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Abstract— In this paper, an adaptive sliding mode dynamic
positioning control approach is proposed for a semi-submersible
offshore platform. The actuator dynamics are slow and thus a
first order sliding mode control approach is used to maximise
tracking accuracy in the presence of typically unmodelled
actuator dynamics. The sliding mode control is designed with
an adaptive feedback gain to counter the effects of model
uncertainty and external disturbances such as the waves. The
control implementation uses a sliding mode differentiator for
online estimation of velocity and acceleration. The stability of
the system is analyzed using Lyapunov methods. The control
algorithm is validated using illustrative examples.

I. INTRODUCTION

The semi-submersible offshore platform (SSOP) is an
important element in the offshore oil and gas industry. A
key issue in SSOP operation is dynamic positioning (DP),
whereby the SSOP maintains its desired position and heading
by control of the propulsion system in order to suppress
environmental disturbances induced by the waves, currents,
and wind [1]. When compared with other positioning meth-
ods, DP has advantages for the SSOP where the platform
will typically operate in deep sea with requirements for high
positioning accuracy and high maneuverability. This control
problem is thus receiving current attention in the literature
[2].

DP control development has seen three stages [3]. Initially,
control of a three degree of freedom SSOP was carried out
using PID control [4]. It proved difficult to select appropriate
PID control parameters due to the complex dynamics of the
SSOP. Then, optimal control was combined with Kalman
filtering to improve performance [5]. However, the optimal
control and Kalman filter require accurate dynamic models
in the design procedure, which may be difficult to obtain in
practice. Finally, some advanced DP control algorithms have
been developed for the SSOP including predictive control
[6], robust adaptive control [7], passivity based control [8],
back stepping control [9] and sliding mode control (SMC)
[10].
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Among these advanced control approaches, SMC is an
attractive solution due to its simple control structure, sys-
tematic design procedure, rapid response and inherent in-
sensitivity to external disturbances. The application of SMC
for DP of a turret moored floating production storage and
offloading (FPSO) system was studied in [11]. A SMC was
designed and experimentally tested for tracking control of
underactuated autonomous surface vessels [12]. The effec-
tiveness and superiority of SMC for DP system was validated
experimentally in [10]. Super twisting control, a second order
SMC algorithm, was also applied to surface vessels and was
shown to deal with parameter variations effectively [13].

It has been seen that SMC can achieve good performance
for DP systems. There are some areas which need further
attention to fully assess the effectiveness of the paradigm.
One area is the impact of actuator dynamics on the process.
The second is the area of reconstructing unmeasurable states.
The final area is that of controller tuning for what is a highly
uncertain system. It has been shown [14] that the higher
the order of the homogeneous SMC, the less sensitive it
is to the presence of unmodelled but ’fast’ actuators. More
recent contributions [15], [16] have seen the debate around
performance of SMC of various types in the presence of
actuator dynamics intensifying. The general consensus is
that for ’fast’ actuator dynamics, a higher order SMC may
be expected to give better performance in the presence of
unmodelled actuator dynamics than a first order SMC, but
that when unmodelled actuator dynamics are ’slow’ a first
order SMC may be better [16]. In this paper we assume
a simple first order model for the actuators and adopt a
first order SMC approach as the actuator dynamics for a
SSOP are relatively slow and the assumed actuator model
is a simplification of the actual actuator dynamics. The
adopted first order SMC approach requires measurement of
the velocity and acceleration which is difficult in practice. To
overcome this problem, a state observer, such as high gain
state observer [17], passivity state observer [18] and sliding
mode observer [19] have been designed to estimate velocity.
However system observers require the use of dynamic mod-
els during the design process. In this paper, a novel robust
differentiator [21] is used for controller implementation.
This differentiator has been implemented in a toolbox and
can estimate velocity and acceleration simultaneously online
without requiring a dynamic model [20]. In SMC design,
the bounds of the uncertainty and external disturbance are
frequently required during the controller design process. In
this paper an adaptive law is used which can update the
feedback control gain online without a priori knowledge of
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the bounds [22], [23].
The main differences between the proposed approach and

the existing literature on SMC for DP of SSOP [10], [11],
[12], [13] can be summarized as: (1) the proposed approach
considers the impact of both modelled and unmodelled
actuator dyanmics on the SMC performance; (2) a robust
differentiator is employed to estimate the velocity and ac-
celeration online, which renders the control algorithm more
readily applicable; (3) an adaptive control feedback gain is
designed to deal with the effects of controller tuning in the
presence of external disturbances. The paper is organized as
follows: in Section 2, the problem is formulated. In Section
3, the proposed control algorithm is developed and the
corresponding stability analysis is given. In Section 4, case
studies are demonstrated to validate the proposed approach.
Finally, in Section 5, some conclusions are drawn.

II. PROBLEM FORMULATION

The kinematic and dynamic model of the SSOP is given
by [24]

η̇ = J (ψ) v (1)

Mv̇ +Dv = τ + d (2)

J (ψ) =

 cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 (3)

where J (ψ) is the Jacobian matrix, J−1 (ψ) = JT (ψ) for
all ψ, η = [x, y, ψ]

T is the position vector in the Geodetic
coordinate system in which x y ψ denote X , Y directions and
the angle of rotation of the bow around Z respectively, ν =
[u, v, r]

T is the velocity vector in the ship coordinate system
in which u, v, r denote to the surge, sway and yaw modes of
a SSOP, M, D ∈ R3×3 represent inertia and linear damping
matrices respectively, τ ∈ R3×3 represents the control forces
in surge and sway, and moment in yaw, d ∈ R3×3 represents
the disturbance caused by waves, currents, and winds.

In light of (3), the dynamic equation can be written as

P (η) η̈ +Q (η, η̇) η̇ = τ (t) + d (t) (4)

where P = MJ−1 (ψ) and Q = MJ̇−1 (ψ) + DJ−1 (ψ).
Note that ‖P‖ is bounded and invertible, because M is a
positive definite constant matrix and J−1 (ψ) is an invertible
matrix.

Assumption 1: ‖d (t)‖ ≤ d0 and
∥∥∥ḋ (t)

∥∥∥ ≤ d1, d0 > 0

and d1 > 0 are positive constants.
Assumption 2: η can be measured.
Remark 1: d is the low frequency disturbance caused by

the waves, currents, and winds. The high frequency portion
will not be considered in the control design because in
general the SSOP system has the ability to suppress high
frequency signals.

A robust adaptive SMC will be developed for the SSOP
whose structure is given in Fig 1. A differentiator is used
to estimate η̇ and η̈, an adaptive law is designed to update
feedback control gain which will be detailed in the following
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Fig. 1. The system block diagram of the adaptive sliding mode dynamic
position control scheme

context, u ∈ R3 denotes the input to the actuators, τ ∈ R3

is the control signal experienced by the platform.

Remark 2: For the controller design the actuators are
approximately modelled by a first order lag. The actuator
dynamics for the SSOP are slow and thus to enhance
the performance in the sliding mode, a first order sliding
controller is considered [15], [16].
The transfer function of the assumed actuator model is given
by

Gact (s) =
λ

s+ λ
(5)

where λ = 1/T , T > 0 is the time constant. According to
(5), the relationship between u and τ is given by

τ̇ + Λτ = Λu (6)

where Λ = diag
{[

λ1 λ2 λ2
]}

, λi > 0, i = 1, 2, 3. In
light of (4) and (6), the system dynamic equation assumed
for the controller design can be rewritten as

P
...
η + Ṗ η̈ +Qη̈ + Q̇η̇ + ΛP η̈ + ΛQη̇ = Λu+ Λd+ ḋ (7)

Assumption 3:
∥∥P−1

∥∥∥∥∥ḋ∥∥∥ +
∥∥P−1Λ

∥∥ ‖d‖ 6 γ0, γ0 > 0

is a positive constant.
Remark 3: According to Assumption 1, the properties of

P and the definition of Λ, Assumption 3 is reasonable.
A robust adaptive SMC for DP of the SSOP (7) will be

designed incorporating a robust differentiator and an adaptive
law. The robust differentiator is used to estimate the velocity
and acceleration without requiring the system model. The
adaptive law will update the feedback gain online without
requiring the disturbance bound. The relatively slow actuator
dynamics of the process are accommodated both within the
selection of the order of the SMC and within the controller
design. In summary, the proposed approach does not require
an accurate model or disturbance bound which thus relaxes
the design conditions.

Remark 4: In Fig. 1, a robust differentiator [20] is used to
estimate the velocity and acceleration online, which does not
require the dynamic model and then make the design easier
compared with the existing state observers. Its effectiveness
will be validated in the case study.



III. ROBUST ADAPTIVE SMC DESIGN

In this section, an adaptive SMC algorithm will be de-
signed for DP of the SSOP. For (7), the tracking error is
defined as

e = η − ηd (8)

where e ∈ R3 is the tracking error vector, ηd ∈ R3 is the
desired position vector.

Assumption 4: ηd, η̇d and η̈d are known and bounded.
The siding mode is defined as

s = ë+ Λ1ė+ Λ2e (9)

where Λ1 = diag{[λ11, λ12, λ13]} ∈ R3, Λ2 =
diag{[λ21, λ22, λ23]} ∈ R3. ëi+λ1i ėi+λ

2
i ei should be Hurwitz,

i = 1, 2, 3.
In the following, a robust SMC will be initially designed

for DP of the SSOP, then a corresponding robust adaptive
SMC will be developed.

A. Sliding Mode Controller Design

An SMC can be defined for DP of the SSOP by

u = ueq + usw (10)

ueq = Λ−1
[
P (

...
η d − Λ1ë− Λ2ė) + Ṗ η̈+

Q̇η̇ +Qη̈ + ΛP η̈ + ΛQη̇
]

(11)

usw = −Λ−1PK
s

‖s‖
(12)

where K ∈ R and K > γ0 is a feedback gain, ueq is the
equivalent control and usw is the discontinuous control term,
u is the applied control.

Remark 5: In (10), ueq controls the nominal portion of
(7), usw deals with the effects of d and ḋ in (7), K is an
important control parameter to suppress d and ḋ.

Theorem 1: For (7), under Assumptions 1-4, the control
law (10) will stabilize the tracking error to zero asymptoti-
cally if K > γ0.
Proof:

Select a Lyapunov candidate as

V =
1

2
sT s (13)

Differentiate (13) with respect to time along (7)

V̇ = sT
[
P−1

(
Λu− Ṗ η̈ − Q̇η̇ −Qη̈ + ḋ

−ΛP η̈ − ΛQη̇ + Λd)−
...
η d + Λ1ë+ Λ2ė]

(14)

Substitute (10) into (14)

V̇ = −K ‖s‖+ sTP−1ḋ+ sTP−1Λd (15)

6 −K ‖s‖+
(∥∥P−1

∥∥∥∥∥ḋ∥∥∥+
∥∥P−1Λ

∥∥ ‖d‖) ‖s‖(16)

Consider Assumption 3

V̇ 6 − (K − γ0) ‖s‖ (17)

If K is appropriately selected and K−γ0 > 0 the reaching
condition will be satisfied [25]. Then, the tracking error will

reach the sliding mode in finite time and converge to 0
asymptotically, that is, e→ 0 as t→∞. Q.E.D.

Remark 6: In (12), K is the feedback gain which is also
a robust control gain according to (17). One of the control
design questions is how to find an appropriate K. This
requires knowledge of the disturbance bound in advance;
alternatively a trial and error method can be employed.
In the following subsection a novel adaptive law will be
developed to update K online.

B. Robust Adaptive Sliding Mode DP Control

Assumption 5: Assume there is an appropriate K > γ0.
To make the algorithm easier to implement, an adaptive

law will be designed to estimate the feedback gain. Assume
K̂ ∈ R is an estimate of K, then the estimation error is
defined as

K̃ = K − K̂ (18)

where K̃ ∈ R is the estimation error. Its time differential is
given as

˙̃K = − ˙̂
K (19)

The following robust adaptive SMC can be designed for
DP of the SSOP

u = ueq + usw (20)

ueq = Λ−1
[
P (

...
η d − Λ1ë− Λ2ė) + Ṗ η̈+

Q̇η̇ +Qη̈ + ΛP η̈ + ΛQη̇
]

(21)

usw = −Λ−1PK̂
s

‖s‖
(22)

˙̂
K = κ ‖s‖ (23)

where κ ∈ R and κ > 0 is the update gain.
Theorem 2: For (7), under Assumptions 1-5, the control

law (20)-(23) will stabilize the tracking error to zero asymp-
totically if κ > 0.
Proof:

Select a Lyapunov function candidate as

V =
1

2
sT s+

1

2κ
K̃2 (24)

Differentiate (24) with respect to time along (7)

V̇ = sT
[
P−1

(
Λu− Ṗ η̈ − Q̇η̇ −Qη̈ + ḋ− ΛP η̈

−ΛQη̇ + Λd)−
...
η d + Λ1ë+ Λ2ė] +

1

κ
K̃ ˙̃K(25)

Substitute (20) into (25)

V̇ = −K̂ ‖s‖+ sTP−1ḋ+ sTP−1Λd− 1

κ
K̃

˙̂
K (26)

6 −K̂ ‖s‖+
(∥∥P−1

∥∥∥∥∥ḋ∥∥∥+∥∥P−1Λ
∥∥ ‖d‖) ‖s‖ − 1

κ
K̃˙̂K (27)

6 −K̂ ‖s‖+ γ0 ‖s‖ −
1

κ
K̃

˙̂
K (28)

Substitute (23) into (28)

V̇ 6 −K̂ ‖s‖+ γ0 ‖s‖ − K̃ ‖s‖ (29)



Considering (18) and (19)

V̇ 6 − (K − γ0) ‖s‖ 6 0 (30)

From Assumption 5, there exists a K such that K−γ0 > 0.
The reaching condition should be satisfied [25]. Then, motion
of e is restricted to s = 0 and e→ 0 as t→∞.

Remark 7: An adaptive law has been developed which can
update the feedback gain online. Note that the suggested
adaptation law may over estimate the uncertainty bound
[23]. This can happen for example in the presence of noisy
measurement signals. In order to avoid this situation, the
implementation

˙̂
K =

{
κ ‖s‖ if ‖s‖ > ε

0 elseif ‖s‖ ≤ ε , (31)

where ε > 0 is a positive constant, is used. Here, adaption
is halted whenever the specified domain of ‖s‖ of width ε is
reached. Consequently a real sliding motion is established.

IV. CASE STUDY

The dynamic parameters of the SSOP are given by

M =

 5.3122× 106 0 0
0 8.2831× 106 0
0 0 3.7454× 109


D =

 5.0242× 104 0 0
0 2.7229× 105 −4.3933× 106

0 −4.3933× 106 4.1894× 108


d(t) =

 7.5× 103 sin (1000t) + 0.9× 103 sin (0.01t)
3.5× 103 sin (1000t) + 1.2× 103 sin (0.01t)
1.5× 103 sin (1000t) + 1.5× 103 sin (0.01t)


where M is the inertia matrix, D is the damping matrix
and d(t) is the external disturbance. The desired position,
velocity and acceleration are given as ηd = [50, 50, 50]T ,
η̇d = [0, 0, 0]T , η̈d = [0, 0, 0]T , the initial value of the SSOP
is given as η(0) = [0, 0, 0]T and η̇(0) = [0, 0, 0]T . The ac-
tuator characteristics are defined by: Λ = diag([25, 25, 25]),
Λ1 = diag([5, 5, 5]), Λ2 = diag([5, 5, 5])

The controller parameters are selected as follows, (1)
Robust SMC for DP of SSOP K = 10; (2) Robust Adaptive
SMC for DP of SSOP: κ = 0.0008, K̂(0) = 0, ε = 10.

Remark 8: A novel robust differentiator was used to es-
timate the velocity and acceleration measurements which
are required for the proposed SMC design. Full details are
available at [20].
Case 1: Robust SMC for DP of SSOP

The performance of the robust SMC was demonstrated
in the presence of external disturbances. Fig. 2-3 show the
position tracking accuracy and the torque inputs applied to
the platform. In Fig. 2, the SSOP is seen to track the desired
position well despite the presence of the external disturbance.
The torque signals applied to the SSOP are sufficiently
smooth enough and bounded ( Fig. 3). The robust SMC has
achieved good performance for DP of SSOP. However the
feedback gain K was chosen carefully because it plays an
important role on the system stability and robustness. The

designer needs to know the external disturbance bound for
the controller design, which is not straightforward in practice.
A trial and error method is often used to find an appropriate
K. On site, this requires that the operator has a wealth of
experience and can be time-consuming.
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Fig. 2. The position tracking performance of the robust SMC strategy.
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Fig. 3. The torque inputs from the robust SMC strategy.

Case 2: Robust Adaptive SMC for DP of SSOP
The performance of the robust adaptive SMC is demon-

strated in the presence of an external disturbance. Fig. 4-6
show the position tracking, the torque inputs and the adaptive
law, respectively. In Fig. 4, the SSOP can track the desired
position despite the external disturbance. The torque inputs
applied to the SSOP are smooth enough and bounded in
Fig. 5. The adaptive law is shown in Fig. 6; this updates
the feedback control gain K online. Because (31) is used in
the implementation, the adaptive law does not exhibit over
estimation. Here, the bound on the disturbance is not known a
priori. Comparing Cases 1 and 2, the control performance of
the robust adaptive SMC is as good as the robust SMC. These



results further validate the effectiveness of the proposed
robust adaptive SMC.
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Fig. 4. The position tracking performance of the robust adaptive SMC for
DP of SSOP.
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Fig. 5. The torque inputs from the robust adaptive SMC.

Case 3: Robust Adaptive SMC for DP of SSOP in the
Presence of an Impulsive External Disturbance

To further validate the approach, an impulsive external
disturbance [7× 106N, 7× 106N, 7× 106N ·m]T is added
to the simulation during the period 70sec ≤ t ≤ 75sec.
Fig. 7-9 show the position tracking performance, the applied
torque input and the adaptive law, respectively. From Fig.
7, the impulsive disturbance affects the position tracking
but the proposed approach can attenuate the impact of the
disturbance. From Fig. 8 and 9, the applied torque input and
adaptive law are smooth and bounded. The performance is
verified in the presence of a strong impulsive disturbance.
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Fig. 6. The adaptive law of the robust adaptive SMC.
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Fig. 7. The position tracking performance of the robust adaptive SMC.

V. CONCLUSIONS

Using adaptation coupled with a robust differentiator, a
novel robust adaptive SMC has been developed to achieve
dynamic positioning for a semi-submersible offshore plat-
form. The proposed approach achieves asymptotic stability
and is seen to provide an effective dynamic positioning
solution which exhibits good robustness. Due to the use of
the differentiator, velocity and acceleration can be obtained
online without requiring the system model. The adaptation
which updates feedback control gain is an implementable
solution. The methodology accommodates the actuator dy-
namics, which in this application domain are relatively slow.
Stability analysis and numerical simulation results have been
presented to support the arguments presented in the article.
Future work will focus on the implementation in a practical
system.
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