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Abstract 

Despite the development of several efficacious HIV prevention and treatment methods in the past 

two decades, HIV continues to spread globally. Uptake of interventions is non-randomly distributed 

across populations, and such inequality is socially patterned and reinforced by homophily arising 

from both social selection (becoming friends with similar people) and influence (becoming similar to 

friends). In this article we describe how social network analysis (SNA) methods, including 

egocentric, sociocentric, and respondent-driven sampling designs, provide tools to measure key 

populations, to understand how epidemics spread, and to evaluate intervention take-up. We highlight 

that SNA-informed designs can improve intervention effectiveness by reaching otherwise 

inaccessible populations and improve efficiency by maximizing spillovers to at-risk but susceptible 

individuals through their social ties. We argue that SNA-informed designs thus have the potential to 

be both more effective and less unequal in their effects compared with SNA-naïve approaches. While 

SNA-informed designs are often resource-intensive, we believe that they can provide unique insights 

that can help reach those most in need of HIV prevention and treatment interventions. Increased 

collection of social network data during both research and implementation work would provide 

important information to improve the roll-out of existing studies in the present and to inform the 

design of more data-efficient, SNA-informed interventions in the future.   
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Introduction 

The global HIV response has been transformed by new discoveries during the past two 

decades, including the preventive efficacy of antiretroviral therapy, pre-exposure prophylaxis (PrEP), 

insertable microbicides, and medical male circumcision.1-5 However, the field has had less success 

translating these efficacious interventions into effective implementation at scale. Quantifying this 

gap between evidence and practice, understanding why it exists, and developing strategies to 

overcome it is a core goal of HIV implementation science.6 One of the most challenging aspects of 

successful implementation of HIV prevention programs has been motivating participants to initiate, 

adhere to, or maintain use of these interventions.7-9 In the setting of sub-optimal utilization, one 

approach to maximizing HIV prevention, as illustrated by the DREAMS partnership,10 involves 

providing an intensive package of multiple evidence-based interventions to those at greatest risk.  

However, insofar as uptake and adherence are correlated across interventions, such user-

dependent approaches to public health intervention at scale might risk iatrogenically increasing 

inequalities in HIV risk within populations, leaving the most vulnerable at risk of both HIV 

acquisition and HIV-associated stigma.11-13 This phenomenon – variously described as the “inverse 

care law”,14 the “inverse equity hypothesis”,15 and the “inequality paradox”16 – arises when those 

most in need of interventions have least access to or ability to use them, while those least in need can 

leverage their social or economic resources to gain access to these interventions.11-13 As a result, the 

gap between less- and more-vulnerable populations grows. This pattern is often reinforced by social 

separation between those at greatest risk (e.g., people who use drugs, sex workers) and the rest of the 

population. 

Furthermore, when intervention uptake is non-randomly distributed within the population, 

risks for all are increased, as illustrated in the recent U.S. measles outbreak.17,18 While structural 

interventions (that are not user-dependent, and which might benefit everyone within the population) 
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can potentially mitigate such disparities,13,19,20 intervention approaches that can deliver proven 

methods effectively and efficiently to at-risk groups within populations will continue to remain a 

valuable part of the HIV prevention toolkit.  

Innovative ideas, and corresponding behaviors, typically diffuse to populations via 

communication channels.21-23 While mass media campaigns might have broad capacity for achieving 

saturated awareness, changing (or maintaining) behaviors typically requires deeper engagement and 

interaction. Social support, the communication of social norms, and other forms of social influence 

that can generate such sustained engagement flow through social network ties.24 In this narrative 

review, we therefore argue that adoption  of a social network approach seems natural and likely to be 

fruitful in helping us understand how intervention uptake and adherence are distributed across 

communities, how this patterning is generated and maintained, and how barriers to uptake and 

adherence might most efficiently be overcome. Throughout the article we use the term ‘social 

network’ to refer to a social structure that consists of ‘nodes’ connected by ‘ties’; nodes can represent 

people or organizations, and ties can represent friendship or any other type of interdependency (e.g., 

communication or physical proximity).25 

Social network data collection 

Three social network data collection methods are commonly used. They can be roughly 

categorized by the extent to which the data can be linked and the extent to which the sampling frame 

is a priori known.26 ‘Egocentric’ network data are defined as those in which it is not possible to 

directly link the information provided by each respondent. These data are typically elicited through 

surveys, in which respondents (‘egos’) are asked to identify social network ties who occupy specific 

or general roles of social importance in their lives (‘alters’). Following the administration of these 

‘name generators’,27,28 further information is sought from the ego through ‘name interpreters,’ which 
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are questions that elicit information about characteristics of the named alters, and about 

characteristics of the ties between the ego and their alters.  

One extension of egocentric data collection is to elicit from the ego perceived properties of 

ties between each pair of alters, sometimes called “ego-centered cognitive social structures”.29,30 This 

design results in the ability to better typify the immediate social network of each ego, particularly the 

level of triadic closure, i.e., triangles linking an ego and two of their alters. However, it requires 

many additional questions (e.g., for five alters, there are 10 undirected alter-alter ties), often leading 

to interview fatigue and reduced data quality.31 Egocentric data collection is relatively 

straightforward, and can be conducted with a population sample using standard survey methods 

(Figure 1). However, egocentric data rarely allow for network-wide processes or outcomes to be 

directly evaluated, because typically no one reports on everyone else in the network, and because 

egos’ responses cannot be linked to one another.  

A classic form of egocentric network study design used to study HIV is the sexual or drug-

use partner roster. By collecting information on alter characteristics (e.g., age, geographic location, 

substance use profile) and tie characteristics (e.g., relationship duration, condom use pattern) 

researchers can evaluate someone’s HIV acquisition and transmission risk profile more 

comprehensively.32 In the context of HIV research, egocentric alter-alter ties are rarely analyzed, 

despite their potential importance for single-mode behaviors where triadic closure is possible (e.g. 

condomless anal intercourse,33 needle/syringe sharing34), and for identifying potential change agents 

within populations.35  

In contrast to egocentric data, ‘sociocentric’ data arise when all egos in a population are 

sampled (Figure 2), and each alter is identified, i.e., entity resolution. Entity resolution can be done 

either by having egos select their alters from a closed list (e.g., school register, employee list, 

population census) or by eliciting sufficient information that each alter can be later identified by the 
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data analyst. The latter approach typically leaves a substantial proportion of alters unidentified; on 

the other hand, having an a priori census may be economically or practically infeasible, especially 

when the population is not well described. Sociocentric data can be extremely powerful and, when 

captured longitudinally, can identify how infections and interventions spread through communities, 

something that has been done from time-to-time since the early days of the epidemic.36 However, the 

requirement for well-enumerated, quasi-closed populations makes such studies rare, particularly in 

the resource-limited settings where HIV is most prevalent.37  

The collection of sociocentric data is resource-intensive within each community, compared 

with egocentric approaches. The need to obtain information from a whole-population sample of egos 

therefore excludes the possibility of sampling. However, by typically focusing on a smaller number 

of communities, sociocentric designs (compared with multi-site egocentric designs) can reduce the 

costs of travel between communities and the need for repeated community engagement. The relative 

benefits of the two approaches depend largely on community-level heterogeneity: if all communities 

are homogeneous, a sociocentric examination of a few populations will provide greater insight; if 

communities are heterogeneous, a sociocentric network study focused fewer communities is more 

likely to miss the full range of social structures and risk environments. One way to circumvent the 

resource requirements of sociocentric network data collection is by using existing network datasets, 

such as online social networks or phone records.38,39 While such methods can be extremely powerful, 

they rarely provide the specific kinds of detail required to evaluate HIV programs. In addition, the 

substantial quantity of identifiable data that must be collected and processed for sociocentric work, 

especially relating to HIV, requires careful ethical consideration.40  

Both egocentric and sociocentric methods are based on interviewing some or all of a pre-

defined population. Some populations, however, are hidden insofar as their membership is not a 

priori known. In such situations, partial network sampling methods – of which ‘respondent driven 
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sampling’ (RDS) is a common example – play an important role.41,42 RDS begins by interviewing a 

few, often visible, members of the population. After completing the initial round of interviews, first-

round egos (‘seeds’) are provided with a mechanism to invite alters to participate in the survey (e.g., 

a voucher for food or airtime that can be redeemed with the study team). In this way, subsequent 

egos ‘self-refer’ to the study. These referral chains help the study team to survey individuals who 

might otherwise not have been identified using conventional approaches (Figure 3); however, since 

the overall population of interest is usually not well characterized, deriving population-representative 

estimates from RDS designs is difficult. Several methods have been proposed for assessing and 

adjusting for such potential biases.42,43 However, there is little consensus about the criterion standard 

method for doing so, and concerns remain about the tenability of the strong assumptions required to 

move from partial network samples to population-level inference.44-47 In HIV-related research, RDS 

is commonly used when working with populations defined by criminalized or stigmatized activities, 

including injection drug use,48 same-sex intercourse,49,50 and sex work.51 

Each of these social network data collection methods has advantages and disadvantages 

related to cost, feasibility, and validity. None are considered to have advantages over the others as a 

general matter. However, depending on the specific research aims, some advantages (or 

disadvantages) may be more heavily weighted than others, leading investigators to choose one study 

design over another. 

Using social networks to understand HIV treatment and prevention 

In this article, we focus on three comparative advantages of the social network approach, 

namely the kinds of information it can provide where other methods cannot, and its relevance for 

three important aspects of the HIV epidemic: risk population definition, infection spread, and 

behavior patterns.  
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First, social network analysis (SNA), particularly using RDS methods, can help us understand 

the characteristics and risk behaviors of hard-to-reach, key populations. Such knowledge allows us to 

see who is unable or unwilling to take up interventions and, potentially, why. The power of SNA in 

this context arises from the principle of homophily: an ego’s alters tend to be more similar to the ego 

than to other egos in the population.52 As a result, studies that elicit information from egos about 

their alters yield additional information about the risk groups to which the egos belong, including 

information about seroprevalence. This exercise is particularly important in the context of HIV since 

many of those most at risk are members of stigmatized or criminalized populations. In the case of 

RDS, egos are asked to refer alters who fit a particular profile, allowing detection and identification 

of specific key populations,53 including people who use injection drugs,54-56 MSM,49,57-60 and people 

who engage in sex work.61-64 Similarly, qualitative descriptions of the social networks of key 

populations can provide vital insights into the activities of people at risk of HIV transmission and 

acquisition, notably of the interactions between members, improving understanding about barriers 

and facilitators of intervention delivery.65,66 One form of RDS that can be particularly important is 

partner notification or contact tracing. Partner notification/contact tracing avoids some of the 

concerns of typical RDS designs regarding selective recruitment, since the investigator is seeking to 

capture all contacts fitting a particular profile, and may thus play an important (if partial) role in 

understanding HIV-related networks.67  

Second, SNA that captures sexual and other risk interactions provides novel understanding of 

how HIV spreads through populations. Such complexity is highlighted in modelling work showing 

how the impacts of homophily in use of antiretroviral therapy or partner selection (i.e., HIV 

serosorting) differ depending on the population prevalence of HIV.68 Since the 1990s, researchers 

have used social network data (e.g., partner notification and contact tracing) to understand sexual 

behavior 69 and epidemic change for both HIV 32,70 and other sexually transmitted infections.71 More 

recently, two approaches have been used to capture sexual networks de novo: (i) sociocentric 
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methods focusing on quasi-closed communities, such as those confined to islands 36 or those with 

well-defined social networks where boundary specification is relatively straightforward;72,73 and (ii) 

RDS-based approaches attempting to gain saturated coverage of behaviorally or geographically 

defined groups.74-77, although there remain important ethical issues to consider in such detailed 

inference.78 In both approaches, longitudinal data allow the identification of potential sources of 

transmission. One powerful emerging use of social networks for understanding HIV transmission is 

its combination with phylogenetic data, thereby attempting to minimize the limitations of both data 

types,79-81 although there remain important ethical issues to consider in such detailed inference.78 

Third, SNA can allow us to observe how behavior is distributed across populations and how 

novel ideas and behaviors spread through populations. Egocentric and sociocentric studies of MSM 

have demonstrated that there is homophily in behavior between egos and alters,82,83 and that social 

network characteristics are correlated with use of PrEP.33 SNA studies of the spread of interventions 

through networks are rare and are often limited to egocentric designs due to the larger budgets 

typically required for longitudinal sociocentric data collection,84 although RDS methods can also be 

appropriate.85 In the context of vaccine uptake, there is evidence that social norms are central to the 

generation and maintenance of vaccine hesitancy within online social networks.86 

 SNA also provides an opportunity to understand how increasingly popular HIV self-test kits 

are distributed and used by sexual partners 87 and by friends and family.88,89 A key aspect of the 

diffusion of new technologies, such as HIV self-test kits, is the dynamic interplay between multiple 

overlaid networks, in terms of both structure (e.g., friends, drug use and sexual partners) and content 

(e.g., knowledge, behavior and infection).90 Understanding how using self-test kits and learning 

one’s status affect social and sexual networks, and thus onward diffusion of use, is vital to evaluating 

the likely effectiveness of peer-based distribution methods.  
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Any attempt to infer causal processes in uptake must account for the strong dependencies 

between connected individuals, while also disentangling the effects of homophily (being friends with 

similar people), social selection (becoming friends with similar people) and social influence 

(becoming similar to friends).91-94 Several approaches that utilize all three types of social network 

data have been proposed for conducting causal inference around peer effects, including stochastic 

actor-oriented models,95,96 peer effects models,97 instrumental variables estimation,98 and dynamic 

matched sample estimation,99 but there remain ongoing debates about the extent to which causal 

inference is possible in these settings.100,101  

One important subset of behavior change is that which is initiated intentionally, i.e., through 

intervention deployment. SNA can therefore also provide important information on where and why 

non-network informed interventions fail. Qualitative investigation of several past implementation 

trials has shown non-uptake or non-adherence to protocols;7,102,103 SNA in such situations could 

provide information about how non-adherence is patterned or even spread through the trial 

communities – information that could help with subsequent roll-out of the same or similar 

interventions.  

Social network-informed interventions for HIV treatment and prevention 

The above three SNA uses can help improve understanding of the HIV epidemic and barriers 

to its implementation. Beyond these functions, several social network-informed intervention (SNI) 

methods can be deployed to help overcome implementation barriers encountered with other 

approaches.104-106 Valente has proposed four types of network interventions: individual; 

segmentation, or group change; inducted interaction; and network tie alteration.84 Randomized trials 

of such interventions to improve a range of health outcomes have often been successful.38 
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Individual interventions are by far the most common SNI in HIV prevention. Examples 

include seeding behavior change messages (with the expectation that these messages will be passed 

on to social ties) and using network information to inform intervention targeting. Past experience has 

shown that carefully selected individuals can shift HIV risk behavior within populations (e.g. 

community popular opinion leaders [CPOLs]107), but only when the CPOLs selected were truly 

influential.108,109 Diffusion approaches that rely on random seeding are unlikely to reach everyone in 

the population, much less those at highest risk who are often hardest to reach,110 since by definition 

previous messaging has already failed to reach them. Careful planning and evaluation of individual 

SNIs is thus vital.  

Induced interventions can be seen in the example of treatment supporters for HIV treatment 

and care. Such supporters may be either identified from existing contacts who are asked to assume 

new roles,111,112 or created de novo;113,114 both approaches appear to increase treatment adherence.115-

117 Examples of network tie alteration strategies are rarer, not least because SNIs that eliminate ties 

or otherwise attempt to fragment/damage social networks pose obvious ethical problems. SNIs that 

use SNA to guide tie formation may hold more promise, but compelling studies in the field of HIV 

are yet to be done.118 

SNA highlights the importance of initial conditions for intervention targeting in two ways. 

First, when identifying initial seeds for behavior change, it is vital to choose those who are influential 

within their communities.119 Randomly selected seeds will be less efficient at inducing behavior 

change, since they will exert weaker spillover effects on others,120 while the earliest adopters of 

innovations are rarely the most influential since they are usually by definition not deeply embedded 

in local networks.121 Second, SNIs that select people who are already interested in behavior change 

will likely miss key populations.122 It is therefore important for an SNI to ensure broad coverage of 
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the social space of interest (e.g., a school, a village, young MSM living in a city) and, potentially, to 

selectively enroll individuals at greatest risk.  

Another lesson from SNA is the importance of complex contagion,123 where uptake or 

infection requires exposure to multiple sources. The threshold level of exposure required for complex 

contagion may be an absolute number or a proportion (e.g., of social ties who exert influence on 

one’s behavior). In the context of HIV prevention, there is a close analogy to the importance of 

social norms, both descriptive and injunctive: behavior change becomes much more likely once the 

behavior is adopted or endorsed by a sufficiently large part of one’s social referent group.124,125 In 

practical terms, ideas of complex contagion reinforce the importance of sufficiently dense seeding of 

the most at-risk parts of any social network, suggesting that random targeting will do even worse 

than one might expect.  

Some ways forward 

SNA provides a range of insights into how HIV interventions can be changed and improved. 

However, implementing many of these insights will require better data than are currently available. 

While social network descriptions exist, notably for school-aged children and some specific well-

defined populations (e.g., people who use injection drugs or MSM in higher-income settings), we 

know still little about the social networks of those at greatest risk. In particular, the continued high 

incidence of HIV among adolescents and young adults in sub-Saharan Africa 126 is not reflected in an 

understanding of their social networks, with a few notable exceptions.72,127  A fuller understanding of 

the patterning of attitudes and behaviors across social space, how such factors change over time, and 

indeed how social networks evolve, in the context of youth and other key populations throughout 

sub-Saharan Africa would greatly aid ongoing efforts to reduce HIV incidence in this setting. Much 

of these data will need to be longitudinal, which adds standard cohort design issues (e.g., entry/exit 

conditions, loss to follow-up) to social network design issues (e.g., defining boundaries, missing tie 



14 

 

information). As we implement SNIs in these populations (often without considering them to be 

SNIs), it will be vital to collect sufficient social network data to enable evaluation of how social 

networks impact intervention effects as well as how interventions rewire social networks – we should 

expect social networks to evolve under the pressure of new ideas spreading across them.128 

Despite this need for better data in order to understand social processes, it is not often 

feasible to collect sociocentric or even egocentric data routinely. Developing scalable HIV 

interventions that draw on social network insights will therefore require ways to quickly identify key 

individuals for SNIs. While occasional examples of low-cost social network data collection 

processes exist, such as downloading contacts from cellphones,75 there may be other settings in 

which they cannot be implemented without ethical problems or substantial refusals. Sociocentric 

datasets that measure social influence can be used to test whether algorithms based on non-network 

properties can identify influential individuals within populations. Such algorithms can then be tested 

in randomized studies to determine whether such non-network-identified seeds are more effective 

than randomly- or network-selected seeds at reducing HIV risk within the network. More evaluations 

of SNIs are also required, although such studies can be prohibitively expensive as they require the 

collection of sociocentric social network data from many independent networks that can then be 

randomized to different SNIs.129,130  

Even without social network data, however, social network theory highlights that there are 

low-cost ways to improve on random selection for intervention targeting. For example, the 

“friendship paradox” highlights that, on average, the friends of individuals have more friends than 

the individuals who nominated them.131 Other evidence suggests that people tend to identify as 

friends people who are of higher social status than themselves.132 A theoretical prediction thusly 

emerges: asking a random sample of individuals to identify their friends and then enrolling a random 

friend should improve the reach and effectiveness of interventions.133 This prediction was borne out 
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in a recent SNI trial of multivitamins in Honduras;134 the same research group also showed that this 

theoretical prediction could be leveraged to predict an outbreak of H1N1 influenza six weeks in 

advance even in the absence of having full network data.135 A SNI that randomly selects the most-

connected alter (rather than a random alter) may be even more effective.136  

Another insight that has been obtained through SNA is the importance of social affiliation: 

the connection of individuals through shared group membership or use of physical 137,138 or online 

139,140 locations. Social affiliation is particularly important when affiliation is associated with risk 

behavior, and thus either acquired infection or attitudes. Social spaces that are characterized by 

greater prevalence of HIV transmission risk behavior are likely to be vital sites for intervention, 

especially when the interventions in question are network-informed – the original CPOL work 

engaging opinion leaders in gay bars in small midwestern US towns being a canonical example.107 

Our review has focused on individual-level intervention uptake in the context of community 

networks. However, social networks are also likely to play key roles in determining which evidence-

based interventions are embraced by policymakers, providers, organizations, and communities. In 

particular, the choice of which interventions to roll out will depend on who is championing them and 

how they can influence those with the power to make funding decisions. Delayed roll-out of 

antiretroviral therapy in South Africa after the turn of the millennium,141,142 or of PrEP in the 

National Health Service in England in recent years,143 might well be understood through a social 

network lens where those with decision-making power were influenced by individuals not convinced 

of the interventions’ effectiveness. SNA can also be applied to organizational networks to identify 

isolated organizations (that may not be in a position to take up an intervention), central organizations 

(that might serve as either positive or negative influences on other organizations within the network), 

or disconnected subgroups of organizations (that could potentially be brought together by 

organizational brokers for the purposes of consolidating intervention efforts).144-146 A meaningful 
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understanding of the existing network structure of potential implementing organizations can 

potentially facilitate the deployment and maintenance of the implementation process. Consistent with 

this idea, Gesell and colleagues have proposed a method by which social networks can be monitored 

during the process of intervention implementation, with the aim of using “social network 

diagnostics” to guide program activities.147 

Conclusion 

The history of HIV contains many examples of proven interventions being deployed to the benefit of 

communities at risk. It also contains several examples where these interventions have left behind 

some groups – often those who are most vulnerable and least visible. Social network analysis can 

help us to identify who is being missed and why, and what barriers limit their capacity to use the 

interventions being offered. Social network-informed interventions can work with the grain of 

society to improve the reach of interventions, especially to key populations, and to maximize 

intervention impact once delivered. To achieve these objectives, it is vital that we collect more social 

network data now, and strategically study how to minimize our need of such resource-intensive data 

in the future. Achieving these goals will help curtail the HIV epidemic while not iatrogenically 

worsening health disparities.  
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Figures 

 

Figure 1. A sample of egocentric social networks derived from a cross-sectional study of 
sources of sexual advice for young adults living in uMkhanyakude district, KwaZulu-Natal, 
South Africa.148 This figure presents social support ties between 31 respondents (women aged 
18-24, dark blue squares) and their 123 social contacts. Light blue squares are female contacts; 
brown circles are males; dark brown circles are males with whom the respondent has now or 
previously had a sexual relationship. Line thicknesses are proportional to reported frequency 
of communication between individuals. Absent lines between respondents and sexual partners 
indicate no report of social support from this individual.  
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Figure 2. A sociocentric social network graph derived from the HopeNet cohort study, a whole-
population cohort of all adult men and women who report stable residence in Mbarara, 
Uganda.149 This undirected network graph represents the emotional support ties of 140 
women in one of the study villages, Buhingo, with HIV-negative women or women whose 
serostatus is unknown depicted with solid circles and HIV-positive women depicted with 
hollow circles. 
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Figure 3. A set of recruitment networks derived from a respondent-driven sampling survey of 
405 bisexuals in Ontario, Canada.150 Blue squares represent initial seeds and purple circles 
subsequently referred recruits. Arrows represent referral links, where eligibility criteria for 
participation were: identification as attracted to individuals of more than one sex/gender, age 
16 years or older, and residence in Ontario, Canada. 
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