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Abstract

Next generation radio interferometric telescopes pave the way for the future of

radio astronomy with extremely wide-fields of view and precision polarimetry

not possible at other optical wavelengths, with the required cost of image

reconstruction. These instruments will be used to map large scale Galactic

and extra-galactic structures at higher resolution and fidelity than ever before.

However, radio astronomy has entered the era of big data, limiting the expected

sensitivity and fidelity of the instruments due to the large amounts of data.

New image reconstruction methods are critical to meet the data requirements

needed to obtain new scientific discoveries in radio astronomy. To meet this

need, this work takes traditional radio astronomical imaging and introduces

new of state-of-the-art image reconstruction frameworks of sparse image

reconstruction algorithms. The software package PURIFY, developed in this

work, uses convex optimization algorithms (i.e. alternating direction method

of multipliers) to solve for the reconstructed image. We design, implement,

and apply distributed radio interferometric image reconstruction methods for

the message passing interface (MPI), showing that PURIFY scales to big

data image reconstruction on computing clusters. We design a distributed

wide-field imaging algorithm for non-coplanar arrays, while providing new

theoretical insights for wide-field imaging. It is shown that PURIFY’s methods

provide higher dynamic range than traditional image reconstruction methods,

providing a more accurate and detailed sky model for real observations.

This sets the stage for state-of-the-art image reconstruction methods to be

distributed and applied to next generation interferometric telescopes, where
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they can be used to meet big data challenges and to make new scientific

discoveries in radio astronomy and astrophysics.



Impact Statement

The main theme of this thesis adapts and develops new methods with data

science and convex optimization. Then the thesis demonstrates these methods

can be applied to scientific analysis using real data sets. Furthermore, it was

shown that these methods provide detailed and accurate reconstruction from

interferometric telescopes while being distributed across a computing cluster

to cope with the big data era. The developments in this thesis will support

imaging with radio telescopes which collect a lot of data and have wide-fields

of view. The developments in this thesis are directly related to the Square

Kilometre Array (SKA) telescope, an international project to build the worlds

largest radio telescope that is has major big data challenges. It is clear that

this thesis could make an impact on the big data challenges and new scientific

discoveries in radio astronomy and astrophysics.

The distributed image reconstruction algorithms used in this work can be

used for image reconstruction challenges outside of astronomy. One prime

example includes biomedical imaging, where magnetic resonance imaging

(MRI) machines can be used to create detailed images of the human body.

The mathematics behind radio interferometric imaging and MRI is extremely

transferable, and the developments in this thesis could bring new ideas to

medical imaging. However, many areas outside of academia use data science

and it is clear that applying these methods to real data sets is valuable

to understand. The Segmented Planar Imaging Detector for Electro-optical

Reconnaissance (SPIDER) is a newly proposed interferometric optical imaging

device, imaging methods from this thesis can be directly applied to this device
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for both astronomical and reconnaissance imaging.
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Chapter 1

Introduction

The principles of aperture synthesis, using multiple radio antenna to act as a

larger telescope, date back as far as the work of [10] in 1947. However, [11] in

1960 first described how aperture synthesis could be used to construct a large

scale radio interferometric telescope. Thus, the limit in resolution of single dish

radio telescopes could be overcome by using radio interferometric telescopes

to improve our ability to observe and therefore understand the radio sky – at

the cost of performing computation to solve an ill-posed inverse problem.

Since the 1960s, large radio interferometric arrays have been constructed

to observe the sky at high resolution and sensitivity. This includes

interferometric arrays such as the Westerbork Synthesis Radio Telescope

(WSRT), Very Large Array (VLA), and Australia Telescope Compact Array

(ATCA) [12]. These telescopes were used to pioneer Galactic and extra-

galactic astronomy at low radio frequencies. In many cases this has provided

an understanding of astrophysical processes that is simply not possible at non-

radio wavelengths (approximately ranging from 1 meter to 1 millimeter). Two

specific examples where radio astronomy and interferometry is a critical for

astrophysics are neutral hydrogen (21 cm) spectral line observations and the

study of cosmic magnetic fields in the Milky Way and galaxy clusters. Simply

put, the 21 cm spectral line is only observed at radio wavelengths, and it has

been used to measure the rotation rate of nearby spiral galaxies [13]. For

astronomical objects in the distant Universe the 21 cm spectral line becomes
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cosmologically red-shifted and is currently being employed in detection

experiments for baryon acoustic oscillations and the epoch of re-ionization

(EoR) at longer wavelengths [14]. Additionally, radio interferometers probe

the magnetized Universe by observing effects such as broadband synchrotron

emission (electrons with relativistic energies accelerating in a magnetic field),

where radio galaxies and supernova remnants being examples of sources

of synchrotron emission. With accurate polarimetry not possible at other

wavelengths, radio telescopes can use synchrotron emission to more directly

probe magnetized mediums such as the inter-stellar medium (ISM) of the

Milky Way and the intra-cluster medium (ICM) of galaxy clusters through

the use of the Faraday effect [15].

Next generation radio interferometers are currently coming on-line for

astronomers to use. It is expected that these telescopes will provide images

of the radio sky at higher resolution and sensitivity than ever before. High

fidelity images of the radio sky are required for achieving science goals that can

greatly improve our understanding of the Universe in areas of cosmology and

astrophysics – with 21 cm and cosmic magnetism science goals only possible

at radio wavelengths. However, the large volumes of data, wide-fields of view,

and instrumental complexity of these telescopes provide an imaging challenge

of unprecedented scale – with the Square Kilometre Array (SKA) providing

the most computationally intensive challenge [16]. Big data telescopes, such

as the SKA, will not reach the expected fidelity if new distributed image

reconstruction algorithms are not developed.

It is clear that there are two major challenges with next generation

imaging. The first is to create accurate images of the radio sky for

both compact sources and medium to large extended structures. The

second challenge is to develop methods of image reconstruction that are

computationally efficient enough to scale for large data sets and not require

excessive computation. In this thesis we propose that the first challenge can

be met with algorithms from convex optimization, where an image is found
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that is consistent with the measurements while imposing prior knowledge of the

radio sky using wavelet transforms (i.e. that the sky can be efficiently modeled

using a particular basis/representation). We also propose that second challenge

can be met by distributing the computation and memory used by convex

optimization and interferometric imaging algorithms. The developments in

this work have been made available using the software packages PURIFY1

and SOPT2.

In Chapter 2, we start by introducing compressive sensing and sparse

regularization, two closely related frameworks that use convex optimization to

perform accurate signal reconstruction on multiple spatial scales. We then link

this to interferometric imaging, where degridding and gridding algorithms can

be used to efficiently approximate Fourier transforms and predict how close

a reconstruction is to the observed interferometric measurements. Chapter 3

introduces basic mathematical tools and algorithms from convex optimization,

specifically proximal operators and the alternating direction method of

multipliers (ADMM) algorithm, and puts them into the context of radio

astronomy. We apply these methods to both simulated and real interferometric

observations in Chapter 4, and show that sparse image reconstruction can

effectively model structures observed in real interferometric data. This

practical application of sparse image reconstruction sets the stage for future

algorithm development. The motivates the implementation of the distributed

ADMM algorithm, where the measurements, wavelet transforms, proximal

operators, and degridding algorithms can be distributed efficiently using the

Message Parsing Interface (MPI). The implementation of this algorithm is

described and demonstrated in Chapter 5. Then in Chapter 6 we layout

mathematical theory of wide-field interferometric imaging with the celestial

sphere, including new developments in understanding wide-field imaging with

non-coplanar arrays that include the out of plane w-term. We show how radial

symmetry can reduce the computation required to model the effect of non-

1PURIFY can be found at https://github.com/astro-informatics/purify.
2SOPT can be found at https://github.com/astro-informatics/sopt.

https://github.com/astro-informatics/purify
https://github.com/astro-informatics/sopt
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coplanar arrays over wide fields of view when using the w-projection algorithm

and combine this with the w-stacking algorithm using developments in

distributed interferometric imaging. We use the distributed ADMM algorithm

to perform wide-field corrections during image reconstruction to observations

of the Vela and Puppis A supernova remnants. In Chapter 7, we describe

details and improvements to the wide-field imaging algorithm developments

in the previous chapter. In Chapter 8 we describe the implementation of

a degridding algorithm that allows even distribution of computational load

on a computing cluster when performing wide-field image reconstruction,

improving performance by removing computational bottlenecks. In Chapter

9 we then review these methods in the application to a proposed optical

interferometric imaging telescope that uses photonic integrated circuits. This

thesis is concluded in Chapter 10.

This thesis describes the research, development, and application of

computationally distributed interferometric image reconstruction algorithms

with the motivation of creating a pathway towards solving imaging challenges

from big data radio telescopes – creating an accurate image of the radio sky

from next generation radio interferometric telescopes. This will open the

door to new scientific discoveries with next generation radio interferometric

telescopes.



Chapter 2

Aperture Synthesis and Sparsity

In this chapter we review literature from the areas of radio interferometry,

compressive sensing and sparse regularization, and interferometric imaging.

These concepts are core to the chapters that follow.

Radio interferometry has been critical for imaging the radio universe at

higher resolution and sensitivity than possible with a single radio telescope.

However, radio interferometers are limited by the number of possible pairs

of antennae in an array, which limits the number of possible measurements

made during an observation. Consequently, image reconstruction methods

are needed to reconstruct the true sky brightness distribution from the

raw data acquired by the telescope, which amounts to solving an ill-posed

inverse problem. Traditional methods, which are mostly variations of the

Högbom CLEAN algorithm [17], do not exploit modern state-of-the-art image

reconstruction techniques.

Next-generation radio interferometers, such as the LOw Frequency ARray

(LOFAR; 18), the Murchison Widefield Array (MWA; 19), the Australian

Square Kilometre Array Pathfinder (ASKAP; 20), and the Square Kilometer

Array (SKA; 21), must meet the challenge of processing and imaging extremely

large volumes of data. These experiments have ambitious, high-profile science

goals, including detecting the Epoch of Re-ionization (EoR; 14), mapping large

scale structure [22], and investigating cosmic magnetic fields [15]. If these

science goals are to be realized, state of the art methods in image reconstruction
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are needed to process big data and to reconstruct images with high fidelity.

Compressive sensing is a robust mathematical framework for signal

reconstruction. The theoretical framework of compressive sensing motivates

sparse regularization and convex optimization approaches for solving inverse

problems, such as those encountered in radio interferometry. The framework

of compressive sensing was first applied to radio interferometry in the study of

[23], in the synthesis framework, where it was shown that compressive sensing

and sparse regularization approaches can produce higher quality reconstructed

images than standard interferometric imaging methods. In [24] the analysis

framework was considered and the sparsity averaging reweighted analysis

(SARA) algorithm was developed and applied to radio interferometric imaging,

demonstrating excellent performance [see also 25]. It has also been shown

that the compressive sensing framework can be applied to wide-field of view

observations [26] and can correct for directional dependent effects, such as

non-coplanar baselines [27, 28]. In [29] state-of-the-art convex optimization

algorithms that scale to very large data-sets were developed to solve sparse

regularization problems, such as the SARA problem. These algorithms

were implemented in the first release of the PURIFY software package [29]

for solving radio interferometric imaging problems by sparse regularization.

Recently, new algorithms for solving these problems were developed by [30],

including proximal alternating direction method of multipliers (ADMM) and

primal dual algorithms, paving the way to image the large radio interferometric

data-sets that will characterize the SKA era. Alternative compressive sensing

approaches have also be applied to aperture synthesis [31, 32, 33] and rotation

measure synthesis [34, 35].

2.1 Aperture synthesis and radio interferometry

In aperture synthesis, an array of antennae are collectively used to image the

sky at higher resolution than possible with a single dish, hence synthesizing a

larger aperture [36]. Each pair of antennae measures a phase and amplitude
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of a Fourier component of the brightness distribution across the sky. It

is through the measurement of these Fourier components that the sky is

effectively imaged. However, due to a limited number of antennae, not all

Fourier components can be measured in an observation. An ill-posed inverse

problem must be solved to reconstruct the true sky brightness distribution.

How this ill-posed inverse problem is solved has a significant impact on the

fidelity of the reconstructed image.

Each antenna in an array measures an incoming electric field across its

field of view. The electric fields are then cross-correlated between antenna

pairs, using a device called a correlator, in-order to calculate the visibility

y(bbb= aaa2−aaa1) = 〈E(aaa1, t)E∗(aaa2, t)〉∆t , (2.1)

where E is the electric field amplitude (for polarimetric analysis this is the

complex valued electric field vector that includes cross-correlations between the

vector components), aaa1 and aaa2 are the spatial positions of the two antenna, t is

time, and ∆t is the time interval over which the expected value, denoted by 〈·〉,

is taken, which is longer than the time scale of the radio wave observed [36, 12].

The vector difference between the positions of the antennae bbb= aaa2−aaa1 is called

the baseline.

It is well known that a visibility contains spatial information about the

brightness distribution across the sky. While there have been more general

measurement equations developed for radio interferometry [37, 38, 39, 40], the

van Cittert-Zernike theorem [41] states that the visibility y is related to the

sky brightness distribution x, at wavelength λ, by

y(bbb) =
∫
S2
a(σσσ)x(σσσ)e−2πiλbbb·σσσ dΩ , (2.2)

where a is the primary beam of the telescope, bbb is the baseline separating the

two antennae, and σσσ denotes a location on the celestial sphere S2 with area

element dΩ. In principle bbb = (u,v,w) is a vector in 3 dimensions when the
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baselines do not lie on a single plane. The measurement equation is a mapping

from the sphere to the 3 dimensional Fourier plane. When the baselines in an

array are co-planar (i.e. w = 0) and the field of view is narrow (i.e. the sky

is approximately flat within the field of view), Eq. 2.2 reduces to a Fourier

relation:

y(u,v) =
∫
R2
a(l,m)x(l,m)e−2πi(ul+vm) dldm, (2.3)

where (l,m) are the coordinates of the plane of the sky, typically with a

phase centered on the pointing direction of the telescope, and uuu = (u,v) are

the corresponding Fourier coordinates defined by the baseline: uuu= bbb/λ (where

λ is the observed wavelength). In this context, a visibility measures a Fourier

component of the sky brightness distribution in the plane of the sky [36, 12].

The Fourier transform relation of Eq. 2.3 cannot be inverted directly to

obtain an accurate estimate of x(l,m) since y(u,v) cannot be measured for

all Fourier coordinates. The missing samples of y(u,v) leave Eq. 2.3 as an

ill-posed inverse problem, which has an infinite number of possible solutions.

To recover a suitable, unique solution, regularization is used to inject prior

information regarding the underlying signal.

The most common techniques used to solve for the true sky brightness

distribution are CLEAN [e.g. 17] and the maximum entropy method (MEM)

[e.g. 42]. The basic CLEAN algorithm was developed in the 1970’s [17].

CLEAN implicitly imposes a sparse prior in a point source (Dirac) basis

[43], and is essentially a matching pursuit algorithm [44]. Variations of

CLEAN have also been developed for resolved and extended structures, multi-

frequency synthesis, and polarized sources [45, 46, 47, 48, 49, 50, 51]. The

MEM algorithm regularizes the ill-posed radio interferometric inverse problem

through an entropic prior, maximizing an objective function comprised of

an entropy term and a data fidelity term (in practice an additional flux

constraint is typically imposed in radio interferometric applications of MEM;

[42]). In practice, CLEAN often struggles to image diffuse structure, while

MEM struggles to resolve point sources. CLEAN, and its variants, are of
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widespread use in radio interferometric imaging today, while MEM has not

experienced such widespread adoption.

2.2 Sparse regularization for

radio interferometric imaging
In its fundamental form, compressive sensing provides a framework for

recovering signals from small numbers of measurements and considers the

efficient design of the signal measurement process [52, 53, 54, 55]. In

radio interferometry, there is little control over the measurement process

since the baseline configurations are typically limited by the interferometer

(nevertheless, there may be scope for telescope optimization; [27, 28]). The

compressive sensing framework, however, motivates a robust method of

reconstructing images from the visibilities measured by a telescope through

sparse regularization. Sparse regularization exploits the fact that many natural

signals—such as astronomical images—are sparse or compressible, i.e. for a

suitable representation (e.g. wavelet basis) most of the coefficients for the

ground truth image are zero or close to zero, respectively. In this section

we review sparse regularization and how it is applied to radio interferometric

imaging.

2.2.1 Sparse regularization

Consider the ill-posed inverse problem of estimating the image xxx ∈ RN from

measurements yyy ∈ CM , where the measurements are acquired by the process

yyy = ΦΦΦxxx+ nnn, where the operator ΦΦΦ ∈ CM×N models the acquisition system

and nnn ∈CM represents noise. This problem accurately models interferometric

imaging, as discussed in more detail in the subsequent sections. For now, we

consider sparse regularization approaches to solve this general problem.

Sparse regularization techniques promote sparse solutions when solving ill-

posed inverse problems. Typically, natural signals are sparse in a suitable basis

(e.g. a Dirac, Fourier, or wavelet basis) or, more generally, in a sparsifying
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dictionary. The atoms (cf. basis functions) of the dictionary [56] can be

represented by columns of the operator ΨΨΨ ∈ CN×D, where N is the number

of pixels in the image and D is the number of coefficients of the sparse

representation, i.e. ααα∈CD. The image can then be decomposed into its sparse

representation by xxx= ΨΨΨααα.

A sparse solution to the inverse problem described above can be promoted

by imposing a penalty on the number of non-zero coefficients of the sparse

representation ααα through the `0-norm, where the `0-norm ‖ααα‖`0 is defined as

the number of non-zero coefficients of ααα. In principle, the inverse problem can

then be solved by minimising the `0-norm of the sparse coefficients, subject to

a data fidelity constraint:

min
ααα∈CD

‖ααα‖`0 subjectto ‖yyy−ΦΦΦΨΨΨααα‖`2 ≤ ε . (2.4)

Given the solution to this problem, denoted ααα?, a recovered image can be

synthesised by xxx? = ΨΨΨααα?. The solution to this minimization problem is given

by a model that matches the measurements, within error ε ∈ R+, while being

constructed from a minimal number of coefficients in the sparse representation.

However, this problem cannot be solved in a high dimensional setting because

the `0-norm is non-differentiable and the minimization problem is non-convex:

it is considered an NP hard problem [52].

The closest convex relaxation of the `0 problem is the `1 problem:

min
ααα∈CD

‖ααα‖`1 subjectto ‖yyy−ΦΦΦΨΨΨααα‖`2 ≤ ε , (2.5)

where the `p-norm is defined by ‖rrr‖`p = (∑i |ri|p)
1
p (hence the `1-norm is the

sum of the absolute value of the components of a vector. The `2-norm is the

usual Euclidean norm). This `1 minimization problem also promotes sparsity

and in some cases exhibits the same solution as the `0 problem [52, 54].

Furthermore, since the `1 minimization problem is a convex problem it can

be solved using efficient convex optimization algorithms [e.g. 57].
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The problem defined by Eq. 2.5 is proposed in the standard synthesis

setting, where one recovers the coefficients ααα and synthesises the recovered

image by xxx = ΨΨΨααα. Alternatively, we can propose the problem in the analysis

setting using the adjoint wavelet transform ΨΨΨ†:

min
xxx∈RN

∥∥∥ΨΨΨ†xxx∥∥∥
`1

subjectto ‖yyy−ΦΦΦxxx‖`2 ≤ ε , (2.6)

where one recovers the image xxx directly, while still imposing sparsity in some

sparse representation. When the sparsifying operator ΨΨΨ is an orthogonal basis

the solutions of the synthesis and analysis problems are identical. However,

for an overcomplete dictionary the solutions are very different and the analysis

setting has been shown to perform very well in practice [e.g. 24, 25]. Moreover,

reweighted schemes to better approximate the solution of the `0 problem by

solving a sequence of `1 problems can also be considered [58, 24, 25]. While

these approaches can further improve the quality of the reconstructed image

we do not consider them further here.

Additionally, sparse regularization problems allow extra constraints to

be imposed, such as a real and positive valued image, which is the case for

total intensity (Stokes I) radio interferometric observations. However, the

positivity and real valued image constraints may be removed for polarimetric

imaging, such as linear polarization or the Stokes parameters. Complex valued

linear polarization reconstructions of P = Q+ iU can also be performed in

principle and will be rotationally invariant for rotations in P [51].

2.2.2 Radio interferometric measurement operator

In solving sparse regularization problems, the measurement operator is

required to compare how close the reconstructed model matches the measured

data. How close the measurement operator matches the true measurement

process will have an impact on reconstruction quality.

In the context of radio astronomy, the measurement process is given by

Eq. 2.3. We assume co-planar baselines and a small field-field of view here;
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we do not consider direction-dependent effects in the measurement operator,

although they can nevertheless be modelled in the framework presented

[27, 28]. In the compressive sensing setting, the measurements yyy ∈ CM

denote the visibilities yyyi = y(ui,vi) and the image xxx ∈ RN denotes the sky

brightness distribution xp = x(lp,mp) (for i= 1, . . . ,M and p= 1, . . . ,N). The

measurement operator ΦΦΦ∈CM×N specifies a discrete representation of Eq. 2.3.

Ideally, ΦΦΦ would represent a direct Fourier transform from the N pixels of

the image to the M non-uniformly spaced visibilities. However, this would

require O (MN) computations. Consequently, a direct Fourier transform of

the visibilities is not possible for the settings experienced in practice, where a

single observation may be comprised of very large numbers of visibilities and

high-resolution reconstructed images are required.

Alternatively, it is possible to approximate a direct Fourier transform. One

can first interpolate the visibilities onto a regularly spaced grid, which requires

order O(M) operations. Then, it is possible to take advantage of the Fast

Fourier Transform (FFT), which requires order O (N logN) operations. This

approach requires considerably fewer computations than the direct Fourier

transform [59], rendering a non-uniform Fourier transform computationally

feasible for very large observational data-sets, but it is an approximation. This

approximation is the standard approach considered in radio astronomy.

The standard radio interferometric measurement operator ΦΦΦ can be

written as a series of linear operators:

ΦΦΦ =WWWGGGFFFZZZSSSBBB , (2.7)

where BBB ∈ CN×N is the primary beam of telescope, SSS ∈ CN×N is a gridding

correction operator that scales the image to correct for the interpolation

convolution kernel, ZZZ ∈ Cα
2N×N is a zero-padding operator that provides

oversampling by factor α in each dimension of the Fourier domain, FFF ∈

Cα
2N×α2N is a FFT operator, GGG ∈ CM×α

2N is a convolutional interpolation

operator that uses a convolution kernel to interpolate visibilities from Fourier
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coefficients on a regular grid to Fourier components in the continuous Fourier

plane, and WWW ∈ CM×M weights the measurements according to their error.

Alternatively, it is possible to whiten the measurements by applying weighting

WWW in the `2-norm directly. A diagram of the process of applying the

measurement operator ΦΦΦ and its adjoint ΦΦΦ† is shown in Figure 2.1. Since the

weights are applied in the measurement operator, it is necessary to also weight

the measurements, i.e. yyy→WWWyyy.

2.3 Convolutional gridding and degridding
The fidelity of reconstructed radio interferometric images depends not only

on the technique used to solve the resulting inverse problem but also on

the accuracy with which the measurement operator models the measurement

process. Ideally, the measurement operator would match the measurement

process exactly. However, this is not possible due to the computational time

required for a direct Fourier transform. We are forced to use a measurement

operator that interpolates the visibilities onto and off of a regular grid

through the operator GGG, so that we may apply an FFT FFF to regularly

spaced data. Interpolation is typically performed by convolution with a

suitable kernel, which then determines the convolutional degridding operator

GGG. Several interpolating convolutional kernels have been suggested in the

literature; we introduce a subset of these kernels in this section. The choice

of convolution kernel affects the quality of the image, through aliasing error,

and total computation time, through the support size of the kernel. Ideally,

a convolution kernel will have minimal support while maximally suppressing

aliasing error, allowing high quality images to be reconstructed in minimal

computation time.

2.3.1 Degridding

To replicate the measurement process, Fourier coefficients need to be

interpolated off of the FFT grid, i.e. they need to be degridded. An ideal

interpolation that does not change the content of an image is the well-
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Figure 2.1: Representation of the application of the forward and adjoint
measurement operator. The labels a) to e) represent the process of the
forward measurement operator, while numbers 1) to 5) represent the
process of the adjoint operator. The measurement operator consists
of the following steps: a) observed image; b) image is corrected for
degridding; c) image is zero-padded to twice the field of view; d)
Image is Fourier transformed; e) Fourier coefficients are convolved to
continuous points off of the grid. The adjoint measurement operator
consists of the following steps: 1) Fourier coefficients in a continuous
plane; 2) Fourier coefficients are gridded onto an oversampled grid; 3)
image from the transformed Fourier coefficients; 4) image cutout; 5)
image corrected for the gridding.
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known (Shannon) Sinc interpolation [60, 61], where a continuous band-limited

image can be exactly reconstructed from the discrete Nyquist sampled signal.

Sinc interpolation can also be considered in the context of interpolating the

Fourier domain, which is exact for a space-limited image. In practice, Sinc

interpolation in this context can be performed by zero-padding the image

domain, which up-samples the Fourier domain via Sinc interpolation.

In the context of degridding, a Sinc interpolation kernel preserves the

image and frequency content of the signal when the image has a limited field

of view. However, Sinc interpolation is computationally expensive because

the Sinc kernel does not have finite local support in harmonic space. A

computationally inexpensive method, due to its small support, is to interpolate

in the Fourier domain using the nearest neighbour grid point. Nearest

neighbour interpolation in the Fourier domain corresponds to convolving with a

Box kernel, which corresponds to multiplying with a Sinc function in the image

domain. Since the Sinc function has infinite support in the image domain, this

introduces artefacts known as aliasing error. The Sinc and nearest-neighbour

approaches to interpolating visibilities represent the two extreme cases.

We require kernels with small support in harmonic space (so they are

computationally efficient) and small support in image space (to suppress

aliasing error). However, the uncertainty principle means there is a

fundamental limit on how localised a function can be in both harmonic

space and image space. In practice, we seek a trade-off between the two

extremes, so that the support of the kernel in harmonic space is not so large

as to be computationally expensive, while the support in image space is also

well-localised to suppress aliasing error.

Since the interpolation is performed by a convolution, it is necessary to

correct for this operation, which can be achieved by multiplication in the image

domain with an appropriate window. Furthermore, interpolation accuracy can

be increased by zero-padding in the image domain to up-sample the Fourier

domain. The process of degridding therefore starts by scaling the image by
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the diagonal operator SSS, which preemptively corrects for the interpolation

kernel of GGG. This correction is calculated from the reciprocal of the inverse

Fourier transform of the interpolation kernel. The image is then zero-padded

using the zero-padding operator ZZZ which up-samples harmonic space. An

FFT is applied to obtain an up-sampled Fourier grid using the operator

FFF . The model measurements are then interpolated off of the grid using the

circulant convolution operator GGG. The explicit construction of GGG is discussed

in Section 2.3.4.

2.3.2 Gridding

Most image reconstruction algorithms in radio astronomy require going both

backward and forward between the image and measurement domain. Typically,

mapping from the measurement domain to the image domain is performed by

the adjoint of the measurement operator, since the measurement operator does

not have a defined inverse, given by

ΦΦΦ† =BBB†SSS†ZZZ†FFF †GGG†WWW † . (2.8)

Gridding can be considered the reverse process of degridding. Mathematically,

the gridding operator is the adjoint of the degridding operator and is performed

by application of GGG†. The full adjoint measurement operator consists of the

following operations. First the weighting WWW † = WWW is applied, before the

visibilities are interpolated onto an up-sampled Fourier grid using GGG†. Then

an inverse FFT is performed by FFF † to produce an image. The image is cropped

to the desired field of view using ZZZ†, and the convolution is corrected by SSS†.

Lastly, the adjoint of the primary beam BBB† is applied.

A consequence of interpolating the visibilities onto a grid is that the signal

is now represented via a Fourier series rather than a Fourier transform. This

means the imaged region has periodic boundary conditions. In the case of

a radio interferometer, the visibilities can contain information over the entire

sky, and the signal may not end at the boundaries of the imaged region. In this
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case, the interpolation kernel is used to apodize aliasing error, where structure

from outside the boundaries of the imaged region is folded back in [59].

2.3.3 Aliasing error

In the case where the convolution kernel does not sufficiently attenuate the

image outside the imaged region, gridding and degridding the signal in the

Fourier domain will cause features from outside the imaged region to fold into

the image. This effect is known as aliasing error. Two ways to minimise

aliasing error are to either image a wider field of view, so that the primary

beam of the telescope naturally attenuates structures outside the field of view,

or to choose a convolution kernel that attenuates the aliasing error sufficiently.

An ideal convolution kernel would set the image to zero outside the imaged

field of view, which would eliminate aliasing error. This can be done with a

Sinc convolution kernel, which is computationally expensive. An inexpensive

kernel, like a Box kernel, is highly delocalised in the image domain, so does

not suppress structure outside the imaged field of view from being folded back

in.

To increase image quality and computational performance, a convolution

kernel needs a minimal support in harmonic space while attenuating the image

outside the field of view. Any attenuation within the imaged field of view is

corrected for by SSS, calculated from the Fourier transform of the gridding kernel.

If the gridding kernel apodizes the image domain strongly within the

gridded field of view, correcting by SSS will induce numerical errors [62]. This

means that while the suppression due to the gridding kernel can reduce aliasing

error, correcting for it has the potential to cause numerical error.

2.3.4 Interpolation kernels

Next, we introduce the convolution kernels used in this work. The width

(support) of the gridding kernel J is given in units of grid cells. The

oversampling ratio in each dimension is denoted by α.

The degridding matrix is a circulant convolution matrix that interpolates
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the measurements off of the discrete Fourier grid onto the continuous Fourier

plane. The convolution can be seen as a weighted average of the nearest

neighbour grid points. The interpolation kernel determines the weighting of

each grid point. Weighting is maximum at the location of the measurement

and typically decreases in value when the grid points are further from the

measurement location.

In 1-D Fourier space, the degridding matrix GGG is constructed from a kernel

d(u) by [63]

GGGi,{ki+j}K = d(ui− (ki+ j)) , (2.9)

where i is the index of the measurement yyyi, ki is the closest integer to visibility

coordinate ui− J/2 (in units of pixels), and j = 1 . . .J are the possible non-

zero entries of the kernel. The modulo-K function is denoted by {·}K , where

K = α
√
N is the dimension of the Fourier grid in 1-D (for notational sake, the

2-D Fourier grid is comprised of N =
√
N ×
√
N samples).

The diagonal convolution correction operator SSS can be calculated in a

similar way:

SSSi,i = s
(
i

K
− 1

2

)
, (2.10)

where s(x) is the reciprocal of the inverse Fourier transform of d(u). In practice,

SSS can be computed numerically from GGG or analytically if the inverse Fourier

transform of the convolution kernel is tractable.

2.3.4.1 Sinc

The Sinc convolution kernel is ideal when its infinite support is considered.

This convolution kernel can be written as [64, 65]

d(u) =
(
uπ

N

)−1
sin
(
uπ

N

)
. (2.11)
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The convolution correction is

s(x) =


1
N , if |x| ≤ N

2

0, otherwise
. (2.12)

The advantage of the Sinc convolution kernel is that it corresponds to

multiplication by a Box function in the image domain, which bounds the signal

at the edges of the imaged region. Consequently, there is close to no aliasing

error.

2.3.4.2 Box

The Box function is fast to compute since it is localised in harmonic space,

but it does not suppress aliasing error effectively. This kernel has the form

[64, 65]:

d(u) =


1
J , if |u| ≤ J

2

0, otherwise
. (2.13)

The Fourier transform of the Box function is the Sinc function, so the

convolution correction reads

s(x) =
[

sin(xJπ)
xJπ

]−1
. (2.14)

The Sinc function is not bounded by the edges of the image, and the sidelobes

of the Sinc function can cause large aliasing error. This is why the Box function

is far from ideal, even if it is fast to compute.

2.3.4.3 Gaussian

The Gaussian kernel is moderately well-localised in both image and Fourier

space and takes the form:

d(u) = e−
u2

2σ2 . (2.15)
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The gridding correction is calculated by the Fourier transform and also takes

the form of a Gaussian:

s(x) =
[
π

2σ2

]−1/2
e2x2π2σ2

. (2.16)

An optimal choice for σ as a function of the support size J was found in the

work of [63], where it was shown that σ = 0.31J0.52 works better than using

the typical value σ = 1. In the early years of radio astronomy, in the 1970’s,

the Gaussian kernel was used for convolutional gridding [12].

2.3.4.4 Prolate spheroidal wavefunction

Prolate spheroidal wavefunctions (PSWFs) do not have an explicit analytic

form but there are several ways of characterising them [66, 67, 68, 69]. The

most useful way to characterise PSWFs is in terms of energy concentration.

PSWFs are bandlimited functions that maximise the energy concentration in

a given interval, by finding the function f that maximises the ratio

∫ τ
−τ |f(t)|2dt∫∞
−∞ |f(t)|2dt , (2.17)

for an interval [−τ,τ ]. For a convolution kernel, this is an ideal property since

we want the convolution kernel to have minimal support in the Fourier domain

and to have a maximal amount of energy concentrated over the imaged region

in the image domain. This allows one to have minimal support in the Fourier

domain while maximally suppressing aliasing error in the image domain.

The standard choice of PSWFs in radio astronomy are a modified version,

where more energy is weighted towards the centre of the image, since typically

this is the scientific region of interest. The standard choice of weighted PSWFs

are described in the work of [70, 62]. The convolution kernel is given by

d(u) = |1−η2(u)|κψκ(πJ/2,η(u)) , (2.18)

where η(u) = 2u/J , κ is a parameter that varies the weighting, and ψκ is a
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zero order PSWF that can be calculated using a rational approximation:

ψκ(πJ/2,η) =
∑n
k=0 pk(η2−η2

2)k∑d
k=0 qk(η2−η2

2)k
, (2.19)

where the pk and qk polynomial coefficients are specified in [62, 70]. The

case of κ = 0 reduces to an unweighted PSWF. In this work, we use the

polynomial coefficients for a support of J = 6 and κ= 1, the standard used in

the radio interferometric imaging packages MIRIAD1 [71] and Astronomical

Image Processing System (AIPS; [72])2. The correction is provided by [70]:

s(x)≈ 1
ψ0(πJ/2,2x) . (2.20)

2.3.4.5 Kaiser-Bessel

Kaiser-Bessel functions are another useful form of convolution kernel. The

zeroth order Kaiser-Bessel function can be expressed as

d(u) =
I0

(
β

√
1−

(
2u
J

)2
)

I0(β) , (2.21)

where J is the support, I0 is the zeroth order modified Bessel function of the

first kind, and β determines the spread of the Kaiser-Bessel function [73, 63].

The gridding correction is calculated from the Fourier transform, yielding [73,

63]:

s(x) =

sin
(√

π2x2J2−β2
)

√
π2x2J2−β2


−1

. (2.22)

An optimal choice for β as a function of the support size J was found in

the work of [63], where it was shown that for β = 2.34J the Kaiser-Bessel

kernel performs similarly to the optimal min-max kernel considered in [63].

In [64], it is suggested that the zeroth order Kaiser-Bessel functions perform

1http://www.atnf.csiro.au/computing/software/miriad/
2http://www.aips.nrao.edu/index.shtml

http://www.atnf.csiro.au/computing/software/miriad/
http://www.aips.nrao.edu/index.shtml
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similarly to the zeroth-order PSWFs, which is consistent with the results of

[73]. Kaiser-Bessel functions, however, have the advantage that they have an

analytic expression that can be evaluated easily and accurately. Note that

Kaiser-Bessel functions are the standard choice of interpolation kernel in the

interferometric imaging package WSCLEAN3 [50].

2.4 Wide-field Imaging
In the past where the field of view of instruments was relatively small, it was

common practice to assume curvature was negligible and proceed with a two

dimensional Fourier transform over the uv-plane (using cartesian coordinates).

With the arrival of next generation telescopes, such as the LOw Frequency

ARray (LOFAR; [74]), Murchison Widefield Array (MWA; [19]), and Hydrogen

Epoch of Reionization Array (HERA; [75]), telescopes became non-coplanar

arrays with extremely large fields of view. Such instruments are precursors

to the low frequency component of the Square Kilometre Array (SKA-LOW),

and are already encountering ‘big data’ challenges. Imaging and correcting for

DDEs (with wide-field of view DDEs being the most basic) are among the most

computationally intensive and critical challenges that needs to be solved if the

SKA is to meet its scientific goals, in areas such as the Epoch of Reionization

(EoR) [14] and Cosmic Magnetism [15].

2.4.1 w-stacking, w-projection, and Faceting

Until now, the approach to account for the third Fourier dimension, w,

has been to use mathematical approximations to correct for this term and

the associated wide-field effects in the measurement equation, reducing the

problem back to a two dimensional Fourier transform via the so-called ‘w-

projection algorithm’ [76, 77, 50] and ‘w-stacking’ algorithm [50]. However,

other recent developments have been made that use ‘Faceting’, where more

general wide-field and instrumental DDEs can be approximately modeled by

splitting the field of view into smaller regions known as facets [78]. But still,

3https://sourceforge.net/projects/wsclean/

https://sourceforge.net/projects/wsclean/
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accurately correcting wide-field effects for non-coplanar baselines remains a

computational challenge.

2.4.2 Wide-field measurement equation

The interferometric measurement equation for a wide field radio telescope can

be represented by the following integral

y(u,v,w′) =
∫
x(l,m)a(l,m)e−2πiw′(

√
1−l2−m2−1)

√
1− l2−m2 e−2πi(lu+mv) dldm, (2.23)

(u,v,w′) are the baseline coordinates and (l,m,n) are directional cosines

restricted to the unit sphere. In this work, we define w′ = w+ w̄, where w̄

is the average value of w-terms, and w is the effective w-component (with

zero mean). x is the sky brightness, n(lll) =
√

1− l2−m2 is a parametrization

of the upper hemisphere, and a includes direction dependent effects such

as the primary beam and Field of View (FoV). The measurement equation

is a mathematical model of the measurement operation that allows one to

calculate model measurements y when provided with a sky model x. Having

such a measurement equation allows one to find a best fit model of the sky

brightness, for a given set of (incomplete) measurements. Many techniques are

available for inverting a measurement equation in an attempt to find a best fit

model. This includes traditional methods such as CLEAN [17] and Maximum

Entropy [79, 42], and state of the art deconvolution methods such as Sparse

Regularization algorithms [30, 1, 80]. There are many other variations of the

measurement equation, that can include general direction dependent effects

and polarization [37, 39, 40]. But, all interferometric measurement equations

can be derived from the van Cittert-Zernike theorem [41].

This measurement equation is typically approximated by a non-uniform

fast Fourier transform, since it reduces the computational complexity from

O(MN) to O(MJ2 +N logN), where N is the number of pixels M is the

number of visibilities, and J is the number of weights to interpolate off the fast

Fourier transform (FFT) grid for each axis [63, 12]. This process is traditionally
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known as degridding. The version of the measurement equation relevant in this

work is represented by the following linear operations

yyy =WWWGGGCCCFFFZZZSSSxxx (2.24)

SSS represents a gridding correction and correction of baseline independent

effects such as w̄, ZZZ represents zero padding of the image, FFF is an

FFT, GGG represents a sparse circulant convolution matrix that interpolates

measurements off the grid and the combined GGGCCC includes baseline dependent

effects such as variations in the primary beam and w-component in the

interpolation, and WWW are weights applied to the measurements. This linear

operator represents the application of the measurement equation, so is typically

called a measurement operator ΦΦΦ =WWWGGGCCCFFFZZZSSS with ΦΦΦ ∈ CM×N .

In this case, xxxi = x(llli) and yyyi = y(uuui) are discrete vectors in CN×1 and

CM×1 of the sky brightness and visibilities, respectively.

Since the measurement operator is linear it has an adjoint operator ΦΦΦ†,

which essentially, consists of applying these operators in reverse. Additionally,

it is possible to represent these operators in matrix form, however, this is not

always efficient or practical.

The dirty map can be calculated by ΦΦΦ†yyy, and the residuals by ΦΦΦ†ΦΦΦxxx−ΦΦΦ†yyy.



Chapter 3

Convex Optimization

Algorithms

In this chapter, we review the mathematical tools and algorithms from

convex optimization that are can be used to perform signal reconstruction,

through solving least squares minimization problems that contain a penalty

regularization term, i.e. sparse regularization. In this thesis, these tools

are used to reconstruct images using observations from radio interferometric

telescopes.

3.1 Sparse Regularization
Sparse regularization is a method that can estimate the radio sky brightness

and isolate a single likely solution. In radio astronomy, the measurements

have Gaussian uncertainty, leading to least squares minimization. To impose

a penalty against over fitting of the radio sky, we can add a regularization

term that penalizes models that over fit the measurements, i.e. a penalty

that encourages the model to be sparse in parameters while fitting the radio

sky. The Bayesian statistical inference framework can be used to construct

the sparse regularization problem, as shown in [166]. From Bayes’ theorem,

the posterior can then be expressed as

p(xxx|yyy)∝ exp
[
−‖yyy−ΦΦΦxxx‖2`2/2σ

2
]
exp

[
−γg(xxx)

]
, (3.1)
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where g is a penalty that imposes structures on xxx and γ ≥ 0 determines the

strength of the penalty. Maximum a posteriori (MAP) estimation is found by

choosing the estimate of xxx that will maximize the posterior, which is equivalent

to minimizing the negative log posterior, i.e.

argmax
xxx
p(xxx|yyy) = argmin

xxx

{
‖yyy−ΦΦΦxxx‖2`2/2σ

2 +γg(xxx)
}
. (3.2)

This minimization problem is known as regularized least squares, with the

regularization term being g(xxx). In many cases g(xxx) is chosen to penalize the

number of parameters that determine xxx and reduce over fitting; moreover,

it can also be used to enforce other properties for xxx like smoothness.

Furthermore, it is possible to add indicator functions as a prior that can restrict

our solution to be real or positive valued, as is done in the constrained problem

below. MAP estimation can be solved efficiently using the Forward Backward

Splitting algorithm [e.g. 165].

An issue of using MAP estimation to perform sparse regularization is

choosing a proper regularization parameter γ (although there are ways to

address this; 81). The choice of γ, however, can be avoided after moving from

the unconstrained problem in MAP estimation to the constrained problem

argmin
xxx
g(xxx) + ιBε(yyy)(ΦΦΦxxx) + ιRN+

(xxx) , (3.3)

where ι is the indicator function that restricts ΦΦΦxxx to the set

Bε(yyy) = {qqq : ‖yyy− qqq‖`2 ≤ ε}, (3.4)

ε is the error tolerance, and ιRN+
restricts the solution to be positive.

One main advantage of the constrained objective function, compared to

the unconstrained form (3.2), is that the parameter ε can be estimated from

yyy [1], and therefore could be easier to set than assign a pertinent value for γ

in (3.2). Note, in practice, that the weights in yyy might be relative with no
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flux scale attached, or are not reliable, which will cause a difficulty for the

constrained problem. On the other hand, progress is being made on methods

that can estimate values of γ for the unconstrained problem. It is also worth

noticing that these two forms, (3.2) and (3.3), have close relationship and, in

some sense, are equivalent to each other after assigning proper values for ε and

γ. The majority of this work is focused on the constrained problem (3.3) and

we assume ε can be estimated.

3.1.1 Analysis and Synthesis

In the following we focus on using the `1-norm for the function g and require our

solution to have positive real values, where the `p-norm is defined by ‖xxx‖`p =

(∑ix
p
i )1/p for p > 0. Additionally, we need to choose the representation of our

signal to efficiently model the sky. This is done using a linear transform ΨΨΨ,

with the convention that xxx= ΨΨΨααα, where ααα represents the coefficients of xxx under

the basis or dictionary ΨΨΨ. A wavelet transform is convenient because it can

efficiently represent structures as a function of scale and position. Moreover, ΨΨΨ

is not restricted to be a basis, but can be an over-complete frame containing a

collection of transforms. In this work, we use a collection of wavelet transforms

to model the radio sky, as done in [24, 30, 1, 2].

The synthesis forms of the objective function for the unconstrained and

constrained problems are respectively

xxx∗ = ΨΨΨ×argmin
ααα

{
‖yyy−ΦΦΦΨΨΨααα‖2`2/2σ

2 +γ‖ααα‖`1 , s.t. ΨΨΨααα ∈ R+
}
, (3.5)

xxx∗ = ΨΨΨ×argmin
ααα
{‖ααα‖`1 , s.t. ‖yyy−ΦΦΦΨΨΨααα‖`2 ≤ ε & ΨΨΨααα ∈ R+} . (3.6)

The analysis forms of the objective function for the unconstrained and

constrained problems are respectively

xxx∗ = argmin
xxx

{
‖yyy−ΦΦΦxxx‖2`2/2σ

2 +γ‖ΨΨΨ†xxx‖`1 , s.t. xxx ∈ R+
}
, (3.7)

xxx∗ = argmin
xxx

{
‖ΨΨΨ†xxx‖`1 , s.t. ‖yyy−ΦΦΦxxx‖`2 ≤ ε & xxx ∈ R+

}
. (3.8)
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In the synthesis form we solve for the wavelet coefficients ααα directly and in

the analysis form we solve for the pixel coefficients xxx directly. In practice they

provide different results depending on the problem to be solved [82]. We follow

the work of [24], which uses an over-complete frame in the analysis setting and

is typically found to provide better reconstruction quality than the synthesis

setting. The objective function can be solved multiple-times after reweighting

the `1-norm in the analysis setting with an over-complete frame, using what

is called Sparsity Averaging Reweighted Analysis (SARA) [24].

Recent works have considered polarimetric [83, 84, 85] and spectral

sparse image reconstruction [86, 87]. The works of [84, 85] show that

where polarimetric images are reconstructed as a four component vector of

Stokes parameters I (total intensity), Q and U (linear polarizations), and

V (circular polarization), it is possible to enforce the physical constraint

that I ≥
√
Q2 +U2 +V 2. Such a constraint enforces physical structures on

both total intensity and polarized intensity, increasing the physicality of

the reconstructions. Additionally, it is possible to impose non-parametric

structures on spectra, such as spectral smoothness or sparsity, increasing the

fidelity across the spectrum.

The challenge in finding the global solution of these objective functions,

(3.5)–(3.8), is that they are non-differentiable (because of the non-

differentiability of the `1 regularization term) and are not always continuous

(because they contain constraints). However, these objective functions have

the property that they are convex and lower semi-continuous (l.s.c.). In the

following sections, we introduce proximal operators, which provide tools and

algorithms that can be used to find solutions to the above convex minimization

problems.

3.2 Proximal Operators

In the previous section we introduced the convex objective functions (3.2) and

(3.3), which need to be minimized to obtain a likely solution of the radio
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sky. When the problem is poised as minimization of a convex cost function,

there are many convex optimization tools – proximal operators and proximal

algorithms among them – on hand to solve it and find a global minimizer. In

the following, we briefly recall some concepts and operators of convex functions

and convex sets, which are useful when discussing solutions to convex inverse

problems. A more detailed introduction to these concepts can be found in

[88, 57, 89], and have been discussed in the context of radio interferometric

imaging previously [29, 24, 90, 30, 1, 2]. In this section, we review the basic

mathematics of proximal operators, and introduce the closed-form solution of

proximal operators used in this work.

Let X be a vector space and Γ0(X) be the class of proper, l.s.c. convex

functions that map from X to (−∞,+∞]. A function f is defined as l.s.c

if f(xxx) ≤ liminf
aaa→xxx f(aaa) [91]. Intuitively, this means that f(xxx) is bounded to be

below the limit point at xxx. For example, the ceiling function is l.s.c. A function

h is convex when

h(αxxx1 + (1−α)xxx2)≤ αh(xxx1) + (1−α)h(xxx2), ∀xxx1,xxx2 ∈X,∀α ∈ [0,1], (3.9)

which is then true for ∀h ∈ Γ0(X).

The subdifferential of h at xxx ∈X, denoted by ∂h(xxx), is defined as

∂h(xxx) := {uuu ∈X : h(zzz)≥ h(xxx) +uuu>(zzz−xxx),∀zzz ∈X}. (3.10)

When h is differentiable, the subdifferential is a singleton containing the

gradient ∇h. If 000 ∈ ∂h(xxx) then xxx belongs to the set of global minimizers

of h [57]. The convex conjugate of h ∈ Γ0(X), denoted by h∗ ∈ Γ0(X), is

defined as

h∗(mmm) := sup
xxx∈X

(
mmm>xxx−h(xxx)

)
. (3.11)

It follows that mmm will lie in the sub-differential of h at all points xxx that attain

the supremum, as described in [89]. The (convex) conjugate can be used to

map a convex objective function from the primal representation to the dual



54 Chapter 3. Convex Optimization Algorithms

representation, which is useful if both representations have the same optimal

values when strong duality holds [88, 57, 92, 89].

For ∀h∈Γ0(X) and any constant λ> 0, the proximity operator of function

λh at vvv ∈ X, which is denoted by proxλh(vvv) and maps between X → X, is

defined as the solution of the minimization problem

proxλh(vvv) = argmin
xxx∈X

(
λh(xxx) + 1

2‖x
xx−vvv‖2`2

)
. (3.12)

We see that proxλh(vvv) is a point that is chosen in X by compromising between

minimizing h and being close to vvv, where this compromise is weighted by

λ. For large λ more movement is taken towards minimizing h, and for small

λ less movement is taken from vvv. The proximal operator in (3.12) involves

solving a minimization problem, which sometimes has a simple analytic form

and sometimes not. When there is no analytic form it needs to be solved or

estimated iteratively. It can be shown that the proximal operator is closely

related to the subdifferential (3.10), being equivalent to the inverse operation

(I+λ∂h)−1 (vvv) [57].

When applied to a convex function, the proximal operator can be used to

find a global minimizer through the recursive iteration. This is because the

proximal operator is what is known as firmly non-expansive. More importantly

it is a contraction, meaning repeated application of the proximal operator

xxxk+1 = proxλh(xxxk) (3.13)

will converge to a fixed point that minimizes λh and therefore also minimizes

h; that is, xxx= proxλh(xxx) if and only if xxx minimizes h [88, 57].

The proximal operator has plenty of useful properties. For example, the

proximal operator for the translation, the semi-orthogonal linear transform

and the convex conjugation are

proxλh(·+aaa)(xxx) = proxλh(xxx+aaa)−aaa, ∀aaa ∈X, (3.14)
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proxλh(LLL(·))(xxx) = xxx+LLL† (proxλh(LLLxxx)−LLLxxx) , LLLLLL† = III (3.15)

and

proxλh∗(xxx) = xxx−λproxλ−1h(xxx/λ), (3.16)

respectively. The property for convex conjugation is also known as Moreau

decomposition. Refer to [88, 57] and references therein for other properties

and more details. Typically, it is difficult to obtain a closed form of the

proximal operator for two functions f + g. The algorithms in the following

section split the algorithm into solving for f + g given the proximal operator

of f and g separately, and are typically called proximal splitting algorithms.

First, we introduce closed forms of proximal operators that are used in radio

interferometric imaging (but more examples are listed in [88, 57]).

In this work, we focus on `1 regularized least squares, i.e., using the `1
prior for g in the constrained problem (3.3). We need to minimize an `1-norm

with the condition that the solution lies within an `2-ball with the size of our

error ε, while being real or positive valued. This can be mathematically stated

as

xxx? = argmin
xxx

{
‖ΨΨΨ†xxx‖`1 + ιC(xxx) + ιBε`2(yyy)(ΦΦΦxxx)

}
, (3.17)

where we normally take C = RN+ , and the `2-ball Bε`2 to be the closed ball of

radius ε, and ιC(xxx) is the indicator function for xxx being in C which will be

detailed below. We now present the proximal operators needed to minimize

this objective function.

3.2.1 Indicator Function

Fix any nonempty closed convex set C, on which we define the indicator

function as

ιC(xxx) :=


0, xxx ∈ C,

+∞, xxx /∈ C.
(3.18)
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We recall the projection operator PC , i.e.

PC(xxx) := argmin
vvv∈C

‖xxx−vvv‖2`2 . (3.19)

If C ⊆X, then we have ιC ∈ Γ0(X) and

PC(xxx) = argmin
vvv∈C

‖xxx−vvv‖2`2 = argmin
vvv∈X

{
ιC(vvv) +‖xxx−vvv‖2`2

}
= proxιC(xxx), (3.20)

Therefore, the proximal operator can be regarded as an extension of the

projection operator [57]. The indicator function is useful for e.g. restricting a

cost function to a set of solutions, or enforcing real or positive values on the

solutions as assumptions for an image of the radio sky.

3.2.2 Fidelity Constraint

Let the closed `2-ball Bε`2 centered at zzz ∈X with radius ε be the set

Bε`2(zzz) := {vvv ∈X : ‖zzz−vvv‖`2 ≤ ε} . (3.21)

Then the proximal operator of an `2-ball centered at zero reads

proxBε`2(0)(xxx) = argmin
vvv∈X

{
ιBε`2(0)(vvv) + 1

2‖v
vv−xxx‖2`2

}

=


xxx, xxx ∈ Bε`2(0),

xxx
‖xxx‖ε, xxx /∈ Bε`2(0).

(3.22)

In detail, when xxx ∈ Bε`2(0), we have proxBε`2(0)(xxx) = xxx straightforwardly; when

xxx /∈ Bε`2(0), computing proxBε`2(0)(xxx) is to find a vvv ∈ Bε`2(000) such that it

minimizes ‖vvv−xxx‖2`2 . From the triangle inequality, we require that vvv is parallel

to xxx for it to be a minimizer. It follows that we can scale xxx into Bε`2(0)

to obtain the explicit representation of proxBε`2(0)(xxx) shown in (3.22). Using

the translation property of the proximal operator in (3.14), we can find the
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proximal operator of an `2-ball centered at zzz, i.e.,

PεB(zzz) := proxBε`2(zzz)(xxx)=


xxx, xxx− zzz ∈ Bε`2(000),

xxx−zzz
‖xxx−zzz‖ε+ zzz, xxx− zzz 6∈ Bε`2(000).

(3.23)

3.2.3 Promoting Sparsity

The `1-norm is the sum of the absolute values of all components of a vector.

Since it is convex and can promote sparsity when serving as a prior distribution

or regularization, it is widely used in signal/image processing and has been

shown highly effective in radio astronomy.

The proximal operator of the `1-norm reads

proxλ‖·‖`1 (xxx) = argmin
vvv∈X

{
λ‖vvv‖`1 + 1

2‖v
vv−xxx‖2`2

}
= Sλ(xxx).

(3.24)

Here Sλ(xxx) is the soft thresholding of vector xxx = (x1, · · · ,xi, · · ·), which is

defined as

Sλ(xxx) = (Sλ(x1), · · · ,Sλ(xi), · · ·), (3.25)

where

Sλ(xi)=


0, |xi| ≤ λ,
xi(|xi|−λ)
|xi| , |xi|> λ.

(3.26)

An intuitive explanation can be found analyzing the proximal operator

minimization problem in v for positive and negative ±|x| separately.

We start with x= |x| and aim minimize the polynomial λ|v|+ 1
2(v−|x|)2 =

v2/2+(λ|v|−|x|v)+x2/2. We have x2 +v2 is positive, it follows the polynomial

will reach a minimum when |x|v ≥ λ|v| otherwise we obtain the solution v = 0.

With λ > 0, the inequality |x|v ≥ λ|v| is only true if v = |v| or v = 0. This

inequality simplifies to |x| ≥ λ. We can then find the solution to minimize the

polynomial v2/2 + (λ−|x|)v+x2/2 through differentiation. We are left with

the solution v = |x|−λ when |x| ≥ λ and v = 0 otherwise.
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We repeat the same argument for negative x and choose x=−|x| to read

λ|v|+ 1
2(v+ |x|)2 = v2/2 + (λ|v|+ |x|v) +x2/2. It follows the polynomial will

reach a minimum when −|x|v ≥ λ|v|, this is only true if v = −|v| or v = 0.

Again, this inequality simplifies to |x| ≥ λ. We can then find the solution to

minimize the polynomial v2/2− (−λ+ |x|)v+ x2/2, which is v = −(|x| − λ)

when |x| ≥ λ and v = 0 otherwise. Combining both solutions for x=±|x|, we

obtain the soft thresholding formula.

3.2.4 Summary

This section has provided an introduction to proximal operators and examples

of their closed-form solutions that are commonly used for interferometric

imaging of real observations [30, 1, 80]. Proximal operators are especially

powerful when the objective function is non-smooth, which is often required

to enforce physicality on the solution. One important example in polarimetric

imaging is to use a proximal operator that will project onto the set of solutions

that contains I ≥
√
U2 +Q2 +V 2 [84, 85].

We have provided proximal operators for a function f , but we often need

to minimize an addition of functions, e.g. f +g. In the next section, we show

how to solve for the minimizer of f +g when the proximal operators of f and

g are known separately.

3.3 Proximal Algorithms
Let X = RN ,f ∈ Γ0(X), g ∈ Γ0(X), using the tools from the previous section,

we can solve the convex optimization problem with the general form

min
xxx∈RN

f(xxx) +g(xxx) . (3.27)

Here, for simplicity, we assume each of the minimization problems, like (3.27)

considered in this work has a global minimizer. If the proximal operator of

f + g was known or could be computed easily, we could recursively iterate

the proximal operator to find a solution to (3.27). However, we often only
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know the proximal operator for f and g separately. In the following, we briefly

introduce a few algorithms among the proximal algorithm category which can

address this kind of minimization problem. Moreover, these algorithms can be

adapted to be distributed across computing clusters [57, 93, 89, 30]; as done

in later chapters of this work.

3.3.1 Forward-Backward Splitting
In the case that f is differentiable, problem (3.27) can be solved using the

Forward-Backward splitting algorithm. Starting with a proper initialization,

∀λ ∈ (0,+∞), the iterative scheme can be represented as

xxx(k+1) = proxλg(xxx(k)−λ∇f(xxx(k))), (3.28)

which includes a forward gradient step (explicit) regarding function f and a

backward step (implicit and involves solving a proximal operator) with respect

to g. Refer to [94, 95, 90, 33, 89, 30] and references therein for more details

and the variants of the Forward-Backward splitting algorithm.

As an example, we see that formula (3.28) can be directly used to solve

the unconstrained problem (3.2) so as to obtain an MAP estimator of the

sky in radio astronomy. When g is the `1-norm, this algorithm becomes the

Iterative Shrinkage-Thresholding Algorithm (ISTA), where it is possible to

obtain accelerated convergence by using Fast ISTA (FISTA) [95], which is

detailed in Algorithm 1.

Algorithm 1 FISTA
1: given xxx(0) ∈ RN ,λ > 0,θ0 = 1, x̂xx(0) = xxx(0)

2: repeat for k = 0, . . .
3: xxx(k+1) = proxλg(x̂xx(k)−λ∇f(x̂xx(k)))

4: θk+1 = 1+
√

1+4θ2
k

2
5: x̂xx(k+1) = xxx(k+1) + θk−1

θk+1
(xxx(k+1)−xxx(k))

6: until convergence

The Forward-Backward algorithm is often simpler to compute than the

algorithms that follow, which is an advantage of solving the unconstrained
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problem over the constrained problem. However, there are many cases where f

is not differentiable; for example when it represents an indicator function. Note

that the Forward-Backward algorithm cannot be used to solve the constrained

problem (3.17) directly, due to the non-differentiable indicator function.

3.3.2 Douglas-Rachford Splitting
When both f and g in (3.27) are non-differentiable, the Douglas-Rachford

splitting algorithm can be applied; see [96, 97] for more details on the Douglas-

Rachford splitting algorithm. Its iterative formula, ∀λ ∈ (0,+∞), reads


xxx(k) = proxλg(vvv(k)),

vvv(k+1) = vvv(k) +γ(k)(proxλf (2xxx(k)−vvv(k))−xxx(k)),
(3.29)

where γ(k) ∈ (α,2−α), α ∈ (0,1). This iterative scheme needs the proximal

operator for f and g individually. Therefore, the Douglas-Rachford splitting

algorithm is restricted by the degree of difficulty of computing the proximal

operators of f and g. The algorithm is summarized in Algorithm 2.

As an example, the Douglas-Rachford splitting algorithm can theoretically

be used to solve the constrained problem (3.3) after moving its constraint into

the objective functional by using the indicator function on an `2-ball. However,

if ΦΦΦ is not an identity operator, as in radio interferometry, solving the proximal

operator of this kind of indicator function is not easy computationally.

Algorithm 2 Douglas-Rachford Splitting Algorithm
1: given vvv(0) ∈ RN ,α ∈ (0,1),λ > 0
2: repeat for k = 0, . . .
3: xxx(k) = proxλg(vvv(k))
4: γ(k) ∈ (α,2−α)
5: vvv(k+1) = vvv(k) +γ(k)(proxλf (2xxx(k)−vvv(k))−xxx(k))
6: until convergence

3.3.3 Alternating Direction Method of Multipliers
The Forward-Backward and Douglas-Rachford splitting algorithms presented

above require the proximal operators f and g to be easy to compute. In
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practice, this is sometimes not the case. For example, when function f involves

explicitly a linear transformation LLL ∈ RK×N (e.g. a measurement operator),

we must consider the problem

min
xxx∈RN

f(LLLxxx) +g(xxx), (3.30)

where the proximal operator of f(LLLxxx) has no explicit expression.

Problem (3.30) can be addressed by the alternating direction method of

multipliers (ADMM) [93, 98, 30]. After setting vvv=LLLxxx, problem (3.30) becomes

min
xxx∈RN

f(vvv) +g(xxx), s.t. vvv = LLLxxx. (3.31)

This problem has the following augmented Lagrangian with index λ∈ (0,+∞)

L(xxx,vvv,zzz) := f(vvv) +g(xxx) + 1
λ
zzz†(LLLxxx−vvv) + 1

2λ‖L
LLxxx−vvv‖2`2 , (3.32)

which can be solved alternatively corresponding to xxx,vvv,zzz. The variable zzz is

typically known as a Lagrange multiplier. More precisely, L is minimized with

respect to variables xxx and vvv alternatively while updating the dual variable zzz

(using the dual ascent method [93]) to ensure that the constraint vvv = LLLxxx is

met in the final solution, i.e.,

xxx(k) = argmin
xxx∈RN

L(xxx,vvv(k), zzz(k)), (3.33)

vvv(k+1) = argmin
vvv∈RK

L(xxx(k),vvv,zzz(k)), (3.34)

zzz(k+1) = zzz(k) + (LLLxxx(k)−vvv(k+1)), (3.35)
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which can be rewritten as

xxx(k) = argmin
xxx∈RN

(
g(xxx) + 1

2λ‖L
LLxxx− (vvv(k)− zzz(k))‖2`2

)
, (3.36)

vvv(k+1) = argmin
vvv∈RK

(
f(vvv) + 1

2λ‖v
vv− (LLLxxx(k) + zzz(k))‖2`2

)
, (3.37)

zzz(k+1) = zzz(k) + (LLLxxx(k)−vvv(k+1)). (3.38)

Note, importantly, that the above problem (3.37) is actually computing the

proximal operator of function f without involving the operator LLL, which

circumvents computing the proximal operator of f(LLLxxx) directly and generally

has an explicit expression. We comment that ADMM has a close relationship

to the Douglas-Rachford algorithm and Primal-Dual splitting (see [57, 89] for

more details). The procedures of ADMM are briefly summarized in Algorithm

3, where we define

proxLLLλg(uuu) = argmin
xxx∈RN

(
g(xxx) + 1

2λ‖L
LLxxx−uuu‖2`2

)
, (3.39)

which may have a simple closed-form solution, or can be solved iteratively

using a Forward-Backward method since its second term is differentiable.

Algorithm 3 Alternating Direction Method of Multipliers (ADMM)
1: given zzz(0),vvv(0) ∈ RK ,λ > 0
2: repeat for k = 0, . . .
3: xxx(k) = proxLLLλg(vvv(k)−zzz(k))
4: vvv(k+1) = proxλf (LLLxxx(k) +zzz(k))
5: zzz(k+1) = zzz(k) +LLLxxx(k)−vvv(k+1)

6: until convergence

A generalization of ADMM is simultaneous direction method of multipliers

(SDMM), which can be applied to an objective function of more than two

functions [99, 29]. However, this method often requires operator inversion

which can be expensive [30].

In this work, after setting f(LLLxxx) to be the indicator function on an `2-ball,

we can use ADMM to solve the constrained problem (3.3) with the positivity
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constraint, i.e. the problem (3.17). We approximately solve proxLLLλg(uuu) using

an iteration of the Forward-Backward splitting method, and then use the Dual

Forward-Backward splitting algorithm (which will be presented in Section

3.3.5) to solve proxλg(uuu) iteratively, where g contains the `1-norm and the

positivity constraint (see [30] and Section 5.1 for more detail).

3.3.4 Primal-Dual Splitting
In addition to ADMM, problem (3.30) can also be solved by the Primal-

Dual splitting algorithm; an algorithm that like ADMM can be adapted to

be distributed and performed in parallel [89, 30]. Firstly, the primal problem

(3.30) can be rewritten as the following Primal-Dual formulation, i.e.,

min
xxx

max
zzz
g(xxx) + 〈LLLxxx,zzz〉−f∗(zzz), (3.40)

which is a saddle point problem, where 〈LLLxxx,zzz〉= zzz†LLLxxx. It can be solved from

minimizing and maximizing with respect to xxx and zzz alternatively, where for

each subproblem the Forward-Backward ideas presented in Section 3.3.1 can

be applied if needed. The Primal-Dual algorithm is summarized in Algorithm

4. Furthermore, Moreau decomposition in equation (3.16) can be used to

calculate the proximal operator of f∗ given the proximal operator of f , i.e.

proxσf∗(zzz) = zzz−σproxσ−1f (zzz/σ) .

Like ADMM, the Primal-Dual algorithm splits the objective function into

two minimization problems, one is a Primal problem and the other is a Dual

problem. In particular, ADMM can be considered to be in the family of Primal-

Dual algorithms [89].

The Primal-Dual and ADMM algorithms are both very efficient algorithms

to solve problems like (3.30). The Primal-Dual algorithm generally can

achieve better convergence rates than ADMM. However, since ADMM needs

to compute the proximal operators proxλf and proxLLLλg and the Primal-Dual

algorithm needs to compute proxσf∗ and proxτg, which method is more
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appropriate often depends on the overall problem itself. In addition, there has

been plenty of work to optimize them further, which makes their performance

more comparable and in some cases equivalent to each other (see [89] for an

overview of Primal-Dual methods).

Algorithm 4 Primal-Dual Algorithm
1: given xxx(0) ∈ RN ,zzz(0) ∈ RN , τ,σ > 0,θ ∈ [0,1]
2: repeat for k = 0, . . .
3: zzz(k+1) = proxσf∗(zzz(k) +σLLLx̂xx(k))
4: xxx(k+1) = proxτg(xxx(k)− τLLL†zzz(k+1))
5: x̂xx(k+1) = xxx(k+1) +θ(xxx(k+1)−xxx(k))
6: until convergence

The derivation to this algorithm is almost identical to Dual Forward-

Backward Splitting, which is mentioned in the next section and also considered

a Primal-Dual algorithm.

3.3.5 Dual Forward-Backward Splitting

An algorithm closely related to the Primal-Dual algorithm is known as the Dual

Forward-Backward splitting algorithm [100, 89]. To obtain the dual problem

of (3.30), using Lagrangian multiplier zzz, formulate the Lagrangian

L(xxx,vvv,zzz) := f(vvv) +g(xxx) + 〈LLLxxx−vvv,zzz〉 . (3.41)

By minimizing the Lagrangian over xxx and vvv, we have

inf
xxx,vvv
L(xxx,vvv,zzz) =−sup

vvv
(〈zzz,vvv〉−f(vvv))− sup

xxx

(
〈−LLL†zzz,xxx〉−g(xxx)

)
=−f∗(zzz)−g∗(−LLL†zzz).

(3.42)

Then we have the dual problem of problem (3.30), i.e.

min
zzz
f∗(zzz) +g∗(−LLL†zzz). (3.43)
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Note that term g∗(−LLL†zzz) is differentiable and it is shown in [92] that

∂zzzg
∗ =−LLL

(
argmin
vvv∈X

{
〈LLL†zzz,vvv〉+g(vvv)

})
. (3.44)

Let ḡ(zzz) = g∗(−LLL†zzz), applying the Forward-Backward splitting iterative

scheme (3.28) with the relaxation on (3.43) f∗+g∗→ σf∗+σg∗ with σ ∈ (0,∞)

and combing with the dual ascent method [93], we have

zzz(k+1) = proxσf∗(zzz(k)−σ∇ḡ(ẑzz(k))), (3.45)

ẑzz(k+1) = zzz(k+1) + θ(zzz(k+1)− zzz(k)). (3.46)

which is the so-call Dual Forward-Backward splitting algorithm.

In particular, applying the Forward-Backward splitting iterative scheme

(3.28) on the minimization problem in (3.44), we have

∇ḡ(zzz) =−LLLproxτg(xxx− τLLL†zzz). (3.47)

Let xxx(k+1) = proxτg(xxx(k)−τLLL†ẑzz(k)) and substituting (3.47) into (3.45), we have

the following iteration scheme

xxx(k+1) = proxτg(xxx(k)− τLLL†ẑzz(k)) (3.48)

zzz(k+1) = proxσf∗(zzz(k) +σLLLxxx(k+1)) (3.49)

ẑzz(k+1) = zzz(k+1) + θ(zzz(k+1)− zzz(k)) (3.50)

After rearranging the order of the variables and replacing the relaxation

strategy for zzz by xxx, the above Dual Forward-Backward splitting algorithm

turns into the Primal-Dual algorithm (see Algorithm 4). See [89] for more

discussions about the relation between the Dual Forward-Backward splitting

algorithm and the Primal-Dual algorithm.





Chapter 4

Sparse Image Reconstruction of

Interferometric Observations

In this chapter we apply the alternating direction method of multipliers

(ADMM) algorithm developed by [30] in the PURIFY software package,

which has been entirely redesigned and re-implemented in C++, and apply

it to observational data from the Very Large Array (VLA) and the Australia

Telescope Compact Array (ATCA). In addition, we discuss conceptual

differences between the restored CLEAN image and the reconstructed PURIFY

model. The previous version of PURIFY supported only simple models of

the measurement operator modelling the telescope. In this work we extend

PURIFY to support a wider range of more accurate measurement operator

models, including a number of different convolutional interpolation kernels (for

gridding and degridding). Moreover, we study how the choice of kernel can

affect the quality of sparse image reconstruction, and use an accurate kernel

for image reconstruction of real interferometric observations.

The remaining sections of the chapter are structured as follows. We

first discuss the development of the PURIFY software package used in this

work in Section 4.1. Then, the interpolation kernels mentioned in Section

2.3 are tested and compared with PURIFY using simulations in Section 4.2.

Section 4.3 discusses the similarities and differences between images recovered

by CLEAN and PURIFY and also considerations in applying PURIFY to real
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observational data. The reconstruction of images from observations made by

the VLA and ATCA are presented in Section 4.4. Section 4.5 states the final

conclusions.

4.1 PURIFY
To apply compressive sensing techniques to radio interferometry, one needs

to pose the sparse regularization problems in Section 2.2.1 and then solve

them using the measurement operator of Section 2.2.2. The software package

PURIFY has been designed and written for this purpose.

The first public version of PURIFY was written in C and solved the

problems described in [29], where it was shown on simulations to produce

higher fidelity reconstructed images than standard radio interferometric

imaging methods. To solve `1 minimization problems, PURIFY calls the

Sparse OPTimization (SOPT) software package [24, 25]. This first version

of PURIFY used the simultaneous-direction method of multipliers (SDMM)

algorithm [29]. Recently, new algorithms have been developed for radio

interferometry imaging by [30], including the proximal ADMM and primal

dual algorithms, which have numerous advantages for the analysis of very

large data-sets (see [30] for further discussion).

PURIFY (2.0.0) and SOPT (2.0.0) have been developed and used in this

chapter. Both PURIFY and SOPT have been completely redesigned and

rewritten in C++11 to work on Linux and Mac operating systems. The Eigen1

library is used for matrix and array manipulation [101] and casacore2 is used

to read observational data in the form of measurement sets [102]. SOPT is not

only useful for interferometric imaging: it is a general purpose code for solving

sparse regularization problems and can be used to solve a variety of problems.

The first version of PURIFY was limited to measurement operators based on

Gaussian kernels for convolutional gridding. The new version of PURIFY,

however, supports numerous kernels, including the state-of-the-art kernels
1http://eigen.tuxfamily.org
2http://casacore.github.io/casacore

http://eigen.tuxfamily.org
http://casacore.github.io/casacore
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discussed in the literature [e.g. 63], as described in Section 2.3. Additionally,

the ADMM algorithm of [30] has been implemented in PURIFY and SOPT.

Implementation of the primal dual algorithm of [30] into PURIFY and SOPT

is available in a later release. The primal dual algorithm achieves greater

flexibility, in terms of memory requirements and computational burden per

iteration, by using full splitting and randomized updates. All results presented

in this article are obtained with the ADMM algorithm, solving the analysis

problem of Eq. 2.6, with an additional positivity constraint (however, it is

possible to remove the positivity or reality constraints). While the development

of fully distributed implementations of the algorithms supported by PURIFY

and SOPT is can be found in later chapters, 2.0.0 versions are parallelised

with OpenMP so that the gridding, degridding, and FFT calculations can be

performed efficiently. The versions of PURIFY 2.0.0 3 and SOPT 2.0.0 4 used

in this chapter are publicly available. However, other versions of PURIFY

have been developed in this thesis, the differences can be seen in Table 4.1.

4.2 Simulations
In the previous chapter we described how the measurement operator ΦΦΦ

approximates a direct Fourier transform. If this approximation is inaccurate,

it will introduce error when recovering interferometric images. The choice

of the interpolation kernel will therefore have an impact on reconstruction

quality. In this section we perform simulations to assess the performance of

different convolution kernels, using the ADMM algorithm [30] implemented

with PURIFY 2.0.0 to recover images in the analysis framework, with an

additional positivity constraint.

4.2.1 Simulations

To assess the impact that the interpolation kernel has on image reconstruction

with PURIFY, we perform quality tests using simulated measurements. We

3http://basp-group.github.io/purify
4http://basp-group.github.io/sopt

http://basp-group.github.io/purify
http://basp-group.github.io/sopt
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Table 4.1: A listing of each PURIFY version and how each version has been
modified throughout this thesis.

Version Changes
PURIFY 1.0.0 This version used SDMM and the SARA algorithm

and was developed in C and used SOPT 1.0.
However, the SDMM algorithm is not included in
future versions. Gaussian convolution kernels were
used for degridding. More details can be found at [29].

PURIFY 2.0.0 PURIFY and SOPT were redeveloped in C++11,
as described in this Chapter. This version includes more
convolution kernels, uses the ADMM
algorithm, and includes multi-threading.

PURIFY 3.0.1 The distributed measurement operators, wavelet
operators and proximal operators are added as
discussed in Chapter 5, allowing for
distributed image reconstruction with ADMM.
The new w-stacking w-projection hybrid algorithm
described in Chapters 6 and 7 is also included.

PURIFY 3.0.1+ A new distributed measurement operator
is developed in Chapter 8. This measurement
operator allows kernels to be evenly distributed
across compute nodes for construction and application
during w-stacking. This load balances the computation
of gridding kernels across a computing cluster.

compare the signal to noise ratio (SNR) of the reconstructed image with the

ground truth image, reconstructing with different uv-coverages and different

interpolation kernels. Note that we cannot replicate all of the complexities

of the real observational setting with simple simulations. For example our

simulated observations do not include contributes from sources outside the

field of view. Nevertheless, simulations where the ground truth image is known

are useful for a partial assessment of the performance of different convolution

kernels.

To ensure the simulated measurements do not limit the reconstruction

quality, a high quality ‘ground truth’ measurement operator is applied to

256×256 pixel test images of HII emission of M31 and of 30 Doradus (30Dor).

In principle, we would generate the measurements using a direct Fourier
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Figure 4.1: Ground truth images of M31 (left) and 30Dor (middle) used in
simulations (of size 256 × 256). An example of a variable density
visibility coverage in the Fourier plane, normalised to a domain of
±π (right). To generate a simulated observation, the measurement
operator was applied to a ground truth image. Each simulation
has added thermal noise and a random variable density coverage in
the Fourier plane. The reconstruction quality was evaluated as a
function of the number of Fourier components measured. The SNR
was averaged over ten random coverages, with error bar given by the
standard deviation (see Figure 4.2).

transform, however this is not practical due to the required computational

resources. Instead, we increase the accuracy of the measurement operator.

The Kaiser-Bessel kernel with a support of 8×8 pixels and an oversampling

ratio of α= 2 is used for the ground truth measurement operator. The Kaiser-

Bessel kernel typically requires only a small support, so choosing a support of

8×8 provides an accurate measurement model [63].

We calculate the average SNR for reconstructing M31 and 30Dor from

M visibilities, in a way that does not depend on a specific uv-coverage. The

uv-coverages are randomly generated to follow a Gaussian variable sampling

density with a standard deviation of ±π/3 in the uv-plane, where the uv-

plane has been normalised to a maximum height and width of ±π. Ten

sample uv-coverages were generated using M visibilities. The average SNR

of a reconstruction from M visibilities was calculated using the ten sample

uv-coverages. The standard deviation is used to estimate the spread of the

SNRs of the reconstructed images. The test images of M31 and 30Dor and a

sample uv-coverage are shown in Figure 4.1.

Gaussian noise was added to the simulated visibilities. The input SNR

(ISNR) of the simulated visibilities was chosen to be 30 dB. The ISNR can be
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used to calculate the standard deviation of the Gaussian distribution of noise

[29]:

σn =
‖yyy0‖`2√
M
×10−

ISNR
20 , (4.1)

where yyy0 are the ground truth visibilities, M is the number of visibilities,

and ISNR is measured in dB. This formula shows that the Gaussian noise

is proportional to the root mean squared of the input visibilities, as expected

form the definition of a signal to noise ratio. For example if the RMS value of

the input visibilities is 1 Jy, then the noise distribution will have a spread of

10− ISNR
20 Jy.

The noise is assumed to be Gaussian and independently and identically

distributed, which allows the use of the χ2 distribution to estimate the bound

ε for the `2-norm [29]:

ε2 = (2M + 2
√

4M)σ
2
n

2 , (4.2)

where for these tests we set ε2 to two standard deviations above the mean of

the χ2 distribution. Following the work of [29], we calculate the SNR from the

relation

SNR = 20log10

[
‖xxx‖`2

‖xxx−xxx?‖`2

]
, (4.3)

where xxx is the ground truth image and xxx? is the reconstructed image.

We solve the `1 problem in the analysis setting (Eq. 2.6), using ADMM.

For the ADMM step size γ, we use the fixed value of

γ = β‖ΨΨΨ†ΦΦΦ†yyy0‖`∞ , (4.4)

with β = 10−3, as recommended in [29] and [30], where ‖ΨΨΨ†ΦΦΦ†yyy0‖`∞ returns

the maximum coefficient of the measurements in the wavelet representation.

The reconstructions were solved by assuming sparsity in the SARA wavelet

dictionary, which includes a Dirac (i.e. point source) basis and Daubechies

wavelets 1 to 8 [24, 25]. Note that re-weighting is not considered. In these

simulations, ADMM is stopped when the data fidelity constraint is satisfied
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Figure 4.2: The top and bottom plots of the SNR of the reconstructions of M31 and
30Dor respectively, with an input SNR of 30dB. M/N is the ratio of
measurements to pixels. Kaiser-Bessel and optimised Gaussian kernels
can perform as well as the PSWF. Furthermore, choosing a bad choice
of kernel, like a Box function or a Gaussian kernel with a typical σ,
limits the possible quality of the reconstruction.

and the relative difference in the model image between iterations is less than

10−3. Each reconstruction was run for a maximum of 100 iterations.

4.2.2 Results

The SNR of the reconstructed images as a function of number of visibilities

M/N is shown in Figure 4.2 for both M31 and 30Dor. Simulations were

performed using five of the different interpolation kernels described in

Section 2.3, including: Kaiser-Bessel (J = 4, β = 2.34J), PSWF (J = 6,

κ = 1), Box function (J = 1), Gaussian with a typical σ (J = 4, σ = 1) and

optimised σ (J = 4, σ = 0.31J0.52). An oversampling ratio of α = 2 was used

for all cases.
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Figure 4.3: (M31) Left column shows ground truth (top) and dirty image
(bottom). Middle column shows reconstructed image (top) and error
(bottom) with Kaiser-Bessel kernel. Right column shows reconstructed
image (top) and error (bottom) with Box kernel. For these simulations
M = 2N visibilities were used, with an input SNR of 30 dB. The error
image shows that the Box kernel reconstruction has artefacts, which
explains why the SNR is lower than the Kaiser-Bessel reconstruction.
The Box kernel reconstruction did not converge within 100 iterations
(based on the convergence criteria described in the text), while the
Kaiser-Bessel kernel reconstruction did.

Similar SNR results were found for reconstructions using the SARA

dictionary for both the M31 and 30Dor images. The Kaiser-Bessel, PSWF, and

Gaussian kernels with an optimised σ were found to provide reconstructions

of the same level of quality. The tests for these kernels converged within 100

iterations.

However, the Gaussian kernel with a typical σ and the Box function

provide reconstructions that have an SNR that is 5 to 10 dB below the other

kernels in these tests. Furthermore, for the Box kernel, the reconstructions

had often not converged within 100 iterations, while for the Gaussian with a

typical σ the majority of tests converged.

To illustrate the difference between reconstructions using the Kaiser-

Bessel and Box interpolation kernels, Figure 4.3 and Figure 4.4 show example

reconstructions for M = 2N . Error images are also shown, defined as the
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Figure 4.4: (30Dor) Left column shows ground truth (top) and dirty image
(bottom). Middle column shows reconstructed image (top) and error
(bottom) with Kaiser-Bessel kernel. Right column shows reconstructed
image (top) and error (bottom) with Box kernel. For these simulations
M = 2N visibilities were used, with an input SNR of 30 dB. The error
image shows that the Box kernel reconstruction has artefacts, which
explains why the SNR is lower than the Kaiser-Bessel reconstruction.
The Box kernel reconstruction did not converge within 100 iterations
(based on the convergence criteria described in the text), while the
Kaiser-Bessel kernel reconstruction did.

difference between the reconstructed and ground truth image. The structure

in the Kaiser-Bessel kernel error images looks close to Gaussian error. The

structure in the Box kernel error images shows artefacts, which spread

throughout the reconstructed image, explaining the lower SNR.

Tests were also performed using only a Dirac basis as the sparsifying

dictionary, which provides a proxy for the CLEAN algorithm. The results

obtained were consistent with those found with the SARA wavelet dictionary.

This suggests that these results found here are likely to apply also to CLEAN

and other similar algorithms.

Additional tests were performed at an ISNR of 10 dB, where it was

found that there was minimal difference between the reconstructed SNR with

different interpolation kernels. This suggests that the choice of interpolation

kernel will limit the reconstruction SNR when the level of artefacts is
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comparable or greater than the noise level. Consequently, for high dynamic

range imaging the choice of kernel is important.

4.2.3 Discussion

Many calibration and imaging techniques depend on gridding and degridding

methods to approximate the Fourier transform. While it has been understood

that gridding methods in radio astronomy can impact image quality [65, 64,

62, 59], the current study confirms that gridding with poor kernels reduces the

quality of images that can be recovered by sparse regularization approaches,

such as those implemented in PURIFY, and also those that can be recovered

by CLEAN. The magnitude of the impact depends on the quality of the

measurements. For high quality measurements with high ISNR, the use of

poor interpolation kernels will limit the SNR of the reconstruction. At low

measurement ISNR, noise dominates the limit imposed by the interpolation

kernel.

In particular, we have found that the Gaussian kernel with an optimal σ

and Kaiser-Bessel kernel perform as well as the PSWF, while using a smaller

support. Moreover, both of the former have analytic forms that can be easily

evaluated, which is not the case for the PSWF, where approximations are

typically made and look-up-tables used. This suggests that the Kaiser-Bessel

kernel is just as good as the PSWF for sparse image reconstruction, and

computationally less expensive with a smaller support. These finding are

consistent with previous works, suggesting that the Kaiser-Bessel kernel is

on par with optimal kernels [64, 73, 63].

4.3 Applying PURIFY to observations
The application of compressive sensing to radio interferometry is a relatively

new development and to date most of the exploration of compressive sensing

has been via simulated observations. Simulations are useful for testing

the performance of reconstructions because the ground truth and noise

level is known, and appropriate algorithm parameters can be estimated
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accurately. However, this is not the case when reconstructing images from

real observations.

In the next section (Section 4.4) we demonstrate that PURIFY can

perform high quality image reconstruction on real observations and compare

reconstructed images with those recovered by the CLEAN algorithm. However,

to compare PURIFY and CLEAN reconstructions, we need to make clear the

fundamental differences between the final outputs produced by each approach.

In this section we discuss CLEAN in the context of sparse image reconstruction

and clarify where the differences lie. In addition we describe how to apply

PURIFY to real observations, including how to set the pixel size, weighting,

and other parameters of the algorithm.

4.3.1 CLEAN comparison

Variations of CLEAN, such as Clark and Cotton-Schwab CLEAN [45, 46],

work by iteratively building a model of the sky in major and minor cycles.

This can be expressed in terms of iterations [30]

xxx(t) = xxx(t−1) +T
(

ΦΦΦ†
(
yyy−ΦΦΦxxx(t−1)

) )
, (4.5)

where xxx(t) represents the solution after t iterations, and T represents the

process of deconvolving the brightest sources in the residuals ΦΦΦ†
(
yyy−ΦΦΦxxx(t−1)

)
.

CLEAN operates in minor and major cycles, the minor cycles T are

performed after the calculation of a major cycle ΦΦΦ†
(
yyy−ΦΦΦxxx(t−1)

)
. The minor

cycles iteratively subtract the brightest sources from the image using an

approximate point-spread function (PSF), which allows the location of the

peaks of multiple sources to be found quickly. The major cycle performs an

accurate subtraction of sources located in the minor cycle to generate the

residuals for the next round of minor cycles.

CLEAN is essentially a matching pursuit algorithm [43], with a threshold

constraint as suggested by [17], where the algorithm stops when the peak

pixel of the residual image is below εthreshold, ‖ΦΦΦ† (yyy−ΦΦΦxxx)‖`∞ ≤ εthreshold.
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Most variations of CLEAN impose the prior that the sky is sparse in a

Dirac representation (CLEAN components/point sources), while multi-scale

and adaptive scale pixel decomposition (ASP) CLEAN consider atoms with

wider support to better model a sky containing extended sources [103, 49, 104].

The solution obtained by the CLEAN algorithm xxx is typically called a CLEAN

component image.

4.3.1.1 CLEAN restoration

In the case that the CLEAN components xxx could accurately model the entire

sky, there would be nothing but noise remaining in the residuals. However,

often it is not possible for CLEAN components to model diffuse structures

that cannot be represented efficiently by point sources. For this reason, a final

restored image is constructed to include structures not deconvolved by CLEAN.

The final restored image is found by convolving the CLEAN components with

a Gaussian and then adding the residual image:

xxxrestored = PPPxxx+ ΦΦΦ† (yyy−ΦΦΦxxx) , (4.6)

where PPP is a post-processing operator that convolves xxx with a Gaussian of the

same full width at half maximum as the dirty beam. The final restored image

is expressed in units of Jy/Beam. These modifications mean the process of

constructing a final restored image is not consistent with finding a solution

that best fits the data for a given prior, even if the motivations are pragmatic.

The restoration process hides the poor modeling of the CLEAN component

model, making the overall image more aesthetically pleasing.

The CLEAN residuals are therefore not a true representation of how well

the restored image models the true sky. Rather, the residuals ΦΦΦ† (yyy−ΦΦΦxxx) of

a reconstructed CLEAN image are due to the CLEAN components xxx, not the

final restored image xxxrestored.

An additional systematic that can occur with the CLEAN method is

that the dirty beam may not be well approximated by a Gaussian, which
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is assumed in constructing the restored image [105]. This could impact studies

that require accurate characterization of point sources, such as weak lensing

[106]. Additionally, in low frequency imaging the ionospheric distortion on

short timescales can produce a non-Gaussian dirty beam. For low frequency

radio astronomy this is a serious issue, as discussed in [107].

4.3.2 PURIFY

PURIFY adopts the prior that the sky has a sparse representation. This

can include a representation as a collection of point sources and/or single or

multiple wavelet dictionaries. This allows more flexibility when modelling both

point sources and extended sources simultaneously, providing more accurate

deconvolution of complex structure. As a result diffuse structures are not

expected in the residual image, hence, there is no need to combine the model

with the residuals as is done with the CLEAN algorithm. PURIFY provides a

final image that is reconstructed accurately enough to eliminate the need to

convolve the model with a Gaussian beam.

PURIFY therefore provides several advantages over CLEAN. First, it

means the residuals correspond to the final image used for scientific analysis,

such that the final image is the model that minimizes the error (this is not

true for the CLEAN restored image). Second, no restoration process provides

an advantage when computing statistics on an image and for general scientific

interpretation, because there is no need to include Gaussian and dirty beam

dependence when analyzing the flux values of pixels. This simplifies analyzing

spectral index or rotation measure values across diffuse sources [108].

4.3.3 Choice of pixel size

The final image recovered by PURIFY is sampled at discrete pixel values, hence

there is a choice in the size of a pixel of the discrete image representing the sky

brightness. The size and number of pixels can be determined by the resolution

and field of view of the telescope. The size of the pixel can be estimated from

the resolving power of the longest baseline and number of pixels determined
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by the field of view imaged (by the Nyquist relation).

Radio astronomy packages such as Common Astronomy Software

Applications (CASA) or MIRIAD typically assume between 3 and 5 pixels

across the FWHM of the synthesised beam, found by least squares fitting

a Gaussian to the main lobe of the synthesised beam [102, 71, 50]. The

synthesized beam can be affected by choice of weighting and the synthesised

beam may not be Gaussian, which can affect the Gaussian fit of the FWHM.

In particular, the fitted FWHM will not always match the resolution of the

longest baseline.5

Ideally, the size of the image should include all of the bright sources within

the telescope’s field of view. When bright sources are outside the imaged field

of view they cannot be modelled but will be aliased into the imaged region,

which can limit image fidelity. Bright point sources outside the imaged

region can also limit image fidelity since their synthesized beam sidelobes are

not modelled and removed during image reconstruction.

PURIFY is flexible with regard to the pixel sampling rate and size and

these parameters can be set by the user. However, the default approach to

setting the pixel size is to adopt Nyquist sampling where the resolution of

the model is fundamentally limited by the uv-sampling pattern. However,

for bright sources with a large SNR it is possible to accurately reconstruct

super resolved structures well past the measured uv coverage. This can only be

done by reconstructing a higher resolution image. Sparse image reconstruction

algorithms since this work have been used to accurately super resolve the high

SNR radio core of Cygnus A [80].

4.3.4 Weighting

In radio interferometry it is standard practice to weight the measurements

according to natural, uniform, or robust weighting schemes, which are

described in detail in [109]. The visibilities are weighted by the natural

5The author has found that fitting the synthesized beam for pixel size can produce much
larger pixels when using natural weighting compared to uniform weighting.
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weighting scheme to optimize the sensitivity of an observation. However,

for observations containing extended emission, the sidelobes in the image

domain due to natural weighting can dominate the synthesised beam. In this

case, CLEAN can perform badly, so the visibilities are uniformly weighted

to minimize sidelobes. Typically, there are more short baselines than long

baselines, which lowers the average resolution of the naturally weighted dirty

and restored maps. We concisely review different weighting schemes, including

the standard natural, uniform and robust weighting schemes used in radio

interferometry. PURIFY 2.0 supports all of these schemes.

4.3.4.1 Natural
Natural weighting maximises the sensitivity of the observation, with weights

set to WWW natural
ii = σ−1

i , where σi is the standard deviation of the error for

visibility yyyi. Note that here we consider the weighting operator as a component

of the measurement operator following Eq. 2.7, hence its entries are given by

σ−1
i , rather than a scaling of the visibilities only, in which case the weights

are given by σ−2
i . Natural weighting is also known as whitening: each

measurement has the same (unit) variance after weighting [29]. Whitening is a

standard weighting approach in statistical data analysis and image processing.

Using natural weighting for interferometric imaging allows one to use a χ2

distribution when comparing how well the model visibilities fit the data, which

can be used for a statistical interpretation of the bound on the `2-norm.

4.3.4.2 Uniform
Uniform weighting minimises the amplitude of sidelobes over a given field of

view, which is achieved by calculating an average weighting from the nearest

neighbours of a visibility. Explicitly, an average weight is calculated by

WWW gridded
ii =

√√√√ 1
|Si|

∑
k∈Si

(
WWW natural

k,k

)2
, (4.7)

where Si denotes the set of visibility indices that are included in the grid cell

corresponding to visibility i, and |Si| denotes the number of elements in Si.
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The uniform weights are then calculated by normalising the natural weights:

WWW uniform
ii = WWW natural

ii

WWW gridded
ii

. (4.8)

It is possible to control the field of view at which the synthesised beam

sidelobe suppression due to weighting occurs by changing the resolution of

the grid cells. As the grid resolution increases, the field of view for dirty

beam sidelobe suppression increases, although the suppression level is reduced.

As the field of view for suppression increases, the weighting tends to natural

weighting.

4.3.4.3 Robust

Robust weighting allows one to vary a robustness parameter R to continuously

move between natural and uniform weighting:

WWW robust
ii = WWW natural

ii√
1 +ρ

(
WWW gridded

ii

)2
(4.9)

where

ρ=
∑
k

(
WWW natural

kk

)2

∑
k

(
WWW gridded

kk

)4 ×10−2R+log10(25) . (4.10)

4.3.5 Parameter choice

The parameters of PURIFY are set automatically, following the recommendations

of [29] and [30]. We also consider some minor modifications of these schemes

that can be useful when analysing real observations, where, for example, the

errors on the visibilities that are provided (i.e. weights) may not be accurate.

Two parameters that need to be set carefully are the bound on the data fidelity

error bound ε and the step size of the algorithm γ. We adopt a method to

estimate ε using the Stokes V visibilities and to adaptively estimate the step

size γ during the first steps of the algorithm.
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4.3.5.1 Choosing the error bound ε

The parameter ε determines the error on how closely the model visibilities are

required to match the measured visibilities. If ε is too small the model will

start to fit to noise and if ε is too large the model will not model structures

accurately.

In the case of natural weighting, ε can be estimated by [29]

ε2 = (2M + q
√

4M)σ
2
n

2 , (4.11)

where ε2 is set to q standard deviations above the mean of the χ2 distribution.

However, for typical observations 2M �
√

4M , so this interpretation is less

useful (due to the concentration of measure in high dimensions). For real

observations with large M we simply estimate ε from the mean of the χ2

distribution and allow a scaling:

εη = η
√
Mσn , (4.12)

where η allows one to vary ε to include non-thermal noise contributions, such

as instrumental errors and radio frequency interference (RFI). When using this

latter approach to set ε we explicitly denote the η dependence by εη.

In principle, standard calibration and self-calibration methods can be

applied with PURIFY but to date these have not yet been tested. Such an

approach may be considered by choosing a high error bound for ε to generate a

sky model of the brightest sources, applying a calibration algorithm to recover

calibration parameters, before iterating.

In the case that the source of noise in the visibilities is thermal, the weights

should be accurate. However, if the weights are not accurate we adopt a

method where Stokes V can be used to estimate the noise level and thus

ε. This is because Stokes V rarely contains astrophysical sources and so is

dominated by thermal noise. To estimate the noise on a measurement, we use
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the median absolute deviation (MAD) method [110, 111]

σn =

√√√√[Median(Real(WWW yV))
0.67449

]2
+
[

Median(Imag(WWW yV))
0.67449

]2
, (4.13)

where WWW yV is the weighted Stokes V visibilities. The MAD method provides

a robust way to estimate σn given Gaussian noise, and should be reliable when

Stokes V is dominated by thermal noise.

Furthermore, if the weights are only proportional to the standard

deviation of noise, they will be incorrect by a scaling factor. The MAD method

can be used to determine the standard deviation of the noise from a sample

distribution. While using the MAD method to estimate σn is intended to

work for thermal noise contributions, it might not be accurate when there are

polarimetric, amplitude, and phase calibration errors or RFI.

4.3.5.2 Adapting the step size γ

In [29], it is suggested that the algorithm step size γ can be set by

γ = β‖ΨΨΨ†xxx(0)‖`∞ , (4.14)

xxx(0) is an initial estimate of the image. Typically, the initial estimate is chosen

as xxx(0) = ΦΦΦ†yyy (i.e. the dirty image). While the choice of γ should not affect

the final result of the algorithm, it does affect the rate of convergence.

We adapt this approach and allow γ to be re-estimated as the algorithm

progresses, before settling on a fixed value of γ to guarantee convergence. In

this case, a candidate adaptive step size for the i-th iteration can be calculated

γ̃i = β‖ΨΨΨ†xxx(i)‖`∞ . If the current candidate for the step size changes by a small

amount only, there is no need to change the step size used. In this case, a
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general rule for adapting the step size can be set:

γi =



γ̃i, if γ̃i−γi−1
γi−1

> δadapt

γi−1, if γ̃i−γi−1
γi−1

≤ δadapt

γi−1, if i≥ iadapt

, (4.15)

where δadapt is the minimum relative difference needed for adapting the step

size and iadapt is the number of iterations after which the step size will not be

adapted and will remain fixed.

4.3.6 Input parameters of PURIFY

As described already, the parameters of PURIFY are set automatically and so

PURIFY can be run simply be providing the filename of an input measurement

set and the output filename of the image to be recovered. The user does not

need to set any parameters. However, the default settings can be overridden.

The main parameters of interest that a user may want to overwrite are

specified in Table 4.2. These include the η value in setting εη, the β parameter

in setting γ, the δadapt and iadapt parameters that control adapting γ, the

relative variation of the solution criteria δ, the residual norm convergence

criteria ξ, and the maximum number of iterations imax.

In analysing the observations considered in the next section, the value of

η varies from 1.4 to 7, and depends on the quality of the data set, such as

how free it is from calibration error and RFI. The iadapt parameter is set to a

fraction of the maximum number of iterations. It is important to set iadapt such

that the step size γ stops adapting before convergence. The relative variation

criteria of the objective function was chosen to be δ = 5×10−3. The choice of

residual norm convergence criteria ξ also depends on the quality of the data

set.
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4.4 PURIFY reconstruction of observations
In this section we compare the use of PURIFY and Cotton-Schwab CLEAN

for reconstructing total intensity ( Stokes I) observations made by the Very

Large Array (VLA) and the Australia Telescope Compact Array (ATCA). In

particular, we consider observations of the radio galaxies 3C129, Cygnus A,

PKS J0334-39, and PKS J0116-473. To perform the Cotton-Schwab CLEAN

algorithm, we use WSCLEAN [50]. WSCLEAN is a standard choice for

imaging in several MWA [19] science pipelines including continuum, transients,

EoR and polarization modes [112, 113, 114, 115, 116]. For PURIFY, we

present results using the ADMM algorithm [30], in the analysis setting,

with a positivity constraint and the SARA wavelet dictionary [24], without

reweighting.

4.4.1 Observations

In this section we discuss the details of the observations considered. The

sampling patterns in the uv-plane for each observation are shown in Figure

4.5.

4.4.1.1 3C129

The observation of the bent tailed radio galaxy 3C129 has a phase center of

RA = 04h 45m 31.695s, DEC = +44◦ 55′ 19.95′′ (J2000), and was obtained

from the NRAO archive. It was performed using the VLA with the project

code AT0166, with two 50 MHz channels centered at 4.59 and 4.89 GHz. The

observations were performed on the 25th of July 1994 in configuration B and

3rd of November 1994 in configuration C respectively. The total integration

time was 79.7 minutes in configuration B and 15.8 minutes in configuration

C. The calibration and flagging of radio frequency interference was performed

using CASA, following the standard procedure found in the CASA manual.

The gains were calibrated using sources 0420+417, 0518+165, and 0134+329,

to solve for the instrumental and source polarization. Source 0420+417

was observed alternately to solve the polarimetric calibration solutions with
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paralactic angle coverage.

4.4.1.2 Cygnus A
The VLA observation and reduction of Cygnus A in the X band (central

frequency of 8.953 GHz, and 92 MHz bandwidth) was performed by Rick

Perley6 (PI:Perley, project code 14B-336 (legacy: AP658)). Cygnus A was

observed in 2014 between the 3rd of November (18:39:44.0 UTC) to 4th

November (04:28:12.0 UTC), using configuration C. The pointing centre was

located at RA = 19h 59m 28.356s, DEC = +40◦ 44′ 02.075′′ (J2000). The data

was reduced and calibrated using AIPS, following standard procedure that can

be found in the AIPS Cookbook7.

4.4.1.3 PKS J0334-39
The observation of PKS J0334-39 was first presented in the work of [108],

where the tailed radio galaxy’s polametric structure was used to probe the

environment of the galaxy cluster Abell 3135. The observation was also

reprocessed using self calibration in [51], where it was used as an example of

applying Generalised Complex CLEAN [51] to a observation. The observation

was performed using the ATCA (with the pre-CABB correlator) in 2001 is

centered on RA = 03h 34m 07.18s DEC = -39◦00′03.19′′ (J2000), at a central

frequency of 1.384 GHz. There are 12 channels, each with a width of 8 MHz.

The observation was performed in configuration 6A for 59 minutes, 1.5A for 76

minutes, 750A for 79.7 minutes, 375 for 75.4 minutes. A detailed description

of the calibration procedure, performed using MIRIAD, can be found in [108].

4.4.1.4 PKS J0116-473
The observation of PKS J0116-473 used in this work was first presented in

[117]. The total intensity, polametric structure, and morphology of PKS J0116-

473 have been studied in detail at 12 and 22 cm wavelengths. The ATCA

observations of PKS J0116-473 used in this work were extracted from the

archive (PI:Shankar, project code C770), then calibrated and flagged following
6Private communication.
7http://www.aips.nrao.edu/cook.html

http://www.aips.nrao.edu/cook.html
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a standard ATCA data reduction procedure found in the MIRIAD manual8.

The phase center is located at RA = 14h 59m, 15.75s DEC =-36◦ 55′ 47.87′′

(J2000), and the central observation frequency is 1.384 GHz. After flagging

and removing channels due to cross-channel interference, there are 12 channels

each with 8 MHz channel width. The observations were performed in 1999, on

the 10th and 12th of January (configuration 375, 1115 minutes integration), on

the 7th (750C, 1088.3 minutes) and 20th (6C, 1109.3 minutes) of February, and

on the 24th and 25th of April (1.5C, 1112 minutes). Sources PKS B1934-638

and PKS B0823-500 were used to set the flux density scale at 1.384 GHz. The

time variations in complex antenna gains and bandpass were calibrated using

alternating observations of the unresolved source PKS B0153-410.

4.4.2 Reconstructions
In this section we present the reconstructions from real observations. We

show the reconstructed model image, alongside the residuals. For the

CLEAN reconstructions we show the post-processed restored image (see

Section 4.3.1.1), while for PURIFY there is no need for post-processing so there

is no restored image but only a reconstructed model image (see Section 4.3.1.1).

For PURIFY reconstructions we use natural weighting, and for CLEAN we use

both natural and uniform weightings.9

The CLEAN thresholds and FWHM of the restoring beams can be found

in Table 4.3. The CLEAN components are restricted to be positive valued.

Allowing negativity might improve the fit for both CLEAN and PURIFY, but

we choose positivity for this comparison. CLEAN has not been restricted to

regions around the source. CLEAN was run until the residual peak reached the

cutoff flux value. The cutoff flux value was measured after trialling CLEAN

with different values and estimating 3 times the RMS noise of the residual

map. We make it clear that there are many different CLEAN configurations
8http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.

html
9Rather than using measurement sets for the ATCA data sets, the tables were read with

PURIFY from uvfits files. In all other cases, the observations were read from measurement
sets.

http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.html
http://www.atnf.csiro.au/computing/software/miriad/userguide/userhtml.html
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and CLEAN algorithms that might produce better looking images, but testing

when CLEAN works best is out of scope for this work. We are careful to make

the distinction between the restored image and the reconstructed image for

CLEAN (see Section 4.3.1.1), since the restored image is not used to generate

the residuals. When we refer to the reconstructed image, we are referring to

the CLEAN component image.

For PURIFY, the error constraint in the model is set using εη. The

ADMM step size was set adaptively as described in Section 4.3.5.2. PURIFY

images have a resolution set by the longest baseline in the observation.

Images recovered by CLEAN and PURIFY, and auxiliary plots, are shown

in Figures 4.6, 4.7, 4.8, and 4.9. Reconstructions of the source 3C129 are shown

in Figure 4.6, for a pixel width and height of 0.4 arcseconds. The PURIFY

reconstruction was performed using a value of η = 0.9 and ξ = 1, and ran for

75 iterations. The step size was adapted for the first iadapt = 20 iterations.

Figure 4.7 contains the reconstructions of Cygnus A, for a pixel width and

height of 0.5 arcseconds. The PURIFY reconstruction was performed using

η = 2.14 and ξ = 7.07, and ran for 183 iterations. The step size was adapted

for the first iadapt = 100 iterations. Reconstructions of the source PKS J0334-

39 are shown in Figure 4.8, for a pixel width and height of 2 arcseconds. The

PURIFY reconstruction was performed using η = 1 and ξ = 2, and ran for

372 iterations. The step size was adapted for the first iadapt = 200 iterations.

Reconstructions of the source PKS J0116-473 are shown in Figure 4.9, for a

pixel width and height of 2.4 arcseconds. The PURIFY reconstruction was

performed using η = 1 and ξ = 2.3, and ran for 707 iterations. The step size

was adapted for the first iadapt = 500 iterations.

The run times for these reconstructions range from an hour to several

hours using a high-performance desktop computer, to produces images of

sizes 1024× 1024 and 2048× 2048 pixels. Currently, a large factor in

the computational cost and run time for PURIFY is computing wavelet

transforms for a number of dictionaries. In the case that only a Dirac basis
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is used and no wavelet transforms are performed, the run time is reduced

considerably for large image sizes. However, this greatly reduces the quality of

the reconstructed image, because a Dirac basis is not an efficient representation

of extended structures. Highly distributed and parallelised algorithms will be

implemented in the following chapters to reduce the run-time significantly

[30]. While CLEAN methods appear computationally efficient, this comes at

a significant cost to reconstruction quality and with additional restrictions on

the ability for distribution.

In all cases PURIFY provides more complete reconstructions than

CLEAN. When comparing with the CLEAN component images, the CLEAN

component images are not smooth and do not reconstruct the diffuse emission

well (due to the point source model of CLEAN), while the PURIFY recovered

images model diffuse emission. After post-processing the CLEAN component

image to yield the CLEAN restored image and comparing with PURIFY, it is

also clear that PURIFY provides higher quality reconstructions.

The dirty and residual images of PURIFY are shown in Jy/Beam for

comparison. To convert from units of Jy/Pixel to Jy/Beam, the image is

divided by the peak of the point spread function ΦΦΦ†WWW111, where 111 denotes a

vector of ones. This allows direct comparisons of the residual images between

CLEAN and PURIFY, since they will have the same units without arbitrary

scaling. To compare the residuals the scale of the colour axis has been set to

a common scale, using 3 times the median root-mean-squared (RMS) values

between the residual images in Table 4.4. The histograms show the full range of

pixel values in the residuals, determined by the peak of the absolute residuals,

to allow one to inspect outliers.

For all observations, PURIFY can model faint extended structure while

also modeling the bright compact sources. Additionally, the PURIFY model

has left little structure in the residuals. This is also clear from the histogram

of the residual pixel brightness, which shows the residuals are dominated by

Gaussian noise. The CLEAN reconstruction leaves visible diffuse structure in
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the residuals. The histogram of the residual images show large peaks below

the clean cutoff.

The primary difference that natural and uniform weightings have on

CLEAN is that uniform weighting suppresses the synthesised beam sidelobes.

While this lowers the sensitivity of the observation, CLEAN then performs

better at modelling fine structure with CLEAN components, with diffuse

structure left in the residuals, which are then added back in the CLEAN

restored image.

The RMS of the residuals around the scientific region of interest (see

Table 4.4) show that PURIFY consistently fits the measurements better than

CLEAN.

Table 4.4 compares the RMS of the residual images with in the regions

shown in Figures 4.6, 4.7, 4.8, 4.9. Other than 3C129, PURIFY shows a

consistent order of magnitude improvement in the RMS of the residuals.

With this comparison of PURIFY on real data, we have used a standard

CLEAN algorithm. We make it clear this is not necessarily the best

performance of the CLEAN algorithm and its variants. Choosing a different

CLEAN cutoff, masking around sources, and including multi-scale components

can produce better quality CLEAN component models. These configurations

can improve the quality of the component map, leave less structures in the

residual map, and improve the aesthetics of the restored map.

4.4.3 Discussion

From a scientific standpoint, the PURIFY models show more structure than

those recovered by CLEAN. This is clear when looking at the surface brightness

variation of the lobes of 3C129 and Cygnus A. For 3C129 and Cygnus A, unlike

the CLEAN restored images, the surface brightness structure is well resolved

in the images recovered by PURIFY.

The CLEAN restored images of PKS J0334-39 and PKS J0116-473

with uniform weighting show an improvement over natural weighting for

deconvolving the fine structure, as well as containing diffuse structure.
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However, uniform weighting is known to suppress large scale structure, and

lowers the sensitivity of the observation (as discussed in [118]). However,

PURIFY has the ability to reconstruct the fine details of PKS J0334-39 and

PKS J0116-473 without uniform weighting. This demonstrates that PURIFY

has the potential to reconstruct observations that can be used to perform a

more detailed analysis of morphology and structure of diffuse sources. The

reconstruction of Cygnus A shows that it is possible to accurately reconstruct

diffuse bright structures in the presence of compact bright sources.

Modeling extended structure accurately is particularly important

for understanding the underlying physics of radio sources and their

environment. Bent tailed radio galaxies, such as 3C129, are a example

of where this is important [119]. The morphology of bent tailed radio

galaxies can be used as a probe of their local cluster environment

[120, 121, 122, 123, 108, 124].

Additionally, an important class of diffuse, low surface brightness radio

sources are cluster relics and halos (e.g. [125, 118, 126, 127]), which are believed

to be caused by shocks and turbulence in the outskirts of galaxy clusters [128,

129]. Radio halos and relics are not well understood, and they are prime

examples of sources with diffuse low surface brightness structure that relates

to the physics within the intra-cluster medium and merging galaxy clusters.

However, galaxy clusters often contain bright compact sources, providing a

challenge in deconvolving low surface brightness sources.

4.5 Conclusion

In this chapter we have further developed the PURIFY software package so

that it can be easily applied to observational data from radio interferometric

telescopes. PURIFY has been completely redesigned and reimplemented in

C++ and now supports the ADMM algorithm developed recently by [30].

Furthermore, the capabilities of convolutional degridding in the measurement

operator have been expanded.
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Table 4.3: Table listing details of settings used to recover CLEAN images.

Observation Weighting Beam Size Cutoff Peak Value
Jy/Beam Jy/Beam

3C129 Natural 2.07′′ × 1.88′′, 158◦ 0.0025 0.050
Uniform 1.30′′ × 1.06′′, 33◦ 0.055

Cygnus A Natural 3.48′′ × 2.81′′, 105◦ 0.1 21.9
Uniform 2.25′′ × 1.99′′, 97.4◦ 16

PKS J0334-39 Natural 45.6′′ × 36.8′′, 171◦ 0.001 0.2
Uniform 8.6′′ × 4.3′′, 17◦ 0.09

PKS J0116-473 Natural 40.0′′ × 24.6′′, 158◦ 0.001 0.13
Uniform 6.33′′ × 4.72′′, 3◦ 0.086

Table 4.4: Table listing the root-mean-squared of each reconstruction (units are in
mJy/Beam).

Observation PURIFY CLEAN CLEAN
(natural) (uniform)

3C129 0.10 0.23 0.11
Cygnus A 6.1 59 36

PKS J0334-39 0.052 1.00 0.37
PKS J0116-473 0.054 0.88 0.24

Using simulations we studied the impact of a number of different

interpolation kernels on the quality of images recovered by sparse reconstruction

approaches to interferometric imaging. The Kaiser-Bessel kernel was found to

perform very well—as well as other optimal kernels—while requiring a smaller

support size, thereby reducing computation cost, and having an analytic

expression that can be evaluated easily and efficiently.

PURIFY was applied to observational data from the VLA and ATCA

telescopes, recovering high-quality interferometric images superior to those

recovered by CLEAN. Firstly, the PURIFY residuals contain less extended

structure and are more Gaussian with a lower RMS. Secondly, the model

images recovered by PURIFY are of sufficient quality that there is no need

to perform any post-processing as is done for CLEAN (such as restoring

the image). On visual inspection, the images recovered by PURIFY reveal

extended structure in greater detail. For example, in reconstructed images
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Figure 4.5: Plots showing the uv-coverage of the observations of 3C129 (top left),
Cygnus A (top right), PKS J0334-39 (bottom left), and PKS J0116-473
(bottom right). Units of u and v are kilo-wavelengths (kilo-λ).

of 3C129 the internal structure of the radio jets is much more apparent

(Figure 4.6). However, we have kept to using a traditional bare bones CLEAN

algorithm, using multi-scale CLEAN and other features would provide a better

comparison against restored maps. Also comparing both methods on data with

calibration errors will change the performance of the PURIFY and CLEAN

methods. But it is clear that the reconstruction quality from PURIFY does

not need image restoration which is important for facilitating a better scientific

understanding of astrophysical processes.



96 Chapter 4. Sparse Image Reconstruction of Interferometric Observations

m
Jy

/P
ix

el

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
Jy

/P
ix

el

0

0.05

0.1

0.15

0.2

0.25

m
Jy

/P
ix

el

0

0.05

0.1

0.15

0.2

0.25

m
Jy

/B
ea

m

0

0.5

1

1.5

2

2.5

3

m
Jy

/B
ea

m

0

0.5

1

1.5

2

2.5

3

m
Jy

/B
ea

m

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

m
Jy

/B
ea

m

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

m
Jy

/B
ea

m

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

mJy/Beam
-3 -2 -1 0 1 2 3

P
ix

el
s

0

1000

2000

3000

4000

5000

6000

mJy/Beam
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

P
ix

el
s

#104

0

0.5

1

1.5

2

2.5

mJy/Beam
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

P
ix

el
s

0

1000

2000

3000

4000

5000

6000

Figure 4.6: PURIFY and CLEAN reconstructions of 3C129. Each pixel is 0.4
arcseconds, and the images are 1024×1024 pixels. The pixels within
[400,900]× [400,900] are shown in the images and histogram of this
figure. Left column shows a PURIFY reconstruction with natural
weighting. Middle and right columns show CLEAN reconstructions
with natural and uniform weightings, respectively. From the top to
bottom row: synthesised (i.e. dirty) image, model image, restored
image, residual image, and a histogram of residual image. PURIFY
does not require any post-processing and so does not produce a
restored image.
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Figure 4.7: PURIFY and CLEAN reconstructions of Cygnus A. Each pixel is 0.5
arcseconds, and the images are 1024×1024 pixels. The pixels within
[256,756]× [256,756] are shown in the images and histogram of this
figure. Left column shows a PURIFY reconstruction with natural
weighting. Middle and right columns show CLEAN reconstructions
with natural and uniform weightings, respectively. From the top to
bottom row: synthesised (i.e. dirty) image, model image, restored
image, residual image, and a histogram of residual image. PURIFY
does not require any post-processing and so does not produce a
restored image.
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Figure 4.8: PURIFY and CLEAN reconstructions of PKS J0334-39. Each pixel is
2 arcseconds, and the images are 2048×2048 pixels. The pixels within
[862,1162]× [862,1162] are shown in the images and histogram of this
figure. Left column shows a PURIFY reconstruction with natural
weighting. Middle and right columns show CLEAN reconstructions
with natural and uniform weightings, respectively. From the top to
bottom row: synthesised (i.e. dirty) image, model image, restored
image, residual image, and a histogram of residual image. PURIFY
does not require any post-processing and so does not produce a
restored image.
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Figure 4.9: PURIFY and CLEAN reconstructions of PKS J0116-473. Each pixel
is 2.4 arcseconds, and the images are 2048× 2048 pixels. The
pixels within [800,1200]× [800,1200] are shown in the images and
histogram of this figure. Left column shows a PURIFY reconstruction
with natural weighting. Middle and right columns show CLEAN
reconstructions with natural and uniform weightings, respectively.
From the top to bottom row: synthesised (i.e. dirty) image, model
image, restored image, residual image, and a histogram of residual
image. PURIFY does not require any post-processing and so does not
produce a restored image.





Chapter 5

Distributed Forward-Backward

ADMM

In this chapter we present new distributed big data sparse image reconstruction

algorithms which have been implemented in the PURIFY (3.0.1) (https:

//github.com/astro-informatics/purify) and SOPT (3.0.1) (https://

github.com/astro-informatics/sopt) software packages. These algorithms

make use of degridding and gridding, wavelet transforms, and proximal

operators to reconstruct high quality images of the radio sky while

communicating data between compute nodes of a computing cluster using the

Message Passing Interface (MPI). We distribute the data over a computing

cluster to accommodate the large volume of measurements. We use multi-

threaded parallelization on a Graphics Processing Unit (GPU) or via OpenMP

to parallelize across cores of a CPU node. We show that the MPI distributed

framework reduces the time it takes to compute an iteration, increase the

volumes of data that can be included in image reconstruction, and can be used

in connection with multi-threaded parallelization such as GPUs and OpenMP

for further optimization.

In Section 5.1 we introduce the serial Dual Forward-Backward based

Alternating Direction Method of Multipliers (ADMM) algorithm implemented

in PURIFY. This sets the ground work for introducing computationally

distributed wavelet and measurement operators and distributed ADMM

https://github.com/astro-informatics/purify
https://github.com/astro-informatics/purify
https://github.com/astro-informatics/sopt
https://github.com/astro-informatics/sopt
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algorithm in Section 5.2. We demonstrate the implementations of the

distributed algorithms in PURIFY in Sections 5.3 and 5.4 and end with a

conclusion in Section 5.5.

5.1 Sparse Regularization using

Dual Forward-Backward ADMM
As mentioned in (3.17), the standard constrained radio interferometry solution

with `1 (sparse) regularization can be stated as

xxx? = argmin
xxx

{
‖ΨΨΨ†xxx‖`1 + ιC(xxx) + ιBε`2(yyy)(ΦΦΦxxx)

}
, (5.1)

with Bε`2(yyy) = {zzz ∈ CM : ‖zzz − yyy‖`2 ≤ ε} being the set that satisfies the

fidelity constraint and C = RN+ is the set that represents the positive and real

constraint.

Let rrr be the slack variable with the constraint rrr = ΦΦΦxxx. As described

in Section 3.3.3, to solve the above problem (5.1), ADMM can be applied

by minimizing the Lagrangian of problem (5.1) corresponding to xxx and rrr

alternatively, i.e.,

min
xxx

{
µ
[
‖ΨΨΨ†xxx‖`1 + ιC(xxx)

]
+ 1

2
∥∥∥ΦΦΦxxx− (rrr− sss)

∥∥∥2
`2

}
, (5.2)

min
rrr

{
µ
[
ιBε`2(yyy)(rrr)

]
+ 1

2
∥∥∥rrr− (ΦΦΦxxx+ sss)

∥∥∥2
`2

}
, (5.3)

where sss represents the Lagrangian multiplier. Algorithm 5 shows the Dual

Forward-Backward ADMM algorithm used to solve problem (5.1). Recall that

it is the same as the standard ADMM algorithm, but uses Dual Forward-

Backward splitting with a Forward-Backward step to minimize the subproblem

(5.2). The distributed version of this algorithm is presented in [30]. The serial

version of this algorithm has been implemented in PURIFY 2.0.0 and applied

in [1] to simulated and real observations from radio interferometric telescopes

previously.
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Algorithm 5 Dual Forward-Backward ADMM.
The Dual Forward-Backward ADMM algorithm without MPI implementation.
Lines 3–4 evaluate the `2-ball proximal operator (constraining the solution to
the `2-ball), which is to address the solution of the subproblem (5.3). Line
5 is the Lagrangian dual variable update, connecting the two minimization
problems (5.2) and (5.3). Lines 6–7 are a Forward-Backward step, which is to
address the solution of the subproblem (5.2); particularly, line 6 is the forward
(gradient) step, and line 7 is the backward step which is solved using the Dual
Forward-Backward algorithm, as described between lines 9–16.

1: given xxx(0), rrr(0),sss(0), qqq(0),γ,ρ,%
2: repeat for t= 1, . . .
3: vvv(t) = ΦΦΦxxx(t−1)

4: rrr(t) = PεB
(
vvv(t) +sss(t−1)

)
5: sss(t) = sss(t−1) +%

(
vvv(t)− rrr(t))

6: x̃xx(t) = xxx(t−1)−ρΦΦΦ†
(
vvv(t)− rrr(t) +sss(t)

)
7: xxx(t) = DualFB

(
x̃xx(t),γ

)
8: until convergence
9: function DualFB

(
zzz,γ

)
10: given ddd

(0)
j ,η

11: z̄zz(0) = PC
(
zzz
)

12: repeat for k = 1, . . .

13: ddd(k) = 1
η

(
I−Sγ

)(
ηddd(k−1) + ΨΨΨ†z̄zz(k−1)

)
14: z̄zz(k) = PC

(
zzz(k−1)−ΨΨΨddd(k)

)
15: until convergence
16: return z̄zz(k)

5.2 Distributed

Dual Forward-Backward ADMM
In the previous chapter, we covered serial proximal optimization algorithms

and serial operators. It is well known that these algorithms can be distributed

(see [93, 89, 30] and references therein).

In this section, we describe the details for how to modify these algorithms

to be distributed over a computing cluster using the standard commonly known

as MPI. For clarity, we describe MPI implementations of operators in PURIFY

and SOPT. The measurements and MPI processes are distributed across the

nodes of a computing cluster.
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5.2.1 MPI Framework
The MPI standard is a framework where multiple process of the same program

are run concurrently, communicating data and variables at sync points. This

is commonly referred to as distributed memory parallelism. There are many

independent processes (nodes) with their own data, but they can send messages

containing data between them. This is different from the more typical shared

memory parallelism, where a single process has access to all the data, but

executes multiple threads for sections of the program (such as a loop with

independent iterations). However, hybrids of shared and distributed memory

parallelism are not uncommon, where nodes on a computing cluster send

messages while performing multi-threaded operations. Please see [130] for

a formal reference on MPI1.

The MPI framework contains a total number of process nd, each with a

rank 0 ≤ j < nd, all connected by a communicator for sending and receiving

data. The most basic methods of a communicator consist of send and receive

operations between individual processes. However, typically sending and

receiving is performed in collective send and receive operations:

Broadcast (one to many) – Send a copy of a variable (scalar or array)

from the root node to all nodes.

Scatter (one to many) – Scatter is where a root process contains an

array; different sections of this array are sent to different nodes. The root

process does not keep the sent data.

Gather (many to one) – Gather is where the root process receives

data from all nodes. This could be sections of an array, or variables that are

combined into an array on the root process.

All to All (many to many) – All to all is where data is communicated

between all nodes at once. Each process sends and receives. This could be

single variables or sections of arrays.

Reduce (many to one) – Reduce, or performing a reduction, is where
1Official versions of the MPI standard can be found online at https://www.mpi-forum.

org/docs/.

https://www.mpi-forum.org/docs/
https://www.mpi-forum.org/docs/


5.2. DistributedDual Forward-Backward ADMM 105

a binary operation (assumed to be associative and commutative) is efficiently

performed with a variable or array over the cluster with the result sent to the

root process. Summation of variables across nodes is a common example of

this. However, logical operations and max/min operations are also common.

All reduce (many to many) – All reduce is equivalent to a reduction,

but the result is broadcasted to all nodes from the root process. All reduce

with summation is called an all sum all operation.

The operation to broadcast a copy of xxx onto each node can be represented

by the linear operation 
III1
...

IIInd

xxx (5.4)

where IIIj is an N ×N identity matrix. The adjoint of this operation is a

reduction

xxxsum =
[
III1 . . . IIInd

]

xxx1
...

xxxnd

 . (5.5)

It is possible to view other MPI operations of sending data between nodes in

the context of linear mappings.

5.2.2 Distributed Visibilities

The visibilities can be loaded on a root process then sorted into groups that

are scattered to each node. This process splits and sorts the measurement

vector yyy into groups yyyj , where j is the rank of a process:

yyy =


yyy1
...

yyynd

 . (5.6)

In this work, we sort the visibilities yyy via ordering them by baseline length

and dividing yyy into sections of equal size yyyj to be scattered to each node.
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However, it is also possible to have each MPI process to read a different set

of measurements. In principle, the weights and uvw coordinates are scattered

with the visibilities.

If there is too much data to load the measurements onto one node, the

data can be loaded in sections and then scattered to each node. After the data

has been distributed, sorting into groups can be done using logical reductions,

and then distributed to each node using an all to all operation. This has been

done with the w-stacking algorithm in [2].

5.2.3 Distributed Measurement Operator

For each group of visibilities yyyj on node j, there is a corresponding

measurement operator ΦΦΦj . However, there are many ways to relate ΦΦΦj to

the measurement operator for yyy, ΦΦΦ; we show two examples.

5.2.3.1 Distributed Images

We can relate the MPI measurement operator to the serial operators by

ΦΦΦ =


ΦΦΦ1

. . .

ΦΦΦnd




III1
...

IIInd

 . (5.7)

The forward operator can be expressed simply as independent

measurement operators applied in parallel after broadcasting xxx:


yyy1
...

yyynd

=


ΦΦΦ1

. . .

ΦΦΦnd




III1
...

IIInd

xxx. (5.8)

The adjoint operator can be expressed as the adjoint of independent
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measurement operators applied in parallel, followed by a reduction

xxxdirty =
[
III1 . . . IIInd

]


ΦΦΦ†1
. . .

ΦΦΦ†nd




yyy1
...

yyynd

 . (5.9)

However, with the MPI framework, it is efficient to always have a copy of

the same image on each node so that other image domain operations can

be performed in parallel (i.e. wavelet transforms). This can be ensured by

combining the broadcast and reduction in a single all sum all operation during

the adjoint. We work with the forward operator that applies each measurement

operator independently on each node, with a copy of xxx located on each node


yyy1
...

yyynd

=


ΦΦΦ1

. . .

ΦΦΦnd




xxx
...

xxx

 , (5.10)

and the adjoint operation can be performed by applying the adjoint of each

measurement operator independently followed by an all sum all


xxxdirty

...

xxxdirty

=


III1
...

IIInd


[
III1 . . . IIInd

]


ΦΦΦ†1
. . .

ΦΦΦ†nd




yyy1
...

yyynd

 . (5.11)

We can normalize the operator with the operator norm, by using the power

method to estimate the largest eigenvalue, and remove arbitrary scaling due

to nd and other normalization factors.

5.2.3.2 Distributed FFT Grid Sections

Another method, which is discussed in [30], is to distribute the grid points of

the FFT grid, where the degridding can be performed on each node. This can

be performed using a scatter and gather operation from a root process. We

can define the operation of distributing the necessary grid points using the
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operators MMM j ∈ RBj×2N , where Bj is the number of non zero columns of GGGj .

Additionally, we can remove the zero columns of GGGj , such that GGGj ∈ RMj×Bj .

The measurement operator is defined by


yyy1
...

yyynd

=


WWW 1GGG1

. . .

WWWndGGGnd




MMM1

...

MMMnd

FFFZZZSSSxxx. (5.12)

[MMM>1 , · · · ,MMM>nd ]> can be seen as scattering the FFT grid points from the root

process to the other nodes. The adjoint can be seen as gathering and summing

gridded FFT grid points to the root process. While this method appears to

reduce communication, this has the disadvantage that the result of the adjoint

ends up only on the root process. In practice, this means a broadcast is

eventually required after the adjoint of this measurement operator so that

further image domain operations can be performed in parallel.

5.2.4 Distributed Wavelet Operator

The MPI wavelet operator can be distributed for each wavelet basis in the

dictionary. Using the convention that xxx = ΨΨΨααα, each wavelet representation

can be arranged as

ααα =


ααα1
...

αααnw

 , (5.13)

for nw wavelet transforms. From this definition, it follows that each inverse

transform is performed independently with a reduction at the end

ΨΨΨ =
[
III1 . . . IIInw

]


ΨΨΨ1
. . .

ΨΨΨnw

 . (5.14)

However, like with the distributed image measurement operator, we combine

the reduction and broadcasting as an all sum all. In practice, we use the
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forward operation


xxx
...

xxx

=


III1
...

IIInw


[
III1 . . . IIInw

]


ΨΨΨ1
. . .

ΨΨΨnw




ααα1
...

αααnw

 . (5.15)

The adjoint operation is


ααα1
...

αααnd

=


ΨΨΨ†1

. . .

ΨΨΨ†nw




xxx
...

xxx

 . (5.16)

5.2.5 Distributed Proximal Operator

The proximal operators for the `1-norm, `2-ball, and convergence criteria may

require communication between nodes, which is discussed in this section.

5.2.5.1 Sparsity and Positivity Constraint

The `1-proximal norm does not need a communicator in itself. However, ΨΨΨ

contains more than one wavelet transform. The proximal operator for the

`1-norm is solved iteratively using the Dual Forward-Backward method. The

objective function that proximal operator minimizes can be computed to check

that the iterations have converged. For a given xxx, the proximal operator

returns

argmin
zzz

[
ιC(zzz) +‖ΨΨΨ†zzz‖`1 + 1

2γ ‖x
xx− zzz‖`2

]
. (5.17)

To assert that the Dual Forward-Backward method has converged to a

minimum when calculating the proximal operator requires checking the

variation of the `1-norm; calculating the `1-norm requires an MPI all sum all

operation over wavelet coefficients. Another assertion that can be made is that

the relative variation of xxx is close to zero, which requires no communication.
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5.2.5.2 Fidelity Constraint
In the constrained minimization problem, the solution is constrained to be

within the `2-ball through the proximal operator proxBε`2(yyy)(vvv). However, this

proximal operator requires calculating the `2-norm of the residuals ‖vvv−yyy‖`2 .

When the visibilities are distributed on each node yyyi, this calculation requires

an all sum all.

However, if each node constrains the solution to an independent local `2-

ball using proxBεj`2 (yyyj)
(vvvj) with radius εj , where ε =

√∑nd
j=1 ε

2
j . The local

`2-ball solution will also lie within the global `2-ball where we have used

proxBε`2(yyy)(vvv), which can be shown using the triangle inequality. This requires

less communication (introducing a new εj for each node is suggested [30]).

However, the communication overhead of calculating a distributed `2-norm is

negligible compared to communicating entire images. Furthermore, using the

global `2-ball is more robust in convergence rate as it is independent of how

the measurements are grouped across the nodes.

5.2.6 Distributed Convergence
There are multiple methods that can be used to check that the solution has

converged. For example, when the relative difference of the solution between

iterations is small, i.e. ‖xxx(i) − xxx(i−1)‖`2/‖xxx(i)‖`2 < δ for a small δ; when

the relative difference of the objective function between iterations is small;

and the condition that the residuals of the solution lie within the `2-ball2.

These convergence criteria need to be communicated across the nodes. The

convergence criteria need to be chosen carefully, since the quality of the output

image can be degraded if the iterations have not converged sufficiently.

5.2.7 Distributed ADMM
With PURIFY, we build on the previous sections and combine the MPI

distributed linear operators and proximal operators to solve the radio

interferometric imaging inverse problem. The previous section discusses how
2A feature of ADMM is that it will not ensure that the residuals lie in the `2-ball for

each iteration but it will converge to this condition.
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to distribute ΦΦΦ for distributed yyyj , and how to distribute ΨΨΨ for distributed

wavelet coefficients. In Algorithms 6 and 7, we outline MPI algorithms that

use two variations of the measurement operator. Algorithm 6 uses an all sum

all in the adjoint of the measurement operator following Section 5.2.3.1 and

Algorithm 7 performs an FFT on the root node distributing parts of the grid

following Section 5.2.3.2. In practice we recommend using Algorithm 6 as it

can be easily modified to efficiently model wide-field effects, as demonstrated

in [2]. Furthermore, Algorithm 6 is simpler to implement.

5.2.8 Global Fidelity Constraint ADMM

When the measurements are spread across the various nodes, communication

is required to ensure that the same `2-ball constraint is enforced across all

measurements. The proximal operator for the `2-ball is

PεB(zzzj) ∆=


ε

zzzj−yyyj√
AllSumAllj(‖zzzj−yyyj‖2`2)

+yyyj
√

AllSumAllj(‖zzzj−yyyj‖2`2)> ε

zzzj
√

AllSumAllj(‖zzzj−yyyj‖2`2)≤ ε
.

(5.18)

5.2.9 Local Fidelity Constraint ADMM

We can split the single `2-ball into many, and restate a new constrained

problem, i.e.,

xxx? = argmin
xxx

‖ΨΨΨ†xxx‖`1 + ιC(xxx) +
nd∑
j=1

ιBj (ΦΦΦjxxx)
 . (5.19)

In particular, the alternating minimization involving the slack variable rrr is

split into solving each rrrj independently

min
rrrj

{
µ
[
ιBj (rrrj)

]
+ 1

2
∥∥∥rrrj−ΦΦΦjxxx− sssj

∥∥∥2
`2

}
. (5.20)
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Algorithm 6 Distributed Image (Dual Forward-Backward ADMM):
Every node has access to a global `2-ball proximal and a serial version of the
measurement operator ΦΦΦj . After the adjoint of the measurement operator is
applied, an AllSumAll is performed over the returned image of each node j,
then each node has the combined image. An AllSumAll is also used after the
forward wavelet operator ΨΨΨj . Communication is needed in calculation of PεB
with an AllSumAll in the `2-norm of the residuals. Using instead PεjBj removes
this communication overhead but changes the minimization problem.

1: given xxx(0), rrr
(0)
j , sss

(0)
j , qqq

(0)
j ,γ,ρ,%

2: repeat for t= 1, . . .
3: ∀j ∈ {1, . . . ,nd} do in parallel
4: vvv

(t)
j = ΦΦΦjxxx

(t−1)

5: rrr
(t)
j = PεB

(
vvv

(t)
j + sss

(t−1)
j

)
6: sss

(t)
j = sss

(t−1)
j +%

(
vvv

(t)
j − rrr

(t)
j

)
7: qqq

(t)
j = ΦΦΦ†j

(
vvv

(t)
j − rrr

(t)
j + sss

(t)
j

)
8: x̃xx(t) = xxx(t−1)−ρAllSumAllj(qqq(t)

j )
9: xxx(t) = DualFB

(
x̃xx(t),γ

)
10: end
11: until convergence
12: function DualFB

(
zzz,γ

)
13: given ddd

(0)
j ,η

14: z̄zz(0) = PC
(
zzz
)

15: repeat for k = 1, . . .
16: ∀j ∈ {1, . . . ,nw} do in parallel

17: ddd
(k)
j = 1

η

I−Sγ
(ηddd(k−1)

j + ΨΨΨ†j z̄zz(k−1)
)

18: z̄zz(k) = PC
(
zzz−AllSumAlljjj

(
ΨΨΨjddd

(k)
j

))
19: end
20: until convergence
21: return z̄zz(k)

Each `2-ball proximal operator acts on a different section of yyyj , so they can be

performed in parallel with no communication [30]

PεjBj (zzzj)
∆=


εj

zzzj−yyyj
‖zzzj−yyyj‖`2

+yyyj ‖zzzj−yyyj‖`2 > εj

zzzj ‖zzzj−yyyj‖`2 ≤ εj
. (5.21)
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Algorithm 7 Distributed Fourier Grid (Dual Forward-Backward ADMM):
Every node has access to a global `2-ball proximal operator. The measurement
operator is split. First, the root process computes FFFZZZSSS, and scatters parts
of the FFT grid bbb

(t)
j to each node. Each node then applies GGGj to predict the

visibilities for the jth node. After the `2-ball proximal operator is applied,
each node applies GGG†j , then the root node gathers and adds the result.
Then an update image is broadcast to the other nodes, which is needed for
DualFB

(
x̃xx(t),γ

)
. The rest of the algorithm is as in Algorithm 6.

1: given xxx(0), rrr
(0)
j ,sss

(0)
j , qqq

(0)
j ,γ,ρ,%

2: repeat for t= 1, . . .
3: ∀j ∈ {1, . . . ,nd} do in parallel
4: Root process only: b̃bb(t) = FFFZZZSSSxxx(t−1)

5: bbb
(t)
j = Scatterj(MMM j b̃bb

(t))
6: vvv

(t)
j =GGGjbbb

(t)
j

7: rrr
(t)
j = PεB

(
vvv

(t)
j +sss

(t−1)
j

)
8: sss

(t)
j = sss

(t−1)
j +%

(
vvv

(t)
j − rrr

(t)
j

)
9: qqq

(t)
j =GGG†j

(
vvv

(t)
j − rrr

(t)
j +sss

(t)
j

)
10: Root process only: qqq(t)

j = Gatherj(qqq(t)
j )

11: Root process only: x̃xx(t) = xxx(t−1)−ρZZZ†FFF †
nd∑
j=1

MMM †jqqq
(t)
j

12: x̃xx(t) = Broadcast(x̃xx(t))
13: xxx(t) = DualFB

(
x̃xx(t),γ

)
14: end
15: until convergence
16: function DualFB

(
zzz,γ

)
17: given ddd

(0)
i ,η

18: z̄zz(0) = PC
(
zzz
)

19: repeat for k = 1, . . .
20: ∀j ∈ {1, . . . ,nw} do in parallel

21: ddd
(k)
j = 1

η

(
I−Sγ

)(
ηddd

(k−1)
j + ΨΨΨ†j z̄zz(k−1)

)
22: z̄zz(k) = PC

(
zzz−AllSumAllj

(
ΨΨΨjddd

(k)
j

))
23: end
24: until convergence
25: return z̄zz(k)

By replacing PεB(zzzj) with PεjBj (zzzj) in Algorithms 6 and 7, the communication

needed can be reduced.

The reduced communication overhead due to the local `2-ball constraint
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is negligible compared to the overhead of the Broadcast and AllSumAll

operations performed on xxx, since nd� N . Additionally, there is a drawback

when the convergence is sensitive to the distribution of yyyj , which is not the

case for the global `2-ball ADMM. We thus advocate using the global fidelity

constraint.

5.3 Algorithm Performance using PURIFY
We have implemented the MPI ADMM algorithms from the previous sections

in PURIFY and SOPT. In this section, we benchmark the performance against

the non-distributed counterpart [1], to show that such methods can decrease

the time required for each iteration. We also implement and benchmark a GPU

implementation of the measurement operator against its CPU implementation,

to show that GPU implementations can further increase the performance

(which can be used in conjunction with the MPI algorithms).

5.3.1 PURIFY Software Package

PURIFY has been developed as a software package that will perform

distributed sparse image reconstruction of radio interferometric observations

to reconstruct a model of the radio sky. The sparse convex optimization

algorithms and MPI operations have been implemented in a standalone library

known as SOPT. Previous versions of PURIFY are described in [29, 1]. In this

section, we describe the latest release of PURIFY (Version 3.0.1) [7] and latest

release of SOPT (Version 3.0.1) [8]. You can download and find details on

PURIFY at https://github.com/astro-informatics/purify and SOPT at

https://github.com/astro-informatics/sopt.

PURIFY and SOPT have been developed using the C++11 standard. We

use the software package Eigen for linear algebra operations [101]. OpenMP is

used to increase performance of the FFT, discrete planar wavelet transforms,

and sparse matrix multiplication. The separable 2 dimensional discrete

Daubechies wavelet transforms (1 to 30) have been implemented using a

lifting scheme (more details on wavelet transforms can be found in [131, 132]),

https://github.com/astro-informatics/purify
https://github.com/astro-informatics/sopt
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and have been multi-threaded over application of filters. The sparse matrix

multiplication is multi-threaded over rows, requiring the sparse matrix to be

stored in row-major order for best performance. To perform operations on a

GPU, we use the library ArrayFire, which can be used with a CPU, OpenCL,

or CUDA back-end [133]. Within SOPT, we have implemented various MPI

functionality (all sum all, broadcast, gather, scatter, etc.) to interface with

data types and communicate the algorithm operations across the cluster. It

is possible to read the measurements (and associated data) using UVFITS

or CASA Measurement Set (MS) formats. The UVFITS format follows the

format set by [134]. The output images are saved as two dimensional FITS file

images, as a sine projection. Currently, the distributed algorithm supported is

ADMM. Furthermore, w-projection and w-stacking algorithms are supported

for wide-fields of view and are described in the following chapters.

5.3.2 Distribution of Visibilities

PURIFY can read visibilities {yyyi}
nd
i=1, and scatter them to each node on the

cluster. How these measurements are distributed is not important when using

the global `2-ball constraint. However, when using local `2-ball constraints,

the way the visibilities are grouped for each node could make a difference to

convergence, where it could be better to keep similar baselines on the same

node. We do this by assigning different nodes to different regions of the FFT

grid, or by assigning different nodes to regions in baseline length
√
u2 +v2.

However, when using the w-stacking algorithm k-means with MPI is used to

redistribute the visibilities over the cluster using an all to all operation, as

discussed in [2].

5.3.3 Benchmark Timings

In the remainder of this section, we time the operations of the MPI algorithms.

We use Google Benchmark3 to perform the timings of the mean and standard

deviation for each operation benchmarked. The times provided are in real

3https://github.com/google/benchmark

https://github.com/google/benchmark
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time (incorporating communication), not CPU time, since multi-threaded

operations are sensitive to this difference. Each benchmark configuration was

timed for 10 runs, providing a mean and standard deviation used for timings

and errors in the sections that follow.

The computing cluster Legion at University College London was used to

measure the benchmark timings. We used the Type U nodes on Legion, which

are configured as a 16 core device with 64GB RAM (160 Dell C6220 nodes -

dual processor, eight cores per processor4).

In the benchmarks, the root node generates a random Gaussian density

sampling distribution of baselines (u,v), ranging from ±π along each axis.

The weights WWW j and baseline coordinates (uuuj ,vvvj) are distributed to nodes

1 ≤ j ≤ nd. This allows the construction of WWW jGGGj on each node. We use

the Kaiser-Bessel kernel as the interpolation (anti-aliasing) convolution kernel

for GGGj, with a minimum support size of J = 4 (see [1] for more details). The

identical construction of FFFZZZSSS can then be performed on each node or the root

node (depending on the algorithm), and allow us to apply ΦΦΦ in each of the

MPI algorithms.

5.3.4 MPI Measurement Operator Benchmarks

The AllSumAll(xxx) and Broadcast(xxx) in the ΦΦΦ† operations will be expensive in

communication overheads for large N . Additionally, the calculation of the FFT

FFF does not take advantage of MPI and will have the cost O(N logN), albeit

the FFT is multi threaded using FFTW and OpenMP to provide performance

improvements. It is more likely that the time taken to compute the FFT

will take longer than the communication of the image at large N . If we evenly

distribute the visibilities so that each node has Mj =M/nd, the computational

complexity of the sparse matrix multiplication GGGj reduces to O(MjJ
2) per

node, providing a large advantage at large M and nd.

We benchmark the MPI ΦΦΦ and ΦΦΦ† implementations against the non-

4More details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#
Legion_technical_specs.

https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Legion_technical_specs
https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Legion_technical_specs
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Figure 5.1: Time to apply forward ΦΦΦ (left) and adjoint ΦΦΦ† (right) as a function of
the number of MPI nodes, benchmarked against the non MPI (serial)
implementation. We fix the number of visibilities and image size
at N = 1024× 1024, M ∈ {106,107}. For the forward and adjoint
operators, the left MPI implementation corresponds to using an all
sum all MPI operation in the adjoint described in Section 5.2.3.1;
on the right, the MPI implementation corresponds to distribution
of the grid from the root node, as described in Section 5.2.3.2. Serial
corresponds to the serial algorithm that contains no MPI and operates
on a single node, but it uses multi-threading through OpenMP.

distributed equivalent using PURIFY. We use 106 and 107 visibilities, and

a fixed image size of N = 1024× 1024. We vary the number of nodes from

1,2,3,4,8,12. Results are shown in Figure 5.1. For 106 visibilities there

is no improvement on the measurement operator performance for each MPI

implementation. However, for 107 it is clear that increasing the number of

nodes increases the performance. The saturation for nd ≥ 5 can be explained

by the computational cost of the FFT FFF being greater than the sparse matrix

multiplication GGGj . For small numbers of nodes nd, i.e. 1 or 2, the application

time is less reliable, but for larger nd it becomes more stable. We also find that

distributing sections of the grid (described in Section 5.2.3.2) is more expensive

at low nd than distributing the image (described in Section 5.2.3.1).

5.3.5 MPI Wavelet Operator Benchmarks

Like the measurement operator ΦΦΦ, the wavelet operator ΨΨΨ requires an

AllSumAll(xxx) operation. However, even with multi-threaded operations in

the wavelet transform, computing ΨΨΨj is time consuming. When nw > nd,
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multiple wavelet transforms are performed on some of the nodes, for example

when nw = 2nd there are two wavelet transforms per a node. In many cases

we expect that the numbers of nodes is greater than the number of wavelet

transforms, i.e. nd ≥ nw, and the maximum benefit from MPI distribution of

wavelet transforms can be seen. This can be seen in Figure 5.2, where there is a

performance improvement with using MPI to distribute the wavelet transforms

across nodes.

In the benchmarks, we use nw = 9 where ΨΨΨ0 is a Dirac basis and ΨΨΨ1 to

ΨΨΨ8 are 2 dimensional (the product of 1 dimensional) Db wavelets 1 to 8.

We perform the wavelet transform to three levels. Increasing the number of

wavelet levels requires more computation, but much of this computation is in

the first few levels. Furthermore, the low pass and high pass filters in the Db

increase with size from 1 to 8, meaning Db 8 requires more computation than

Db 7 at each wavelet level (but we have found the time difference small). The

forward operator ΨΨΨ requires up-sampling, meaning that it requires a factor of

2 times more computation than the adjoint ΨΨΨ†. The asymptotic behavior

in Figure 5.2 shows that there is little improvement in application time by

distributing the wavelet transforms for nw > 4 nodes. This could be due to

communication or other factors around the method of implementation.

5.3.6 MPI Algorithm Benchmarks

As a demonstration the impact of the MPI operators, we benchmark the

Algorithms 6 and Algorithm 7 against the serial Algorithm 5 (equivalent to

nd = 1). We fix the number of visibilities and image size at N = 1024×1024,

M ∈ {106,107}.

We use local `2-ball constraints for each node as described in Section 5.2.9.

However, PURIFY also provides the ability to use the global `2-constraint. In

practice, we do not find much difference in computation time between using a

local or global `2-constraint.

In Figure 5.3, we time the application of one iteration of ADMM using

one Dual Forward-Backward iteration. We find a clear increase in performance
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Figure 5.2: Time to apply forward ΨΨΨ (left) and adjoint ΨΨΨ† (right) as a function
of the number of MPI nodes, benchmarked against the non MPI
(serial) implementation. The forward operator requires 2 times more
calculations than the adjoint due to the up sampling operations.
Distributing the wavelet transforms across the nodes greatly decreases
the time for calculation, but there is less improvement after 4 nodes.
Serial corresponds to the serial algorithm that contains no MPI
and operates on a single node, but it uses multi-threading through
OpenMP.

when increasing the number of nodes used. This is predicted from the

performance improvements from the previous sections. However, the

improved times due to distribution seem to be greater than expected from

the measurement and wavelet operators alone, suggesting that further aspects

of this ADMM implementation improve with distribution.

5.3.7 GPU Measurement Operator Benchmarks

The MPI measurement operators in the previous subsection can also make

use of graphics processing units (GPUs) to increase performance. We have

implemented the MPI measurement operators using the software package

ArrayFire [133], which provides the flexibility to chose a CPU, CUDA,

or OpenCL back-end to perform computations. The hybrid MPI-GPU

measurement operator works the same as the MPI measurement operator, but

all operations on a given node are performed on a GPU. In this section, we

show that the GPU can increase performance. We benchmark the ArrayFire

implementation using a CUDA back-end, against the equivalent measurement

operator. No MPI is used in these benchmarks, since it is clear from the
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Figure 5.3: Time to apply a single iteration of the ADMM algorithm as a function
of the number of MPI nodes, benchmarked against the non MPI
(serial) implementation. The Dual Forward Backward algorithm is
limited to one iteration. We fix the number of visibilities and image
size at N = 1024× 1024, M ∈ {106,107}. On the left the MPI
implementation corresponds to using Algorithm 6 (which uses the
MPI measurement operator from Section 5.2.3.1 where the image is
distributed); on the right MPI implementation corresponds to using
Algorithm 7 (which uses the MPI measurement operator from Section
5.2.3.2 where the Fourier grid is distributed). The improvements due
to distribution seem to be greater than expected from the measurement
and wavelet operators alone, suggesting that other aspects of this
ADMM implementation improve with distribution.

previous section that MPI will also increase performance. We perform the

benchmarks on a high performance workstation, using an NVIDIA Quadro

K4200 GPU (with 4GB RAM). We use 5×106 visibilities, and use the image

sizes of 256×256, 512×512, 1024×1024 and 2048×2048. We find that the

GPU implementation of degridding and gridding is about 10 times faster than

the CPU counter part when there is a limit to using one thread. Figure 5.4

shows the application of ΦΦΦ and ΦΦΦ†, with a large performance improvement

when using the GPU. Interestingly, there is much less increase in performance

using a GPU over using 48 CPU threads. Considering that GPUs have

hundreds to thousands of threads, this suggests that using a CPU with more

threads could be more beneficial. Furthermore, the 4 GB memory limit on the
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Figure 5.4: Time to apply forward ΦΦΦ and adjoint ΦΦΦ† as a function of image size,
using CPU implementation and ArrayFire with GPU CUDA back-end
implementation. We fix the number of visibilities at M = 5× 106,
and vary the width of a square image. The CPU times for 1 and
48 threads show that there is some improvement by using threading
for the CPU. However, it is clear that GPU implementation remains
almost an order of magnitude faster for both gridding and degridding,
especially at larger image sizes.

GPU can make scaling to large images or data sets on one node difficult.

5.4 Big Data Interferometric Image Reconstruction

Using PURIFY
We follow [1] in performing reconstruction of a simulated M31 observation, but

using Algorithm 6 where we distribute the image (rather than distributing the

Fourier grid as proposed by [30]), with a global `2 fidelity constraint (rather

than separate local fidelity constraints as proposed by [30]), to reconstruct

an observation of 1 billion measurements. For simulation purposes, we use

PURIFY to generate 20 million measurements on each of the 50 nodes

considered. 50 nodes are not just needed for the speed of iterations, but

for the memory required during image reconstruction from the measurements

and their interpolation weights GGGj. The measurements are created with the
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Kaiser-Bessel kernel as the interpolation (anti-aliasing) convolution kernel for

GGGj, with a minimum support size of J = 8 (see [1] for more details). We use a

Gaussian sampling pattern for (u,v), with the standard deviation of π/3 for a

range of u,v ∈ [−π,π].

To simulate the observation measurements, we calculate

yyy = ΦΦΦjxxxGroundTruth +nnnj . (5.22)

where nnnj is sampled from identically independently distributed Gaussian noise

and xxxGroundTruth is the simulated ground truth image of the sky. The standard

deviation of the Gaussian noise for each measurement is determined by

σi = ‖Φ
ΦΦxxxGroundTruth‖`2√

M
×10−

ISNR
20 , (5.23)

where the ISNR is the input signal to noise ratio (SNR) on the simulated

visibilities with

‖ΦΦΦxxxGroundTruth‖`2 =
√

AllSumAll(‖ΦΦΦjxxxGroundTruth‖2`2) . (5.24)

See the previous chapter for more explanation on ISNR. We estimate a global

ε from σi by [1]

ε2 = (2M + 2
√

4M)σ
2
i

2 . (5.25)

The local εj can be estimated as

ε2
j = (2Mj + 2

√
4Mj)

σ2
i

2 . (5.26)

The term
√

4Mj means that ε2 6= ∑
j ε

2
j ;5 however, we find that in the limit

that M is large and dominates over
√
M and ∑j

√
Mj . For reconstruction, the

support size is lowered to J = 4.

We simulate an observation using an ISNR of 30 dB, and an image of

5[30] redefines the local εj such that ε2 =
∑
j ε

2
j .
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M31 that is 1024× 1024 pixels. To perform the reconstruction we use 1

billion visibilities distributed over 50 nodes of the Grace computing cluster

at University College London. Each node of Grace contains two 8 core Intel

Xeon E5-2630v3 processors (16 cores total) and 64 Gigabytes of RAM.6

Figure 5.5 shows the ground truth, reconstruction, and residuals of M31

using an image size of 1024 by 1024 pixels. We use the wavelet dictionary of

a Dirac basis, followed by Daubechies 1 to 8, each with 4 wavelet levels. We

use a positive valued constraint. The Dual Forward-Backward iterations for

the `1-proximal operator converge at a relative difference of less than 10−3.

Five Dual Forward-Backward iterations are needed per ADMM iteration. The

reconstruction has a reconstructed SNR of 31.9554 dB using the formula

SNR = 20log10

[
‖xxx‖`2

‖xxx−xxxGroundTruth‖`2

]
, (5.27)

where xxx∗ is the ground truth and xxx is the reconstructed image. The residuals

show that most of the small and large scale structures of M31 are modeled,

which qualitatively shows that the reconstruction models the data well. While

there were only 9 iterations of ADMM and this took less than 2 minutes to

reach the convergence criteria, we expect that performing more iterations could

produce better results. The structure left in the residuals suggests a tighter

convergence criteria should be given. Such a reconstruction using 1 billion

measurements would not be possible without making use of the distributed

Dual Forward-Backward ADMM algorithm. A similar reconstruction was

performed with wide-field corrections in [2], where the same Dual Forward-

Backward ADMM algorithm was used.

5.5 Conclusion
In this chapter we have used the mathematics of convex optimization methods

with their application to distributed interferometric image reconstruction as

6More details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_
technical_specs

https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
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Figure 5.5: Reconstruction of simulated M31 observation using Algorithm 6 with
a global `2 constraint, with the ground truth (top), reconstructed sky
model (bottom left), and residuals (bottom right). The simulation is
1024 pixels in width and height. One billion visibilities were evenly
distributed across 50 nodes, with one MPI process and 20 million
measurements per compute node. With 9 iterations of ADMM, an
accurate full sky model is reconstructed. There are structures left in
the residual that suggest the convergence criteria could be improved,
and more iterations would be helpful.
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implemented by the PURIFY 3.0.1 and SOPT 3.0.1 software packages [7, 8].

We reviewed the planar radio interferometric measurement equation and derive

the objective functions that can be minimized to obtain a solution to the inverse

imaging problem. We then introduce various convex optimization techniques

that can be used to minimize these objective functions. We develop algorithms

to distribute and parallelize these approaches when dealing with very large data

sets, where both computations and data are distributed across the nodes of a

computing cluster, while on each node multi-threading is exploited on GPUs

or across CPU cores. We then benchmark the implementations, demonstrating

considerable computational savings compared to the serial equivalents.

With next generation radio interferometric telescopes coming online,

distributed and parallel image reconstruction and data analysis will be

necessary to deal with the large image sizes and large volumes of data of

forthcoming telescopes. This work is an important step on the path to

developing computational algorithms that will be required for telescopes to

reach the high resolution and sensitivity needed for science goals of telescopes

such as the SKA.





Chapter 6

Fast and Exact w-stacking

w-projection Hybrid Algorithm

Since the advent of radio interferometry in the 1940s [135, 136] radio

astronomers have built an impressive suite of interferometric imaging

techniques to allow signals from collections of antennas to be used collectively

to image astronomical sources. As successive generations of interferometric

arrays were built and operated, techniques were developed to obtain an

estimate of the true sky brightness distribution, and to correct for different

instrumental affects inherent in the process. Among these methods are

processes such as deconvolution of the antenna response, so-called ‘CLEANing’

[17, 137, 47, 51], and methods to account for wide-field and other direction

dependent effects (DDEs) such as w-projection [76] and a-projection [138].

However, the w-projection algorithm kernels, used to correct for non-

coplanar array and sky curvature, to date have been computationally expensive

to calculate, with kernel generation dominated by the Fast Fourier Transform

(FFT) [139]. In particular the gridding kernel (anti-aliasing kernel) and w-

chirp are multiplied in image space, and then an FFT is applied to generate

the w-projection kernel [140]. This means it has not been possible to generate

a kernel for each w-term individually, instead they are generated as w-planes,

approximately correcting for a group of w-terms.

For extremely wide-fields of view, this becomes expensive in computation
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and memory, and requires both high resolution sampling to model the spherical

curvature and extra zero padding to increase sub-pixel accuracy in the uv-

domain. Such a cost in kernel construction has motivated alternative imaging

strategies, such as image domain gridding [141]. Even for small fields of view

with high resolution, it is not possible to perform an FFT for each visibility on

large data sets, limiting the kernel calculation to a small number of w-planes.

However, [142] mathematically showed that for narrow fields of view the w-

projection kernel can be approximated as separable into a product of two 1

dimensional kernels, reducing the resources required to generate w-planes.

In this chapter, we set out to improve the analytic understanding of wide-

field interferometry, in the hopes that it would provide clues on how to improve

the strategy of expensive kernel construction. We start by presenting the non-

standard analytic expression for the 3 dimensional Fourier transform used to

create the w-projection kernel. Then using the analytic expression for the

Fourier transform of a spherical shell and enforcing the horizon window with

a convolution kernel, we arrive at the 3 dimensional expression for the sky

curvature and horizon in the uvw-domain. The real component of the kernel is

a radial Sinc function in uvw. It is also clear that the horizon window produces

the imaginary component, which is a Hilbert transform of the real component.

With this understanding, we investigate construction through 3 dimensional

convolution in the uvw-domain to generate gridding kernels. However, this

proves computationally challenging due to rapid osculations and large function

support1, and an alternative strategy is provided in the next chapter.

We find it is less challenging to generate the w-projection kernel via

a Fourier integral using 2 dimensional adaptive quadrature, due to the

smoothness of the window function and the chirp. However, under the

condition that the window function has radial symmetry, this 2 dimensional

Fourier integral is equivalent to 1 dimensional Hankel transform. We show that

such a 1 dimensional Hankel transform can be fast and accurately computed

1By the support of a function we mean the region of the domain where the function has
non-zero output.
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with adaptive quadrature compared to the 2 dimensional Fourier integral, and

produces the same imaging results.

We discuss the computational impact of having a 1 dimensional radially

symmetric w-projection kernel, such as reducing the dimension of w-planes

from 2 dimensional to 1 dimensional radial planes, allowing new possibilities

for reducing kernel construction costs.

Lastly, we provide a demonstration of exact correction of the w-component

to a MWA observation of the Puppis A and Vela supernova remnants using the

sparse image reconstruction using the software package PURIFY [29, 1], using

the hybrid of w-stacking and w-projection with distributed computation on a

high performance computing cluster. Correction of the w-component for each

measurement is only possible with the developments in this work, a radially

symmetric w-projection kernel and distributed computation with w-stacking.

The developments presented here provide an accurate route for reducing

the computational overhead for next generation wide-field imaging, thus

providing a step forward on the path to realizing the SKA.

The calculation of a 1 dimensional radially symmetric w-projection kernel

is derived in Section 6.3. The 1 dimensional radially symmetric kernel is then

numerically validated and benchmarked in Section 6.4. Section 6.5 details and

demonstrates the computationally distributed w-stacking and w-projection

hybrid algorithm that is possible with a 1 dimensional w-projection kernel.

This chapter is concluded in Section 6.6.

This chapter starts with an introduction to the w-projection algorithm in

Section 6.1, Section 6.2 extends the w-projection derivation starting from a 3

dimensional setting.

6.1 The projection algorithm
The projection algorithm has been developed to model baseline dependent

effects. Typically, DDEs in the measurement equation such as the primary

beam and w-term are multiplied with the sky intensity in the image domain.
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Since they are baseline dependent, a separate primary beam and w-term would

need to be multiplied for each baseline – which is computationally inefficient as

this involves applying a different gridding/degridding process for each baseline.

If we define our baseline dependent DDEs as

c(l,m;w) = a(l,m)e−2πiw(
√

1−l2−m2−1)
√

1− l2−m2 , (6.1)

the measurement equation can be expressed as

y(u,v, w̄+w) =
∫
x(l,m)e−2πiw̄(

√
1−l2−m2−1)

×c(l,m;w)e−2πi(lu+mv) dldm.

(6.2)

We can use the convolution theorem, which states that for functions f and

g we have F−1{F{f}F{g}} = f ? g, where convolution in 3 dimensional is

defined as

(f ?g)(x,y,z) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
f(t,r,q)g(x− t,y− r,z− q)dtdrdq . (6.3)

This produces the expression

y(u,v,w) = ỹ(u,v,0)?C(u,v,w) , (6.4)

where ỹ(u,v,0) is the Fourier transform of the sky brightness

ỹ(u,v,0) =
∫
x(l,m)e−2πiw̄(

√
1−l2−m2−1)e−2πi(lu+mv) dldm. (6.5)

where the projection kernel C is the Fourier representation of c, and ? is the

convolution operation.

6.1.1 Projection with convolutional degridding

Since the convolution with gridding kernels is already baseline dependent, we

can include the projection convolution in the gridding process. If we let G(u,v)
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be a gridding kernel, and the Fourier transform of the window function g(l,m),

we find

y(u,v,w) =
∫ [x(l,m)

g(l,m)

]
e−2πiw̄(

√
1−l2−m2−1)

×g(l,m)c(l,m;w)e−2πi(lu+mv) dldm,

(6.6)

this suggests that we should define a new convolutional kernel

[GC] (u,v,w) =G(u,v)?C(u,v,w) (6.7)

y(u,v,w) = ỹ(u,v,0)? [GC] (u,v,w) , (6.8)

where ỹ(u,v,0) is now the Fourier transform of the gridding corrected sky

brightness

ỹ(u,v,0) =
∫ x(l,m)e−2πiw̄(

√
1−l2−m2−1)

g(l,m) e−2πi(lu+mv) dldm. (6.9)

Traditionally, the kernel is window separable in l andm, i.e. g(l,m) = g(l)g(m).

But, as relevant for the later sections of this work, it can be a radial function,

i.e. a function of
√
l2 +m2 only.

This shows that we can include the projection convolution in the gridding

process through the kernel GC in Equation 6.8 and the operator GGGCCC seen in

Equation 2.24. In the next section, we derive expressions for the chirp kernel

C in uvw-space from a 3 dimensional setting.

6.2 Projection algorithm in a 3 dimensional

setting

In this section, we derive the 3 dimensional w-projection kernel CH formula

including the horizon. We start using a measurement equation which can be

expressed to include the horizon explicitly and any restrictions of our signal to

the sphere. We restrict the signal above horizon in 3 dimensional through the
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Heaviside step function

Θ(n) =



1 n > 0

1
2 n= 0

0 n < 0

(6.10)

and to the sphere through the Dirac delta function, yielding δ(1− l2−m2−n2),

cH(l,m,n;w′) = Θ(n)δ(1− l2−m2−n2)e+2πiw′ . (6.11)

This leads to the measurement equation

y(u,v,w′) =
∫ ∞,∞,∞
−∞,−∞,−∞

x(l,m)a(l,m)cH(l,m,n;w′)

×e−2πi(lu+mv+nw′)dldmdn.
(6.12)

where equivalent 3 dimensional equations can be found in [36, 76, 12]. Unlike

the previous section, the above equation has no 1/n term. This term is

provided by the Dirac composition rule, which is shown in the next subsection.

For telescopes that make use of Earth Rotation Synthesis and track a

source location across the sky, some pointing locations during the observation

could be closer to the horizon. There might be times when a source is below

the horizon and not detected by the telescope, but can be detected above the

horizon at other times. In most cases this effect would be small, but could

in principle be modeled in the primary beam for telescopes that are sensitive

at the horizon. Many telescopes with an extremely wide-field of view use the

drift scan observation strategy where the horizon is fixed as a function of time

[112].

6.2.1 w-projection including the horizon directly

In section, we show that the kernel in the work of [76] is equivalent to including

both the horizon and spherical effects in the projection algorithm in a full 3
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dimensional setting. The Fourier transform of Equation 6.11 is

CH(u,v,w) =
∫ ∞,∞,∞

0,−∞,−∞
δ(1− l2−m2−n2)e−2πi(lu+mv+nw)e+2πiwdldmdn.

(6.13)

We find that the Dirac delta function argument is zero at two values of n= n±,

where n± =±
√

1− l2−m2 are the two roots. In addition, we have δ(n2−

n2
+) = (δ(n−n+)−δ(n−n−))/(2n+), however, the horizon eliminates the n=

n− root from the integral. Using the composition rule for the Dirac delta

function we have

CH(u,v,w) =
∫ 1,1,1

0,−1,−1

δ(n−n+)
2

e−2πiw
√

1−l2−m2

√
1− l2−m2

×e−2πi(ul+mv)e+2πiwdldmdn,
(6.14)

where the bounds of integration are now restricted to the sphere. Doing an

integral over n we find

CH(u,v,w) =
∫ 1,1

−1,−1

e−2πiw(
√

1−l2−m2−1)

2
√

1− l2−m2 e−2πi(ul+mv)dldm. (6.15)

This is the standard expression used for the w-projection kernel in [76], with

the inclusion of a factor of 1/2 from there being two roots and normalization

of the Dirac Delta function. To date, there is no analytical solution for this

integral beyond approximations. One reason this integral may be difficult to

solve analytically, is the breaking of spherical symmetry when including the

horizon.

Having no analytic solution to this integral poses a problem in

understanding the properties of CH(u,v,w). This has lead to various

approximations of CH(u,v,w), where the solution can be used estimate its

support and amplitude.

We can expand w(
√

1− l2−m2−1) in a Taylor expansion to a given order.
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We can expand in (
√

1− l2−m2−1) to first order, we find

w(
√

1− l2−m2−1) =−w(l2 +m2)
2 +O(w(l2 +m2)2) . (6.16)

This has the assumption w(l2 +m2)2� 1. Also choosing a small field of view

(l2 +m2)2� 1 leads to

e−2πiw(
√

1−l2−m2−1)

2
√

1− l2−m2 → eπiw(l2+m2)

2 . (6.17)

In [76], they state the above small field of view approximation, which is a

Gaussian. The Fourier transform of a Gaussian function is also Gaussian, and

leads to

CH(u,v,w)∝ eiπ
(u2+v2)

w

iw
, (6.18)

however, they comment that this expression breaks down at large fields of view

and diverges at w = 0. By choosing to fix the sky to a parabola, rather than

the sphere, we arrive at the same approximation above. First we choose

cH(l,m,n;w′) = 1
2δ
(
n+ l2 +m2

2

)
, (6.19)

then by integrating over n in Equation 6.12 we arrive at same small field of

view approximation.

6.2.2 w-projection with exact spherical correction

We choose to replace the horizon with a window function, where the expression

for the full sphere is

cH(l,m,n;w′) = h(n)δ(1− l2−m2−n2) . (6.20)
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Any scaling from this window function can be corrected in the upper

hemisphere of the measurement equation

y(u,v,w′) =
∫ ∞,∞,∞
−∞,−∞,−∞

x(l,m)a(l,m)
h(
√

1− l2−m2)
cH(l,m,n;w′)

×e−2πi(ul+mv+nw′)e+2iπw′dldmdn.
(6.21)

6.2.2.1 No horizon

When h(n) = 1 there is no horizon and the w-projection kernel is calculated

from

C(u,v,w) =
∫ ∞,∞,∞
−∞,−∞,−∞

δ(1− l2−m2−n2)e−2πi(ul+mv+nw)e+2πiwdldmdn.

(6.22)

The Fourier transform of this equation has an analytic solution that can be

simply expressed as a real valued function

C(u,v,w) = 2πsinc
(

2π
√
u2 +v2 +w2

)
e+2πiw , (6.23)

as shown in [143], which is solved in spherical coordinates due to symmetry.

This solution dates back as far as [144], and similar problems have been solved

in 2 dimensions in [145]. The units of (u,v,w) are implicitly chosen to depend

on the directional cosines (l,m,n), meaning
√
u2 +v2 +w2 = 1 corresponds to

the largest spatial scales.

The Sinc function above represents limits on the resolution in (u,v,w) due

to the field of view being bounded to the sphere. The uncertainty principle

states that restricting the field of view is equivalent to enforcing a resolution

limit on C(u,v,w). At a small field of view, this kernel is effectively a delta

function of small support. However, as the field of view increases, the kernel

becomes a radial Sinc function with extended support and rapid oscillations.

When mosaicking multiple fields of view, resolution in (u,v,w) is increased (as

discussed in [146] and [36]), however, the total field of view will be limited to
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the sphere as represented by this radial Sinc function.

Since x(l,m) is independent of n it will project both onto the sphere for

n and −n. While C(u,v,w) models the curvature of the sphere, it allows a

reflection of x(l,m) for −1 ≤ n < 0. This is why a horizon window function

needs to be included in the analysis.

6.2.2.2 Projecting above the Horizon

If we let H(w) be the Fourier transform of h(n), we find that the horizon effect

can be understood through the convolution theorem

CH(u,v,w) =H(w)?C(u,v,w) . (6.24)

We can get an expression for the horizon limited w-projection kernel in

the (u,v,w) domain in terms of the w-projection kernel for the full sphere.

Choosing h(n) = Θ(n) with H(w) = 1
2

[
δ(w)− i

πw

]
, we find an expression

equivalent to Equation 6.15 in the (u,v,w) domain

CH(u,v,w) = 1
2C(u,v,w)− i

2π

∫ ∞
−∞

C(u,v, t)
w− t

dt , (6.25)

where the second term is a Hilbert transform of the sphere along the w-axis.

Another equivalent expression can be found by choosing a box function h(n) =

Π(n+ 1
2) for the horizon window, by setting H(w) = eiπw sin(πw)

πw ,

CH(u,v,w) =
∫ ∞
−∞

dteiπtsinc(πt)C(u,v,w− t) . (6.26)

We are not aware of an analytic solution to this convolution, which could

improve understanding of the behavior of wide field effects.
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Figure 6.1: The oscillations of C, without the complex phase, as a function of
u for given w. Equation 6.28, which is used to calculate the pixel
size of a uv-grid, shows that many of these oscillations can occur
over the convolution window, making numerical integration difficult
for convolution with the gridding kernels G and the horizon H.
Hence, we find that convolution by numerical integration is difficult.
Additionally, we see that C has a large support that increases with
w. The top figure shows the standard Sinc function at w = 0, and
the bottom figure shows the spread of C over a wider range of u as w
increases.

6.2.3 Convolution with a gridding kernel

To calculate the w-projection kernel, we could convolve the chirp with the

gridding kernel in the (u,v,w) domain

[GC](u,v,w) =
∫ ∞,∞,∞
−∞,−∞,−∞

G(p)G(q)H(r)C(u−p,v− q,w− r)dpdqdr .

(6.27)

However, the challenge with computing this three dimensional integral is the

extended support of H and C in w. Additionally, C(u,v,w) will have rapid

oscillation in (u,v) for small values of w, making accurate numerical integration

and convolution expensive, see Figure 6.1. Therefore, we avoid this approach

in kernel calculation, and present an alternative approach in the next chapter.

6.2.4 Summary

In this section, we investigated exact analytic expressions for modeling

curvature in wide-field interferometry, for extremely wide-fields of view. This

expression has traditionally been stated in the (l,m,n) domain. However,
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this work provides the first exact analytic expression for sky curvature and

horizon seen in wide-field interferometry in the (u,v,w) domain. Unlike the

previous small field of view approximations, this exact kernel does not diverge

and is continuous. Furthermore, it provides more insight and understanding

of spherical imaging, i.e. it describes a fundamental resolution limit for the

measurement of a visibility from a sphere, and the impact of the horizon

window in the (u,v,w) domain. While this expression provides insight, the

rapid oscillations due to the spherical sky and large support make calculation

difficult. These insights suggest that exact computation of projection kernels

is more feasible through a Fourier integral from the (l,m,n) domain.
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6.3 Kernel Calculation Methods

In the previous chapter, we discussed the properties of the w-projection

kernel in the (l,m,n) and (u,v,w) domains. We expected that the properties

for numerical convolution with the chirp and the gridding kernel are more

favorable by multiplying the window and the chirp in the image domain, then

performing a Fourier transform to generate the kernel in the Fourier domain.

This should increase accuracy and reduce the total computation.

In principle we can create an image of g(l,m) and c(l,m;w) and perform

an FFT to calculate the w-projection kernel in the Fourier domain. However,

this FFT will only calculate kernel values that lie on a regular grid which

is a problem since we want to evaluate [GC](u,v,w) off of a grid. The grid

can be made finer with an FFT but this typically requires zero padding by a

factor of 2 or 8 [76]. For large image sizes this can consume a lot of memory

and time during kernel construction for large image sizes and wide-fields of

view. However, there is no need to use the FFT with g(l,m) and c(l,m;w) to

calculate a Fourier transform because the functions have a closed form. We

can then use efficient and low memory adaptive quadrature methods, which

are fast for smooth functions.

In this section, we describe two methods for calculating the w-projection

kernel using the Fourier transform. The first is numerical integration using

adaptive quadrature in 2d, the second is to restrict the imaged region to a radial

field of view allowing for a radially symmetric kernel that can be integrated

with adaptive quadrature in 1d. In the following section we compare the

numerical accuracy and speed of the two kernel construction methods. The

scaling Θ(1− l2−m2)/
√

1− l2−m2 is included in the gridding and primary

beam correction, because it is baseline independent. We do not include this

term in the gridding kernel, and we apply this in the image domain with all

other baseline independent effects.
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6.3.1 Cartesian integration

To calculate the Fourier coefficients of the w-projection corrected gridding

kernel, we need to perform a Fourier series with boundary conditions

determined by the size of the window. We let ∆u and ∆v determine the

conversion between pixel and baseline coordinates, u= upix∆u and v = vpix∆v

where upix and vpix are integer pixel values. This factor is given by

∆u=
[
2α sin

(
Nxπcell

2×60×60×180.

)]−1
. (6.28)

where cell is the size of a pixel in arc-seconds, α is the oversampling ratio, and

Nx is the image width of the x-axis. A similar formula is given for ∆v, with

respect to the y-axis. We use this field of view to integrate over the imaged

region, and including the bounds of the sphere

[GC](upix,vpix,w,∆u,∆v) =
∫ α/(2∆u),α/(2∆v)

−α/(2∆u),−α/(2∆v)
e−2πiw(

√
1−l2−m2−1)

×g(∆ul)g(∆vm)e−2πi(∆uupixl+∆vvpixm)dldm.

(6.29)

We then change coordinates l = x/∆u and m = y/∆v to be relative to the

imaged region

[GC](upix,vpix,w,∆u,∆v) = 1
∆u∆v

∫ α/2,α/2

−α/2,−α/2
e−2πiw(

√
1−x2/∆u2−y2/∆v2−1)

×g(x)g(y)e−2πi(upixx+vpixy)dxdy .

(6.30)

Here g(l) is the window function that determines the gridding kernel and [GC]

is the w-projection corrected gridding kernel. It is worth noticing that when

w = 0, ignoring normalization there is no dependence on ∆u or ∆v, unless

the condition l2 +m2 ≤ 1 is to be enforced.

Depending on the convention of the FFT operation FFF in the measurement

operator, there could be a phase offset of e±2πiupix/2 and e±2πivpix/2 required to
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centre the image2. The region of integration is determined by the zero padded

field of view (we have used zero padding by a factor of α = 2).

6.3.2 Polar integration

By performing a change of coordinates, this integral can also be evaluated in

polar coordinates

[GC](upix,vpix,w,∆u,∆v) =
1

∆u∆v

∫ α/2,2π

0,0
g(r cos(θ))g(r sin(θ))e−2πiw(

√
1−r2 cos2(θ)/∆u2−r2 sin2(θ)/∆v2−1)

×e−2πi(upixr cos(θ)+vpixr cos(θ))rdrdθ ,

(6.31)

The region is circular rather than rectangular, which is a fundamental

difference with the Cartesian expression in Equation 6.30 (the boundary

conditions for the Fourier series lie on a circle, rather than a square).

The enforces a Sinc convolution with the w-projection for the rectangular

boundary condition, and a Airy Pattern convolution (first order Bessel

Function) for the circular boundary condition. This translates to a slightly

different interpolation when up-sampling the w-projection kernel, Sinc

interpolation in the rectangular case, and J1(4π
√
u2 +v2/α)/(2

√
u2 +v2/α)

interpolation in the circular case, both enforcing a band-limit.

It is important to state, this boundary is at the edge of the zero-

padded region, which suggests that there would be little difference in practice

because it is far outside of the gridding corrected region, and will not

change suppression of aliasing error (which is the purpose of the window

function/gridding convolution function). This means that while the kernels

are fundamentally different due to the boundary condition, they will perform

the same role, and the entire measurement operators will be equivalent after

gridding correction and zero-padding.

2This is due the difference of centering the coordinates in the middle or at the corner of
the image, which can require an FFT shift.
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6.3.3 Radial symmetry

We now make our window function radially symmetric g(l)g(m)→ g(
√
l2 +m2),

and choose ∆u= ∆v so that the chirp is also radially symmetric. This allows

us to take the Fourier transform of a radially symmetric function, which is

calculated using a 1 dimensional integral rather than the 2 dimensional polar

integral in Equation 6.31, and is known as a Hankel transform3. This is given

by

[GC](
√
u2

pix +v2
pix,w,∆u) = 2π

∆u2

∫ α/2

0
g(r)e−2πiw(

√
1−r2/∆u2−1)

×J0
(
2πr

√
u2

pix +v2
pix
)
rdr ,

(6.32)

where J0 is a zeroth order Bessel function. The restriction of r/∆u < 1 is built

into the bounds of the integration. This has the large computational advantage

of only sampling along the radius, reducing how the computation scales with

field of view and w. There is also an increase in accuracy, since there is no

sampling in θ. Furthermore, the condition that we require ∆u = ∆v is not

difficult to accommodate in many cases.

6.3.4 Adaptive quadrature

To compute Equation 6.30, we use adaptive multidimensional integration. In

a multi-variate setting, quadrature is also known as cubature.

We use the software package Cubature4 which has implementations

of these algorithms. We use the h-adaptive cubature method to evaluate

the integrals in this work, which uses the work of [148] and [149] to

perform integration using an adaptive mesh to approximate the integral,

until convergence is reached (h is in reference to a length parameter of the

mesh). Cubature also has a p-adaptive method [150], which uses polynomial

based quadrature, increasing the polynomial order of the integrand until the

integration has converged, and is expected to converge faster than h-adaptive

3[147] suggested that convolutions between radially symmetric functions can be efficiently
computed using a Hankel Transform but in different astronomical contexts.

4https://github.com/stevengj/cubature
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methods for smooth integrands.

The p-adaptive method tends to converge faster than the h-adaptive

method for the 1d-integration, while providing results as accurate within

numerical error. However, the accuracy of the p-adaptive method was not

as accurate for 2d-integration, especially in the presence of discontinuities.

For this reason, we use the p-adaptive method for 1d-integration but the h-

adaptive method for 2d-integration.

6.3.5 Kaiser-Bessel gridding kernel

In this work, we use a Kaiser-Bessel gridding kernel. Kaiser-Bessel functions

have been used as convolutional gridding kernels for decades [64, 73, 63],

and have a simpler form than the prolate spheroidal wave functions, while

providing similar performance [64]. The zeroth order Kaiser-Bessel function

can be expressed as

G(upix) =
I0

(
β

√
1−

(2upix
J

)2
)

I0(β) , (6.33)

where upix has units of pixels, J is the support in units of pixels, I0 is the

zeroth order modified Bessel function of the first kind, and β determines the

spread of the Kaiser-Bessel function [73, 63]. The Fourier Transform of G(upix)

is

g(x) = sinc
(√

π2x2J2−β2
)
. (6.34)

To correct for the convolution, the image is divided by g(l) [73, 63]

s(x) = [g(x)]−1 . (6.35)

The work of [63] shows that for β = 2.34J the Kaiser-Bessel kernel performs

similarly to the optimal min-max kernel considered.

In this chapter, we use the Kaiser-Bessel gridding kernel to calculate w-

projection kernels, by using g(x) in Equations 6.30 and 6.32. For other possible
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window functions and anti-aliasing kernels, see [12] and [1].

6.4 Validation of Radially Symmetric Kernel
In this section we numerically evaluate Equation 6.30, and present a cross

section of the kernel, showing its variation with sub-pixel accuracy. We then

numerically evaluate Equation 6.32, showing that it provides the same accurate

sub-pixel accuracy, with orders of magnitude less function evaluations during

the quadrature computation.

6.4.1 Quadrature convergence conditions
The kernel function is normalized to one when (u,v,w) = (0,0,0), and an

estimate error tolerance η on the quadrature calculated kernel [GC]η(upix,vpix,w)

is used for quadrature convergence of the kernel, such that the absolute

difference is less than η

|[GC](upix,vpix,w)− [GC]η(upix,vpix,w)| ≤ η . (6.36)

It is also possible to use the relative difference

|[GC](upix,vpix,w)− [GC]η(upix,vpix,w)|
|[GC]η(upix,vpix,w)| ≤ η , (6.37)

which would constrain smaller values of [GC]η(upix,vpix,w) to be calculated

more accurately, at the cost of more computation.

There is a downside of using absolute difference, for example, if you are

calculating kernels to an absolute accuracy of 10−2 and the kernels have values

below 10−2 then these values may not be accurate. The relative difference is an

ideal alternative, but it can cause an inconsistent level of accuracy across the

measurement operator, and more computation can go into small values that

may not contribute much in practice. If the support size is known accurately

before computation, this may help.

We assume that the support size of the w-projection GC kernel is

proportional to 2w/∆u and at least the support size of the gridding kernel
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G. With the support size known, we use the absolute different criteria with

η = 10−6.

6.4.2 Kernel cross-section

Figure 6.2 shows a cross section of the w-projection kernel [GC](upix,0,w), the

real and imaginary components, and the absolute value, for 0≤ upix ≤ 19 and

0 ≤ w ≤ 99. We find that the convolution of CH with G(u) and G(v) creates

a smooth varying w-projection kernel in both real and imaginary components.

The imaginary component is zero at w = 0, which is consistent with Equation

6.25. We find that the decay in the kernel as a function of w is more extreme

with wider fields of view.

We then evoke radial symmetry in the gridding kernel and field of view,

and evaluate Equation 6.32 in Figure 6.3. We find that the features of

the radially symmetric gridding kernel from Equation 6.30 match the cross

section of Equation 6.32, suggesting little difference between the two kernels.

Additionally, when N samples are required to evaluate the 1 dimensional

radially symmetric kernel, approximately N2 are required to evaluate the 2

dimensional kernel, as shown in Figure 6.4. This suggests that the symmetric

kernel calculation scales with radius, not total area as in the 2 dimensional

case. This has enormous general implications for computation and storage for

w-projection kernels at large fields of view.

6.4.3 Numerical equivalence of radially symmetric

kernel

Next, we show that using the radially symmetric gridding kernel is consistent

with the non radially symmetric kernel. To test this, we constructed

three measurement operators ΦΦΦstandard (standard w-projection kernel), ΦΦΦradial

(symmetric w-projection kernel), and ΦΦΦno−projection (no w-term), and show

that ΦΦΦstandard ≈ ΦΦΦradial within some error (suggesting that they agree), and

use ΦΦΦno−projection as a reference operator.

To show that two operators are equivalent, we need the notion of an
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Figure 6.2: Plot of the kernels calculated using Equation 6.30, as a function of upix
and w, with vpix = 0, for absolute (left column), real (middle column),
and imaginary (right column) values. Each row has a different field
of view, 11.3778◦× 11.3778◦ (top), 17.0667◦× 17.0667◦ (middle), and
22.7556◦× 22.7556◦ (bottom). We see that the kernel spreads as a
function of increasing w. The support size in pixels increases with field
of view, due to a large field increasing the sampling rate of the kernel.
It is also clear that the kernel decreases in value with increasing w,
faster at wider fields of view. The real and imaginary components both
show oscillations. We find the imaginary component is zero at w= 0 as
expected. The values have been calculated using adaptive quadrature
within an absolute error of η = 10−6. There are 100 uniform samples
in each of upix and w, making 104 for each plot. The red line shows
max(4,2w/∆u)/2 for reference, which is assumed to be the support
size for this work. The features of this kernel are also consistent with
w-projection kernels used by ASKAPSoft [140].
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Figure 6.3: Plot of the kernels calculated from Equation 6.32, as a function of upix
and w, with vpix = 0, for absolute (left column), real (middle column),
and imaginary (right column) values. Each row has a different field
of view, 11.3778◦× 11.3778◦ (top), 17.0667◦× 17.0667◦ (middle), and
22.7556◦× 22.7556◦ (bottom). We find the same features in Figure
6.2, showing that it is consistent with Equation 6.30. The values have
been calculated using adaptive quadrature within an absolute error of
η= 10−6. There are 100 uniform samples in each of upix and w, making
104 for each plot. The red line shows max(4,2w/∆u)/2 for reference.

operator norm ‖ · ‖op. The operator norm for an operator that maps between

Hilbert spaces (`2) has the property that

‖ΦΦΦxxx‖`2 ≤ ‖ΦΦΦ‖op‖xxx‖`2 ∀xxx ∈ RN . (6.38)

‖ΦΦΦ‖op is the smallest value for which this is true for all xxx. This allows us to

put bounds on the output of ‖ΦΦΦ‖op for each input. We also have the properties

that ‖ΦΦΦ‖op = ‖ΦΦΦ†‖op and ‖ΦΦΦ†ΦΦΦ‖op = ‖ΦΦΦ‖2op.
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Figure 6.4: The plots above show the number of function evaluations in the
quadrature method required to produce Figures 6.2 (top row) and 6.3
(bottom row). Each column corresponds to a field of view of 11.3778◦×
11.3778◦(left), 17.0667◦× 17.0667◦ (middle), and 22.7556◦× 22.7556◦
(right). The top row shows two times the values in the bottom row,
suggesting that if Equation 6.32 takes N evaluations, then Equation
6.30 takes N2 evaluations to compute. This shows the computation
of Equation 6.32 scales with radius vs. the computation of Equation
6.30 that scales with area. The number of evaluations required can be
greatly reduced by increasing the absolute error η.

The operator norm allows the following statement

‖(ΦΦΦstandard−ΦΦΦradial)xxx‖`2
‖xxx‖`2

≤ ‖ΦΦΦstandard−ΦΦΦradial‖op ∀xxx ∈ RN .
(6.39)

For every input sky model xxx, the root-mean-squared (RMS) difference between

the model visibilities is bounded by the product of the RMS of the input

sky model and the operator norm ‖ΦΦΦstandard−ΦΦΦradial‖op. Additionally, for

visibilities yyy

‖(ΦΦΦ†standard−ΦΦΦ†radial)yyy‖`2
‖yyy‖`2

≤ ‖ΦΦΦstandard−ΦΦΦradial‖op ∀yyy ∈ RM .
(6.40)

This statement says that the RMS difference between dirty maps is bounded
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by the product of the RMS of the input visibilities and the operator norm

‖ΦΦΦstandard−ΦΦΦradial‖op. When ‖ΦΦΦstandard−ΦΦΦradial‖op = 0, the two operators

will clearly be the same.

Since our linear operators map between two Hilbert spaces, the operator

norm of ΦΦΦ is the square root of the largest Eigenvalue of ΦΦΦ†ΦΦΦ. To calculate

the largest Eigenvalue, we use the power method (as used in [1]).

First we normalize each operator, such that ‖ΦΦΦ‖= 1, so there is no

arbitrary scaling. Then we calculate ‖ΦΦΦstandard−ΦΦΦradial‖op and ‖ΦΦΦstandard−

ΦΦΦno−projection‖op.

To construct the measurement operators, we use a variable Gaussian

sampling density in (u,v,w), with a root-mean-squared spread of 100

wavelengths. We scale w to have an RMS value of 20 wavelengths. We

choose a cell size of 240 arcseconds and an image size of 256 by 256 pixels.

This provides a full width field of view of 17.0667◦×17.0667◦. It is important

to note that the w-kernels are a function of the field of view, and not the cell

size. The kernel support size is estimated by the w-value for each measurement

to be min(max(4,2w/∆u),40). This support has a minimum size of 4 and a

largest size of 40, and in between a size of 2w/∆u. The benchmarking was

performed on a high performance workstation comprised of two Intel Xeon

Processors (E5-2650Lv3) with 12 cores each with 2 times hyper-threading per

core (at 1.8 GHz) and 256 Gigabytes of DDR4 RAM (at 2133 MHz).

We found the construction time of a radially symmetric kernel was almost

two orders of magnitude faster to calculate. An absolute difference of 10−4

was used for quantifying quadrature convergence. The power method was

considered converged with a relative difference of 10−6.

In Figure 6.5, we show the operator construction time (excluding the

normalization), and the operator norm of the difference. Each data point

was generated by averaging over 5 realizations. The number of measurements

M ranges from only 100 to 1000. From this figure, it is clear that that the

operator difference is consistently on the order of 10−3, suggesting that we
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Figure 6.5: Figures comparing 3 types of measurement operators. One with
a standard 2 dimensional w-projection kernel ΦΦΦstandard, a radially
symmetric kernel ΦΦΦradial, and one with no w-projection kernel
ΦΦΦno−projection. The comparisons were performed for 100 to 1000
measurements. (top) The difference in operator norms. We find that
the full 2 dimensional and radially symmetric kernels are bounded to
be the same within about 3× 10−3. We find that assuming no w-
projection kernel produces a difference close to 1. (Bottom) A plot
of the construction time for each operator (excluding normalization).
We find that using an analytic expression for the Kaiser-Bessel with
no w-projection, ΦΦΦno−projection, is fastest for two reasons. There is no
quadrature integral to calculate, and minimal amount of coefficients
to store into memory. The quadrature calculation with variable kernel
size means that ΦΦΦradial will always take more time to calculate, even
for w = 0, which is computationally cheap for quadrature (see Figure
6.4). We find ΦΦΦstandard is the most expensive in time to calculate.
This is consistent with the number of function evaluations required to
calculate each coefficient.

have the bounds of ‖(ΦΦΦ
†
standard−ΦΦΦ†radial)yyy‖`2

‖yyy‖`2
≤ 10−3, which translates to an upper

bound dirty map RMS difference of the order of less than 1%. However, the

difference will in principle be less. Similar can be said for generating model

visibilities.

It is also clear that the construction times are dramatically different

between the two. The construction time is greatly improved by the threading,

since the kernel construction was performed in parallel. However, due to the

small value of M , this improvement has reached saturation. It is clear in

this example that construction is hundreds of times faster when using a radial

symmetric kernel.
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6.4.4 Imaging of the directionally dependent w-effect

via the zero-spacing

The previous tests have indirectly verified that the radially symmetric w-

projection kernel is consistent with the 2 dimensional w-projection kernel,

suggesting that the entire degridding and gridding process is self consistent.

In this section, we image the generated radially symmetric kernels directly

and compare against the theoretically expected values that are independent of

implementation.

In the image domain, we expect the w-projection kernel to be a chirp with

the form of

c(l,m;w) = e−2πiw(
√

1−l2−m2−1) , (6.41)

then by considering a zero length baseline (also known as an auto-correlation)

with an artificial w-component, which can be done by choosing y(0,0,w) = 1

and w̄= 0 in the measurement equation, we find that the adjoint application of

the measurement operator and then taking the complex conjugate will result

in

ddeexpected(l,m;w) = a(l,m) c(l,m;w)√
1− l2−m2 . (6.42)

It follows that in the discrete setting, gridding a visibility at (u,v) = (0,0) and

w̄ = 0 will produce the same result

ddecalculated(li,mi;w) =
√
N(ΦΦΦ†(u=0,v=0,w))

∗
i . (6.43)

We calculate the average relative difference of dde for the imaginary and

real parts, using the formula

δ(q,p) = 2
[
q−p
|q|+ |p|

]
, (6.44)

this suppresses divergences for when q or p are close to zero. We choose

a(l,m) = 1, and values of w = 10 and w = 100 wavelengths using an image

with 4096 by 4096 pixels and a pixel height and width of 15 arcseconds. This
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leads to a field of view of 17.0667◦× 17.0667◦. We compare using a support

size linear in w, 2w
∆u , rounded to the nearest pixel. We choose an accuracy of

10−6 in absolute and relative error for numerical quadrature.

Figure 6.6 and 6.7 show that the radially symmetric w-projection kernel

has an error on the order of 1% for both the real and imaginary parts. Where

the w-effect goes through zero in the real and imaginary parts the average

relative difference diverges. It is clear that the w-projection kernel still matches

the expected w-effect, and that these divergences are due to instabilities of the

average relative difference for values close to zero.

We find that increasing the support size and reducing the error in

numerical quadrature can reduce the average relative difference. We also

find that the support size 2w
∆u and accuracy of 10−6 in absolute and relative

error for numerical quadrature is sufficient for relative error on the order of

1%. However, if we do not require this accuracy, we can reduce the needed

computation by reducing the support size and reducing the accuracy of the

numerical quadrature.

6.5 Distributed w-stacking w-projection

hybrid algorithm
Until now, it has not been realistic to generate a w-projection kernel for each

individual w value for each visibility in a wide-fields of view observation.

We show how this can be done, first using adaptive quadrature to calculate

radially symmetric w-projection kernels tailored for each visibility and then

using a MPI distributed w-stacking method to perform further image domain

corrections. This allows for exact non-coplanar corrections for each visibility

over wide-fields of view which hasn’t been practical previously in any realistic

wide-field observation. In this section, we provide a brief demonstration

of using radially symmetric w-projection kernels in image reconstruction.

We show for the first time that fast and accurate kernel construction, in

conjunction with w-stacking, enables the ability for modeling sky curvature
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Figure 6.6: Here we show the calculated radial w-projection chirp in the image
domain along with the average relative difference of the expected and
calculated chirp for both the real and imaginary parts. The left column
displays the real component of the chirp, and the right column the
imaginary component. The top row is the radial w-projection chirp
in the image domain calculated using ddecalculated with 4096 pixels
and a pixel size of 15 arcseconds, calculated for a w = 10 wavelengths
using a kernel support size of 10 by 10 pixels. The bottom row is
the average relative difference δ(ddeexpected,ddecalculated). We find that
average relative difference is on the order of 1%, excluding where
ddecalculated and ddeexpected are close to zero and the average relative
difference diverges. This shows that the radial symmetric w-projection
kernel accurately models the directionally dependent w-effect at high
resolution over wide-fields of view.
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Figure 6.7: As in Figure 6.6, but for w = 100 wavelengths and using a kernel
support size of 118 by 118 pixels. Again we find that average relative
difference is on the order of 1%, demonstrating that even for larger
w, the radial symmetric w-projection kernel accurately models the
directionally dependent w-effect at high resolution over wide-fields of
view.

and non-coplanar baselines to extremely wide-fields of view for each visibility.

The kernels are calculated to an absolute accuracy of 10−6, making the kernel

extremely accurate for each w and very wide-fields of view. We present a

hybrid of w-stacking and w-projection algorithm that uses the Message Passing

Interface (MPI) standard and show its application to image reconstruction of

an MWA observation of Puppis A and Vela. This algorithm is made practical

with the developments of the previous section and the use of distributed

computation.

6.5.1 w-stacking-w-projection measurement operator

In the past the w-stacking and the w-projection algorithms were treated as
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separate methods that could only correct average w values. However, with a

fast and accurate method of calculating w-projection kernels, we show that

the w-stacking and the w-projection algorithms can be combined into a hybrid

algorithm, allowing exact w-term correction for each visibility over wide-fields

of views. First, we distribute the measurements into w-stacks using MPI.

Then, we generate a w-projection kernel for each visibility in a w-stack.

The measurement operator corrects for the average w-value in the w-stack,

then applies a further correction to each visibility with the w-projection. Each

w-stack yyyk has the measurement operator of

ΦΦΦk =WWW kGGGCCCkFFFZZZS̃SSk . (6.45)

The gridding correction has been modified to correct for the w-stack dependent

effects, such as the average w̄k and 1/n(lll)

[
S̃SSk
]
ii

= ak(li,mi)e−2πiw̄k(
√

1−l2i−m
2
i−1)

g(
√
l2i +m2

i )
√

1− l2i −m2
i

. (6.46)

We choose no primary beam effects within the stack ak(li,mi). This gridding

correction shifts the relative w value in the stack. This can reduce the effective

w value in the stack, especially when the stack is close to the mean w̄k, i.e.

to the value of wi− w̄k5. This reduces the size of the support needed in the

w-projection gridding kernel for each stack,

[GGGCCCk]ij = [GC](
√

(ui/∆u− qu,j)2 + (vi/∆u− qv,j)2

,wi− w̄k,∆u) .
(6.47)

(qu,j , qv,j) represents the nearest grid points. For each stack yyyk ∈ CMk we have

the measurement equation yyyk = ΦΦΦkxxx.

To cluster the visibilities into w-stacks, it is ideal to minimize the kernel

sizes across all stacks, minimizing the memory and computation costs of the
5Another good choice may be to minimize the median w in a stack rather than the mean

w in a stack.
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kernel. A k-means clustering can be used, which greatly improves performance

by reducing the values of |wi− w̄k|2 across the w-stacks.

It is clear that each stack has an independent measurement equation.

However, the full measurement operator is related to the stacks in the adjoint

operators such that

xxxdirty =
[
ΦΦΦ†1, . . . , ΦΦΦ†kmax

]

yyy1
...

yyykmax

= ΦΦΦ†yyy . (6.48)

When applying the w-stacks in parallel, an MPI all reduce can be used to sum

over the dirty maps generated from each node. The full operator ΦΦΦ can be

normalized using the power method.

6.5.2 Distributed Image Reconstruction

For image reconstruction, we use alternating direction method of multipliers

as implemented in PURIFY (ADMM) [1], but built using MPI to operate on

a computing cluster. The algorithm solves the same minimisation problem

stated in [1]

min
xxx∈RN

∥∥∥ΨΨΨ†xxx∥∥∥
`1

subjectto ‖yyy−ΦΦΦxxx‖`2 ≤ ε . (6.49)

The term
∥∥∥ΨΨΨ†xxx∥∥∥

`1
is a penalty on the number of non-zero wavelet coefficients,

while ‖yyy−ΦΦΦxxx‖`2 ≤ ε is the condition that the measurements fit within a

Gaussian error bound ε. The wavelet operator ΨΨΨ uses a wavelet dictionary

of 9 wavelets, which includes a Dirac basis, and Debauches 1 to 8. Each basis

in the dictionary ΨΨΨk has its own node, and is performed in parallel. Like with

the adjoint measurement operator, an MPI reduction is performed to sum over
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the nodes for the forward wavelet operator6

xxx=
[
ΨΨΨ1, . . . , ΨΨΨ9

]

ααα1
...

ααα9

= ΨΨΨααα. (6.50)

6.5.3 MWA observation of Puppis A and Vela

We use PURIFY [1] and the MPI w-stacking w-projection hybrid algorithm to

reconstruct an observation of Puppis A performed with the MWA telescope.

The observation is from the Phase 1 configuration of the MWA taken on 16 May

2013. The data was collected with XX and YY linear polarizations and then

calibrated and flagged following the standard MWA data reduction process,

more details on this process be found in [50]. The observation is centered at

(RA = 08:19:59.99, DEC = -42:45:00), with a 112 second integration, and a

central frequency of 149.115 MHz with a bandwidth of 30.720 MHz. Figure

6.8 shows a histogram of the visibilities as a function of w, the w-coverage of

the observation ranges between ±600 wavelengths. The observation contains

on the order of 17 million visibilities, and the XX and YY correlations are

combined to generate the Stokes I visibilities.

We implemented a k-means algorithm with MPI to sort and distribute the

visibilities into 50 w-stacks, spread over 25 nodes (2 processes per node, with 1

process per stack), this sorting algorithm took approximately 5 seconds. Most

w-stacks contain w-values between 0 and ±12 wavelengths, however, some

stacks contain w-values of up to 22 wavelengths. The image reconstruction was

performed over a 25◦ by 25◦ field of view, using 20482 pixels and a pixel width

of 45′′. Generating the radial w-projection kernels took close to 40 minutes,

this time can be changed by using more or fewer w-stacks. Furthermore,

the measurement operator was computed in parallel with over 25 nodes, and

used in combination with sparse image reconstruction algorithms used in [1].

We used the Galaxy Supercomputer (located in the Pawsey Supercomputing

6We use the convention that xxx= ΨΨΨααα and ΨΨΨ†xxx= ααα.
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Centre7).

This observation contains the Puppis A and Vela supernova remnants, a

mix of many bright compact sources and extended structures of the galactic

plane. With PURIFY, we use natural weighting, as it provides the best

performance in modeling both extended and compact structures. We do not

include primary beam corrections when solving for the reconstructed image.

Figure 6.9 shows the dirty map, residuals, and the reconstructed image.

As described in [1], we do not include the restored map, and the reconstructed

image is a sky model that is the equivalent to a CLEAN component model.

We also follow [1] by using the same wavelet dictionary, and scale the epsilon

by 275 because the weights are relative not absolute. We can correct the scale

of flux due to the field of view by using the Fourier relation F (∆uupix,∆vvpix)

being paired with f(l/∆u,m/∆v)
∆u∆v .

The dirty map and residual map were converted to Jy/Beam. To do this,

we image the weights of the visibilities to obtain the peak pixel value of the

point spread function, the dirty map and residuals are then divided by the peak

value to convert from arbitrary units to Jy/Beam. We find that the residual

map has a RMS value of approximately 190 mJy/Beam, with many of the

extended structures removed from the residuals. The large scale structures of

Vela are accurately removed, with only a few positive regions in the residuals

where the negative side-lobes of Vela are located. This shows that the majority

of the large scale structures and more compact detailed sources such as Puppis

A are accurately modeled using PURIFY over a 25 by 25 degree field of view.

6.6 Conclusion
As described previously, the effect of the w-projection kernel for non-coplanar

baselines (w 6= 0) becomes greater at larger fields of view. At these extremely

wide-fields of view, the construction cost of a w-projection kernel is expensive

7https://www.pawsey.org.au/our-systems/
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Figure 6.8: A histogram of the w-coverage of the imaged data using 100 bins.
The w-values span over ±600 wavelengths. This w-coverage represents
17,529,644 visibilities after flagging of Radio Frequency Interference
(RFI) has been applied.
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Figure 6.9: The dirty map (Top Left), residuals (Bottom Left), and sky model
reconstruction (Right) of the 112 second MWA Puppis A observation
centered at 149.115 MHz, using 17.5 million visibilities and an image
size of 20492 (each pixel is 45 arcseconds and the field of view is
approximately 25 by 25 degrees). This image was reconstructed using
the MPI distributed w-stacking-w-projection hybrid algorithm, using
the radial symmetric w-projection kernels, in conjunction with the
ADMM algorithm. The RMS of the residuals is 0.189 Jy/Beam, the
dynamic range of the reconstruction is 19,850.
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when using FFT based methods. In this work, we have found that calculations

are extremely fast and accurate using adaptive quadrature to compute a

radially symmetric gridding kernel. This dramatically reduces the amount

of calculations for a numerically exact kernel calculation, reducing the number

of samples in the 2 dimensional case from N2 to N in the radially symmetric

case. This immediately makes such a quadrature method computationally

competitive. It has low memory usage, it can be distributed in parallel, and

scales to extremely wide-fields of view. Furthermore, the calculation is analytic

up to a chosen numerical error, allowing the tuning of speed vs. accuracy that

is not possible with FFT based methods for large images.

In this work, we developed a new technique to validate the calculation

and application of a DDE. We show that by applying the modeled DDE when

gridding a visibility with an artificial zero length baseline, we can provide an

image of the DDE model where it can be directly verified. We applied this to

the radial w-projection kernel to show the w-effect corrections to be accurate

on the order of 1%. This accuracy value is tunable through the support size

and the accuracy of the quadrature integration.

Wide-field modeling effects are critical not just for imaging, but need to be

included during calibration of instrumental and ionospheric effects, where the

w-projection can be used to simulate non-coplanar baselines over extremely

wide-fields of view. This is important for generating visibilities from a sky

model for non-imaging experiments. Visibilities generated from a sky model

could be critical for physical scientific results. For example, any physical

model of the EoR that is to be compared with data collected from a wide-field

interferometer needs to have wide-field effects simulated during the comparison

in image or Fourier space, just as any other instrumental effect (such as the

primary beam). In summary, imaging methods are generally not important

for non-imaging experiments, but the wide-field and instrumental response

still needs to be considered when performing analysis with visibilities. The

fast and exact correction via quadrature using a radially symmetric kernel is
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new, and makes fast, exact, spherical and non co-planar baseline corrections

possible with a w-stacking w-projection hybrid. The process works by first

correcting for the average w-value in a stack to reduce kernel size and total

computation, then correcting the exact difference for each visibility using

quadrature calculated kernels. This method was then demonstrated on an

MWA observation of the Puppis A and Vela supernova remnants for a 25 by

25 degree field of view and over 17.5 million measurements.

We have shown that this distributed and paralleled algorithm is extremely

powerful for wide-field imaging. Furthermore, these algorithms can be

accelerated using multi-threaded parallelism, i.e. General Purpose Graphics

Processing Units, in addition to MPI.

With this work, we provide an important step forward in the fast and

accurate evaluation of wide-field interferometric imaging, bringing us closer

to solving the computational challenges of the SKA and thus realizing its

enormous scientific potential.





Chapter 7

w-stacking w-projection

Algorithm: Details and

Improvements

Two recent developments from the previous Chapter have allowed individual

correction for each data set. The first is the use of adaptive quadrature and

radial symmetry to calculate w-projection kernels orders of magnitude faster

than the full 2 dimensional calculation [2]. The second is the developments in

distributed image reconstruction from state of the art convex optimization

algorithms, which provide a natural framework for the Message Passing

Interface (MPI) distribution of FFTs and degridding for radio interferometric

imaging [3]. An MPI hybrid w-stacking w-projection algorithm demonstrating

these developments was applied on a super computing cluster, where 17.5

million measurements were individually corrected over a 25 by 25 degree field

of view from an MWA observation. Such individual correction has not been

previously possible.

After reviewing the w-stacking w-projection algorithm, we provide the

algorithmic details of how to distribute the measurements through a k-

means clustering algorithm to improve computational performance, the use of

conjugate symmetry to reduce the range of w values, and show the application

of these algorithms to a larger data set to demonstrate the improvement. We
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end with a discussion of future strategies for kernel calculation and adapting

the algorithm to model other DDEs.

The Chapter is laid out as follows. Section 7.1 describes the distributed k-

means clustering algorithm used to create the w-stacks and the reconstruction

algorithm used to generate a sky model of the observed data. Section 7.2

demonstrates the application of the algorithm for this implementation on an

observation of Fornax A. Section 7.3 proposes possible improvements in kernel

calculation for large data sets, and discusses how other directional dependent

effects can be included into the algorithm. The work is concluded in Section

7.4.

7.1 Clustering w-stacks

It is ideal to minimize the kernel sizes across all stacks, minimizing the memory

and computation costs of the kernel. We develop an MPI k-means clustering

algorithm which greatly improves performance by reducing the values of

|wi− w̄k|2 across the w-stacks. Each MPI node finds the w-stack to which a

visibility belongs, updating the cluster centers across all MPI nodes with each

iteration. This is then followed by an all-to-all MPI operation to distribute the

visibilities to their w-stacks. There already exist parallel and distributed k-

means clustering algorithms for big data [152, 153]. The k-means w-clustering

algorithm is presented in Algorithm 8. This algorithm is necessary to reduce

computation and operating memory when applying the w-projection kernels

by reducing the support size of each kernel.

Typically, the visibilities are read in and distributed across a computing

cluster one measurement set at a time. Then the k-means algorithm

(Algorithm 8) is used to assign a w-stack for each visibility. Then the visibilities

are redistributed across the cluster, so that each MPI process corresponds to

a w-stack.
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Algorithm 8 k-means w-stacking:
The k-means algorithm sorts the visibilities into clusters (w-stacks) by
minimizing the average w deviation, (w̄ − w)2, within each cluster. The
algorithm returns two arrays: nnn is the array of indices that labels the w-
stack for each visibility; w̄ww is the average w value within each w-stack. The
algorithm requires a starting w-stack distribution w̄ww(0), which we choose to
be evenly distributed between the minimum and maximum w-values. The
algorithm should iterate until w̄ww(t) has converged, which we choose to be a
relative difference of 10−3. Note p is the index of visibility, q is the index for
w-stacks, and c is the place holder for the minimum deviation for the visibility
at index p. The AllSumAll(x) operation is an MPI reduction of a summation
followed by broadcasting the result to all compute nodes.

1: given w̄ww(0),nnn(0),wtotal,ntotal,wwwsum,wcount
2: repeat for t= 1, . . .
3: wwwsum = 000
4: wwwcount = 000
5: repeat for p= 1, . . .
6: m := 2(wmax−wmin)2

7: repeat for q = 1, . . .
8: c := (w̄ww(t)

q −wwwp)2

9: if c <m then
10: m := c
11: nnn

(t+1)
p = q

12: end if
13: until q > ntotal
14: wwwsumnnn

(t+1)
p

= wwwsumnnn
(t+1)
p

+wwwp

15: wwwcountnnn(t+1)
p

= wwwcountnnn(t+1)
p

+ 1
16: until p > wtotal
17: repeat for q = 1, . . .
18: w̄ww

(t+1)
q = 0

19: if AllSumAll(wwwcountq)> 0 then
20: w̄ww

(t+1)
q = AllSumAll(wwwsumq)/AllSumAll(wwwcountq)

21: end if
22: until q > ntotal
23: until convergence

7.1.1 Conjugate symmetry

Prior to w-stacking with the k-means algorithm, conjugate symmetry may be

used to restrict the w-values onto the positive w-domain. The origin of the

w-effect stems from the 3d Fourier transform of a spherical shell and a horizon

window, with the w component probing the Fourier coefficient of the signal

along the line of sight. The sky, the horizon window, the spherical shell, and
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the primary beam can all be interpreted as a real valued signal. This provides

a conjugate symmetry between −|w| and +|w|, i.e.

y∗(u,v,−|w|) = y(−u,−v, |w|) . (7.1)

Properties of noise remain unchanged under conjugate symmetry, meaning that

measurements can be restricted to positive w, i.e. w ∈ R+. Other modelled

instrumental effects may need to be conjugated, which is only important when

they are complex valued signals. In particular, polarized signals, e.g. Stokes

Q, U , and V , are independent real valued signals. Thus, linear polarization

has a slightly different relation

y∗P (u,v,−|w|) = yQ(−u,−v, |w|)− iyU (−u,−v, |w|) , (7.2)

suggesting the reflection should be done to the Stokes Q and U visibilities

before combination into linear polarization, and then combined with −i rather

than +i. This combination is important for accurate polarimetirc image

reconstruction [51].

7.2 Application to MWA observation of

Fornax A
In this section we show an example of how conjugate symmetry allows exact

non-coplanar correction to a larger data set than the previous chapter. The

increased efficiency of the w-stacking due to conjugate symmetry reduces the

construction time and application time of the w-projection kernels.

We use PURIFY (version 3.0.1, [7]) to perform wide-field image

reconstruction of an observation of Fornax A taken with the MWA. The

observation has a pointing centre of (03h 22m 41.7s, -37d 12m 30s), and the

integration time is 112 seconds. Fornax A was observed using XX and YY

polarizations, with the visibilities transformed into Stokes I. The bandwidth

was 30.72 MHz with a central frequency of 184.955 MHz and using 768
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channels, which is a standard observational mode for the MWA [154, 155].

The data reduction, including flagging and calibration, is as per [156].

To perform the reconstruction we use 50 nodes of the Grace computing

cluster at University College London. Each node of Grace contains two 8 core

Intel Xeon E5-2630v3 processors (16 cores total) and 64 Gigabytes of RAM.1

The reconstructed image is of 2048 by 2048 pixels, with a pixel width of

45 arc-seconds and a field of view of 25 by 25 degrees. The w values range

between 0 and approximately 600 wavelengths for the total of 126.6 million

visibilities, after conjugating the visibilities for negative w values, i.e. a range

of 1200 wavelengths originally.

Sorting the visibilities into 50 w-stacks (one per MPI node) took under 5

seconds using the MPI distributed k-means algorithm described in Algorithm

8. If the average relative difference of each w-stack centre w̄wwi between k-means

iterations is less than 10−3 we consider the algorithm has converged. We do

not expect the w-projection algorithm performance to improve beyond this

level of accuracy in clustering as a function of the number of iterations. In this

case, the algorithm converged in 6 iterations.

It took a total of 15 minutes to construct a w-projection kernel for all

visibilities, using quadrature accuracy of 10−6 in relative and absolute error,

as described in the previous Chapter. The w-projection kernel construction

time in the previous Chapter was 40 minutes for 50 w-stacks (over 25 compute

nodes), with the same field of view and same image size, over the same

range of w values, but for only 17.5 million visibilities. We find that the

use of conjugate symmetry before the k-means clustering algorithm allows for

more efficient computation of the w-projection kernels due to more efficient

w-stacking because of the reduced range of w-values, allowing for 2.6 times

faster kernel construction for approximately 7 times as many measurements

(126.6 million visibilities), i.e. an overall saving of approximately by a factor

of 18.
1More details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_

technical_specs

https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
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Reconstruction time took 12 hours, with a total of 2475 iterations, with

the FFT and wavelet operations contributing to much of this time due to the

large image size. Note that we elected to run the reconstruction for a much

longer time than needed to produce an acceptable image. We erred on the side

of a higher number of iterations than strictly necessary in order to get a very

high quality reconstruction.

The reconstructed image can be seen in Figure 7.1, which also shows the

residual and dirty maps. The bright, extended source Fornax A is visible at

the field centre, with the rest of the field consisting mostly of point sources.

The residual map shows that the reconstruction models many of the sources

in the field of view, however, the point spread function sidelobes from bright

sources outside the FoV are still present in the residuals. Despite outside

sources disrupting the reconstruction, the root mean squared (RMS) value of

the residual map is 15 mJy/beam.

Figure 7.2 shows a zoom in of Figure 7.1, with the colour scale adjusted

to show the reconstruction of Fornax A in greater detail. From the scaled

residuals it is clear that this reconstruction accurately models the extended

structure of Fornax A.

7.3 Improvements for the Future
We discuss two classes of possible improvements: kernel interpolations and

correction for non-standard direction dependent effects.

7.3.1 Kernel interpolation

While we have shown that the use of k-means clustering and complex

conjugation can aid in kernel construction, w-projection kernels can still be

expensive in construction time due to the large number of coefficients in

GGGCCC. This construction overhead can be further reduced using interpolation

methods, such as bilinear interpolation between 1 dimensional w-planes, or

parametric fitting. This may allow for on the fly calculation of kernels during

imaging. We discuss how a radially symmetric kernel could affect such methods
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Figure 7.1: The dirty map (Top Left), residuals (Top Right), and sky model
reconstruction (Bottom) of the 112 second MWA Fornax A observation
centered at 184.955 MHz, using 126.6 million visibilities and an image
size of 20492 (each pixel is 45 arcseconds and the field of view is
approximately 25 by 25 degrees). This image was reconstructed
using the MPI distributed w-stacking-w-projection hybrid algorithm,
exploiting conjugate symmetry and the k-means clustering algorithm
for distribution of w-stacks presented herein, and using the radial
symmetric w-projection kernels, in conjunction with the ADMM
algorithm. The dynamic range of the reconstruction is 844,000. The
RMS of the residuals is approximately 15 mJy/beam over the entire
field of view.
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Figure 7.2: Same as Figure 7.1 zoomed view centered on Fornax A, showing the
recovered structure of the double lobed radio galaxy. The residuals
have been scaled to show the details. The residuals over the zoomed
region have an RMS of 1.2 mJy/beam.
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in the future.

7.3.1.1 w-planes: bilinear interpolation
The radially symmetric kernel allows fast and accurate calculation. It also

reduces the dimensions of the kernel from 2 dimensions to 1 dimension. This

allows for fast and accurate pre-sampling of the w-projection kernel directly in

the uvw-domain. Pre-sampling could speed up the radially symmetric kernel

construction time and allow for on the fly calculation, while reducing the total

memory in stored gridding kernels as discussed below. We discuss how radial

symmetry can lead to an improvement in pre-sampling by reducing memory

and pre-sampling time.

A non-radially symmetric kernel would mean pre-sampling in (upix,vpix,w),

which is a computational challenge. For Nu×Nv, samples in (u,v), we would

have Nw w-projection planes. This requires in total NuNvNw samples. The

total memory required in pre-samples is 16×10−6×NuNvNw[Megabytes].

With radial symmetry the w-projection kernel can be computed as a

function of (
√
u2

pix +v2
pix,w). For Nuv radial samples in

√
u2

pix +v2
pix, and

Nw samples in w, we have only NuvNw samples. This can be thought of

as pre-computing 1 dimensional w-planes, rather than 2 dimensional w-planes.

Additionally, each sample only requires a 1 dimensional integral by quadrature

that reduces the pre-sampling time.

The 1 dimensional nature of the problem suggests better scaling of pre-

sampling computation time and memory, allowing extremely accurate w-

projection kernels. The total memory required in pre-samples is 16× 10−6×

NuvNw[Megabytes].

It is also worth noting that pre-sampling is only required for positive

(u,v,w), since the complex conjugate can be used to estimate (u,v,−w) and

radial symmetry can be used for negative u and v. This leads to additional

memory savings in pre-sampling.

Pre-sampling can be optimized for accuracy and storage by using an

adaptive sampling density. The pre-samples could be stored permanently in
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cases where kernel construction is performed repetitively.

Bilinear interpolation is computationally cheap, and could make accurate

on-the-fly construction of w-projection kernels possible, which could be needed

for large data such as for the Square Kilometre Array (SKA) [157]. In the

case where storing the gridding kernels consumes more memory than the pre-

sampled kernel, on-the-fly construction can be built into the GGGCCC operator,

where bilinear interpolation is used on application. However, memory layout

of the pre-samples would be important, since the sample look-up time could

reduce the speed of the calculation considerably.

7.3.1.2 Function fitting
Another powerful solution to improve kernel construction costs can be found

from the well-known prolate spheroidal wave function (PSWF) gridding

kernels, which do not have an analytic form.

PSWFs can be defined multiple ways, such as having optimal localization

of energy in both image and harmonic space, making them difficult to compute.

They can be calculated directly through Sinc interpolation after solving a

discrete eigenvalue problem, but this can be computationally expensive, or

they can be calculated using a series expansion. However, this has not stopped

radio astronomers using the PSWFs for decades, ever since the work of [65, 62]

described a custom made PSWF that has been used in CASA [102], AIPS

[158], MIRIAD [71], and PURIFY [29]. In [65, 62], a rational approximation

is used to provide a stable and accurate fit to the PSWF, which has stood the

test of time.

A similar approach can be used to provide an accurate fit to w-projection

kernels. Put simply, it is possible to fit a radially symmetric kernel as a function

of three parameters
(√

u2
pix +v2

pix,w,∆u
)
, i.e. polynomial fitting. This has

various advantages over the pre-sampling method, such as reduced storage,

no pre-sampling time, and reduced look up time (which could be critical

for on-the-fly application). However, stability and reliability of the fit is not

guaranteed and would require further investigation.
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7.4 Conclusion
We have discussed details of the w-stacking w-projection algorithm

implementation, including details of the k-means clustering, introduction

of conjugate symmetry to improve the computational efficiency of the current

algorithm, and possible extensions to the current algorithms and code base to

further improve efficiency and accuracy of the reconstructions.

We use the MPI distributed ADMM implementation in PURIFY to

reconstruct an MWA observation of Fornax A, recovering accurate sky models

of the complex source Fornax A and of point sources over the entire 25 by 25

degree field of view. We find that we can construct w-projection kernels for

7 times the number of measurements, 2.6 times faster than the time taken in

the previous Chapter (an overall saving of approximately 18 times), using the

same image size, field of view, and range of w values.

We conclude the work with proposals to modify the implementation of

the 1 dimensional radial w projection kernels for large data sets, such as the

use of kernel interpolation. Accurate correction of wide-field and instrumental

effects is critical in the era of next generation radio interferometers and are

vital to achieving science goals ranging from the detection of the Epoch of

Reionization to accurately reconstructing cosmic magnetic fields.





Chapter 8

Balancing Compute Load for

Wide-field Reconstruction

Recent novel developments in fast construction of w-projection kernels and

the distributed w-stacking w-projection hybrid algorithm [76, 2] has allowed

fast and accurate modeling of non-coplanar effects over extremely wide-fields

of view from the MWA for over 100 million measurements [4]. The algorithm

allows parallel construction of w-projection kernels while also distributing their

storage for application, proving to be an effective method of tackling the

most computational and memory intensive components of radio interferometric

imaging [159, 160, 157, 2]. However, while this distribution reduces the size

and computational cost of the w-projection kernel, it does not ensure that

computational resources are being used most effectively across the compute

cluster. This makes it vulnerable to bottlenecks in computation without the

modifications presented in this work.

This work presents a new distributed gridding algorithm that evenly

balances the computational load across a computing cluster, extending the

distributed gridding methods developed in [3]. This work combines the two

measurement operator algorithms described in Section 5.2.3.2 (distributing

sections of the grid) and 5.2.3.1 (distributing images) to create a new novel

algorithm. This method allows all w-stacks to distribute sections of their grid

to different nodes for gridding and degridding using an all to all operation.



176 Chapter 8. Balancing Compute Load for Wide-field Reconstruction

Such an approach allows full memory and computational use across the nodes

of the computing cluster when performing fast Fourier transforms (FFTs) of

w-stacks and when degridding with w-projection kernels, which has not been

possible previously, removing resource bottlenecks when imaging wide-fields of

view for large data sets. Such distributed degridding and gridding algorithms

will be vital for next-generation radio interferometers with large data sets,

such as the Square Kilometer Array (SKA). In particular, such an algorithm is

needed for effectively correcting instrumental effects via the image and Fourier

domain, while using the full performance of a computing cluster.

The remaining sections of this Chapter are as follows. Section 8.1

introduces the distributed w-stacking w-projection hybrid algorithm with

compact notation. Section 8.2 discusses the computational and memory

bottlenecks of this method. Section 8.3 presents the new algorithm that

evenly distributes the computational load across compute nodes. Section 8.4

demonstrates the application of this algorithm that has been implemented in

the interferometric imaging software package PURIFY (in an upcoming release

after version 3.0.1)1.

8.1 Distributed wide-field measurement operator

In the distributed w-stacking w-projection algorithm [2], the measurement

operator corrects for the average w-value in each w-stack, then applies an

extra correction to each visibility with the w-projection. Each w-stack yyyk has

the measurement operator of

ΦΦΦk =WWW k[[[GGGCCC]]]kFFFZZZS̃SSk . (8.1)

1https://github.com/astro-informatics/purify

https://github.com/astro-informatics/purify
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The gridding correction, S̃SSk, has been modified to correct for the w-stack

dependent effects, such as the average w-value of the stack w̄k

S̃SSk,ii = ak(li,mi)e−2πiw̄k(
√

1−l2i−m
2
i−1)

g(l2i +m2
i )
√

1− l2i −m2
i

. (8.2)

We leave the option of choosing different primary beam effects in a stack

ak(li,mi). The chirp shifts the relative w-value in the stack indexed by k. The

stacks can be clustered carefully to reduce the effective w-value in the stack,

especially when the stack is close to the mean w̄k, i.e. to the value of wi− w̄k.

This reduces the size of the support needed in the w-projection gridding kernel

for each stack,

[[[GGGCCC]]]k,ip = [GC]
(√

(ui/∆u− qu,p)2 + (vi/∆u− qv,p)2,wi− w̄k,∆u
)
. (8.3)

(qu,p, qv,p) represents the nearest grid points, and we use adaptive quadrature

to calculate

[GC]
(√

u2
pix +v2

pix,w,∆u
)

= 2π
∆u2

∫ α/2

0
g(r)e−2πiw(

√
1−r2/∆u2−1)

×J0
(
2πr

√
u2

pix +v2
pix
)
rdr ,

(8.4)

where g(r) is the radial anti-aliasing filter in the image domain (i.e. the Fourier

transform of the Kaiser-Bessel function), ∆u is the resolution of the Fourier

grid as determined by the zero padded field of view, and (upix,vpix) are the

pixel coordinates on the Fourier grid.

For each stack yyyk ∈ CMk we have the measurement equation yyyk = ΦΦΦkxxx. It

is clear that each stack has an independent measurement equation. However,

the full measurement operator is related to the stacks in the adjoint operators

such that

xxxdirty = AllSumAllk
(
ΦΦΦ†kyyyk

)
= ΦΦΦ†yyy . (8.5)

We use an MPI all-sum-all to generate the same dirty map on each node. The
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full MPI operator ΦΦΦ is normalized using the power method. For further details

see [2].

8.2 Bottleneck of the distributed stacking

method

To minimize the time taken to perform kernel calculation and increase accuracy

of the non-coplanar correction, the visibilities need to be sorted into w-stacks

using a cluster algorithm. We do this by using the k-means clustering algorithm

after using complex conjugation to reflect the visibilities to have positive w

[4]. Because the w-stacks are clustered to minimize error, the memory and

computational load of each [[[GGGCCC]]]k has previously been ignored when assigning

one stack k per compute node. When the majority of visibilities lie in only

a few stacks, the total available memory and resources for construction and

application of [[[GGGCCC]]]k is bottlenecked. This is especially the case when there

is one [[[GGGCCC]]]k per MPI node. This problem is emphasized for extremely wide-

fields of view and large values of w, where the w-projection kernel size scales

as 2w
∆u , with 1

∆u ∝ field of view, and for large numbers of visibilities. Hence,

these factors have a large impact on the required computational resources in

kernel construction and application, as we demonstrate in Section 8.4.

In the next section we describe an algorithm that solves this bottleneck.

We split the operator [[[GGGCCC]]]k into smaller operators [[[GGGCCC]]]jk that can be

spread across multiple nodes j for w-stacks indexed by k. We remove the

requirement that image domain correction and Fourier domain correction are

applied on the same node. We restrict the index j for nodes that apply Fourier

domain correction and index k for nodes that apply image domain correction.

This allows even distribution of the memory load, kernel construction, and

application of the operator [[[GGGCCC]]] to ensure scalability as demonstrated in

Section 8.4.
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8.3 All-to-all distributed measurement

operator

In this section we introduce a new MPI distribution strategy for the application

of a wide-field measurement operator. This process allows the FFTs of the

w-stacks to be evenly distributed across all nodes while allowing the sparse

matrix operations to be distributed evenly across all nodes. Communicating

only the grid points that are needed for degridding minimizes communication

in an intermediate all-to-all operation.

8.3.1 Distributing measurements for computational

load

First the k-means algorithm is used to sort the visibilities into w-stacks yyyk.

The visibilities of each stack yyyk are distributed across MPI nodes yyyjk, where

1≤ j ≤ nd, to evenly distribute the computation of [[[GGGCCC]]]. The computational

load of an individual visibility yki is determined by the support size

support(wi− w̄k,∆u) = [max{Jmin,2(wi− w̄k)/∆u}]2 , (8.6)

where Jmin is the 1d support size of the anti-aliasing kernel [2]. It is then

straightforward to determine the total computational load of [[[GGGCCC]]] and then

distribute it evenly across nodes j. This is done by calculating the average

computational load across all nodes from j = 1 to j = nd in order, filling each

node j with visibilities until it reaches the average computational load.

In practice, it is difficult to fill each node with the exact average

computational load, because each visibility has its own integral (indivisible)

computational load. This can be accommodated by allowing the last node

to overfill slightly and keeping the rest of the nodes under the average load.

Testing has shown that the overfill amount on the last node is insignificant.
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8.3.2 All-to-all distribution of Fourier grid subsections

With the computational load of [[[GGGCCC]]] distributed across the nodes, the

measurement equation needs to map sections of the grid that need to be sent

to each node j from each stack k to minimize communication. Without loss of

generality, we let 1≤ k,j ≤ nd. The MPI measurement equation reads

yyyjk =WWW jk[[[GGGCCC]]]jkAllToAlljk
(
MMM jkFFFZZZS̃SSkxxx

)
, (8.7)

where the chirp multiplication and FFT are applied on node k (assuming one

S̃SSkkk per node for simplicity), the operator MMM jk ∈ RKjk×K selects only the grid

sections (of size Kj) of the FFT grid (of size K) of stack k that are needed for

degridding on node j, which are then sent to node j with the MPI all-to-all

operation. This is followed by degridding to the visibilities on node j that

belong to stack k using [[[GGGCCC]]]jk ∈CMjk×Kjk . In practice, [[[GGGCCC]]]jk are combined

into one sparse matrix on each node that has∑kMjk rows and∑jKjk columns.

This entire process is visualized in Figure 8.1.

The application of the adjoint operator reads

xxxdirty = AllSumAllk
(
S̃SS
†
kZZZ
†FFF †×

nd∑
j=1

[
MMM †jkAllToAllkj

(
[[[GGGCCC]]]†jkWWW

†
jkyyyjk

)])
,

(8.8)

where node j grids visibilities from stack k, these grid sections are sent from

node j to stack k through an all-to-all operation. The grid sections from each

node j are added to the full FFT grid of each stack k. An inverse FFT is

applied followed by cropping of the image. Multiplication of the conjugate

chirp is applied on each stack k followed by an all-sum-all of the images to

produce the same dirty map on each MPI node.

Extensive unit testing has shown that the distributed computation is

equivalent to the non distributed computation and the standard w-stacking

w-projection algorithm. It is worth noting that when nd×K > 232−1, 64 bit
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Figure 8.1: Each node starts with a copy of xxx. The linear operation S̃SSk applies the
gridding correction and multiplication of the chirp on node k. Each
node performs zero padding and an FFT with the operation FFFZZZ. The
operation MMM jk selects sections of the FFT grid on node k that are
required on node j for degridding (this is determined by the columns
of [[[GGGCCC]]]jk). The colored squares show regions of the grid that are to be
sent to each node, with each color corresponding to a value of j. The
sections of the FFT grid are distributed through a distributed MPI
all-to-all communication step. This is followed by the application of
[[[GGGCCC]]]jk for the kth w-stack on node j, to interpolate the visibilities yyyjk
off of the grid, with the w-projection kernel performing the correction
for the offset w− w̄k. The adjoint process corresponds to performing
each step in reverse, followed by an all-sum-all operation over the w-
stacks.

integer types are specifically needed for indexing across nd×K FFT pixels

without overflow.

8.4 Implementation and Application
In this section we demonstrate the effectiveness of evenly distributing the

computational load using the algorithm presented in Section 8.3. This

algorithm has been implemented in the interferometric imaging software

package PURIFY using C++ and MPI, where this method is ready for an

upcoming release. Similarly, to Section 5.4, we apply this algorithm to

a simulated data set. However, we point out that the standard w-stacking



182 Chapter 8. Balancing Compute Load for Wide-field Reconstruction

w-projection algorithm cannot be applied due to memory limitations and

bottlenecks on each compute node, which is the purpose of this demonstration

of the load-balanced operator.

To demonstrate the effectiveness of the algorithm, we simulate

reconstruction of a 25 by 25 deg field of view, using a Gaussian variable

sampling density in uvw following [1]. u and v are represented in radians, with

a standard deviation of π/3. w is represented in wavelengths, with a standard

deviation of 200 wavelengths, but was constrained to values between ±600

wavelengths. An 1024 by 1024 pixel image of M31 is considered, where the

pixel size is 90 by 90 arcseconds. We add Gaussian noise to the measurements,

so that the visibilities have an input signal to noise ratio of 30 decibels [1]. We

then apply the alternating direction method of multipliers (ADMM) algorithm

as performed in [1, 2, 3], see Chapter 5 for more details. We used a minimal

gridding kernel support size of Jmin = 4 for the Kaiser-Bessel kernel.

First we use conjugate symmetry to reflect the visibilities to have w ≥ 0.

Then we use the k-means clustering algorithm to assign each visibility to a

w-stack indexed by k and to calculate each w̄k. Then we iterate through

the visibilities to assign the computational load across the nodes, following

Section 8.3. The visibilities and w-stack indexes are redistributed using an

all-to-all operation. Then the w-projection kernels shown in Equation 8.4 are

constructed using adaptive quadrature to an accuracy of 10−6 in absolute and

relative error, which has shown to be accurate to 1% in the image domain [2].

This corrects each visibility for the w offset determined by w̄k and the w-stack

index k.

We perform reconstruction using 2 billion visibilities with 50 nodes of the

Grace supercomputing cluster at University College London (UCL). Each node

has two 8 core Intel Xeon E5-2630v3 processors and 64 Gigabytes of RAM2.

Note that this is exactly the same configuration used in the recent work of

[4], where an MWA Fornax A observation was reconstructed using 126 million

2More details can be found at https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_
technical_specs

https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
https://wiki.rc.ucl.ac.uk/wiki/RC_Systems#Grace_technical_specs
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visibilities.

The memory used to store [[[GGGCCC]]] is distributed across 50 compute nodes.

The memory needed to store [[[GGGCCC]]] was approximately 21 Gigabytes on each

node (3 Tb across all nodes). However, for efficient layout for memory access

[[[GGGCCC]]]† was also stored, requiring an additional 3 Tb across all nodes. The 2

billion visibilities amounts to 32 Gigabytes spread evenly across the nodes. To

store the weights and uvw-coordinates during construction of [[[GGGCCC]]] requires

64 Gigabytes of memory spread evenly over the cluster.

Sorting and distributing the visibilities took approximately 2 minutes.

Kernel construction took 1 hour and 5 minutes. Application of the combined

gridding and degridding operation took approximately 25 seconds. The

ADMM algorithm converged in approximately 20 minutes with 9 iterations.

The signal to noise ratio of the reconstruction was calculated as in [1] to be

31.49 decibels.

Applying the standard distribution method of the w-stacking w-projection

hybrid algorithm was not possible for the scenario considered due to memory

requirements, where each [[[GGGCCC]]]k requires approximately 1 to 50 Gigabytes of

memory. Additionally, even if there was enough memory on each node, run

time would increase greatly due to lack of CPU cores on the heavily loaded

nodes acting as a bottleneck. In this case the load balanced distributed

method presented in this work circumvents this bottleneck in resources and

enables accurate interferometric image reconstruction over extremely wide-

fields of view for a larger data set than previously possible.





Chapter 9

Interferometric Imaging with

the SPIDER Telescope

The Hubble Space Telescope (HST) has changed the way astronomers have

looked at the Universe. The number of astronomical studies that have used

observations from the HST make it one of the most important observatories

in history. More than 15,000 articles have used HST data, in total collecting

738,000 citations.1 However, telescopes such as the HST and its scientific

successor, the James Webb Space Telescope (JWST), are extremely heavy and

large, while being expensive in cost and power consumption. Nevertheless such

next generation optical telescopes like JWST are critical to address astronomy

and cosmology science goals such as answering questions about dark matter

through weak lensing and understanding the history and formation of our

universe.

Recently, the concept of an instrument known as the Segmented Planar

Imaging Detector for Electro-optical Reconnaissance (SPIDER) has been

developed [9, 161]. The SPIDER is a small-scale interferometric optical

imaging device that first uses a lenslet array to measure multiple interferometer

baselines, then uses photonic integrated circuits (PICs) to miniaturize the

measurement acquisition. The goal of the SPIDER is to reduce the weight,

cost, and power consumption of optical telescopes. Furthermore, additional

1See https://www.nasa.gov/mission_pages/hubble/story/index.html

https://www.nasa.gov/mission_pages/hubble/story/index.html
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designs have been proposed that could increase the efficiency of imaging

using fewer measurements [162, 163]. Recent visibility measurements using

lenslet arrays and PICs have shown to match theoretical predictions [164].

Unlike traditional optical interferometry, the SPIDER telescope can accurately

retrieve both phase and amplitude information [164], making the measurement

process analogous to a radio interferometer. Accurate interferometric image

reconstruction methods from radio astronomy can thus be applied to image

SPIDER observations.

Radio astronomy has a long history of using interferometry to push

beyond the limits of resolution and size, at the computational cost of image

reconstruction [11]. An interferometer is a device that measures the cross-

correlation function of the signals. Interferometric imaging in the radio

has proven to be a popular approach between 50 MHz and 100 GHz, with

telescopes such as the Very Large Array (VLA) that have antenna arrays spread

over 36 kilometers [12]. The cross-correlation between voltages from each

pair of antenna is computed to generate the complex valued measurements

known as visibilities. A visibility represents a Fourier coefficient for the

sky brightness, with the Fourier coordinate determined by the antenna pair

separation. Typically an antenna pair is known as a baseline, with the baseline

length corresponding to the antenna separation [12].

Recently, sparse image reconstruction algorithms that exploit developments

from the field of convex optimization have shown to improve the quality

of reconstructed observations from radio interferometers considerably, on

both simulations and real data [1, 165, 2, 3]. In this chapter we take

recent developments from radio interferometric imaging and sparse image

reconstruction, and put them into the context of the proposed SPIDER

instrument. Such methodology would prove useful in future space based

telescopes and space missions based on the SPIDER technology (e.g. aerial

observations of planetary surfaces). Ultimately it is evident that recent

algorithmic developments for radio interferometric imaging can be directly
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applied to the SPIDER optical interferometer.

In Section 9.1 we introduce the background and current developments

behind the SPIDER concept. Section 9.2 shows image reconstruction from a

simulated SPIDER observation.

9.1 SPIDER

Key to the concept design of the SPIDER is the use of lenslets to collect

signals from incoming light. These signals are combined using a PIC to

produce an interferometric measurement (visibility), i.e. a Fourier coefficient

of the observation. The Fourier coordinates, (u,v), are determined by the

separation size in wavelengths (baseline length) between the lenslets that

were used to generate the measurement, with larger separations resulting in

higher resolution measurements. However, unlike radio interferometry where

all possible pairs of antennas in an array can be combined in an observation,

lenslets can only be paired once. If there are Nl lenslets, the lenslet array

will produce Nl/2 correlations. This differs to the N(N − 1)/2 correlations

expected from a radio array [12, 163]. To compensate for this lenslets can

be combined with the PIC to split the signal into spectral bins (channels),

allowing for increased sampling coverage due to variation of baseline length

over wavelength. This strategy has been successful in radio astronomy for

decades, and is known as multi-frequency synthesis [12].

The concept design of the SPIDER proposed in [9] is to put a linear array

of lenslets onto a PIC card. The PIC cards are mounted as radial spokes on

a disc, producing a radial sampling pattern in the uv-plane (however, other

sampling patterns are considered in [9]). The proposed operating wavelengths

are between 500 nm and 900 nm. The operating wavelength divided by the

size of a lenslet (8.75 mm) determines the field of view to be approximately

between 0.5 and 1 arc minutes. The longest baseline along a spoke is 0.5 m,

which is sensitive to resolutions between 0.65 and 1.2 arcseconds. Parameters

of the SPIDER design adopted from [9] are listed in Table 9.1, which leads to
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Table 9.1: SPIDER configuration parameters adopted from 9.

Parameter Value
Spectral Coverage 500-900 nm
Lenslet Diameter 8.75 mm
Longest Baseline 0.5 m
Number of Lenslets per PIC spoke 24
Number of PIC spoke 37
Number of Spectral Bins 10
FoV at 500 (900) nm 35′′ (65′′)
Maximum Resolution at 500 (900) nm 0.7′′ (1.2′′)
Total Measurements 4440
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Figure 9.1: The sampling pattern of SPIDER in the uv-plane in units of
wavelengths using 24 lenslets over 37 PIC cards for the combined
coverage of 10 spectral bins. The sampling pattern was generated
using the parameters in Table 9.1. Since the Fourier coordinates
are relative to wavelength, using the spectral bins (channels) will
increase the uv-coverage of the instrument substantially. The number
of measurements in the single channel corresponds to 444, which makes
4440 measurements over the entire band.

the (u,v) sampling coverage shown in Figure 9.1.

9.2 Reconstructions
In this section we demonstrate reconstruction of simulated SPIDER

observations using the ADMM algorithm, where a solution is found from
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the constrained problem. We use the software package PURIFY2 to perform

interferometric image reconstruction, powered by the convex optimization

package SOPT3. The SPIDER telescope is a planar interferometric telescope,

and the standard planar interferometric measurement equation can be applied

through gridding and degridding.

To generate the measurement operator used to simulate the observation

we use the Kaiser-Bessel kernel with a support size J = 8 pixels to reduce

aliasing error in the ground truth measurements. For reconstruction, we use a

measurement operator with a kernel support size of J = 4 pixels. The number

of pixels in xxx are determined by the ground truth image, xxxGroundTruth ∈ RN+ .

We do not include the decrease in sensitivity of the SPIDER instrument away

from the center of the field, but this can be included in simulations if it is

well characterized. To simulate the observation we follow [1] and add i.i.d.

Gaussian noise to the observational data. We define an input signal to noise

ratio (ISNR) to determine the standard deviation of the Gaussian noise, where

this standard deviation is defined as

σi = ‖Φ
ΦΦxxxGroundTruth‖`2√

M
×10−

ISNR
20 . (9.1)

The Fourier sampling pattern of the observation (i.e. the uv-coverage) is

determined by the design of the SPIDER instrument and the optical spectral

coverage. By combining the entire spectra it is possible to increase the

sampling coverage, as explained in Section 9.1. We use the configuration of

Table 9.1 (shown in Figure 9.1).

The results presented in Figure 9.2 show that an observation using the

proposed SPIDER design can be effectively reconstructed using PURIFY.

Reconstruction was performed using a Dirac basis and Daubechies wavelets

1 to 8. While we have used the design from [9], where the baselines lie

on radial spokes, different baseline configurations may lead to higher quality

2https://github.com/astro-informatics/purify
3https://github.com/astro-informatics/sopt

https://github.com/astro-informatics/purify
https://github.com/astro-informatics/sopt
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Figure 9.2: Simulation of observation and reconstruction of the spiral galaxy M51
using ADMM implemented with PURIFY, including the ground truth
(top left), the observed image (top right), the PURIFY reconstruction
(bottom left), and the residuals (bottom right). We used an ISNR
of 30dB, a pixel size of 0.3′′, and an image size of 256 by 256 pixels,
with the sampling pattern for 10 spectral bins as shown in Figure 9.1
resulting in 4440 measurements. The structure of the spiral arms and
point sources are recovered well using PURIFY.

reconstruction. Depending on the structures in the ground truth sky, different

baseline configurations will be more effective at sampling the sky, leading to

more effective reconstruction of objects and their details. It was recently shown

that the theory of compressive sensing might lead to more efficient designs

[163].

In summary, we adapt recent developments in radio interferometric

imaging, leveraging sparsity and convex optimisation, and show that they are

effective for imaging SPIDER observations. Moreover, recent developments

in efficient uncertainty quantification for radio interferometric imaging can
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also be adapted for use with SPIDER [165]. The computational performance

of these algorithms can be further increased using GPU multi-threading and

distribution across nodes of a computing cluster [as implemeneted in PURIFY

already; 3].





Chapter 10

Conclusions

There are two major challenges with next generation imaging. The first is to

create accurate images of the radio sky for both compact sources and medium

to large extended structures. The second challenge is to develop methods of

image reconstruction that are computationally efficient enough to scale for

large data sets and not require excessive computation.

This thesis has made contributions to both of these challenges. With the

application of convex optimization to real data sets in Chapter 4 we showed

that we can obtain detailed and high quality images of compact and extended

radio sources. In Chapter 5, we describe and demonstrate implementations

of computationally distributed degridding/gridding operators, wavelet

transforms, and proximal operators, then use them to distribute the ADMM

algorithm. This makes it possible to perform high image reconstruction

to large data sets. Then, in Chapters 6 and 7, we introduced new

calculation and computational distribution methods for wide-field non-

coplanar interferometric telescopes that make it possible to correct each

individual measurement from next generation low frequency interferometric

telescopes, this was not previously possible. This shows an improvement

in calculation scalability over previous wide-field correction techniques, and

allows for more accurate modeling of the measurement equation leading to

more accurate reconstructions. In Chapter 8, we improve the distributed

computational efficiency of constructing and applying instrumental corrections
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in the Fourier domain. This allows for accurate imaging of wider fields of view

and larger data sets without increasing the required computational resources.

Lastly, in Chapter 9 we show that these imaging developments can be applied

to interferometric imaging outside of radio astronomy.

The developments listed above are not the end point for distributed image

reconstruction methods. Future challenges include distribution of the wavelet

transforms and FFTs for large image sizes and the ability to perform directional

dependent calibration. However, it is more important that these methods are

used routinely within radio astronomy. The concept of using a reconstructed

model of the radio sky over the restored CLEAN image is new for radio

astronomers because the reconstruction quality has not been available.

Furthermore, there are many things that need to be understood about the

application of new imaging methods. This includes recognizing the impact of

artifacts due to calibration error and insufficient modeling of the measurement

equation, this is important for understanding scientific analysis. And lastly,

the convergence criteria can have an impact on the total computation and

reconstruction quality, and is something that needs to be understood, in many

cases the quality is good enough for scientific analysis before convergence has

been reached, suggesting that less iterations and computation could be needed

depending on the image quality needed for the study.

We expect that developments from this thesis can be applied to wide

band deconvolution, which is becoming increasingly important. Wide band

deconvolution not only has the challenge of increased data and images due

to more spectral channels, but the challenge of reconstructing the different

spectra of both compact and extended radio sources. Typical radio sources

are expected to be broad-band source with smooth spectra, but some cn have

narrow band spectral features, making the task of modeling spectra especially

challenging. However, many tools from convex optimization are built for

reconstructing both compact and extended sources, which could prove valuable

for reconstructing broad-band and narrow band signals.
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However, most importantly, accurate and computationally scalable

image reconstruction methods will be required for meeting next generation

science goals. This thesis has taken a step in this direction by developing,

implementing, and applying new interferometric image reconstruction that

have been distributed on computing clusters. This thesis can be used as a

foundation for building more efficient methods that can be applied to even

larger data sets from next generation interferometric telescopes.
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