Map-Reduce
[12] to improve the manifold identification process, allowing
the algorithm not only to identify manifolds but also to choose
the number of clusters automatically. This new algorithm,
called VARMOG, divides the clustering process into two
levels: the low level summarizes the information of the original
search space using the Voronoi regions, while the high-level
uses a co-evolutionary multi-objective approach to join the
regions, discriminating the manifold structure. This approach
extends the MOGCLA algorithm [13] that needs to know
the number of cluster in advance from the analyst. This
extension includes a co-evolutionary process where different
populations collaborate with the aim of identifying the most
stable solutions for different numbers of clusters automatically.

The experimental section compares VARMOG with the
MOGCLA algorithm, the classical K-means version of Map-
Reduce [12], the combination of Spectral Clustering and the
Nyström method [8] and modern online clustering algorithms
(CluStream [14], Online K-means [9] and ClusTree [15]),
in order to evaluate the performance of the new method on
benchmarks and real-world datasets. The results show that the
algorithm is competitive with respect to the other methods, and
it has the ability to automatically detect the proper number of
clusters in almost every case.

This work is structured as follows: Section II introduces



the motivation of this work specially focused on the Voronoi
Tessellation, Section III presents the VARMOG algorithm
which is evaluated in Section IV using benchmark and real-
world datasets, and comparing its accuracy value against other
algorithms extracted from the literature. Finally, the paper
presents the conclusions and future work.

II. BACKGROUND

The main hypothesis of this work comes from the definition
of manifold. The topological definition of a manifold describes
it as a space where each point is locally in an Euclidean space
[16]. This is a strong advantage for large quantities of data, as
although there are several points in the space, lots of them will
fall in the neighbourhood of an Euclidean space. This goes to
the main research question: Is it possible to summarize the
space into a set of points which are representative points of
the whole dataset?

First of all, it is important to consider the type of data to be
analysed. In this work I focus on stream data, i.e. continues
data coming from different sources. There are two main ways
to deal with these data: offline, where the analyst sets a time
frame and directly analyses the data using a significant amount
of it; or online where the data are analysed as they arrive to
the system. This work focuses on offline data, although my
aim is to extend this idea also for online environments.

Based on the former hypothesis for space summarization,
and considering that the data flow is offline, my method will
divide the analysis into two parts: first, it will reduce the
information of the space and, later, it will identify the manifold
directly on this reduced information. Fig. 1 shows an example
of this reduction and how the main points (blue dots) would be
selected to reconstruct the original shapes. As I need to create
this data summary in a timely way, I leverage the Voronoi
Tesselation.

A. Clustering and The Voronoi Tessellation

The Voronoi Tessellation is a geometric construction that
allows to reconstruct an Euclidean plane. In the case of
clustering, the Tessellation represents the partition produced
by the clustering algorithm, when this partition is based on an
Euclidean notion. Formally, given a dataset X = {x1, . . . , xn}
with n elements, the clustering process divides the data blindly
into k clusters (C = {c1, . . . , ck}). The partition C is also
known as Voronoi Tessellation or Dirichlet Tessellation [17].
Considering that each cluster has a centroid, the set of cen-
troids is V = {v1, . . . , vk}. This process generally minimizes
a cost function which, in the case of an Euclidean space, is:

J =
∑
cj∈C

∑
xi∈cj

||xi − vj ||2 (1)

where the distance denoted by || · || is the Euclidean distance.
The minimization aims to identify, fixed the number of clusters
k, the best position for the centroids. This translates to:

arg min
c1,...,ck

J = arg min
v1,...,vk

∑
cj∈C

∑
xi∈cj

||xi − vj ||2 (2)

Giving this notion of centrality, it is straightforward to
define a Voronoi Tesselation considering it in terms of distance
to the centroid. The region Rj defined by the centroid vj is
the closest set of points to this centroid, i.e., considering a d
dimensional space Rd:

Ri = {z ∈ Rd | i = arg min
j
||z − vj ||2}. (3)

This partition provides areas where the data density is higher
and determines regions that will work as Euclidean pieces of
the manifold’s puzzle. Once the whole space is divided into
regions, they only need to be joined, defining a continuity
criterion. The region center is a strong piece of information
as it provides the means of all the data instances inside the
region. It leads to consider the centroids as the starting point
to find manifolds from a high level perspective. This reduces
the effort for the manifold-based algorithms, as they do not
need to deal with noisy data, as far as the centroids are stable,
their results must be as good as the original data.

Fig. 1. Voronoi tessellation of Cassini dataset applying K-means.

Fig. 1 shows an example of how the Voronoi Tesselation can
summarize a dataset of 10,000 instances into 30 centroids. This
dataset, called Cassini (Section IV-A), contains 3 clusters that
can hardly be identified, for example, by a 3-means, as two
of them are surrendering the third. In this specific example,
the centroids are spared around the three clusters, defining the
regions where the main pieces of the dataset are. Here, there
are no data instances of two different clusters in a region,
this strongly depends on the number of regions defined at
the beginning. For grouping the regions, the centroids just
need to be joined by continuity. This will combine two kinds
of clustering at two different levels: the lowest level will
focus on defining the regions using the Euclidean properties of
manifolds and the highest level will reconstruct the manifold
by continuity. This two-level clustering process allows the
identification of manifolds.



III. VARMOG: MANIFOLD CLUSTERING VIA
CO-EVOLUTION

This section describes the Co-evolucionary Multi-Objective
Genetic Graph-based Clustering Algorithm (VARMOG). This
algorithm combines the Map-Reduce version of K-means and
a cooperative co-evolutionary approach between populations.
This co-evolution uses the Multi-Objective Genetic Graph-
based Clustering algorithm [7] (MOGGC) in each individual
population, in order to reduce the computationally effort and
improve the scalability for large datasets. Fig. 2 shows the
schema of the whole process.

A. Low-level: Space Summarization

The lowest level of the algorithm defines the Voronoi
regions in the form of centroids. They are extracted using a
Map-Reduce version of K-means. This information is sent to
the next level in order to improve scalability.

The Map-Reduce version of K-means is divided in three
main steps (see Fig. 2):

1) Ini: This step splits the data among nodes creating
different blocks. It also chooses an initial set of centroids
uniformly at random. Every node keeps a copy of these
centroids which will be updated in every step (see Fig. 2
Ini).

2) Map: Each node maps the data instance with the closest
centroid by using the Euclidean distance among them.
This groups the data block by centroid. After, the
information of each centroid will be the same to the
same reducer, e.g. the instances from different mappers
associated to centroid 1 will be sent to reducer 1, those
of centroid 2 to reducer 2 and so on (see Fig. 2 Map).

3) Reduce: As every reducer has all the data corresponding
to a centroid they can independently recalculate the
centroid position. This is calculated as the means of the
data, i.e.:

vi =
1

|ci|
∑
xj∈ci

xj .

Then, the centroids list is updated and sent to all the
nodes again (see Fig. 2 Reduce). When the algorithm
reaches a convergence criterion or a maximum number
of iterations, it stops. Otherwise, it goes to the map step.

Once this process finishes, the algorithm produces the
Voronoi regions, defined as centroids, and sends the centroids
to the high level process.

B. High-level: Manifold Discrimination

The high-level clustering process uses the centroids as a
search space to apply clustering. But it has no knowledge of
the number of clusters. To guess the number of clusters it will
create a population per potential number of clusters inside
a range: [kmin, kmax]. Each population will calculate poten-
tial solutions in every generation based on a multi-objective
fitness. They will also collaborate by exchanging individuals
from the Pareto Fronts at the end of each generation.

The algorithm starts defining a similarity graph between
the centroids. The centroids are nodes of the graph, and the
weight of the edges are their similarity, measured by the Radial
Basis Function (RBF) between each pair of centroids [6]. The
algorithm only keeps the K-closest nodes connected to reduce
the amount of information, defining a K-neighbour similarity
matrix [6]. This topology will define the final manifold/clusters
using a graph-cut methodology. To cut the graph, I use a
genetic algorithm: the MOGGC algorithm [7].

This algorithm leverages SPEA2 algorithm [18] for the
genetic search process of the set of solutions, i.e., selections
from centroids of the low level to manifolds in the high level.
To deal with the co-evolutionary process, I extend SPEA2 to
contain an archive per population of the co-evolution (each
archive defines independent Pareto Fronts per number of
clusters). It is also extended to exchange solutions from the
archives at the end of each generation, so it can optimize the
search process.

This algorithm has the advantage that several parts can run
in parallel. Each population runs in a different core. Also each
chromosome fitness is calculated in different machines, as the
chromosomes do not need information from each other during
the fitness evaluation. The selection divides the chromosomes
in order to reproduce them among different machines.

1) Encoding and Genetic operators: Each chromosome
is encoded as an N -dimensional vector, where each allele
represents a number between 1 and the number of clusters
assigned to the specific population. This is called a label-based
representation [19]. These labels are considered clustering
solutions.

The evolution might create invalid individuals. These solu-
tions are chromosomes with empty clusters. As the algorithm
works with partitional clustering, these solutions are removed
from the population, assigning them the minimum fitness.

Each population applies the following operators to their
chromosomes:

• Selection: A tournament selection chooses the best indi-
vidual for reproduction.

• Crossover: The algorithm applies a two point crossover,
exchanging strings of numbers of the same length.

• Mutation: The algorithm follows an adaptive mutation
that improves the convergence. It is calculated in three
steps:

1) For each individual, it uniformly estimates if the
mutation is applied. This probability is initially
fixed.

2) After, for each chromosome, it decides which alleles
are mutated taking into account the current element
probability to belong to the assigned cluster. The
higher this probability, the lower the mutation prob-
ability and vice versa. This probability is calculated
using the fitness function on one allele.

3) It mutates the element by replacing it using a
uniformly at random number between 1 and the
number of clusters of that population.
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Fig. 2. Architecture of the algorithm. The first part corresponds with the Map-Reduce implementation of the low level search, where the centroids position
is optimized. The second part corresponds with the co-evolution. The algorithm generates a population per number of clusters and, then, it creates different
Pareto Fronts whose archives exchange the best solutions.

2) The Fitness Function: The fitness has two objectives.
First, it aims to improve the data continuity degree to create
clusters whose intra-data are well connected. The second
objective aims to increment as much as possible the cluster
separation. They are computed as follows:
• Data Continuity Degree: This objective function calcu-

lates the sum of all the edges, creating a minimal span-
ning tree for each connected component of the similarity
graph.

• Clusters Separation: This metric measures the cost of
separating a node from a cluster based on the weights of
other cluster nodes. It is computed as:∑

vi∈C

∑
vj∈G{wij | vj /∈C}
|G|−|C|

|C|
(4)

where C is a cluster, G is the similarity graph, vi is
the centroid i, wij is the edge weight value from i to
j. It calculates the arithmetic average value of the edge
weights among different clusters.

These two objectives are opposite. They improve the intra
and inter cluster distances, respectively. This is the reason for
choosing a multi-objective approach. For the first objective, a
single cluster would guarantee a maximum value while, for the
second, a cluster per instance would guarantee the maximum
value.

Due the necessity of choosing one of the solutions from the
Pareto Front, I chose the solution with the highest value of the
Cluster Separation metric, because, empirically, this solution
always obtains better accuracy values.

C. Time and Memory Complexity

This section focuses on the complexity and scalability of
VARMOG. It is relevant for the analysis to take into account
that the first step significantly reduces the amount of data

for the second, improving the scalability on the second one.
Besides, for the first step I implemented the Map-Reduce
version of K-means which is already scalable and whose
complexity only depends on the number of clusters and data
points (although, in practice, it is also important to have
into account the messages exchanged between mappers and
reducers).

For the low-clustering process, the complexity is completely
equivalent to the complexity of the Map-Reduce version of K-
means. According to [12], this complexity is O(k·N/p), where
k is number of clusters, N is number of data points and p is
number of parallel nodes.

The high-clustering process has some extra dependencies.
The co-evolutionary algorithm depends on: the initial popula-
tions that are collaborating between them, their chromosomes,
operations and fitness calls. The number of populations does
not affect to the complexity, as each population can be exe-
cuted in parallel. The fitness function has a direct dependency
on the number of regions. In the worst case scenario the fitness
consumes O(r2), where r is the number of regions, as it
is a square computation on the regions, i.e. it considers the
regions by pairs (see equation 4). SPEA2 complexity depends
on the population and archive sizes (P and P̄ , respectively).
It is calculated as O((P + P̄ )2 · log(P + P̄ )). I also need to
take into account that the algorithm will process G sequential
generations.

Considering that the two levels of the algorithm are se-
quential, as the number of centroids is the input for the co-
evolution, the complexity of the algorithm is:

O(k ·N/p+G · (r2 + (P + P̄ )2 · log(P + P̄ ))) (5)

Considering that the algorithm will run in parallel, the
estimation for the memory consumption of the Map-Reduce
version of K-means is N+p·r [12], where N is the size of the



dataset, p represents the nodes used during the Map-Reduce
execution, and r is the number of centroids. For the memory
consumption of the co-evolution, I consider the population size
P and the number of populations C, apart of the number of
neighbours chosen in the similarity matrix K. This leads to
a consumption of P · C · r · K. However, it is important to
consider the size reduction where r << N . The total memory
consumption is:

N + p · r + P · C · r ·K (6)

IV. EXPERIMENTAL RESULTS

VARMOG evaluation is divided in two parts: the first
one compares the performance of the algorithm on different
synthetic benchmarks, extracted from the literature, which are
composed by different continuity based-clusters. The second
measures the performance of the algorithm on real-world
datasets.

A. Dataset Description

The benchmarks belong to the mlbench1 package of the
R-project. Using this package, I have generated 8 datasets
containing 50,000 instances each. The description of these
datasets is the following (Fig. 3):
• Cassini: Three continuity based clusters, two larger at the

top and bottom and one smaller in the middle.
• Cuboids: Three cuboids defining a frame in 3 dimen-

sions, and one smaller cube in the middle.
• Hypercube: A three dimensional dataset composed by 8

spheres in two levels, divided by four spheres per level.
• Shapes: A dataset containing 4 different shapes in two

dimensions.
• Simplex: Similar to hypercube, but this dataset has four

spheres, 3 on the bottom level and one on the top.
• Smiley: A two dimensional dataset defining a smiley face.
• Spirals1: A noiseless dataset defining two spirals around

each other.
• Spirals2: The previous dataset but affected by noise.
For the experiments on real world data, I have selected four

datasets from different repositories. These datasets are:
• Forest Covertype Dataset (CovType): extracted from the

UCI Machine Learning repository. This dataset uses
cartographic variables to predict forest cover type. It is
defined by 54 features, targeting 7 classes. The total
number of instances is 581012.

• Electricity2: This dataset contains electricity consump-
tion records for different prices. It contains 45312 in-
stances described by 5 features and targeting 2 classes.

• Statlib3: The statlib dataset describes the stock of Dow
Jones 30. It has 6 features, 138166 samples and 30
classes.

1http://cran.r-project.org/web/packages/mlbench/mlbench.pdf
2http://www.inescporto.pt/∼jgama/ales/ales 5.html
3http://tunedit.org/repo/StatLib/numeric/dj30-1985-2003.arff

Fig. 3. The synthetic datasets. From top to bottom and from right to left:
Cassini, Cuboids, Hypercube, Shapes, Simplex, Smiley, Spirals1, Spirals2.

• Records Block (UCI Machine Learning Repository): This
dataset contains the underlying records from the epi-
demiological cancer registry in North Germany. It has
2 classes, 4 attributes and 574913 instances.

B. Experimental Setup

The evaluation of the clustering algorithm is a sensitive
process, specially when the algorithm deals with large datasets.
In this work, I have focused the evaluation on comparing the
algorithm with other algorithms through the accuracy of the
clustering solutions.

During the experiments, I compared the new implementa-
tion with different algorithms that can handle big amounts
of data. These algorithms are: the MOGCLA algorithm [13],
the Nyström extension of Spectral Clustering [8] (SC+N) -
that samples the complete dataset to reduce its size, K-means
modification using Map-Reduce [12] (Big K-means) and three
online clustering algorithms: CluStream [14], Online K-means
[9] and ClusTree [15]. As VARMOG, the online algorithms
require to work in two levels. For the top level, which defines
the solution, they apply the KNN algorithm [20] to define the
final clusters.

All algorithms apply the Euclidean distance as their sim-
ilarity metric. The genetic algorithms uses the following

http://cran.r-project.org/web/packages/mlbench/mlbench.pdf
http://www.inescporto.pt/~jgama/ales/ales_5.html
http://tunedit.org/repo/StatLib/numeric/dj30-1985-2003.arff


parameters. The number of populations generated for the co-
evolution is 10 (each population describes a different number
of clusters). Each population contains 300 individuals which
pass to the next generation by using a (µ + λ) selection.
The elitism is set to 5, and the exchange parameter between
populations is set to 2 per generation. The algorithm runs
for 100 generations, applying, at the end of each generation,
the mutation and the crossover with probabilities 0.1 and
0.5, respectively. These values were chosen from a grid of
parameters, and they are a good trade off between accuracy
and speed.

For the high level of VARMOG and MOGCLA, I use the
Radial Basis Function (RBF) [21] to define the similarity
matrix that the algorithm uses. For the Nyström reduction,
I sample the set up to 0.3% of the total dataset using uniform
sampling. In order to evaluate the statistical significance be-
tween the results of VARMOG and the rest of the algorithms,
I apply the Wilcoxon test [22]. The test considers that two
sets of results are significantly different when the p-value is
smaller than 0.05.

The distributions for the results are obtained by run-
ning each algorithms 100 times, as all of them are non-
deterministic.

C. Experiments with Benchmark Datasets

The benchmark datasets aim to highlight different abilities
of the algorithms depending on how they are able to identify
the clusters under different circumstances. I compare the
performance of VARMOG with similar algorithms in the area
(Section IV-B). Table I (top) shows the results for all the
algorithms. In the case of VARMOG, as it works with a
variable number of clusters, the table also shows the final
number of clusters chosen from the Pareto Front.

Initially, the algorithm combines the different Pareto Front
of the populations created during the co-evolutionary search
(Section III-B). The selection process prioritizes the clustering
separation metric over the continuity degree. This provides a
clear selection criteria among the multiple populations. Fig. 4
shows three examples of Pareto Fronts from three different
benchmarks. The Pareto Front of the chosen population is
highlighted with a red start. In the case of Cassini and Cuboids,
the five populations correspond to number of clusters from 2
to 6, where the red one represents 3 clusters for Cassini and
4 for Cuboids. For Hypercube, they go from 6 to 10, where
the red one corresponds to 8. As Fig. 3 shows, the selection
in the Pareto Front corresponds to the optimum number of
clusters on the three benchmarks, while the other number of
clusters normally reduces either the continuity or the cluster
separation, creating dominated solutions with respect to the
optimum one. This shows that the fitness function provides
the ability to find the best individuals according to different
numbers of clusters.

As the Pareto Front evaluation shows that the number of
clusters can be reasonably identified by the co-evolutionary
search, I can compare with the rest of the algorithm fixing
their number of clusters to the optimum one. This comparison,

shown in Table I, shows that VARMOG obtains similar results
to MOGCLA in several cases, as it is expected, but in some
of them, these results are slightly worse. To understand the
weaknesses of the algorithm, it is relevant to analyse each
dataset, individually.

The application of VARMOG to Cassini shows good ac-
curacy results (the median accuracy is 100%) and a good
selection on the number of clusters (as is also shown in Fig. 4).
This results are similar to the results of MOGCLA, which is
based on the same principles but require an initial number of
clusters. For the rest of the tools, Big K-means and the online
clustering algorithms obtain the worse results (around 66%)
while SC+N obtains good results, very similar to the results
of VARMOG (98.6%). There is no statistically significant
difference between VARMOG, MOGCLA and SC+N, while
VARMOG is significantly better than the others.

In the case of Cuboids, the results are slightly worse than
in the previous case. The results of CluStream (100%) and
SC+N (99.7%) are the best in this case, but both VARMOG
and MOGCLA obtain better results than Big K-means and the
online clustering techniques (between 72% and 89%). This is
also confirmed by the Wilcoxon test.

The Hypercube dataset shows maximum results for VAR-
MOG, MOGCLA and CluStream. Besides, for this dataset
both VARMOG and MOGCLA achieves maximum stability (0
standard deviation). The rest of the algorithms have accuracy
results around 80%. This might be a consequence of the noisy
behaviour of this specific dataset. Again, the Wilcoxon test
confirms the improvement with statistical significance.

For Shapes every algorithm obtains the maximum accuracy
results (100%) but SC+N algorithm (68.7%). It is interesting
to remark that VARMOG, MOGCLA and ClusStream are the
most stable (0.044 and 0 standard deviation). The Wilcoxon
test confirms that SC+N is statistically worse.

The Simplex dataset has a clear discrimination that every
algorithm is able to identify with maximum accuracy. In
this specific case, the most stable results are for VARMOG,
MOGCLA, SC+N and CluStream. The Wilcoxon test shows
no significant different among the algorithms.

In the case of Smiley, it is noticed that there are differ-
ences between the results of MOGCLA and the results of
VARMOG. Although VARMOG successfully identifies the
number of clusters, its accuracy is significantly lower (92.3%)
according to the Wilcoxon test. Nevertheless, VARMOG is
still better than the rest of the algorithms. CluStream (91.6%
of accuracy) has similar results to VARMOG (there is no
statistical significant difference between them). The rest are
significantly worse (around 60 and 75% of accuracy).

The case of Spiral1 is similar to the former, VARMOG
obtains worse results than MOGCLA (89.1% for VARMOG
and 100% for MOGCLA), and also than SC+N. However, it
correctly identifies the number of clusters (2) and its results
are significantly better than the rest of the algorithms.

The last benchmark, Spiral2, introduces noise to the pre-
vious one. In this case, the results of every algorithm are
more confuse. The best algorithm is MOGCLA (76.9%),



Fig. 4. Representation of the Pareto Front associated with different populations during the co-evolution.

TABLE I
MEDIAN ACCURACY AND STANDARD DEVIATION FOR THE COMPARATIVE RESULTS USING BOTH, BENCHMARK DATASETS AND REAL-WORLD DATASETS.
BOLD HIGHLIGHTS THE BEST RESULTS WHILE ITALICS THE SECOND. NSYMBOL REPRESENTS THOSE CASES WHERE THE WILCOXON TEST DETERMINES

THAT THERE ARE SIGNIFICANTLY IMPROVEMENTS OVER VARMOG, AND HREPRESENTS THE OPPOSITE.

Dataset VARMOG MOGCLA Big K-means SC+Nyström O-Kmeans ClusTree CluStream

Synthetic

Cassini 100% ± 0.04 (3) 100% ± 0.04 H65.5% ± 0.05 98.6% ± 0.17 H65.5% ± 0.00 H67.0% ± 0.13 H67.4% ± 0.05
Cuboids 91.4% ± 0.08 (4) 91.4% ± 0.08 H87.2% ± 0.09 N99.7% ± 0.17 H88.8% ± 0.12 H72.7% ± 0.11 N100% ± 0.12
Hypercube 100% ± 0.00 (8) 100% ± 0.00 H81.6% ± 0.12 H76.7% ± 0.16 H81.4% ± 0.11 H82.3% ± 0.11 100% ± 0.05
Shapes 100% ± 0.04 (4) 100% ± 0.04 100% ± 0.17 H68.7% ± 0.44 100% ± 0.14 100% ± 0.18 100% ± 0.00
Simplex 100% ± 0.00 (4) 100% ± 0.00 100% ± 0.15 100% ± 0.00 100% ± 0.15 100% ± 0.17 100% ± 0.00
Smiley 92.3% ± 0.03 (4) N100% ± 0.05 H63.5% ± 0.18 H75.0% ± 0.17 H62.5% ± 0.17 H64.4% ± 0.16 91.6% ± 0.15
Spirals1 89.1% ± 0.11 (2) N100% ± 0.10 H50.0% ± 0.00 N100% ± 0.10 H50.0% ± 0.00 H50.0% ± 0.00 H50.0% ± 0.00
Spirals2 63.3% ± 0.02 (3) N76.9% ± 0.18 H59.2% ± 0.00 H59.6% ± 0.04 H59.4% ± 0.00 H58.8% ± 0.03 H59.6% ± 0.04

Real

Covtype 27.1% ± 0.09 (5) N30.7% ± 0.08 H23.3% ± 0.01 N29.3% ± 0.07 H23.3% ± 0.01 H19.2% ± 0.03 H19.0% ± 0.04
Electricity 61.3% ± 0.04 (2) 61.3% ± 0.04 H52.2% ± 0.01 60.0% ± 0.12 H52.2% ± 0.01 H52.2% ± 0.01 H52.2% ± 0.00
Statlib 5.01% ± 0.08 (12) N8.24% ± 0.01 N9.99% ± 0.00 N9.95% ± 0.00 N9.98% ± 0.00 N9.76% ± 0.00 N8.28% ± 0.01
Block 86.9% ± 0.04 (2) 86.9% ± 0.04 H51.2% ± 0.00 H76.9% ± 0.01 H51.4% ± 0.01 H55.2% ± 0.03 H55.9% ± 0.03

followed by VARMOG (63.3%). This is the only case of the
benchmarks where VARMOG can not identify the number
of clusters rightly (it estimates 3 in the majority of cases).
Nevertheless, VARMOG is significantly better than the rest of
the algorithms.

Although VARMOG was designed to estimate the number
of clusters, it shows competitive results against similar algo-
rithms that need to know the number of clusters in advance.
Nevertheless, it is still affected by the noise, which can be a
consequence of the low-level clustering.

D. Experiments with Real-World data

In the case of the real world datasets, it is harder to have an
intuition whether the classes describe manifolds or to evaluate
the results via visualization. Nevertheless, it is important to
evaluate whether the algorithm can identify patterns in these
datasets. Table I (low) shows the results of the algorithms on
the four datasets described in Section IV-A.

For Covtype every algorithm has problems discriminating
the patterns of the data. The results of MOGCLA and SC+N
(30.7% and 29.3%, respectively) are the best, followed by

VARMOG (27.1%), which is not able to identify the right
number of clusters (the algorithm identifies 5 and the dataset
has 7 classes). Nevertheless, the results are significantly better
than the rest of the algorithms (they obtain results between
19% and 24%). These problems might be produced by the
sparsity of the data and the number of dimensions.

For the Electricity dataset the results are slightly better.
VARMOG and MOGCLA, and SC+N obtain the best results
(61.3% and 60%, respectively). Besides, VARMOG success-
fully identifies the correct number of classes in the data. The
rest of the algorithms obtain the same results (52.2%), which
are significantly worse, according to the Wilcoxon test, to the
results obtained by VARMOG.

Statlib dataset is the most challenging for all the algorithms,
it is very likely that this dataset is not suitable for clustering
problems. In this case, VARMOG is the worst algorithm of
the whole set. It fails to identify the number of classes (it
identifies 12 out of 30) and its accuracy is around a 5% while
the rest of the algorithms have accuracy levels between 8 and
10%. This is probably a consequence of the high number of
classes.



The final dataset, Block shows opposite results to the
previous one. In this case both, VARMOG and MOGCLA
are able to identify a good discrimination of the clusters
(86.9%) and VARMOG can successfully identify the number
of clusters. For the rest of the algorithms, only SC+N is able
to identify patterns in the data (76.9% of accuracy), the rest
drop close to 50%, which is the worst possible result for a
two classes dataset.

VARMOG is competitive for the real-world datasets and
can discriminate the number of clusters when the divisions are
clearer. It has also shown that in datasets with high number
of classes it has problems discriminating them.

V. CONCLUSIONS AND FUTURE WORK

This work proposes VARMOG, an extension of MOGCLA
algorithm to select the number of clusters automatically. VAR-
MOG uses a manifold identification approach based on two
levels. The low level summarizes the original space into a set
of centroids, by applying the Map-Reduce version of K-means.
The high-level identifies the manifold’s shape by joining these
centroids via a co-evolutionary approach. This co-evolution is
also able to decide the proper number of clusters based on
the Pareto Front of the search process. It obtains good results
for large datasets. It is also competitive against 6 state of the
art clustering algorithms. VARMOG has similar (or better)
clustering results than the results obtained by using SC and
Nyström and Online Clustering algorithms.

The future work will focus on several improvements of
VARMOG. On the one hand, the effects of noisy information
should be deeply analysed, whereas, on the other hand, I want
to extend the algorithm to work directly on the data stream,
giving it the ability to process the data online. I will study other
fitness functions that can improve VARMOG convergence and
the clusters quality. Finally, I want to extend this work to
different paradigms, specially to Ant Colony Optimization, to
improve the performance of known ACO clustering algorithms
as MACOC [23], [24].
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