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Single-cell landscape in mammary epithelium
reveals bipotent-like cells associated with
breast cancer risk and outcome
Weiyan Chen1, Samuel J. Morabito 2, Kai Kessenbrock 2, Tariq Enver3, Kerstin B. Meyer 4 &

Andrew E. Teschendorff 1

Adult stem-cells may serve as the cell-of-origin for cancer, yet their unbiased identification in

single cell RNA sequencing data is challenging due to the high dropout rate. In the case of

breast, the existence of a bipotent stem-like state is also controversial. Here we apply a

marker-free algorithm to scRNA-Seq data from the human mammary epithelium, revealing a

high-potency cell-state enriched for an independent mammary stem-cell expression module.

We validate this stem-like state in independent scRNA-Seq data. Our algorithm further

predicts that the stem-like state is bipotent, a prediction we are able to validate using FACS

sorted bulk expression data. The bipotent stem-like state correlates with clinical outcome in

basal breast cancer and is characterized by overexpression of YBX1 and ENO1, two mod-

ulators of basal breast cancer risk. This study illustrates the power of a marker-free com-

putational framework to identify a novel bipotent stem-like state in the mammary epithelium.
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S ingle-cell RNA-sequencing (scRNA-Seq) studies are revo-
lutionizing our understanding of cellular development,
helping us elucidate the hierarchical organization of cell-

types within complex tissues and how this organization may be
altered in diseases like cancer1–14. An outstanding challenge is
how best to identify progenitor or stem-like cells within the large
single-cell populations. This task is particularly important for
understanding oncogenesis, since the prevailing view is that it is
the adult progenitor/stem-like cells that give rise to cancer15–18.
Specifically, it is believed that inherited molecular alterations, as
well as somatic ones that accrue in these cells as a function of age
and exposure to risk factors, may eventually predispose these cells
to oncogenic transformation.

So far, the most common approach to identify progenitor/
stem-like states in scRNA-Seq data, has been to use prior
knowledge of specific progenitor or stemness markers, which
however may inevitably introduce bias19–21. In certain circum-
stances, this bias can be substantial, specially if knowledge of
suitable markers is not available or at best controversial, as is the
case for the mammary epithelium22,23. Moreover, the high
technical dropout rate of scRNA-Seq data means that reliance on
well-established markers may not be possible24. In this regard, it
is worth emphasizing that lineage-trajectory inference algo-
rithms4,14,25–27, including recent state-of-the-art ones such as
Monocle-328,29, still require specification of a “root-state”, in
order to give the trajectories a “temporal” direction, or to define
differentiation potency gradients. In the absence of temporal data,
the specification of this root state may rely on existing biological
knowledge and therefore equally subject to bias. Or the high-
dropout rate of scRNA-Seq data may preclude the use of tradi-
tional stemness markers to assign this root-state. Another related
and key problem is that cell-types are typically inferred as clusters
of relatively high cell density in a two-dimensional reduced space,
a procedure which does not necessarily allow for the identifica-
tion of cellular states19. Cellular states such as cell-cycle phase or
differentiation potency represent additional dimensions of var-
iation, which are generally not well captured or observed by
single-cell dimensional reduction and clustering methods. For
instance, a single-cell cluster may typically include cells from
different cell-cycle stages. Or how to identify novel progenitor or
stem-like states within a cell-type may not be possible, using two-
dimensional clustering alone, since potency/stemness may be
defined by additional latent dimensions.

Here, we show that these outstanding challenges can be over-
come with a marker-free system biology approach, called
LandSCENT (Landscape of Single Cell Entropy), which builds
upon our SCENT framework30 to assign each cell, not only to a
specific cell-type, but also to a specific potency/entropy state. We
stress that the assignment of cells to potency states is achieved
without the need for prior knowledge or assumptions, using a
potency model that has been extensively validated across many
independent scRNA-Seq and bulk RNA-Seq data sets, irrespective
of cell lineage, technology, or species30,31. LandSCENT combines
the inferred cell-types and potency states into a multilayered
single-cell landscape, where cell-states are defined by clusters of
single cells within a potency state. This allows cells to be placed
into specific cellular states, thus allowing novel cellular pheno-
types to be identified, for instance novel progenitor or stem-like
states within complex epithelial tissues. Importantly, this also
allows a natural and unbiased assignment of a root-state, as the
one of highest potency, from which lineage trajectories and
bifurcation patterns can be subsequently learned using appro-
priate algorithms such as Diffusion Maps27,32,33. We illustrate
LandSCENT in the context of the breast epithelium, constructing
a combined cell-type and potency landscape at the single-cell
level, which, in conjunction with diffusion maps, predicts a novel

bipotent progenitor or stem-like cell-state. We provide extensive
validation of the bipotent stem-like nature of this state in many
orthogonal bulk expression data sets, as well as in scRNA-Seq
assays from two different technologies, encompassing altogether
data from six different women. We point out that all these results
would not have been obtained, had we used competing state-of-
the-art clustering or lineage-trajectory inference methods, high-
lighting the importance of the LandSCENT/SCENT paradigm.

Results
Rationale for a marker-free approach to identify stem-like cells.
We reanalyzed scRNA-Seq data from a previous study that used
the 10X Genomics Chromium assay to profile over 25,000
mammary epithelial cells from four nulliparous healthy women34.
We note that due to the high dropout rate of the 10X data, this
study had not been able to use the 10X data to confidently
identify a stem-like state34. We verified that the median dropout
rate per cell was over 90% for each of the four women, affecting
some of the proposed stemness markers like ALDH1A1, ZEB1,
and TCF434,35 (Supplementary Fig. 1A, B). For instance, for ZEB1
and TCF4, the two stemness markers proposed by Nguyen
et al.34, the number of cells with a read count larger than 2 in each
of the four women was only 1, 0, 0, and 0 for ZEB1 and only 1, 2,
0, and 1 for TCF4, despite thousands of cells having been mea-
sured in each woman. Thus, in the absence of stemness marker
expression, and to avoid potential biases associated with picking
ab initio other markers like CD44 or ITGA6, we decided to apply
our marker-free single-cell signaling entropy (SCENT)30,31

model, which provides robust estimates of cell potency14,36,37. We
posited that exploring the distribution of inferred potency values
across single-cell clusters may help to identify novel cell-states,
including a putative bipotent progenitor or stem-like state.
LandSCENT achieves this by combining maps of cell potency and
single-cell clusters within a novel “cell-density” visualization
framework, which could naturally reveal novel single-cell states
(Fig. 1a, the “Methods” section). Importantly, the estimation of
cell potency for each single cell allows potency gradients to be
naturally inferred, therefore allowing unbiased assignment of
“root-states” (i.e., states of highest potency), which can be sub-
sequently used as input for lineage-trajectory inference algo-
rithms (Fig. 1b, the “Methods” section).

LandSCENT predicts a high-potency state enriched in basal
cells. We observed that only for one of the four women (denoted
“Ind-4”) did the top principal component of variation correlate
with expression of basal and luminal markers (Supplementary
Fig. 2). For the other three women, the top PC correlated with
total read count and coverage, accounting for twice as much
variance as lower ranked biological components (Supplementary
Fig. 2), suggesting that these scRNA-Seq assays were not parti-
cularly successful. Thus, we decided to apply LandSCENT to the
3473 single epithelial cells that survived quality control from Ind-
4. Performing t-SNE38 followed by density-based spatial cluster-
ing39 revealed three main single-cell clusters (Fig. 2a, the
“Methods” section), in line with previous observations34, and
consistent with known biology: one cluster expressed high levels
of KRT14, a well-known basal marker, whereas the other two
expressed KRT18, a well-known luminal marker (Fig. 2b). Con-
sistent with the report of Nguyen et al.34, the two luminal clusters
were distinguished by expression of lactotransferin (LTF) and
luminal differentiation markers (GATA3/FOXA1), as well as
hormone receptors (ESR1/PGR) (Fig. 2b), suggesting that the
higher LTF-expressing cluster represents a more immature
(alveolar-like) luminal phenotype. Next, we estimated the dif-
ferentiation potency of each single cell using our Signaling
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Entropy Rate (SR) measure (“Methods” section), which revealed
the existence of three main potency states (Fig. 2c, the “Methods”
section). Of note, using known luminal and basal differentiation
markers, we were able to validate potency-state assignments
within the basal and luminal clusters separately (Supplementary
Notes). We observed that the highest potency state represented a
minority population, with approximately only 169 single cells
(i.e., 5%) falling into this putative progenitor or stem-like state
(Fig. 2c). To explore the biological characteristics of this state, we
assessed the distribution of potency states across the three main
single-cell clusters, as well as across those cells not assigned to any
cluster (“peripheral cells”) (Fig. 2d, e). Cells in the high potency
state were found primarily within the basal compartment, but
also mapped preferentially to the common peripheral area
between the basal and immature luminal clusters, and were
therefore also relatively overrepresented among peripheral cells
(Fig. 2d, e).

LandSCENT diffusion map analysis predicts a bipotent state.
To explore the high-potency state in more detail, we first used

LandSCENT to create cell-density elevation maps for all cells, and
separately also for all highly potent cells, within the two-
dimensional t-SNE landscape, which confirmed that the max-
imum density of the highly potent cells defined a peak within the
basal cluster, but with a ridge connecting it to another peak
within the immature luminal (L1) cluster (Fig. 3a), suggestive of a
bipotent cell population. In line with this, we observed that
among all cells categorized into the high potency (PS3) state,
those falling within this density peak also exhibited the highest
levels of signaling entropy (i.e., cell potency) (Supplementary
Fig. 3). To exclude the possibility that these putative bipotent cells
may be doublets, we estimated doublet scores for all cells using a
novel simulation approach40. In line with the expected doublet
rate for 10X technology, this analysis revealed that ∼2% of
assayed cells are potential doublets (Supplementary Fig. 4A). As
expected, most of these mapped to the peripheral area between
the major luminal and basal clusters, yet they clearly also did not
substantially overlap with the most highly potent cells within the
basal and luminal clusters (Supplementary Fig. 4B–D): in fact,
108 of the 169 highly potent cells (i.e., 64%) had zero doublet
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Fig. 1 Using LandSCENT to identify novel progenitor or stem-like states in static snapshot scRNA-Seq data. a For a given scRNA-Seq dataset profiling
thousands of cells in a given tissue type we estimate each single cell’s potency using our Signaling Entropy Rate (SR) measure, in addition to inferring cell-
types using ordinary dimensional reduction and clustering (e.g., PCA+ tSNE+DBSCAN). This yields two landscapes: a cell-density landscape representing
the different cell-type clusters, and a landscape of potency (SR), which we depict here as a heatmap at the bottom. Potency states can be inferred by fitting
mixture of Gaussians to the logit-transformed SR values. b By counting cells in each potency state and single cluster combination we can identify cell-
states, i.e., specific pairs of potency-states and clusters with sufficient representation of cells. In addition, using cell-density elevation maps for highly
potent cells can reveal a cell-density landscape very different to that of all cells together, as shown. Finally, the state of highest potency (SR) is identified
and assigned as a root-state to infer lineage trajectories using an algorithm such as Diffusion Maps
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scores, and only 17 of the 169 highly potent cells, i.e., as few as
10%, attained high doublet scores (Supplementary Fig. 4C),
clearly indicating that a substantial majority of the highly potent
cells are not doublets. We verified that similar results were
obtained had we used another method for estimating doublet
scores (Supplementary Fig. 5, the “Methods” section).

Although investigation of specific marker expression is difficult
in this high dropout 10X data (Supplementary Fig. 1C), we
nevertheless explored the variation in expression of proposed
markers for bipotent, luminal-restricted progenitor, and

myoepithelial-restricted progenitor cells41. Focusing on the highly
potent cells, we first observed that although all these cells
expressed EPCAM, that those falling within the luminal clusters
exhibited higher levels of EPCAM expression compared to those
mapping to the basal compartment (Fig. 3b), consistent with the
view that luminal-restricted progenitors express higher levels of
EPCAM41. Next, we plotted the expression of MUC1 versus CD10
for all the highly potent cells, as EPCAMhi/MUC1+ and
EPCAMlow/CD10+ cells have been proposed to be luminal-
restricted and myoepithelial-restricted progenitors, respectively,
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whilst EPCAMlow/MUC1- cells are enriched for bipotent
progenitors41. This scatterplot revealed three substates: an
exclusively basal cluster (n= 18) expressing high levels of CD10
but MUC1-, a predominantly luminal CD10-/MUC1+ cluster
(n= 44), and a larger double negative CD10-/MUC1- cluster (n=
85) (Fig. 3b). The CD10-/MUC1- cluster was made up 38 basal
cells, 11 Lum-1 cells, 4 Lum-2 cells, in addition to 32 peripheral
cells, i.e., cells mapping in-between the basal and immature
luminal clusters. Thus, these data are highly consistent with the
prevailing view that the CD10+ subpopulation correlates with a
basal-restricted progenitor subtype, that the MUC1+ subpopula-
tion associates with a luminal restricted progenitor subtype, and
that the MUC1-/CD10- cluster contains a bipotent subtype.

In order to substantiate the above findings, we next applied
Diffusion Maps, a powerful tool for inferring bifurcation points
and lineage trajectories in scRNA-Seq data27,32. We observed that
while diffusion components 1 and 2 correlated strongly with the
three main clusters (basal, Lum-1, and Lum-2) (Fig. 3c), that
diffusion component 3 was highly correlated with our SR cell
potency measure (Fig. 3d). Defining as root state the cell of
highest SR (i.e., potency), this cell mapped to the periphery of the
basal cluster and the resulting diffusion map naturally predicts a
bifurcation from this root state into marginally lower but still
high-potency basal and luminal states (Fig. 3d). Differentiated
basal and luminal clusters emerge from these restricted
progenitor states along their respective basal and luminal lineages,
as required (Fig. 3d). Confirming this, diffusion pseudotime
(DPT) analysis predicted two major terminal tip-points, one in
the basal cluster and another in the mature luminal-2 state, with
no direct transition between the basal and luminal-2 clusters
(Fig. 3e), i.e., DPT analysis correctly predicts that the mature
luminal-2 state is only reached after passing through the
immature luminal-1 cluster, consistent with it containing the
luminal progenitor population.

Validation of the single-cell stem-like state. If the bipotent cell
cluster identified by LandSCENT is stem-like, the expectation
would be that these cells may be transcriptionally similar to
previously characterized mammary stem cells. To explore this, we
performed differential expression analysis between high and low
potent cells. The great majority of genes were downregulated in
the more potent cells, with only 72 exhibiting overexpression
(Bonferroni adjusted P < 0.05, Fig. 4a, Supplementary Table 1).
Remarkably, performing rank-based GSEA42 on the 72 over-
expressed genes revealed strong enrichment for genes upregulated
in mammary stem-cells (Fig. 4b). In particular, we observed a
relatively strong enrichment (12 gene overlap, OR= 39, BH-
adjusted Fisher-test P < 1e−10) with a previously characterized
mammary stem-cell signature43. Of note, among the 12 over-
lapping genes, 9 (RPS2, RPS7, RPS10, RPL8, RPS18, RPS3,
RPL10A) were ribosomal proteins or ubiquitin ribosomal fusion
proteins (UBA2 and FAU), consistent with recent findings that
expression of ribosomal proteins may be a universal marker of
stemness and potency30,44 (Supplementary Fig. 6). We stress that
the higher mRNA expression levels of ribosomal genes with
increased cell potency is also observed in bulk samples30,36, thus
excluding the observed association as an artifact of single-cell
analysis. Among the other three genes, we observed NACA, a
protein that associates with the upregulated transcription factor
BTF3, and TXN (thioredoxin), a protein involved in the response
to intracellular nitric oxide.

To confirm the results of the GSEA, we obtained and
normalized mRNA expression data from43, consisting of FACS
sorted pools representing quiescent mammary stem-cells and
transit-amplifying progenitors, as derived from mammosphere-

growing assays (“Methods” section). Confirming the association
with stemness, the 12 overlapping genes exhibited increased
expression in three separate pools of quiescent mammary stem-
cells compared to their derived transit-amplifying progenitors
(Fig. 4c, d, Wilcox test P= 0.001, the “Methods” section), a result
which remained significant compared to randomly selected genes
(Fig. 4d, Monte Carlo P= 0.0001). Results remained significant
had we used all 72 genes (63 genes had representation on the
Affymetrix platform used in Pece et al.43) from the upregulated
stem-like signature (Fig. 4e, Supplementary Fig. 7). Although this
validation uses data generated in vitro, and therefore ignores
in vivo effects, the data nevertheless support the view that the
cells deemed to be stem-like according to our LandSCENT
algorithm, are indeed related to mammary stemness. Of note, the
identification of the stem-like state was not possible using other
state-of-the-art lineage-inference trajectory algorithms such as
e.g., Monocle-228 (Supplementary Notes).

Validation in independent 10X and Fluidigm C1 data. While
the quality of the 10X scRNA-Seq assay from the other three
women is questionable (Supplementary Fig. 2), we nevertheless
aimed to further validate the single-cell stem-like transcriptomic
signature in these data. We reasoned that the average expression
of the identified 72 upregulated genes should be a stemness
marker in the 10X data from these three women. Confirming this,
for each woman we observed a significant increased expression of
these 72 genes in the single cells deemed to be of highest potency
according to our highly validated SR measure (Fig. 5a, Wilcox test
P < 1e−30).

As a further validation, we would expect the identified stem-
like cells to preferentially overexpress previously characterized
stemness markers. Despite the high dropout rate of the 10X data
(Supplementary Fig. 1), we nevertheless first assessed correlations
between the 72 upregulated genes and a panel of 6 stemness
markers (ALDH1A1, ALDH1A3, CD44, ITGA6, ZEB1, and
TCF4)34,35 in the 10X data, finding small but significant positive
correlations for ALDH1A3, CD44, and ITGA6 (Supplementary
Fig. 8, Fisher Z, P < 1e−5). We further tested for correlations
between our upregulated signature genes and expression of the
stemness markers in three independent higher-coverage scRNA-
Seq datasets from the mammary epithelium generated with the
Fluidigm C1 platform34 (“Methods” section). We observed a
statistically significant correlation with ALDH1A3 and CD44
expression (Fig. 5b, Fisher Z, P < 1e−10). Thus, while the stem-
like state identified in the 10X data from Ind-4 is clearly not
identifiable via single stemness marker expression, we observed
partial but significant correlations with ALDH1A3 and CD44 in
both 10X and Fluidigm C1 data.

Single-cell stem-like signature is increased in luminal pro-
genitors. Having validated the stem-like nature of the highly
potent cell cluster, we next asked if the transcriptome of these
cells may also mark luminal progenitors (LPs). This is reasonable,
because although the highly potent cells were mostly enriched in
the basal cluster, a considerable number did map to the more
immature luminal cluster, occupying a topologically central
position close to those in the basal cluster (Fig. 3a). To test our
hypothesis, we analyzed bulk expression data from four FACS
sorted cell populations, three representing putative LP subclasses
and one representing differentiated luminal cells45. We observed
that the average expression of the 72 upregulated genes was
highest for the EpCAM+ /ITGA6+ /ALDH+ luminal pro-
genitor population (Fig. 6a, Wilcox test P= 0.004), consistent
with the view that it is the ALDH+ cells that are most likely to
represent LPs45. Studying the individual genes in the 12-gene and
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72-gene signatures, revealed that the great majority were over-
expressed in the EpCAM+ /ITGA6+ /ALDH+ population
compared to all other luminal/LP populations, a result which was
highly significant as assessed using 100,000 Monte-Carlo rando-
mizations (Fig. 6b, P < 1e−5). These data further support the view
that the identified stem-like state may be bipotent, as it shares
similarity with both basal and luminal progenitors.

Bipotent-like cells are marked by YBX1 and ENO1 over-
expression. As noted earlier, the great majority of genes were
downregulated in the stem-like cell cluster, with only 72 exhi-
biting overexpression. Correspondingly, among the 1369 tran-
scription factors, 582 exhibited differential expression (Bonferroni

adjusted P < 0.05) with only 3 TFs (ENO1, YBX1, and BTF3)
exhibiting higher expression in the more potent cells (Fig. 4a).
Remarkably, YBX1 and ENO1 are two transcription factors whose
targets are highly enriched for breast cancer GWAS eQTLs46,
thus implicating them in breast cancer risk. In addition, siRNA
against YBX1 in a normal ER- cell-line (MCF10A) resulted in
significantly reduced cell-confluence and growth, even when
compared to other breast cancer risk TFs46. We confirmed that
the associations of YBX1 and ENO1 expression with potency
remained after adjustment for cell-cycle phase (Supplementary
Fig. 9, the “Methods” section), and that their expression corre-
lated with cell potency in the 10X scRNA-Seq data from each of
the four women (Supplementary Fig. 10). We note that the cor-
relation of YBX1 expression with potency was particularly evident

–20 –10 0 10

0

20

40

60

80

t (DE:potency)

–l
og

10
 (

P
)

ENO1

BTF3

YBX1

TF
Other

a b

c

e

d

0 5000 10,000 15,000 20,000

–0.2

0.0

0.1

0.2

Rank

0 5000 10,000 15,000 20,000

Rank

E
S

MAMMARY-STEM-CELL-UP

NES = 3
P = 1e–04

–0.1

0.0

0.1

0.2

E
S

MAMMARY-STEM-CELL-DN

NES = 0.1
P = 0.954

Pool-1

N P

TXN

UBA52

GAPDH

RPS2

RPS7

FAU

RPS10

RPL8

RPS18

RPS3

NACA

RPL10A

TXN

UBA52

GAPDH

RPS2

RPS7

FAU

RPS10

RPL8

RPS18

RPS3

NACA

RPL10A

TXN

UBA52

GAPDH

RPS2

RPS7

FAU

RPS10

RPL8

RPS18

RPS3

NACA

RPL10A

Pool-2

N P

Mammary stem cell status

Pool-3

N P

z (Expr)

0.5

–0.5

0.0

0.4

0.8

M
ea

n 
di

ff
M

ea
n 

di
ff

P = 0.001

P = 0.001

P = 0.0001

P = 0.0007

–0.2 0.0 0.1 0.2

0

2

4

6

Av (mean diff)

Av (mean diff)

D
en

si
ty

D
en

si
ty

–0.5

0.0

0.5

–0.10 0.00 0.10 0.20

0

5

10

15
Null
Obs

Null
Obs

12-gene signature

72-gene signature

Fig. 4 Validation of single-cell stem-like signature with GSEA and mammosphere-derived data. a Volcano plot of differential expression associated with
potency, with x-axis labeling the t-statistic and y-axis labeling the statistical significance. Horizontal bar denotes the Bonferroni threshold, and red points
indicate transcription factors (TFs). b Plots of the Enrichment Score (ES, y-axis) from rank-based GSEA against rank index position (x-axis) for genes
ranked according to their positive correlation with potency as assessed using the scRNA-Seq data (black line), and for two different biological terms from
the MSigDB dataset: genes upregulated and downregulated in mammary stem cells (Pece et al.). Green curves describe dependence of the ES score on
rank position after Monte-Carlo randomization of the gene-ranking, for ten different Monte-Carlo runs. The Normalized Enrichment Score defined by the
ratio of the observed maximum ES score to the mean of the maximum over 1000 Monte-Carlo runs is given, as well as the associated P-value derived by
approximating the max ES scores over the 1000 Monte-Carlo runs as a Gaussian. c Normalized relative expression heatmaps for the 12 genes upregulated
in the putative stem-like single-cells and which overlap with a mammary stem-cell signature, in three separate pools of FACS sorted quiescent mammary
stem-cells (P) and their derived proliferative non-stem like progeny (N). d Average expression difference between the P and N cells, averaged over the
three separate pools. P-value is from a one-tailed Wilcoxon rank sum test. Monte-Carlo randomization analysis, where in each of 100,000 random
selections of 12 genes, the average difference over the three pools is computed (greycurve) and compared to the observed average difference (red, panel-
B). Monte-Carlo P-value is given. e As D), but for the 72-gene bipotent signature

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0554-8 ARTICLE

COMMUNICATIONS BIOLOGY |           (2019) 2:306 | https://doi.org/10.1038/s42003-019-0554-8 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


in the luminal compartment (Supplementary Fig. 11). Moreover,
YBX1 expression was also higher in the more immature luminal
alveolar-like phenotype, in line with the fact that these alveolar
luminal cells should be more enriched for progenitors, and that
YBX1 expression was also highest in the FACS-sorted ALDH+
luminal progenitor population (Supplementary Fig. 12).

Of note, both YBX1 and ENO1 also exhibited significant
positive correlations with the ALDH1A3 and CD44 stemness
markers in the Fluidigm C1 data (Supplementary Fig. 13, Fisher
Z, P < 1e−10), but were not upregulated in the quiescent
mammary stem cells compared to the transit-amplifying
progenitor cells (Supplementary Fig. 7), suggesting that YBX1
and ENO1 expression may be associated with an amplifying
(bipotent) progenitor state.

Bipotent signature marks basal breast cancer and poor clinical
outcome. Given that our stem-like signature was derived from
single cells and is therefore free from the confounding effect of
cell-type heterogeneity, we decided to test it in primary breast
cancer tissue. Since the stem-like state was enriched within the
basal compartment, we hypothesized that the signature may mark
basal breast cancer and be prognostic within this subtype. We
confirmed the association with basal breast cancer using 2000
primary breast cancers profiled as part of the METABRIC study47

(Supplementary Fig. 14). The average expression over the 72
genes was also associated with clinical outcome, although only
marginally so in the basal subtype (Supplementary Fig. 15). In
order to construct a single-cell derived stemness score, we also

considered an expanded 144-gene expression signature which,
besides the 72 upregulated genes, included the 72 most sig-
nificantly downregulated genes within the high potency single-
cell cluster (Supplementary Table 1). This strategy allowed us to
compute a Pearson correlation between the 144-gene signed
signature and the expression profile of each METABRIC sample,
which should yield a more robust “stemness/bipotency score”
(“Methods” section). This score was also significantly higher in
the basal subtype (Wilcox test P < 1e−50, Fig. 7a), and correlated
with poor clinical outcome (HR= 1.46 (95%CI: 1.32–1.62), P=
6e−13, Fig. 7b), which remained significant in a multivariate
analysis adjusted for ER-status, grade, age, stage, and tumor size
(HR= 1.26 (95%CI: 1.10–1.43), P= 0.0006, Supplementary
Table 2). Importantly, the association with overall survival
remained significant within the basal subtype (HR= 1.28 (95%
CI: 1.05–1.56), P= 0.02, Fig. 7c) even when adjusted for age,
stage, and tumor size (HR= 1.30 (95%CI: 1.02–1.66), P= 0.03,
Supplementary Table 3). The difference in the 3-year overall
survival rate between the lowest and highest quartiles was sub-
stantial: while those with the lowest stemness score exhibited a
90% 3-year survival rate, those in the highest quartile showed a
30% reduction (Fig. 7c).

Discussion
Here we have demonstrated “proof-of-concept” that our signaling
entropy based cell potency measure can identify rare sub-
populations representing novel progenitor or stem-like cells.
Indeed, application to almost 4000 single cells from the
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mammary epithelium identified a minor (<5%) high potency
subpopulation, which we argue likely represents a mammary
bipotent progenitor or stem-like state. These high-potency cells
were not randomly distributed: they were over-represented within
the basal compartment, but also mapped preferentially to the

periphery of the basal and immature alveolar luminal clusters,
with a smaller fraction of marginally lower potency also being
exclusive to this luminal cluster. Using a novel visualization
technique based on generating and comparing cell-density surface
maps for all inferred potency states, confirmed that cells in the
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high-potency state clustered most strongly at the periphery of the
basal cluster, with others defining a distinctive bi-modal ridge
between the basal and alveolar luminal clusters. Of note, cells
defining the peak of maximum cellular density were also the ones
attaining the highest potency values. Without having to invoke
any prior assumptions, this topologically central position predicts
that these highly potent cells may represent a bipotent stem-like
state that gives rise not only to basal cells but also to luminal
progenitors, in direct analogy with the topologically central
positions observed for e.g., hematopoietic stem cells in the
hematopoietic system48.

Many analyses substantiate this view. First, using only high-
potency cells, a scatterplot of expression of CD10 and MUC1, two
markers that have been proposed to differentiate bipotent pro-
genitors from basal-restricted and luminal-restricted progeni-
tors41, revealed three states: a CD10+/MUC1- population
composed only of basal cells, a CD10-/MUC1+ population
composed almost exclusively of immature luminal cells, and a
double negative CD10-/MUC1- population which was composed
mainly of basal cells, but which also included a number of per-
ipheral “ridge-defining” cells as well as a few immature luminal
cells. Thus, consistent with previous literature41, the CD10
+/MUC1- and CD10-/MUC1+ cells likely represent basal-
restricted and luminal-restricted progenitor populations, respec-
tively, with the basal and peripheral CD10-/MUC1- cells defin-
ing a bipotent-like state. Second, we used our entropy potency
measure to define a natural root-state as the cell attaining the
highest potency, from which a diffusion map process was then
inferred. This predicted a bifurcation, with one lineage giving rise
to basal-restricted progenitors and fully differentiated basal cells,
and with the other giving rise to luminal-restricted progenitors
and differentiated luminal cells. Third, we found that among the
top overexpressing genes in the bipotent stem-like state there was
strong enrichment for genes that mark quiescent mammary stem
cells43 and stemness generally30,44. We stress that this validation
of the single-cell stem-like state was obtained in bulk mRNA
expression data comparing quiescent mammary stem-cells to
transit-amplifying progenitors, which therefore strongly rein-
forces the validity of our potency assignments. Fourth, the stem-
like single cell signature, which was derived from the 10X scRNA-
Seq assay from one woman, also exhibited variability in the 10X
scRNA-Seq assays from another three women, in each case cor-
relating with our highly validated potency measure. Fifth, we
found that our stem-like single-cell signature also correlated
significantly with the expression of ALDH1A3 and CD44, two
well-known putative mammary stem-cell markers in independent
higher coverage C1 Fluidigm data from another three women. We
stress that although significant correlations with these two mar-
kers were also observed in the 10X data, that these correlations
were relatively weak and only significant due to the larger number
of cells. This is important because we note that using ALDH1A3
or CD44 expression itself did not allow identification of the novel
stem-like state, even if used in conjunction with a state-of-the-art
tool like Monocle-2. Sixth, the single-cell expression signature
characterizing this stem-like state was also found to be elevated in
FACS sorted ALDH+ luminal progenitor cells compared to dif-
ferentiated luminal and other less differentiated luminal subtypes.
This suggests that the signature is not only marking basal pro-
genitors but also luminal progenitors, further supporting a
bipotent interpretation.

Of note, a recent scRNA-Seq study performed in the mouse
mammary gland which also used diffusion maps49, reached the
conclusion that basal and luminal lineages were separate without
evidence of a bifurcation, therefore questioning the existence of a
bipotent state. Interestingly, this is in line with a recent neutral
lineage study in mice50, which did not find evidence for bipotent

cells in the mammary gland. However, if the bipotent cells are in
a highly quiescent state, they may not have been found in such
lineage tracing studies50. Moreover, a likely explanation for the
discrepancy with the mouse scRNA-Seq study is the fact that this
previous study did not use an independent potency measure to
define a reliable root state. Indeed, reliance on stemness or pro-
genitor marker expression alone to define such a root state does
not allow reliable identification of stem-like cells in high dropout
rate scRNA-Seq data, as evidenced here but also in this previous
study. It is clear that the prediction or not of specific bifurcation
points using diffusion maps will depend critically on the identi-
fication of a reliable root state, specially since cells transiting
between bipotent and lineage-restricted progenitor states are
sparse. Thus, it will be necessary to profile even larger numbers of
cells and at higher read-depth (average read depth of the 10X data
considered here was 60,000 reads per cell) to conclusively address
this question. Higher-read depth would allow full characterization
of the transcriptome of this bipotent stem-like state, which may in
turn help pinpoint specific surface markers.

The putative bipotent state as revealed by LandSCENT may
have important implications for basal breast cancer. It is indeed
striking that of the three TFs overexpressed in the stem-like state,
two (YBX1 and ENO1) have been implicated in basal breast
cancer risk46. Specifically, it has been observed that genes within
the YBX1 and ENO1 regulons are strongly enriched for GWAS
breast cancer eQTLs46. The third TF (BTF3) has been shown to
be necessary for proliferation and EMT in gastric cancer51. YBX1
merits further study as it has been shown to play a key role in
maintaining the self-renewal and proliferative capacity of basal
cells46. There is also substantial evidence demonstrating that
YBX1 transforms mammary epithelial cells, via binding to the
BMI1 promoter and chromatin remodeling, leading to basal
breast cancer52. In line with this, YBX1 is also more highly
expressed in basal breast cancer compared to all other breast
cancer subtypes (Supplementary Fig. 14). Interestingly, YBX1 and
the associated stem-like signature was also highly expressed in
luminal progenitors, which is important because a subset of basal
breast cancers, notably BRCA1 mutant ones, are thought to arise
from misprogrammed luminal progenitors45,53. Indeed, the
single-cell landscape inferred with LandSCENT underscores the
similarity of the highly potent cells within the basal compartment
with those in the immature luminal cluster, strongly suggesting
that the cell of origin for basal breast cancer may well be a
bipotent-like cell that shares an expression profile similar to that
of luminal progenitors. YBX1 has also been shown to interact
with ESR1, and via FGFR2 signaling may contribute to tamoxifen
resistance54. Interestingly, although the majority of the 72 upre-
gulated genes were also overexpressed in the quiescent mammary
stem-cells derived from mammosphere-growing assays, both
YBX1 and ENO1 were not overexpressed relative to the transit-
amplying progenitors, suggesting that they may not be stemness
markers per-se, but markers of a bipotent early progenitor state.
Beyond YBX1, we characterized the putative bipotent cells in
terms of a 144-gene “bipotent” expression signature, which
clearly marked basal breast cancer, and which also correlated with
poor overall survival within the basal subtype independently of
standard prognostic factors, all consistent with it defining a “poor
outcome stemness signature”. While poor outcome stemness
signatures derived from bulk data have been widely reported in
breast cancer55–58, this study presents a prognostic stemness
signature derived from single cells and therefore free from the
confounding effects of cell-type heterogeneity. Thus, the obser-
vation that the single-cell stem-like signature correlates with
clinical outcome in basal breast cancer, whilst also including a TF
that is oncogenic for basal breast cancer and which has also been
implicated in basal breast cancer risk is in our opinion an
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important finding. Indeed, there is growing evidence that mole-
cular alterations (both inherited and somatic) affecting the adult
stem/progenitor cell pool of a tissue is a main risk factor for
epithelial cancer development16–18,59,60. Thus, we speculate that it
is the genetic and epigenetic alterations that accumulate within
the bipotent progenitor cell pool identified here, which may
confer the risk of breast cancer, especially basal breast cancer.

In summary, we have here showcased the application of an
unbiased marker-free computational approach for estimating cell
potency, and which, in an application to the human mammary
epithelium, has identified a novel putative bipotent stem-like
state, with the transcriptome of these cells exhibiting associations
with basal breast cancer risk and outcome. Our LandSCENT
algorithm and findings may serve as a general paradigm for
analogous scRNA-Seq studies in other tissue types, including
those performed on cancer tissue which aim to identify putative
cancer stem-cells5,8,30.

Methods
Single-cell data and preprocessing. 10X Genomics set: The main scRNA-Seq data
analyzed in this work derives from the study of Nguyen et al.34, who used the 10X
Genomics Chromium platform to sequence a total of 24,646 cells from reduction
mammoplastic specimens from four separate nulliparous women (Ind4–7), at an
average read-depth of 60,000 reads per cell. Mapped read count data from the four
individuals was downloaded from GEO (GSE113197), and further normalized as
follows: for each cell we counted the number of expressed genes (“coverage per
cell”), and for each gene we also counted the number of times it was expressed
across all single cells (“coverage per gene”). For each cell, we also computed the
total read count mapping to mitochondrial genes, which revealed low cell coverage
for those cells having a high proportion of mitochondrial gene read counts. Based
on this, we selected all cells expressing at least 1000 genes and with the proportion
of mitochondrial read counts <0.05, leaving a total of 23,369 cells. Mitochondrial
genes were removed and the total read count per cell c recomputed (TRCc).
Denoting the maximum of TRCc by maxC, and the read count matrix by RCM, the
latter was normalized with the following transformation: LSCgc= log2(-
RCMgc*maxC/TRCc+ 1.1). Finally, we only use Entrez gene ID annotated genes,
which resulted in a log-normalized single cells matrix of dimension 22,049
genes and 23,369 cells (3473 for Ind-4, 6811 for Ind-5, 5807 for Ind-6, and 7278
for Ind-7).

Fluidigm C1 set: In addition, we also analysed the corresponding Fluidigm C1
scRNA-Seq set, also from Nguyen et al.34. We downloaded the FPKM-valued
matrix of 33,694 features and 815 cells encompassing cells from three different
women. We selected cells expressing at least a 1000 genes and with a mitochondrial
proportion less than 0.3, leaving a matrix of 33,681 features and 715 cells. The
FPKM matrix was log2-normalized with a pseudocount of 1. We only kept genes
mapping to an entrez gene ID, which resulted in a normalized expression matrix
over 22,049 genes and 715 cells. The number of cells for the three individuals were
198 (Ind-1), 195 (Ind-2) and 322 (Ind-3).

The LandSCENT algorithm. LandSCENT is a direct extension of the SCENT
algorithm. There are four steps to the LandSCENT algorithm: (1) Inference of
potency states: estimation of the differentiation potency of single cells via com-
putation of the signaling entropy rate (SR) and subsequent inference of the potency
state distribution across the single cell population. (2) Inference of cell-types: we
perform t-SNE38 followed by density-based spatial clustering (dbscan)39 on a
suitably dimensionally reduced LSC matrix. (3) Identification of cell-states, i.e.,
potency state single-cell cluster pairs that contain a minimum number of cells30,
and construction of cell-density landscapes for each potency-state. (4) Identifica-
tion of a root-state, i.e., the cell state of highest entropy/potency (SR), and sub-
sequent application of Diffusion Maps27,32 to infer bifurcations and lineage
trajectories. We note that step-1 is the exact same procedure as used in our original
SCENT algorithm30.

Step-1 Inference of potency states: We estimate differentiation potency of each
single cell by computing the signaling entropy, as described previously31,61. Briefly,
the normalized genome-wide gene expression profile of a sample (this can be a
single cell or a bulk sample), which provides the biological context, is used to assign
weights to the edges of a highly curated protein–protein interaction (PPI) network.
The construction of the PPI network itself is described in detail elsewhere31, and is
obtained by integrating various interaction databases which form part of Pathway
Commons (www.pathwaycommons.org)62. The PPI network as used here is
available from https://github.com/ChenWeiyan/LandSCENT/tree/master/data
under filename net13Jun12.m.RData. The weight of an edge between protein i and
protein j, denoted by wij, is assumed to be proportional to the normalized
expression levels of the coding genes in the cell, i.e., we assume that wij~xixj, and we
interpret these weights (if normalized) as interaction probabilities. Thus, in a
sample with high expression of i and j, the two proteins are more likely to interact

than in a sample with low or absent expression of i and/or j. Normalizing the
weights results in a random walk defined by a stochastic matrix, P, over the
network, with entries

pij ¼
xj

P
k2NðiÞ xk

¼ xj
ðAxÞi

where N(i) denotes the neighbors of protein i, and where A is the adjacency matrix
of the PPI network (Aij= 1 if i and j are connected, 0 otherwise, and with Aii= 0).
The signaling entropy is then defined as the entropy rate (denoted Sr) over the
weighted network, i.e.,

Sr ~xð Þ ¼ �
Xn

i¼1

πi
X

j2NðiÞ
pij log pij

where π is the invariant measure, satisfying πP= π and the normalization
constraint πT1= 1. The invariant measure, also known as steady-state probability,
represents the relative probability of finding the random walker at a given node in
the network (under steady state conditions i.e., long after the walk is initiated).
Nodes with high values thus represent nodes that are particularly influential in
distributing signaling flux in the network. In the steady-state we can assume
detailed balance (conservation of signaling flux, i.e., πipij= πjpji), and it can be
shown61 that πi= xi(Ax)i/(xTAx). Given a fixed adjacency matrix A (i.e., fixing the
topology), it can also be shown61 that the maximum possible Sr among all
compatible stochastic matrices P, is the one with P ¼ 1

γ v
�1 � A� v where ⊗

denotes product of matrix entries and where v is the dominant eigenvector of A,
i.e., Av= λv with λ the largest eigenvalue of A. We denote this maximum entropy
rate by maxSr, and define the normalized entropy rate (with range of values
between 0 and 1) as

SR ~xð Þ ¼ Srð~xÞ
maxSr

Since SR is bounded between 0 and 1, we next transform the SR value of each single
cell into their logit-scale value, i.e., y(SR)= log2(SR/(1−SR)). Subsequently, we fit a
mixture of Gaussians to the y(SR) values of the whole cell population, and use the
Bayesian Information Criterion (as implemented in the mclust R-package)63 to
estimate the optimal number K of potency states, as well as the state-membership
probabilities of each individual cell. Thus, for each single cell, this results in its
assignment to a specific potency state.

Step-2 Inference of cell-types: Cell-types are inferred as clusters using cell-
density in the two-dimensional t-SNE space as the main criterion. Preliminary
dimensional reduction is achieved by first selecting genes with a mean average
expression larger than 1, and also a standard deviation larger than 1. These
thresholds were chosen after inspection of the mean-variance plot, and in the case
of Ind-4 this resulted in 4261 highly variable and expressed genes. To map the high
dimensional nature of the data matrix to a two-dimensional subspace we used t-
SNE with an initial dimension of 30, a perplexity parameter of 30, 1000 maximum
iterations and epoch parameter set to 100. We then used the dbscan algorithm
(density-based spatial clustering) with eps= 5 and minPts= 15 to identify clusters.
Thus, after steps-1 and 2, each cell is assigned to a unique potency state and co-
expression cluster (cell-type).

Step-3 Identification of cell-states and construction of cell-density landscapes
for each potency state: Specific potency-state single-cell cluster pairs may contain
many cells and therefore represent clear candidates for defining cell-states.
However, in principle, cells in the same state, whilst being in the same cluster, may
not necessarily be that close in the tSNE embedding. For this reason, we also
construct cell-density elevation maps for all single cells within each of the inferred
potency states. In these surface maps, the elevation is directly proportional to cell-
density. By comparing the resulting landscapes for each potency state, this may
reveal novel cellular states characterized by high cell-density.

Step-4 Inference of bifurcations and lineage trajectories: From step-3, it is
assumed that a cell-state of highest potency is identifiable. This provides a natural
and unbiased way of assigning a root-state for subsequent application of a lineage-
trajectory inference algorithm. We used Diffusion Maps27, as implemented in the
destiny Bioconductor package32 with k= 30, otherwise default parameters were
used. Pseudotime, specifically, DPT over the inferred trajectories was also
computed using destiny.

Estimation of cell-cycle and TPSC pluripotency scores. To identify single cells
in either the G1-S or G2-M phases of the cell-cycle we followed the procedure
described in 5. Briefly, genes whose expression is reflective of G1-S or G2-M phase
were obtained from refs. 64,65. A given normalized scRNA-Seq data matrix for a
given individual is then z-score normalized for all genes present in these signatures.
Finally, a cycling score for each phase and each cell is obtained as the average z-
scores over all genes present in each signature. When adjusting differential
expression analyses for cell-cycle phase, we included the G1-S and G2-M scores as
covariates in the linear models.

Bulk expression datasets. In this study we used three mRNA expression datasets
from bulk samples. One dataset consists of 38 FACS sorted bulk samples (Illumina
expression beadarrays), as profiled by Shehata et al.45. Of the 38 samples, 10 were
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categorized as luminal non-clonogenic (L), i.e., terminally differentiated cells, with
the rest (n= 28) making up a relatively differentiated (EpCAM+/CD49f+ /
ALDH-, n= 17) and undifferentiated (EpCAM+/CD49f+ /ALDH+, n= 11)
luminal progenitor (LP) populations. The two undifferentiated LP populations
were further distinguished by expression or not of ERBB3. mRNA expression data
was generated using Illumina Beadarrays and we used the normalized data, as
described in ref. 45.

The second dataset is the METABRIC study, which profiled almost 2000
primary breast cancers using Illumina expression beadarrays47. We used the
assignment of tumors to PAM50 intrinsic and integrative cluster subtypes as given
by the METABRIC study. We used the normalized data, as provided by the
METABRIC consortium.

A third Affymetrix mRNA expression dataset derives from Pece et al.43. This set
consists of three separate pools of FACS sorted cell populations. Each pool contains
a quiescent putative mammary stem cell population, as well as a population of
derived progeny, consisting of transit-amplifying progenitor cells, thus a total of six
bulk samples. We normalized the HGU133 plus2 data using the affy BioC package,
specifically, the rma function. Only probes mapping to an Entrez gene ID were
used, data was quantile normalized using limma, and probes mapping to the same
gene were averaged, resulting in a normalized data matrix over 20,186 genes and
six samples.

Differential expression analysis. When performing differential expression
analysis within the main single-cell clusters, differences in expression are smaller
and therefore more susceptible to confounding by the technical dropout rate.
Thus, when comparing gene expression of single-cell subgroups within a main
single cell cluster, we always restrict to cells where the gene is expressed. That is,
we remove all dropouts and do not impute data. When correlating to potency, we
used a linear model between the normalized expression profile and the potency
estimates, optionally adjusting for the two cell-cycle scores computed earlier. In
the case of the Illumina beadarray datasets, we used the normalized data from the
respective publications45,47 and called DE using the empirical Bayes limma fra-
mework66. We always use Bonferroni-adjusted thresholds to call statistical sig-
nificance unless there are too few hits, in which case we relax the threshold using
FDR < 0.05.

Construction of the 144-gene bipotent signature and score. We performed
differential expression analysis as described in previous section between the single-
cells in the high potency (putative bipotent) single cell cluster to cells in the other
two potency states using a linear model. A Bonferroni-adjusted P < 0.05 threshold
was used to call significance. Because the great majority of differentially expressed
genes were downregulated in the high potency state, with only 72 being upregu-
lated, we defined a 144-gene signature consisting of the top 72 downregulated
genes plus the 72 upregulated ones. The bipotency score in independent samples
(e.g., METABRIC) was then obtained as the Pearson correlation of the signed 144-
gene signature (i.e., using +1 for upregulated genes, and −1 for downregulated
genes) with the expression profile of the independent sample.

Doublet score analysis. We used two different simulation-based methods to
derive doublet scores for each cell and to identify those more likely to be doublets.
One approach used the simulation method of Dahlin et al.40 to obtain doublet
scores for all single cells that passed QC and for each individual separately. Spe-
cifically, we used the doubletCells function (using approximate= TRUE option)
from the scran R-package (version 1.10.1)67. In the second approach we used the
Python package Scrublet68 (https://doi.org/10.1101/357368). Within Scrublet, the
scrub_doublets function, which is responsible for computing doublet scores and
predicting doublets within a dataset, was run using default parameters.

Statistics and reproducibility. All statistical analyses were performed with
R version 3.6.0. P-values were estimated using Wilcoxon rank sum tests or linear
regression, as indicated. Cox proportional hazards regression was used for survival
analysis. Hazard Ratio, 95% confidence interval, and P-value as derived from the
score-test is given for univariate analyses. In multivariate analysis, P-value derives
from the Wald-test. We used the following open-source Bioconductor/R- packages:
mclust_5.4.2, dbscan_1.1–3, tsne_0.1–3, igraph_1.2.4, monocle_2.99.3,
scran_1.10.1, destiny_2.14.0.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data analyzed in this paper are already publicly available from the following GEO
(www.ncbi.nlm.nih.gov/geo/) accession numbers: GSE113197, GSE35399, and GSE18931
or from the EGA (www.ebi.ac.uk/ega/) accession number EGAS00000000083. Source
data for Figs. 2–7 are available as Supplementary Data. All other data supporting the
findings of this study are available from the corresponding authors upon reasonable
request.

Code availability
LandSCENT69 is freely available as an R-package from github: https://github.com/
ChenWeiyan/LandSCENT or from zenodo: https://zenodo.org/record/3257600 or from
https://doi.org/10.5281/zenodo.3257600
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