arXiv:1909.03573v1 [eess.IV] 9 Sep 2019

LCSCNet: Linear Compressing Based
Skip-Connecting Network
for Image Super-Resolution

Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang, Jing-Hao Xue, and Qingmin Liao

Abstract—In this paper, we develop a concise but efficient
network architecture called linear compressing based skip-
connecting network (LCSCNet) for image super-resolution. Com-
pared with two representative network architectures with skip
connections, ResNet and DenseNet, a linear compressing layer is
designed in LCSCNet for skip connection, which connects former
feature maps and distinguishes them from newly-explored feature
maps. In this way, the proposed LCSCNet enjoys the merits of
the distinguish feature treatment of DenseNet and the parameter-
economic form of ResNet. Moreover, to better exploit hierarchical
information from both low and high levels of various receptive
fields in deep models, inspired by gate units in LSTM, we also
propose an adaptive element-wise fusion strategy with multi-
supervised training. Experimental results in comparison with
state-of-the-art algorithms validate the effectiveness of LCSCNet.

Index Terms—Single-image super-resolution, deep convolu-
tional neural networks, skip connection, feature fusion.

I. INTRODUCTION

INGLE image super-resolution (SISR) is a classical but
S challenging ill-posed inverse problem in low-level com-
puter vision, aiming at restoring a high-resolution (HR) image
from a single low-resolution (LR) input image. It is widely
used in various areas such as medical imaging, satellite imaging
and security imaging [1], [2].

Early methods for SISR are mainly interpolation-based,
including Bicubic interpolation [3] and Lanczos resampling [4].
Then more powerful reconstruction-based methods often adopt
sophisticated prior knowledge to restrict the possible solution
space, with the advantage of generating flexible and sharp
details [5]-[8]. Learning-based methods are now mainstream
algorithms for SISR, utilizing substantial data to learn statistical
relationships between LR and HR pairs. Markov Random Field
(MRF) [9] was firstly adopted by Freeman et al. to exploit
the abundant real-world images to synthesize visually pleasing

W. Yang, X. Zhang, W. Wang and Q. Liao are with the Shenzhen Key
Lab of Information Science and Technology, Shenzhen Engineering Lab of
IS&DRM, Department of Electronic Engineering, Graduate School at Shenzhen,
Tsinghua University, Shenzhen 518055, China (E-mail: {yang.wenming@sz,
xc-zhang16@mails, wangweil7 @mails, liaogm@ }.tsinghua.edu.cn).

Y. Tian is with the Department of Computer Science, University of Rochester,
USA (E-mail: ytian21 @ur.rochester.edu).

J.-H. Xue is with the Department of Statistical Science, University College
London, UK (E-mail: jinghao.xue@ucl.ac.uk).

This work was partly supported by the National Natural Science Foundation
of China (N0.61471216 and No0.61771276), the National Key Research and
Development Program of China (No.2016YFB0101001) and the Special
Foundation for the Development of Strategic Emerging Industries of Shenzhen
(No.JCYJ20170307153940960 and No.JCYJ20170817161845824).

image textures. Neighbor embedding methods [10] proposed
by Chang et al. took advantage of similar local geometry
between LR and HR to restore HR image patches. Inspired by
the sparse signal recovery theory, researchers applied sparse
coding methods [11]-[15] to SR. Random forest [16] has also
been used to improve the reconstruction performance.

Recently, remarkable performance has been achieved for SR
by deep models, especially deep network architectures, which
are elaborated for high-level tasks in computer vision. Notably,
residual network (ResNet) and densely connected network
(DenseNet) are two widely-used architectures, which use skip
connections to alleviate gradient problems and degradation
phenomena in training. Chen et al. [17] analyzed ResNet and
DenseNet in the HORNN framework [18] and concluded that
ResNet enables feature re-usage while DenseNet enables feature
exploration, both important to learn powerful representations.

Through extensive experiments, [19] and [20] implied that
ResNet shows an ensemble-like behavior within its structure.
Yang et al. [21] showed that ResNet applied in SR would
lead to output with a layer-by-layer progressive effect, and
Huang et al. [22] argued that this might restrict ResNet
from reaching more feasible solutions. Although DenseNet
explores as many new features as possible by directly utilizing
any former features, its excessive skip connections among
intermediate layers increase the number of parameters and
burden the hardware during training.

In this paper, we propose Linear Compressing Based Skip-
Connecting Network (LCSCNet), as a framework for SR, which
takes advantages of ResNet’s parameter-economic feature re-
usage and DenseNet’s distinguishing feature exploration, as
well as mitigating difficulties of restricted structures of ResNet
and parameter burden of DenseNet.

As the network depth grows, the features produced by dif-
ferent intermediate layers would be hierarchical with different
receptive fields. Among deep SR models, DRCN [23] and
MemNet [24] used these intermediate features with multi-
supervised methods, in which each feature corresponded to a
raw SR output, and then fused these intermediate SR outputs
by a list of trained scalars. Such a fusion strategy has two flaws:
1) once the weight scalars are determined in training, it will not
change with different inputs; 2) using a single scalar to weight
SR output fails to take pixel-wise differences into consideration,
i.e., it would be better to weight different parts distinguishingly
in an adaptive way. To overcome these shortcomings, inspired
by the gate units in LSTM [25], we develop an adaptive
element-wise fusion strategy in a progressive constructive way

to maintain the element-wise convex weighted pattern, aiming
at making better use of hierarchical information with different
receptive fields.

In the end, we composite the Basic LCSCNet architecture
with the adaptive element-wise fusion strategy gracefully for
SR. Analysis and experiments in the following sections will
illustrate the rationality of the proposed methods.

The main contributions of this work are three-fold:

1) We propose an accurate and efficient Linear Compress-
ing Based Skip-Connecting Network (LCSCNet) architecture,
which inherits the advantage of DenseNet in treating features
of different levels distinguishingly while reducing its parameter
size by exploiting the parameter-economic strength of ResNet.
Moreover, we develop an Enhanced LCSCNet (E-LCSCNet)
to further alleviate difficulties of training large-scale networks.

2) Differently from the traditional stationary fusion strategy,
we take the input differences as well as the element-wise
variation into consideration and propose an adaptive element-
wise fusion strategy to further utilize hierarchical information.

3) When compared with the state-of-the-art models trained
on the widely-used 291 dataset and those light networks trained
on the DIV2K dataset, our proposed framework achieves the
state-of-the-art performance. When compared with large models
trained on DIV2K, our E-LCSCNet is among the state-of-the-
art with apparent parametric efficiency.

The rest of the paper is organized as follows. Section II
reviews recent related work. Section III presents a detailed
description of the proposed architecture, mainly on the configu-
ration of Basic LCSCNet and the adaptive element-wise fusion
algorithm. Section IV illustrates several intriguing properties
of LCSCNet, which could explain the rationality of LCSCNet.
Section V conducts ablation studies to further probe into
the proposed framework. Section VI presents experimental
results in comparison with other relevant methods. Section VII
concludes the paper and envisages some future work.

II. RELATED WORK

Because our proposed methods include the Basic LCSCNet
architecture and the adaptive element-wise fusion strategy, in
this section we review related work mainly from the aspects
of basic SISR reconstruction and sub-output fusion.

A. Basic SISR Reconstruction

Dong et al. pioneeringly proposed a three-layer super-
resolution convolutional neural networks (SRCNN) [27], pre-
dicting the end-to-end nonlinear mapping between LR and
HR spaces. This first trial significantly outperformed other
algorithms at that time. To combine the benefits of the natural
sparsity of images and deep neural network architectures,
Wang et al. proposed the Cascaded Sparse Coding Network
(CSCN) [28], which had a higher visual quality than pre-
vious work. After SRCNN, Dong et al. further proposed
FSRCNN [29] improving SRCNN mainly by leveraging
deconvolution layers, which reduced computation significantly
by increasing the resolution only at the end of network. In
the meantime, the Efficient Sub-Pixel Convolution Neural
Network (ESPCN) [26] was proposed by Shi ef al., replacing

the traditional deconvolution layer by an efficient sub-pixel
convolution layer and further reducing computation.

Inspired by the success that very deep neural networks with
sophisticated architectures and training strategies achieved in
some high-level tasks in computer vision [30], Kim et al.
employed the VGG architecture and high learning rate with
gradient clipping to stack a very deep (20 layers) convolu-
tional neural network (VDSR) [31] and gained a remarkable
improvement. Mao et al. proposed a deep fully convolutional
auto-encoder network with symmetric skip connections [32]. To
handle the issue of large numbers of parameters brought by very
deep architectures, Kim et al. proposed the Deeply-Recursive
Convolutional Network (DRCN) [23], which was also 20-
layer but with 16 recursions among its intermediate layers. To
further exploit the advantages from deepening neural networks,
motivated by the success of [33], Tai et al. proposed the Deep
Recursive Residual Network (DRRN) [34], a 54-layer convolu-
tional neural network for SR, in which they utilized the residual
network architecture (ResNet) [35] in both global and local
manners. Inspired by the Dense Connected Network (DenseNet)
[22] proposed by Huang et al., Tong et al. introduced dense
skip connections to their deep architecture [36]. Based on
the correlations among the HR outputs with different scale
factors and a heuristic methodology, Lai ef al. proposed the
Laplacian Pyramid Super-Resolution Network (LapSRN) [37]
to progressively reconstruct the sub-band residuals of higher-
resolution images, which was especially effective for large
scale factors. Motivated by explicitly mining persistent memory
through an adaptive learning process and further mitigating the
difficulties of training deeper networks, Tai et al. proposed an
80-layer network for image restoration, named as Persistent
Memory Network (MemNet) [24].

Very recently, to further explore the power of example-based
SISR with abundant training data, a new dataset DIV2K [38]
consisting of 800 2K resolution images was established. Based
on this powerful dataset, many new architectures were proposed
for performance improvement. Among them, by removing
Batch-Normalization (BN) [39] and applying residual scaling,
Lim et al. proposed the Enhanced Deep Residual Network
(EDSR) [40], which significantly improved performance. Then
the Deep Back-Projection Network (DBPN) [41] was proposed
by Haris et al. to combine the merits of deep neural networks
with the back-projection procedure, proven to be very effective
for large scale factors. By making full use of local and
global information from deep architectures, the Residual Dense
Network (RDN) [42] proposed by Zhang et al. exhibits
comparable performance to EDSR, with fewer parameters.

B. Sub-output Fusion

Features from different depths with different receptive fields
specialize in different patterns in SISR. From the perspective of
ensemble learning, a better result can be acquired by adaptively
fusing the outputs from different-level features. Based on this
concept, several fusion strategies were proposed. Among them,
two representative weighted-summation methods were the
vectorized weighted fusion strategy [23], [24] and MSCN [43].
In the vectorized weighted fusion, a trainable positive vector

Iin
5 Block 1 Blockd —1
0 F Fq_4q
LCSCBlock l
or

=. .
3
]
(>

ReLU

feature
extraction

~
S
e
=3

deep feature exploration

-

S

Block d Block N &

» S

1 Fd FN ;
E-LCSCBlock

T
S =

| | N
upsampling &

reconstruction

(a) Overall architecture of Basic LCSCNet (E-LCSCNet)

> ®
>
I; — - ®
mn \ - >E|s
:\ I
= Block d + Block N — nonlin‘ear
~ | » mapping |
F, Fy N
E-LCSCBlock ®
LCSCBlock
8 8 N

=) > or .

ﬁ. E =

= = 3
o

. ®
5

ReLU

feature deep feature exploration

extraction

adaptive element — wise
fusion

upsampling &
reconstruction

(b) Overall architecture of LCSCNet (E-LCSCNet)

Figure 1: The overall architectures of (a) Basic LCSCNet (E-LCSCNet) and (b) LCSCNet (E-LCSCNet). In (b), ® means element-wise

multiplication; {Y1, ..

., Yn} are the intermediate HR outputs reconstructed from {F1, ..

., Fn}. When E-LSCSNet is employed, red lined

parts are activated. For fair comparison, the upsampling and reconstruction part of (Basic) LCSCNet varies with the training dataset: For
models trained on the 291 dataset, this part is the traditional deconv layer consisting of “nearst-neighborhood upsampling + conv-ReLU +
conv-ReLU + conv”; for models trained on the DIV2K dataset, we use ESPCN [26] instead. To be specific, we only use ESPCN as U&RNet
in Section V-E and the E-LCSCNet in Table VIII.

whose /1 norm is 1 is applied, and each element in this vector
controls how much of the current sub-output contributes to the
final one. To regularize each sub-output and stabilize training,
multi-supervised training is adopted. In MSCN, an extra CNN
module takes LR as input and outputs several tensors with
the same shape as the HR. These tensors can be viewed as
adaptive element-wise weights for raw HR outputs. Then the
weight module and the basic SISR module are trained jointly
by optimizing the fused results in an end-to-end manner.

Both of the two fusing strategies above have shortcomings.
The vectorized approach does not take the diversity of input and
pixel-wise differences into consideration, while in MSCN the
summation of coefficients at each pixel is not normalized, which
is incongruous. Therefore, in this paper we aim to propose a
normalized adaptive element-wise fusion strategy to overcome
the shortcomings of the two previous fusion methods.

The above-mentioned deep methods mainly minimized the
mean squared error (MSE), which tended to be blurry, over-
smoothing and perceptually unsatisfying, especially in the case
of large scale factors. Recently, some inspiring deep learning-
based works concentrated on the exploration of more effective

loss functions for SR. In [44] and [45], the perceptual loss
using high-level feature maps of VGG made HR outputs more
visually pleasing; [46] introduced amortized MAP inference to
the loss function to get more plausible results; [47] and [48]
used the adversarial loss to produce photo-realistic HR outputs.
Although these methods produced high-quality images with
rich texture details, the details in their outputs may be quite
different from original images. As we mainly aim to develop
efficient deep models with fewer pixel-wise errors, our work
does not belong to this group. Readers can refer to [49] for
an elaborated survey on deep learning based SISR.

III. LINEAR COMPRESSING BASED SKIP-CONNECTING
NETWORK (LCSCNET AND E-LCSCNET)

Our work has two main technical contributions: an (en-
hanced) linear compressing based skip-connecting structure
for developing extremely deep efficient neural networks, and
an adaptive fusion strategy for further utilizing intermediate
features. In order to better clarify the contribution and function
for each of them, here we briefly specify four architectures
used in later discussions and ablation studies:

Basic LCSCNet: as shown in Fig.l(a) (without red-line
parts), it firstly extracts features and then sends them to a
series of LCSCBlocks, and the final results are obtained from
the upsampling and reconstruction part;

Basic E-LCSCNet: quite similar to Basic LCSCNet except
for the replacement of LCSCBlock by E-LCSCBlock (Fig.1(a))
and the extra additive skip connections with initial features;

LCSCNet and E-LCSCNet: applying the proposed adaptive
fusion strategy to Basic LCSCNet and Basic E-LCSCNet
respectively, as shown in Fig.1(b).

Because the structure of the above two basic networks are
quite simple and we mainly use LCSCNet (E-LCSCNet) to
compare with other state-of-the-art works, we will focus on
the detailed descriptions on LCSCNet (E-LCSCNet).

As shown in Fig.1(b), our LCSCNet and E-LCSCNet both
mainly consist of four parts: 1) a preliminary feature extraction
net (PFENet), 2) linear compressing based skip-connecting
blocks (LCSCBlocks) or enhanced linear compressing based
skip-connecting blocks (E-LCSCBlocks) for deep feature
exploration, 3) a upsampling and reconstruction net (U&RNet),
and 4) an adaptive element-wise fusion of all intermediate
outputs. Many previous works [24], [31], [34], [37] learned the
residue between HR and its bicubic interpolation and argued
that this helps stabilize training and improves performance.
When we compare LCSCNet with these works, as shown in
Fig.1, the input I;,, is LR, and the output I, is the residue.
Meanwhile, many recent works [40], [42] just learned the
mapping between LR and HR. When we compare E-LCSCNet
with these methods, we also follow this routine for fairness.

Our PFENet uses a single 3 x 3 convolution layer to conduct
preliminary feature extraction:

Fo = frre(lin),

where Fj denotes extracted features from the LR input.

(D

n, output channels

Yout
n channels

:
Yin | — KiL}'L Kil‘}NL
n channels

/4

YL

in

1x1 Conv Kf;

n, output channels

NL n1+nz:ni
3x3 Coani,]- !

Figure 2: The configuration of LCSCUnit.

A. Configurations of LCSCUnit, LCSCBlock and E-LCSCBlock

1) LCSCUnit and LCSCBlock: The features extracted by
the PFENet are then transmitted to the second part of overall
network, which uses LCSCBlocks to explore complicated fea-
tures progressively. An LCSCBlock comprises a fixed number
of linear compressing based skip-connecting units (LCSCUnit)
with the same configuration. The basic configuration of the
LCSCUnit is depicted in Fig.2, where LU; ; denotes the j-th
unit in the ¢-th LCSCBlock, Y;,, denotes the input feature maps
of this unit and Y,,; denotes the output feature maps, both
maps with n channels. In Fig.2, the upper convolution operator

named as linear compressing (LC) layer is of size 1 x 1 with
n1 output channels. We denote the LC layer in LU; ; as Kfj.
Motivated by [35], the nonlinear operator in the lower part of
Fig.2 consists of two parts: ReLU and the convolution operator
denoted as K %L of size 3 x 3 with ny output channels. Here the
superscripts © and V' denote the convolution kernels for linear
and nonlinear transformations, respectively. Then the output of
K ZLJ and K ZJ\;L are concatenated to form a n-channel output
feature maps. For simplicity, bias is omitted and convolution
is replaced by matrix multiplication', then the whole process
of LCSCUnit can be formulated as

Yout = concat (K} Yin, KNFReLU(Y)).)

Furthermore, features and convolution kernels in LCSCUnits
can be separated by their properties. As for features, Y,,; can
be divided into n;-channel Y2, and ny-channel Y,V F, where
superscripts © and V7 in features denote features produced by
linear and nonlinear operations, respectively. For convolution
kernels, K fj can be divided according to the output channel
into Kij and Kfj’-N L where superscript -~ means the part
of the linear-transforming kernel K. operating on Y;Z and
L.NL means the part operating on Y\ L.

Notably, although the LC layer with 1 x 1 convolution
resembles the bottleneck layer that is widely used to reduce
dimensions of feature maps [22], [50], the main difference
between them is that the bottleneck layer is placed before the
nonlinear operator in a cascading manner, while the LC layer
parallels the nonlinear operator.

Skip connections in a neural network structure create short
paths from early layers to latter layers, which are considered as
an effective way to ease the difficulties in training deep neural
networks. In all LCSCNet, we implement skip connections
mainly by the LC layer in each basic unit. In LCSCUnit, there
is a parameter which controls the proportion of the number
of linear output channel n; and the nonlinear output channel
ng. This parameter, which can affect the performance of the
network, is defined as

n2
ny +ny’ ©)
We find that a fixed p for each LCSCUnit throughout the
network can already offer a quite good performance. Alter-
natively, we can set up LCSCUnits with different p, and the
LCSCUnits with the same p are connected consecutively and
can be divided into different LCSCBlocks. For simplicity, we
let each LCSCBlock contain the same number of LCSCUnit.

Suppose there are N LCSCBlocks stacked to explore
deep features, and M LCSCUnits in an LCSCBlock. Let
LBgd denote the d-th LCSCBlock with specific pg, Fyg_1
denote its input features and Fy its output features. The
mapping of LCSCUnits in this block are denoted by
{LUq1(-),LUq42(),...,LUq nm(-)}, then the whole process
of this block can be formulated as

Fa=LBY* (Fa1)=LUgn(LUgpa (- - (LU (Fga)) -+),
“4)

p:

le.g. the convolution operation XY is rewritten as XY for simplicity.

and it follows that

Fy = LB (LB (- (LB{' (Fp))---)). (5)

Furthermore, we investigate how the ordinal position of
blocks with different p effects the final performance. Detailed
discussions and relative comparative experiments will be
demonstrated in Section V-C.

2) E-LCSCBlock: As mentioned in [40], the simplest way to
enhance performance via increasing the number of parameters
is to increase the width of deep architectures. However, a deep
wide network is extremely hard to train. Inspired by the long-
term memory connection in [24], we find that if we further
concatenate the input and the output of LCSCBlock and then
use a 1 x 1 bottleneck layer to maintain the compactness of the
output channel, it will alleviate the difficulty of training a large
LCSCNet. We denote the LCSCBlock with such a long-term
memory connection as E-LCSCBlock. Compared with (4), the
mapping of E-LCSCBlock can be written as

ELB*(Fq-1) = bottle(concat(Fy—q, LBY*(Fy-1))), (6)

where E LB/ denotes the d-th E-LCSCBlock with specific pq,
and bottle(-) denotes the 1 x 1 bottleneck layer. Moreover, we
find that deep models of moderate scales using E-LCSCBlocks
also perform slightly better than the ones using LCSCBlocks.
Further discussions and ablation studies on E-LCSCBlock will
be presented in Section V-E.

B. Upsampling and Reconstruction Net (U&RNet)

Sajjadi et al. [48] reported that adding convolution layers
after the nearest-neighbor upsamping layer can help alleviate
artifacts in SR. We follow this way in our models trained on
the 291 dataset using the nearest-neighbor upsampling layer
followed by three 3 x 3 convolution kernels (except the last one)
with ReLU. When we develop models aiming to compare with
models trained on DIV2K, we use ESPCN as the U&RNet, as
EDSR and RDN did, for fair comparison.

In LCSCNet, the deep features {F1, Fy, ..., Fn}, explored
hierarchically in its second part by LCSCBlocks, are then sent
to U&RNet U R(-), which maps feature Fy to output Yy:

Y, =UR(Fy), 1<d<N. (7

In E-LCSCNet, like EDSR and RDN, even without directly
learning the residue between the HR and its bicubic version,
the global residual learning is implemented by adding initial
features Fjy to F, before upsampling. That is, the U&RNet
EUR(-) in E-LCSCNet has input and output as

Yy =EUR(F;+ F,)), 1<d<N. (8)

C. Adaptive Element-wise Fusion Strategy

Feature maps of different receptive fields are sensitive to
features of different sizes, which are often fused to enhance
the performance in various computer vision tasks. In our
case, we develop an adaptive element-wise fusion strategy.
With N intermediate results {Y7,Y5,..., Yy} mapped from
{F1, F5,...,Fy} through U&RNet, a list of weight tensors

Algorithm 1 Adaptive Element-wise Fusion Strategy.

Input: Intermediate outputs {Y7,Ys,..., Yy}
Output: The final fused feature maps M.
1: Initialize M with Y;: M =Y7;
2: for each i € [1, N — 1] do
3: Concatenate SR output X = concat(M,Y;11)
4 Convolve with 1x1 tensor: «; = C; X, C; is the i-th
1x1 tensor
Use sigmoid activation: «; = sigmoid(a;)
Update M = ;M + (I — a;)Yiq1
end for
return M

{W1,Ws,...,Wn} with the same size of output are deter-
mined by {Y1,Y>,...,Yn}, which control how much of each
raw result contributes to the final fused output. Here the
adaptive weight tensors satisfy two traits:

Trait 1: Each adaptive tensor is determined by all intermediate
outputs together, which can be formulated as

Wi:fi(YhY—Qa“'vYN), i:172a"'7N7

where f; is the mapping from {Y7,Ya,...,Yn} to W;;
Trait 2: The value of each point in the weight tensor is between

0 and 1, and
N
Y-t
i=1

where I is the tensor with all elements being 1.
The final fused output M is a convex weighted average of

(€))

(10)

intermediate outputs {Y7,Ys,...,Yx}:
N
Lo =M =) WaYa. (11)
d=1

Inspired by the gate unit in LSTM, by adopting a series
of 1 x 1 convolution kernels followed by sigmoid activation
functions, we develop a heuristic algorithm to construct the
fused output M, in which weight tensors satisfy the above two
traits, as summarized in Algorithm 1. A sketch for Algorithm 1
is plotted in Fig.3, in which intermediate variable tensor
a; (i=1,...,N—1) is generated progressively given current
SR outputs {Y7,...,Y;}, I1x1 convolution kernel C; and
sigmoid activation function. The use of sigmoid activation
functions ensures the element-wise value of «; to be between
0 and 1. The updating step (Step 6) ensures the output to be a
convex weighted average of current inputs {Y7,...,Y;}. From
Algorithm 1, {W;, W, ..., Wy} can be obtained as

N-1
I e
i=1

k=1,

Wi = N1 (12)
(IT—axa)([]), 2<k<N;
i=k
I— aON_—1, k= ZV7
where a1 contains the information of {Y1,Ys,...,Yn}. As

(12) shows that every Wy contains ay—1, the first trait in (9)
is satisfied; with simple algebra, the second trait in (10) is also

[: concate

M : 1x1 convolution
[:sigmoid

Figure 3: A sketch of the adaptive element-wise fusion strategy, where N = 4 and M; (i = 1,2, 3) are the current fused outputs.

verified, and hence the rationality of the proposed methods.

D. Loss Function for Training

During training, we minimize the ¢; loss Ly (z,y) = |z — y|
over the training set of M samples. Let X () denote the i-th
ground-truth HR label in the training set and [(EL)t denote the
corresponding output of network. Then the loss function [is

M
(Tout, X) = %ZM(I‘SQ“X“’)- (13)
i=1
When we apply the adaptive element-wise fusion strategy,
we use the multi-supervised methods mentioned in [23], [24]
to train our model. The loss function of multi-supervised
LCSCNet can be formulated as
N
L(©) = I(Tout, X) + B> 1(Va, X), (14)
d=1
where I,,; and {Y7,..
trade-off parameter.

., Yy} are defined in (11), and § is a

IV. DISCUSSIONS

In this section, we mainly discuss the motivation and
characteristics of Basic LCSCNet by showing its connections
to DenseNet and its differences from ResNet and DenseNet.

A. Basic LCSCNet as an Efficient Variant of DenseNet

In this sub-section, we illustrate that Basic LCSCNet can be
transformed from DenseNet with small changes on topology:
we first show the redundancy in DenseNet and then introduce
Basic LCSCNet as a remedy for this redundancy.

Skip connection in DenseNet is implemented by directly
concatenating all former features to be the input of current layer.
For illustration, a 4-layer DenseBlock is depicted in Fig.4(a), in
which Y} is a k-channel input feature, Y; is the newly-explored
feature after nonlinear mapping f; (i = 1,2,3), where f;
consists of a ReLLU followed by a 3 x 3 convolution kernel with
ko output channels (kg is also called growth rate in DenseNet).
The last nonlinear mapping f; acts as a transition layer; C'
means a concatenation operator in the channel dimension.

To have a better understanding of DenseBlock in Fig.4(a),
we can simplify Fig.4(a) into its equivalent form in Fig.4(b),
where Yi/ = concat(Yo,...,Y;) (i =0,1,2,3). By denoting
the concatenation of former features as Yil, excessive skip
connections in Fig.4(a) are simplified into concise adjacent
skip connections. For simplicity, unless otherwise specified,
we take the DenseBlock in the form of Fig.4(b) as the basic
DenseBlock structure.

As shown in Fig.4(a) and Fig.4(b), when depth increases, the
number of parameters of the convolution kernel in DenseNet
also increases. To reduce the parameter amount, the authors of
DenseNet applied the bottleneck layer” before every nonlinear
mapping and called it B-DenseNet. Fig.4(c) is the bottleneck
version of Fig.4(b), where B; (+ = 1,2,3) is the 1 x 1
convolution kernel with b output channels. We can see that the
parameter amount of every convolution kernel f; for nonlinear
mapping is a constant now, and only the parameter amount of
bottleneck layer with fewer parameters increases with depth.

Although B-DenseBlock has reduced the parameter amount
to a great extent, the parameter amount of each basic unit in
B-DenseBlock still increases with depth. To further control
the parameter amount, we make the parameter amount of each
unit in B-DenseBlock a constant. One simple but effective
solution is to move forward the bottleneck layer in each unit,
reducing the number of channels of input feature to b by the
bottleneck layer before they are sent to the concatenation part,
as shown in Fig.4(d). We can set k = b+ kg to make channels
of each feature unchanged. In this case, if we re-depict Fig.4(d)
by allocating the bottleneck layer to each branch and using a
nonlinear mapping fi/ to replace B; o f;, the structure of Basic
LCSCNet reemerges, as shown in Fig.4(e).

From the analysis above we can see that the N-layer Basic
LCSCNet with an extra transition layer and the (N + 1)-layer
B-DenseNet share a strong relationship. This transition layer
can be replaced by subsequent nonlinear operators and omitted.
If it is replaced by a compressing layer located at the end of
DenseBlock, it becomes BC-DenseNet. Since this compressing
layer is to compress features generated by each block, when
we simplify B-DenseUnit into LCSCUnit, the output channel

2Many works add nonlinear activation before a 1 x 1 convolution kernel to
make the bottleneck layer; here we take the 1 x 1 convolution kernel as the
bottleneck layer.

[] :features
() :ReLU + 3x3 conv
- : bottleneck

@ : concatenation

| |
-»@3—»14,}'1 Y,

k + ko (k + ko)x3 k()

X3xkg

kK kx3axaxk, ko

LS

va

-b@-DYO KK -b

k+3ky ®&+3k)x3

X3Xky

k+2ky G+zedxz ko

X3Xko

(a) Original DenseBlock

k+ ko (k + kp)x3

x3xky

k kx3x3xk, k + 2kg G +2k0)x3

X3xkqg

k + 3kg (e +3k)x3
x3xko

(b) DenseBlock with adjacent skip connection, equivalent to (a)

ARG aa!

k kxixixh bx3xaxky b+ky f”:&)”“ bx3xaxky b+ky (b;ﬁ?ng bx3xaxky b+ky “’:1";;"1 bx3x3xky

(d) Move forward every bottleneck layer

k kxixixb bx3x3xk, k+ko Ctkxt pxaxaxk, K+ 2kg *+2k0XUaxaxk, k + 3ko & +360X1 praray,
x1xb X1xb x1xb

(c) DenseBlock with bottleneck (B-DenseBlock)

kx1x1xb kx1x1xb

kx3x3xky kx3x3xky

kx1x1xb
c
k

(e) Equivalent form of (d), Basic LCSCNet

kx3x3xky

Figure 4: Sketch on how a DenseBlock can be simplified into a Basic LCSCNet. For a better understanding, the channel number of each
feature is marked beside the feature, and the kernel size of each convolution kernel is marked beside the kernel in form of “input_chanenel x
kernel_width x kernel_height X output_channel”.

of each LCSCUnit is already a constant, it is unnecessary to
compress features again. From this perspective, BC-DenseNet
can also be transferred to Basic LCSCNet in a similar way.
Now look back into Fig.2: the nonlinear output channel is just
the growth rate in DenseNet, denoting how many new features
are explored, and 1 — p = ﬁ acts as some kind “compress
ratio” denoting how many former features have flowed to the
current stage through skip connections.

B. Differences from ResNet and DenseNet

This sub-section aims to illustrate the differences between
Basic LCSCNet and ResNet/DenseNet as well as the novelty
of our proposed network. It is still an open problem to compare
different deep architectures. When different ways of skip
connections are employed to alleviate training difficulties, the
output features explored by nonlinear mapping with different
skip connections have different constitutions. We suppose that
by comparing different constitutions of the feature maps, we
could get some useful information about the properties of
different skip-connection architectures.

1) Feature maps of ResNet: We use the structure in [35].
Let Y and Yy, denote the input and output of block k,
respectively, and let f,f(~) denote the nonlinear transformation
in block k. Then the mathematical formulation of block k is

k
Yipr = Vi + fE0V) =Y+ Y (V) 1<5 <k (15)
i=j

From (15), we can see that in ResNet, skip connection is
implemented by element-wise summation between adjacent

features. Compared with traditional plain architecture, any
former maps Y; (j = 1,..., k) can be added to the current state
Y% 41, creating many short paths for more “smooth” gradient
flow during back-propagation. Moreover, it is extremely concise
because no extra parameter is required for this skip connection.
2) Feature maps of DenseNet: We employ the structure
shown in Fig.4(b) to illustrate the properties of feature maps
in DenseNet. Let Yk, and Yk/ 41 denote the input and output of
unit & in a DenseBlock, respectively, and f(-) the nonlinear
transformation. Then the formulation of unit k& is

Yy 1 = concat(Yy, [P (Y})), (16)

and it follows that

Yk/+1 = concat(Yj/,fJD(Yj/), .. .7f,€D(Yk/)), 1<j<k (17

Like ResNet, all the former features in DenseNet can be fused
into the current stage, but instead of summation, all the feature
maps are concatenated in the channel dimension. Such a skip
connection has both advantages and disadvantages compared
with ResNet. One obvious advantage is that when features
produced in DenseNet are sent to follow-up convolution kernels
to explore new features, the features from different stages
use different convolution kernels, while in ResNet the reused
parts and newly-explored ones share the same convolution
kernel. From this perspective, connecting features by element-
wise summation may restrict a network from reaching better
solutions in some cases. As for disadvantage, concatenating
features need more following convolution kernels. As shown
in Fig.4(a) and Fig.4(b), the parameter amount of DenseUnit

Table I: Quantitative comparisons on x3 SISR among the ResNet, B-DenseNet, BC-DenseNet and Basic LCSCNet of the same depth. Blue

indicates the least parameters. Red indicates the best quantitative performance.

Model Parameters SetS Set14 BSD100 Urban100
ResNet 118.1K 33.90/0.9233 29.84/0.8328 28.85/0.7987 27.12/0.8303
B-DenseNet 219.8K 33.98/0.9241 29.87/0.8338 28.87/0.7997 27.25/0.8326
BC-Dense_B3_U10 102.7K 33.90/0.9234 29.90/0.8336 28.88/0.7991 27.22/0.8310
BC-Dense_B5_U6 90.4K 33.92/0.9234 29.90/0.8334 28.87/0.7990 27.21/0.8307
Basic LCSCNet 68.9K 33.99/0.9241 29.87/0.8337 28.87/0.7994 27.24/0.8324

increases with depth. When a DenseNet is very deep, even a
small growth rate may lead to a large parameter amount.

3) Feature maps of Basic LCSCNet: From the analysis
above, we can conclude that the feature re-usage of ResNet
benefits from its concise skip connection between adjacent
basic blocks and the new feature exploration of DenseNet
mainly benefits from its little relevance between newly-explored
feature maps and former ones. We have already seen that in
Basic LCSCNet, former features are firstly compressed and
then concatenated with the newly-explored features. Now we
examine how the former features are combined in the current
stage. Let Y), and Yj;; denote the input and output of the
k-th LCSCUnit, and K ,f and K ,iv L jts convolution kernels.
From Fig.2 and (2), we can derive the formulation of 1 x 1
convolution in the LC layer as

YkLJrl(CO)

=Y Kf(co,) Vi(ci)
Cizl
ni n

=Y Ki(co,c)Vil(e)+ > Kf(co,)N (e — my)
c;i=1 ci=ni+1
ni ng

= Z K]f’L(Co,Ci)YkL(Ci) + Z KlnyL(Co,Ci)YkNL(Ci)y
ci=1 c;i=1

(18)

where c; denotes the input channel and c, the output channel.
For simplicity, (18) can be rewritten as

Vi, = KPPvE+ KPPy NE (19)

Applying the same approach to the convolution kernel K ,iv L
in nonlinear transformation, we have

vNE = KPP ReLU(VE) + KLYV N ReLU (VL) (20)

where K, """ is the part of K¥* only operating on Y;" and
KNL,NL 1 YNL
i only on VL.

A ‘global’ form of (19) is

L _ pL NL
Yt = Peir + B,

k
L,L
PIcL+1 = (H K;)YlLa

i=1

21

(22)

k—1 k
L.NL L.L L.NL
P = SOUEN T KRSV 4 KV @
i=1 =i+l

From (19), we can see that YkL+1 restores the information
of all former feature maps in the form of weighted summa-
tion. From (20), we can see that ;Y% is the new features
explored by new nonlinear transformation. Among the deep
features produced by deep architectures, newly-explored parts
are thought to be more important. In Basic LCSCNet, we
concatenate newly-explored features with the former ones
like DenseNet, ensuring that features of different kinds can
be treated differently. Meanwhile, as former features in the
current stage are mainly aimed to create paths for training
deep networks, instead of concatenating each former features
separately, we compress all the former features and then
concatenate them with the newly-explored ones, making it
quite parameter-economic like ResNet.

V. ABLATION STUDIES
A. Comparison with ResNet and DenseNet

In this sub-section, we replace LCSCUnit in our basic
LCSCNet by ResBlock or DenseUnit with the bottleneck layer.
The three networks for comparison are all 34-layer, where Basic
LCSCNet and DenseNet both have 30 units while ResNet has
15 blocks. As discussed before, the growth rate in DenseNet
plays a similar role to the channel number of the nonlinear
output. To compare fairly, if we set all output feature channels
to 64 and p of every LCSCUnit to 0.5, then the growth rate
of DenseNet is 32 and the output channel of the bottleneck
is 64. As for BC-DenseNet, for example, BC-Dense_B3_U10
means dividing the network into 3 blocks uniformly and add
a compressing layer at the end of each block, whose output
channel is 64. Here we train the above three models with
the 291 dataset for x3 scale and the results are shown in
Table I. We use PSNR/SSIM [51] to measure reconstruction,
and parameter amounts to measure storage efficiency. We can
see that Basic LCSCNet has the least parameters and the
competitive performance to DenseNet both better than ResNet.

B. Efficiency Brought by the LC layer

Here we discuss the rationale behind implementing the LC
layer with 1 x 1 convolution and its advantage on parameter
efficiency. It is known that increasing receptive fields is essential
for exploring deeper features. From Section IV we can see that
the LC layer helps transport the previous features and does
not produce newly-explored features directly. Hence, we do
not need to use 3 x 3 convolution to increase receptive fields
in the LC layer and 1 x 1 convolution is sufficient. To support

Table II: Quantitative comparisons on x3 SISR between the
original Basic LCSCNet and the Basic LCSCNet with 3 x 3 LC
layers. Red indicates the best quantitative performance.

Model Set5 Set14 BSD100 Urban100

Basic LCSCNet | 33.99/0.9241 29.87/0.8337 28.87/0.7994 27.24/0.8324

Basic LCSCNet

of 3% 3 LC 33.94/0.9238 29.88/0.8334 28.87/0.7989 27.17/0.8320

this view, we apply 3 x 3 convolution to the LC layer of the
Basic LCSCNet mentioned in Section V-A. From Table II, we
can see that the LC layer with 3 x 3 convolution indeed does
not achieve better performance.

The usage of 1 x 1 convolution as the LC layer also makes
the proposed architecture more parameter-economic compared
with ResNet and DenseNet. Firstly we compare Basic LCSCNet
with ResNet. A basic unit in ResNet with n; input channels,
ng output channels and a k£ x k nonlinear transformation
convolution kernel has nqnqk? parameters. The number of
parameters of a basic unit in Basic LCSCNet, with n; input
channels, no output channels, a k£ x k£ nonlinear transformation
convolution kernel and parameter pg, is n1n2(k%pg + 1 — po).
The ratio of parameter amounts of these two units with the
same ni, no and k is

1
pr/r(n1,m2, k) :PoJrﬁ(l*Po) (24)

As illustrated before, good performance can be obtained when
po is around 0.5. In practice, the size of a convolution kernel for
feature extraction is usually an odd bigger than 3. So when pg
is 0.5, pr/r(n1,n2, k) < 55.7%, which means the parameter
amount of Basic LCSCNet is just half of the ResNet’s.

As for DenseNet, the parameter amount of a basic unit
increases with depth. We take B-DenseNet as example: if
the output channel of nonlinear mapping in LCSCUnit and
DenseUnit is both no, the output channel of 1 x 1 compressing
layer is both n, the nonlinear kernel size is k x k, then the
parameter amount of LCSCUnit is always (n; + ng)(k*na +
n1), while the parameter amount of the p-th DenseUnit is
(pnany + k*ning). If such Basic LCSCNet and DenseNet
both have L nonlinear mapping layers, the ratio of parameter
amounts of the two networks with the same ni, ny and k is
-2 Lyt

2k2 4+ L+1 " pg 1—po
From (25), we can see the advantage of Basic LCSCNet is
more remarkable when the network goes deeper. When we
compare Basic LCSCNet with an L-layer BC-DenseNet of NV
blocks, if the transition layer is omitted for simplicity, the ratio
can be obtained by replacing L with % in (25).

pr/p(L;ni,ng, k) (25)

C. Investigation into Parameter p

1) Fixed p throughout the network: In this situation, we
find when p is around 0.5, the best performance could be
achieved. Table III shows 34-layer Basic LCSCNets for x3
scale with different fixed p. As here we mainly focus on the
effect of p, the experiments are conducted without adaptive
element-wise fusion. Firstly, we consider two special cases

of p. When p is 0, the feature exploration part is a linear
transformation; if the upsampling and reconstruction part is
taken into account, the whole network has just two nonlinear
convolution layers, whose fitting capacity for complex functions
is relatively poor. In contrast, when p is 1, Basic LCSCNet
becomes the traditional feedforward neural network without
skip connections, which is difficult to train. Hence p balances
the fitting capacity and the training ease of Basic LCSCNet. As
Table III shows, when p = 0.25, the performance is suboptimal
because of the restricted fitting capacity; when p = 0.75, the
performance is suboptimal mainly because the LC layers output
fewer feature maps. As we discussed before, the output feature
maps of LC layers restore the information of former features,
insufficiency of which leads to insufficient skip connections
and thus training difficulty increase and performance decline.

2) Different p throughout the network: In this situation,
the LCSCUnits with the same p form an LCSCBlock and
different LCSCBlocks have different ps. We find that as
depth increases, the p of an LCSCBlock should be decreased
slightly to improve performance. Table IV shows the relevant
experimental results on the 34-layer Basic LCSCNets with
different ordinal positions of p list for x3 scale. One possible
reason for this phenomenon is that as depth increases, exploring
higher-level features becomes harder, so there is less room for
newly-explored features. Meanwhile, as information on former
feature maps accumulates, more room is needed for reusing
former features.

D. Ablation Studies on Different Fusion Strategies

Table V compares properties of the vectorized fusion [23],
MSCN [43] and our proposed fusion method. We can see
that our method incorporates the advantages of the vectorized
fusion and MSCN. We also compare these fusion strategies
quantitatively. We train 34-layer LCSCNets for x2 scale with p
list [0.75, 0.6875, 0.625, 0.5625, 0.5], and every six LCSCUnits
with the same p form a LCSCBlock. In Table VI, Basic
LCSCNet, LCSCNet_S, LCSCNet_M and LCSCNet denote
the LCSCNet without any fusion, with vectorized fusion, with
MSCN and with our proposed method, respectively. Here we
note that our implementation of MSCN is slightly different
from the original one. In the original MSCN, the input of the
weight module is the bicubic of LR, while in our LCSCNet
we use the upsampled LR input. This small difference should
have little influence on final results. As Table VI shows, when
combined with Basic LCSCNet, our fusion strategy performs
better than the other two fusion benchmarks.

E. Ablation Studies on LCSCBlock and E-LCSCBlock

Firstly, we show that when we use LCSCUnits to con-
struct deep models of moderate scales, the advantage of E-
LCSCBlock is mild. With the 291 dataset, we train 34-layer, 44-
layer and 54-layer Basic LCSCNets for x 3 scale, p of each unit
is 0.5, and the number of feature channels is 64. For comparison,
we use 10 LCSCUnits to constitute an E-LCSCBlock and train
37-layer, 48-layer and 59-layer Basic E-LCSCNets, respectively.
As Table VII shows, every Basic E-LCSCNet performs better
than its corresponding Basic LCSCNet.

Table III: Average x3 PSNR/SSIM for Basic LCSCNets with different p on the Set5, Set14, BSD100 and Urban100 datasets, respectively.
Red color indicates the best performance.

P 0 0.25 0.375 0.5 0.625 0.75 1
Set5 32.66/0.9103 33.86/0.9229 33.97/0.9242 33.99/0.9241 33.94/0.9241 33.92/0.9237 31.78/0.8941
Set14 29.27/0.8208 29.82/0.8330 29.90/0.8337 29.87/0.837 29.93/0.8340 29.85/0.8333 28.57/0.8012
BSD100 | 28.41/0.7858 28.85/0.7984 28.88/0.7997 28.87/0.7994 28.87/0.7994 28.85/0.7990 27.92/0.7648
Urbanl100 | 26.21/0.8011 27.16/0.8296 27.25/0.8329 27.24/0.8324 27.24/0.8321 27.20/0.8312 25.50/0.7761

Table IV: The effect of ordinal position of block with different p on
average x3 PSNR/SSIM for the Set5, Set14, BSD100 and Urban100
datasets. Each block has the same number of LCSCUnits.

p list [0.5,0.75] [0.75,0.5] |[0.5,0.625,0.75] [0.75,0.625,0.5]
Set5 33.97/0.9240 34.02/0.9244 | 33.89/0.9234 33.95/0.9239
Setl4 | 29.91/0.8341 29.91/0.8343 | 29.86/0.8332 29.86/0.8336
BSD100 | 28.88/0.7998 28.89/0.8001 | 28.86/0.7993 28.88/0.7994
Urban100 | 27.28/0.8336 27.31/0.8343 | 27.20/0.8317 27.25/0.8323

Table V: Brief comparisons among different fusion strategies.

Vectorized fusion [23] | MSCN [43] | Our method
Adaptiveness X v v
Pixel-wise X VA A
Normalization Vv X VA
Multi-supervised
training 4 x v

Table VI: Average x2 PSNR/SSIM for LCSCNets with different
fusions on the Set5, Setl4, BSD100 and Urban100 datasets,
respectively. Red indicates the best results.

Basic LCSCNet LCSCNet_S LCSCNet_M LCSCNet

Set5 37.77/0.0.9558 37.80/0.9560 37.79/0.9559 37.84/0.9559
Setl4 33.23/0.9140 33.26/0.9144 33.25/0.9142 33.31/0.9144
BSD100 | 32.06/0.8980 32.05/0.8981 32.07/0.8981 32.08/0.8984
Urban100 | 31.15/0.9182 31.26/0.9197 31.23/0.9190 31.31/0.9200

@
&

B e e
LCSCNet

— E-LCSCNet

— Basic LCSCNet
Basic E-LCSCNet

e
r-”\r"‘\”fvw"“\J |y

I

%)
o
o

PSNR/dB
®
& &

(3
r

[~}
@
o

ST

325

. . . .
150 200 250 300
Epochs

100 350
Figure 5: Convergence comparison between deep wide (Basic)

LCSCNet and (Basic) E-LCSCNet on the DIV2K validation set for
scale x2.

Then we show that when we aim to develop an extremely
deep and wide network, E-LCSCBlock can make up the
deficiencies of LCSCBlock. With the DIV2K dataset we train
a Basic LCSCNet for x2 scale of p list [0.75, 0.71875, 0.6875,
0.65625, 0.625, 0.59375, 0.5625, 0.53125, 0.5], every sixteen
LCSCUnits with the same p form a LCSCBlock, and the
output channel of each feature is 128. Its convergence curve is
the blue one in Fig.5, indicating quite poor performance. For
comparison, we train the LCSCNet with the same setting, and
its performance (the green curve in Fig.5) is significantly better
than Basic LCSCNet. We contribute this obvious improvement
to the extra short paths created by the adaptive fusion strategy,
which suggests that more short paths may further help in this
case. The experimental results shown in Fig.5 also support
this view: when we evolve (Basic) LCSCNet into (Basic) E-
LCSCNet, the performance of deep architecture booms.

VI. EXPERIMENTAL RESULTS
A. Comparison with State-of-the-Art Models

It is well known that the training set and the parameter
amount largely influence the final performance of a model. To
compare with various representative models fairly, we divide
these models into three categories: models trained on the 291
dataset [11], [52], light models (Params < 2M) trained on
the DIV2K dataset [38] and large models (Params > 10M)
on DIV2K. When compared with models on the 291 dataset
such as VDSR [31], DRCN [23], LapSR [37], DRRN [34] and
MemNet [24], we train a 76-layer LCSCNet with the proposed
fusion strategy, p list is also [0.75, 0.71875, 0.6875, 0.65625,
0.625, 0.59375, 0.5625, 0.53125, 0.5] but every eight units with
the same p form a block, denoted by LCSC_76_291. When
compared with light models on DIV2K and similarly large
datasets such as SelNet [53], SRDenseNet [36], CARN [54] and
FALSR-A [55], because the fusion part is quite computation-
consuming, our light models was developed just based on
Basic E-LCSCNet. Our light models share the same p list with
LCSC_76_291, but every six units with the same p form a
block, denoted by BE-LCSC_L. When compared with large
models on DIV2K such as EDSR [40] and RDN [42], the
E-LCSCNet mentioned in Section V-E is adopted.

Quantitative comparisons on BE-LCSC_L are listed in
Table VIII. Because operations in neural networks for SISR
are mainly multiplication along with addition, we use the
number of composite multiply-accumulate operations in CARN,
denoted by Mult&Adds, to measure computational efficiency,
and we also assume that the HR image is 1280 x 720. From
Table VIII, we can see that among the models trained on 291,

Table VII: Average x3 PSNR/SSIM for Basic LCSCNet and its corresponding Basic E-LCSCNet on Set5, Set14, BSD100 and Urban100.
All the models are of moderate scales (Parameter amount < 150K).

LC_34 E-LC_37 LC_44 E-LC_48 LC_54 E-LC_59
Set5 33.99/0.9241 34.01/0.9248 | 34.02/0.9244 34.05/0.9251 | 34.03/0.9244 34.08/0.9248
Set14 29.87/0.8337 29.92/0.8349 | 29.85/0.8334 29.90/0.8345 | 29.88/0.8340 29.89/0.8339
BSD100 | 28.87/0.7994 28.89/0.8002 | 28.87/0.7996 28.90/0.8004 | 28.89/0.7998 28.89/0.7998
Urban100 | 27.24/0.8324 27.28/0.8340 | 27.23/0.8326 27.29/0.8343 | 27.27/0.8330 27.32/0.8347

(b) VDSR (c) DRCN (d) LapSR

(e) DRRN (f) MemNet (g) CARN (h) BE-LCSC_L

Figure 6: Results for upscaling factor 3 on image Setl4-barbara

Pousebont | Pusebuint
)‘;))

b N

i’z: K I‘l.’l?!.
(b) VDSR (c) DRCN (d) LapSR

' PowerPoint - PowerPaint - PowerPoint
2002 2002 2002

2

[IIH m e ink

(f) MemNet (2) CARN (h) BE-LCSC_L

(e) DRRN

Figure 7: Results for upscaling factor 3 on image Setl4-ppt

LCSC_76_291 achieves better accuracy than MemNet. As for
efficiency, MemNet has fewer parameters due to its recursive
structure, but LCSC_76_291 is more computation-efficient
than MemNet. When compared with SelNet and CARN, BE-
LCSC_L is moderately computation-consuming but achieves
obvious improvement. Among large models on DIV2K, our
E-LCSCNet has the fewest Params for every scale. For x2
scale, our E-LCSCNet holds the same level with RDN but
with a clear advantage in Mult&Adds. For x3 and x4 scale,
our E-LCSCNet performs better than EDSR and RDN, but is
somehow more computation-consuming than RDN due to its
fusion part.

(d) E-LCSCNet

Figure 8: Results of large models for upscaling factor 3 on
Urban100-img019

Representative qualitative comparisons are shown in Figs.6-8.
In Fig.6, our model restores the grid structure more precisely
with fewer artifacts than other models. In Fig.7, compared
with blurry characters generated by other models, our result
has sharper edges. In Fig.8, compared with EDSR and RDN,
E-LCSCNet recovers the line with the least blurry.

B. Implementation Details

For training LCSCNet, we augment data (90°, 180° and
270° rotation), and then downsample the LR input with the
desired scaling factor. Like many methods trained on 291, we
only take the luminance component for training. Ground truth
for training is the residue between the bicubic of LR image
and the original HR image, and all inputs are scaled into [-1,
1]. When trained on 291, training images are split into patches
of sizes 182/362, 122/36% and 212/842, respectively. We
initialize all the convolution kernels as suggested by [560]. All
intermediate feature maps have 64 channels. For optimization,
we use Adam [57] with its default settings. Learning rate is
initialized as 10~%, and is divided by 10 every 15 epochs over
the whole augmented dataset and the training is stopped after
60 epochs. For training, we use Keras [58]; for testing, we use
MatConvNet [59].

The training of BE-LCSC_L and E-LCSCNet is based on
the PyTorch [60] version of EDSR with the same setting
of EDSR except that the batch size is 32, and training is
terminated after 650 epochs. The codes are available from
https://github.com/XuechenZhang123/LCSC.

https://github.com/XuechenZhang123/LCSC

Table VIII: Quantitative comparisons among mainstream deep models for SISR. To compare fairly, we divide models into three categories: models trained
on 291, light models (Params < 2M) trained on DIV2K, and large models trained on DIV2K. For each scale, we compare the models within the same
category, and the best performance is highlighted in Red. In DRCN, MemNet, LCSC_76_291 and E-LCSCNet, extra Mult&Adds of the multi-supervised
fusion part are added after the Mult&Adds of the basic structure.

Scale Model Training data Params Mult&Adds Set5 Set14 BSD100 Urban100
VDSR 291 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN 291 1774K 9243.0G+8731.3G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133

LapSRN 291 813K 29.9G 37.52/0.9591 33.08/0.9130 31.80/0.8950 30.41/0.9101
DRRN 291 297K 6796.9G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188
MemNet 291 667K 2261.8G+3.2G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195
LCSC_76_291 291 1844K 407.8G+616.3G 37.86/0.9600 33.34/0.9146 32.10/0.8985 31.34/0.9204
- SelNet DIV2K 974K 225.7G 37.89/0.9598 33.61/0.9160 32.08/0.8984 -/-
CARN DIV2K 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
FALSR-A DIV2K 1021K 234.7G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256
BE-LCSC_L DIV2K 1552K 358.6G 38.01/0.9600 33.67/0.9160 32.23/0.9002 32.31/0.9297
EDSR DIV2K 40.7M 9379.4G 38.11/0.9602 33.92/0.9195 32.32/0.9013 32.93/0.9351
D_DBPN DIV2K+Flickr 5876.3K 3429.0G 38.09/0.9600 33.87/0.9191 32.27/0.9000 32.55/0.9324
RDN DIV2K 22.1M 5096.2G 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353
E-LCSCNet DIV2K 14.2M 3126.4G+1251.7G 38.23/0.9608 33.85/0.9180 32.36/0/9018 32.93/0.9351
VDSR 291 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
DRCN 291 1774K 9243.0G+8731.3G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276
LapSRN 291 813K 29.9G 33.82/0.9227 29.79/0.8320 28.82/0.7973 27.07/0.8272
DRRN 291 297K 6796.9G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378
MemNet 291 667K 2261.8G+3.2G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
LCSC_76_291 291 1844K 181.3G+616.3G 34.13/0.9254 29.95/0.8348 28.97/0.8014 27.53/0.8377
< SelNet DIV2K 1159K 120.0G 34.27/0.9257 30.30/0.8399 28.97/0.8025 -/-
CARN DIV2K 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493
BE-LCSC_L DIV2K 1736K 179.1G 34.39/0.9265 30.33/0.8395 29.12/0.8065 28.25/0.8540
EDSR DIV2K 43.M 4471.8G 34.65/0.9280 30.52/0.8462 29.25/0.8093 28.80/0.8653
D_DBPN DIV2K+Flickr - - -/- -/- -/- -/-
RDN DIV2K 22.3M 2284.7G 34.71/0.9296 30.57/0.8468 29.26/0.8093 28.80/0.8653
E-LCSCNet DIV2K 14.9M 1389.5G+1251.7G 34.71/0.9286 30.56/0.8460 29.27/0.8104 28.83/0.8658
VDSR 291 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
DRCN 291 1774K 9243.0G+8731.3G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510
LapSRN 291 813K 29.9G 31.54/0.8855 28.19/0.7720 27.32/0.7280 25.21/0.7553
DRRN 291 297K 6796.9G 31.68/0.8888 28.21/0.7721 27.38/0.7284 25.44/0.7638
MemNet 291 667K 2261.8G+3.2G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7638
LCSC_76_291 291 1844K 110.0G+616.3G 31.76/0.8899 28.20/0.7731 27.36/0.7293 25.38/0.7643
“ SRDenseNet ~ ImageNet Subset ~ 2015K 389.9G 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819
SelNet DIV2K 1417K 83.1G 32.00/0.8931 28.49/0.7783 27.44/0.7325 -/-
CARN DIV2K 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837
BE-LCSC_L DIV2K 1699K 124.8G 32.20/0.8948 28.66/0.7806 27.62/0.7390 26.22/0.7908
EDSR DIV2K 43.1IM 2890.0G 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033
D_DBPN DIV2K+Flickr 10.3M 5715.4G 32.47/0.8980 28.82/0.7860 27.72/0.7400 26.38/0.7946
RDN DIV2K 22.6M 1300.7G 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028
E-LCSCNet DIV2K 14.8M 781.6G+1700.7G ~ 32.51/0.8984 28.81/0/7871 27.73/0.7433 26.64/0.8033

VII. CONCLUSION AND FUTURE WORKS

In this paper, we propose the linear compressing based skip-
connecting network (LCSCNet) for image SR, which combines
the merits of the parameter-economic form of ResNet and the
effective feature exploration of DenseNet. Linear compressing
layers are adapted to implement skip connections, connecting
former features and separating them from the newly-explored
features. Compared with previous deep models with skip
connections, our LCSCNet can explore relatively more new
features with lower computational costs. Based on LCSCNet, to
improve the performance of extremely deep and wide networks,
the Enhanced LCSCNet is developed. An adaptive element-wise
fusion strategy is also proposed, not only for further exploiting
hierarchical information from diverse levels of deep models,
but also for stabilizing the training deep models by adding
extra paths for gradient flows. Comprehensive experiments and
discussions are presented in this paper and demonstrate the
rationality and superiority of the proposed methods.

Future work can be mainly explored from the following two
aspects: 1) it would be worthwhile to try to apply LCSCNet and
E-LCSCNet or their basic units to other computer vision tasks;
and 2) in terms of Mult&Adds in Table VIII, we can see the
computational cost for this part is still somewhat high despite
that we have managed to control its complexity; therefore,
further efforts can be made to further improve its efficiency.

ACKNOWLEDGMENT

We would like to thank the authors of [23], [24], [31], [34],
[371, [40], [42], [54] for releasing their source codes and models
for comparison. We would also like to thank the Associate
Editor and anonymous reviewers for their selfless dedication
and constructive suggestions.

REFERENCES

[1] C.-Y. Yang, C. Ma, and M.-H. Yang, “Single-image super-resolution: A
benchmark,” in Proceedings of the European Conference on Computer
Vision, 2014, pp. 372-386.

[2] S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image
reconstruction: a technical overview,” IEEE Signal Processing Magazine,
vol. 20, no. 3, pp. 21-36, 2003.

[3] R. Keys, “Cubic convolution interpolation for digital image processing,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 29,
no. 6, pp. 1153-1160, 1981.

[4] C. E. Duchon, “Lanczos filtering in one and two dimensions,” Journal
of Applied Meteorology, vol. 18, no. 8, pp. 1016-1022, 1979.

[5] S. Dai, M. Han, W. Xu, Y. Wu, Y. Gong, and A. K. Katsaggelos,

“SoftCuts: a soft edge smoothness prior for color image super-resolution,”

IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 969-981,

2009.

J. Sun, Z. Xu, and H.-Y. Shum, “Image super-resolution using gradient

profile prior,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2008, pp. 1-8.

[71 Q. Yan, Y. Xu, X. Yang, and T. Q. Nguyen, “Single image superresolution
based on gradient profile sharpness,” IEEE Transactions on Image
Processing, vol. 24, no. 10, pp. 3187-3202, 2015.

[8] A. Marquina and S. J. Osher, “Image super-resolution by TV-
regularization and Bregman iteration,” Journal of Scientific Computing,
vol. 37, no. 3, pp. 367-382, 2008.

[91 W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-based super-

resolution,” IEEE Computer Graphics and Applications, vol. 22, no. 2,

pp. 56-65, 2002.

H. Chang, D.-Y. Yeung, and Y. Xiong, “Super-resolution through neighbor

embedding,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2004, pp. 275-282.

[6

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution via
sparse representation,” IEEE Transactions on Image Processing, vol. 19,
no. 11, pp. 2861-2873, 2010.

R. Zeyde, M. Elad, and M. Protter, “On single image scale-up using
sparse-representations,” in Proceedings of the International Conference
on Curves and Surfaces, 2010, pp. 711-730.

R. Timofte, V. De, and L. Van Gool, “Anchored neighborhood regression
for fast example-based super-resolution,” in Proceedings of the IEEE
International Conference on Computer Vision, 2013, pp. 1920-1927.
R. Timofte, V. De Smet, and L. Van Gool, “A+: Adjusted anchored
neighborhood regression for fast super-resolution,” in Proceedings of the
Asian Conference on Computer Vision, 2014, pp. 111-126.

W. Yang, Y. Tian, F. Zhou, Q. Liao, H. Chen, and C. Zheng, “Consistent
coding scheme for single-image super-resolution via independent dictio-
naries,” IEEE Transactions on Multimedia, vol. 18, no. 3, pp. 313-325,
2016.

S. Schulter, C. Leistner, and H. Bischof, “Fast and accurate image
upscaling with super-resolution forests,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp.
3791-3799.

Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks,”
in Proceedings of the Advances in Neural Information Processing Systems,
2017, pp. 4470-4478.

R. Soltani and H. Jiang, “Higher order recurrent neural networks,” arXiv
preprint arXiv:1605.00064, 2016.

A. Veit, M. J. Wilber, and S. Belongie, “Residual networks behave
like ensembles of relatively shallow networks,” in Proceedings of the
Advances in Neural Information Processing Systems, 2016, pp. 550-558.
G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in Proceedings of the European
Conference on Computer Vision, 2016, pp. 646—-661.

W. Yang, J. Feng, J. Yang, F. Zhao, J. Liu, Z. Guo, and S. Yan, “Deep
edge guided recurrent residual learning for image super-resolution,” /IEEE
Transactions on Image Processing, vol. 26, no. 12, pp. 5895-5907, 2017.
G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700-4708.
J. Kim, J. Kwon Lee, and K. Mu Lee, “Deeply-recursive convolutional
network for image super-resolution,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1637-1645.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory net-
work for image restoration,” in Proceedings of International Conference
on Computer Vision, 2017, pp. 4539-4547.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1874-1883.

C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Proceedings of the European
Conference on Computer Vision, 2014, pp. 184-199.

Z. Wang, D. Liu, J. Yang, W. Han, and T. Huang, “Deep networks for
image super-resolution with sparse prior,” in Proceedings of the IEEE
International Conference on Computer Vision, 2015, pp. 370-378.

C. Dong, C. C. Loy, and X. Tang, “Accelerating the super-resolution con-
volutional neural network,” in Proceedings of the European Conference
on Computer Vision, 2016, pp. 391-407.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
J. Kim, J. Kwon Lee, and K. Mu Lee, “Accurate image super-resolution
using very deep convolutional networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
1646-1654.

X. Mao, C. Shen, and Y.-B. Yang, “Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip
connections,” in Proceedings of the Advances in Neural Information
Processing Systems, 2016, pp. 2802-2810.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770-778.

Y. Tai, J. Yang, and X. Liu, “Image super-resolution via deep recursive
residual network,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 3147-3155.

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proceedings of the European Conference on Computer
Vision, 2016, pp. 630-645.

T. Tong, G. Li, X. Liu, and Q. Gao, “Image super-resolution using dense
skip connections,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 4809-4817.

W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, “Deep Laplacian
pyramid networks for fast and accurate super-resolution,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
624-632.

E. Agustsson and R. Timofte, “NTIRE 2017 challenge on single
image super-resolution: Dataset and study,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 126-135.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the
International Conference on Machine Learning, 2015, pp. 448-456.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee, “Enhanced deep residual
networks for single image super-resolution,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 136-144.

M. Haris, G. Shakhnarovich, and N. Ukita, “Deep backprojection
networks for super-resolution,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 1664—1673.

Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, “Residual dense network
for image super-resolution,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2472-2481.

D. Liu, Z. Wang, N. Nasrabadi, and T. Huang, “Learning a mixture of
deep networks for single image super-resolution,” in Proceedings of the
Asian Conference on Computer Vision, 2016, pp. 145-156.

J. Bruna, P. Sprechmann, and Y. LeCun, “Super-resolution with deep
convolutional sufficient statistics,” arXiv preprint arXiv:1511.05666,
2015.

J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-time
style transfer and super-resolution,” in Proceedings of the European
Conference on Computer Vision, 2016, pp. 694-711.

C. K. Sgnderby, J. Caballero, L. Theis, W. Shi, and F. Huszdr,
“Amortised map inference for image super-resolution,” arXiv preprint
arXiv:1610.04490, 2016.

C. Ledig, L. Theis, F. Huszdr, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-realistic single image
super-resolution using a generative adversarial network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 4681-4690.

M. S. Sajjadi, B. Scholkopf, and M. Hirsch, “EnhanceNet: Single image
super-resolution through automated texture synthesis,” in Proceedings
of the IEEE International Conference on Computer Vision, 2017, pp.
4501-4510.

W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao,
“Deep learning for single image super-resolution: A brief review,” I[EEE
Transactions on Multimedia, 2019, dOI: 10.1109/TMM.2019.2919431.
M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600-612, 2004.
D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proceedings of the
IEEE International Conference on Computer Vision, 2001, pp. 416-423.
J.-S. Choi and M. Kim, “A deep convolutional neural network with
selection units for super-resolution,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
2017, pp. 1150-1156.

N. Ahn, B. Kang, and K.-A. Sohn, “Fast, accurate, and lightweight
super-resolution with cascading residual network,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 252-268.

X. Chu, B. Zhang, H. Ma, R. Xu, J. Li, and Q. Li, “Fast, accurate
and lightweight super-resolution with neural architecture search,” arXiv
preprint arXiv:1901.07261, 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in
Proceedings of the IEEE International Conference on Computer Vision,
2015, pp. 1026-1034.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

F. Chollet et al., “Keras,” https://keras.io, 2015.

[59] A. Vedaldi and K. Lenc, “MatConvNet: Convolutional neural networks
for matlab,” in Proceedings of the ACM International Conference on

Multimedia, 2015, pp. 689-692.
[60] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “PyTorch,” 2017.

https://keras.io

