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Abstract

Detrended Fluctuation Analysis (DFA) is widely used to assess the presence of long-range temporal
correlations in time series. Signals with long-range temporal correlations are typically defined as having
a power law decay in their autocorrelation function. The output of DFA is an exponent, which is the slope
obtained by linear regression of a log-log fluctuation plot against window size. However, if this fluctuation
plot is not linear, then the underlying signal is not self-similar, and the exponent has no meaning. There
is currently no method for assessing the linearity of a DFA fluctuation plot. Here we present such a
technique, called ML-DFA. We scale the DFA fluctuation plot to construct a likelihood function for a set
of alternative models including polynomial, root, exponential, logarithmic and spline functions. We use
this likelihood function to determine the maximum likelihood and thus to calculate values of the Akaike
and Bayesian information criteria, which identify the best fit model when the number of parameters
involved is taken into account and over-fitting is penalised. This ensures that, of the models that fit well,
the least complicated is selected as the best fit. We apply ML-DFA to synthetic data from FARIMA
processes and sine curves with DFA fluctuation plots whose form has been analytically determined, and
to experimentally collected neurophysiological data. ML-DFA assesses whether the hypothesis of a linear
fluctuation plot should be rejected, and thus whether the exponent can be considered meaningful. We
argue that ML-DFA is essential to obtaining trustworthy results from DFA.

Introduction

Detrended Fluctuation Analysis (DFA) is a technique commonly applied to time series as a means
of approximating the Hurst exponent, which indicates the degree of long-range temporal correlations
present [1–4]. Long-range temporal correlations (LRTCs) occur in time series with an autocorrelation
function that decays as a power law function of the lag [5]. The presence of LRTCs suggests that the
underlying signal is governed by non-local behaviour, with all scales contributing to system behaviour.
LRTCs have been detected in various biological time series and natural phenomena [1–3,6–9], see a review
in [10]. In neurophysiological signals, it has been argued that LRTCs facilitate essential functions such
as memory formation, rapid information transfer, and the efficient neural network reorganisation that
promotes learning [11–17].

DFA produces estimates of the magnitude of detrended fluctuations at different scales (window sizes)
of a time series and assesses the scaling relationship between estimates and time scales. Estimation of
the Hurst exponent through DFA assumes self-similarity in the time series. If the signal is self-similar,
then the detrended fluctuations will increase as a power law function of window size, and the relationship
between the two can be visualised as a straight line on a log-log fluctuation plot [1, 2]. DFA returns
the slope of the plot as its exponent with no check as to whether the self-similarity of the time series is
supported by there being a linear fluctuation plot. At present there is no method which establishes the
linearity of a DFA plot and an important shortcoming of the typically used method (see below) is that
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unless there is gross violation of linearity that can be detected by visual inspection then DFA exponents
can be used for data that are not self-similar. In fact, Maraun and colleagues went as far as suggesting
that DFA results are sensitive but not specific concerning long-range correlations [18].

Previous studies have described non-linear characteristics in DFA fluctuation plots for signals con-
structed by independent superposition of a number of processes with specific characteristics. When a
noise time series contains a linear, sinusoidal, or a power law trend, the DFA plot will contain several lin-
ear segments, joined at crossover points [19]. Studies have also looked at noise time series with sections of
silence, concatenations of noisy signals with different amplitude standard deviations, and of noisy signals
with varying levels of temporal correlation [20, 21]. These fluctuation plots show different combinations
of linear and quasi-linear fragments.

At present the standard approach used to characterise the fit of the linear regression is to calculate
an R2 value (for example [22]). However, the R2 value is a very insensitive measure [23]. An alternative
technique may be to assume that the errors around a linear fit have a χ2 distribution, but this assumption
cannot be made for a DFA fluctuation plot because the magnitude of detrended fluctuation is dependent
on the window length so that the fluctuation plot suffers from heteroscedasticity [24]. Namely, this
approach would not allow one to distinguish between a self-similar signal yielding non χ2-distributed
regression errors and a non self-similar signal. Another approach may be to compute the probability
of the fluctuation plot taking the form of a specific function for signals with different self-similarity
properties, based on the probability distribution of the innovations. A paper by Bardet [25] formulates
such a distribution for the scale-invariant process that would give rise to a perfectly linear plot in its DFA
fluctuation plot, i.e., fractional Gaussian noise. However, this approach would restrict the technique to
being able to identify only a limited set of signals, and furthermore, one would need to know a priori the
nature of the signal in order to employ the appropriate distribution.

Here, we propose a maximum likelihood based technique to assess the validity of the assumption of
linearity through model selection.

Our technique, referred to as ML-DFA henceforth, is rooted in likelihood theory. We calculate a log-
likelihood function for both a linear model and a number of alternative models. This requires formulating
the DFA fluctuation plot as a probability density, which we do by normalising the fluctuation magnitudes.
We use this to compute the Akaike and Bayesian Information Criterion (AIC and BIC, respectively) [26,
27] which reveal the best-fitting model to the fluctuation plot, while compensating for over-fitting. If no
model amongst the set of alternative models is a better fit than the linear model, then we accept (or
more accurately, we do not reject) the hypothesis that the fluctuation plot is linear.

In the following sections, we apply the method to simulated time series for which we can control the
expected outcome, and to neurophysiological data for which no ground truth is available.

Synthetic time series are generated by an Autoregressive Fractionally Integrated Moving Average
(FARIMA) process [28] (also referred to as ARFIMA or AFRIMA). We use FARIMA because it provides
an easily tunable algorithm for constructing time series with a combination of short-term and long-term
correlations, which we will show influence the DFA fluctuation plot. A FARIMA process in its simplest
form can be used to generate fractional Gaussian noise, which has been shown analytically to produce
linear DFA fluctuation plots in their asymptotic limit [25, 29]. However, by gradually introducing short-
term correlations through smoothing the data and enforcing autoregression, it is possible to destroy the
self-similarity of the time series, and a statistically robust method should capture this. We note that
a FARIMA process has also been used to model neurophysiological signals such as EEG, which have
the properties of being stationary and whose amplitude fluctuations follow Gaussian statistics [30]. A
FARIMA process therefore provides an efficient and malleable method of generating and manipulating
time series. We further apply ML-DFA to a sinusoidal signal and a sinusoidal signal with independent
additive noise, whose DFA fluctuation plots take known forms [19].

Finally, we apply the method to EEG data recorded from a group of twenty human subjects at rest
to demonstrate the technique on experimentally acquired data. We also study how the choice of window
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lengths over which DFA is calculated affects the linearity or otherwise of the fluctuation plot.

Results

Simulated Data

We applied ML-DFA to simulations of a FARIMA process. We first used FARIMA to generate self-similar
fractional Gaussian noise with varying Hurst exponents, and then we altered its parameters to generate
a more general non self-similar FARIMA signal. For a more complete discussion of the FARIMA process
parameters, the reader is referred to the Methods and Materials section below. We further applied ML-
DFA to sinusoidal signals with three different periods, and to sinusoidal signals with independently added
noise.

We fitted the DFA fluctuation plots for 1000 simulations of each of the generated time series with
the set of alternative models listed in the Methods and Materials section. We report the proportion of
best-fits for each model as determined by the AIC and BIC measures.

Fractional Gaussian Noise

Fractional Gaussian noise can be generated by a FARIMA(0,d,0) process with 0 < d < 0.5. The case
of d = 0 is called white Gaussian noise, however, we will here refer collectively to FARIMA(0,d,0)
processes with 0 ≤ d < 0.5 as fractional Gaussian noise. Fractional Gaussian noise has been proved to
be asymptotically scale-invariant, and therefore its associated DFA fluctuation plot should be linear with
a slope α given by d + 0.5 [25, 29]. The value of α is an approximation to the Hurst exponent of the
data, H , where H = 0.5 indicates Gaussian white noise and H = 1 indicates pink noise. We demonstrate
ML-DFA on three simulations of fractional Gaussian noise, spanning the possible range of d values.

In Figure 1A we show DFA plots for three FARIMA time series with Hurst exponents of 0.5, 0.7
and 1.0. The slopes of the DFA plots recover estimates of the Hurst exponents of 0.50, 0.71 and 1.01
respectively. Figure 1B-D shows that the results of ML-DFA confirm that a linear model is appropriate
for each of the time series, thus validating the results of standard DFA.

Tables 2 and 1 report the proportion of times out of 1000 simulations that each of the alternative
models was found by ML-DFA to be the best fit, according to the AIC and BIC values respectively. We
found that the AIC and BIC were both successful at identifying the linear model as the best fit in over
95% of the simulations. The mean slopes of those fluctuation plots that were not rejected were the same
to 3 decimal places for both the AIC and BIC measures, and were 0.500, 0.696 and 0.995 respectively for
expected Hurst parameters of 0.5, 0.7 and 1.0. The standard deviations for all slopes were 0.01.

FARIMA processes

The FARIMA(1,d,1) process is one which includes a single φ and a single θ coefficient, indicated by the
parameter values of 1. It is possible to include a greater number of φ and θ coefficients, but we consider
only a single addition for simplicity. We vary φ and θ in the range 0 < φ < 1, 0 < θ < 1, which satisfies
the conditions |φ| < 1, |θ| < 1 for convergence [28]. Throughout the manuscript, FARIMA([φ],d,[θ]) will
denote the FARIMA process with φ1 = φ and θ1 = θ.

In the general case, a FARIMA(1,d,1) time series is not expected to be self-similar and therefore, the
associated DFA fluctuation plots should not necessarily be linear. Variations in the φ and θ parameters
contribute to a range of fluctuation plots, with examples in Figure 2 illustrating a number of cases in
which different alternative models were found by ML-DFA to be the best fit.

In all cases, ML-DFA showed sensitivity to more or less subtle deviations from the linear model.
Tables 2 and 1 provide the proportion of times out of 1000 simulations of FARIMA(1,d,1) time series
that each of the alternative models were found by ML-DFA to be the best fit, using the AIC and BIC
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Figure 1. Time series and corresponding DFA fluctuation plots for signals obtained by
FARIMA(0,d,0) processes with φ and θ set to 0 and with d = 0, and d = 0.2, and d = 0.5 to
produce fractional Gaussian noise. Panel A shows the three DFA fluctuation plots fitted using
standard DFA. Values d = 0, d = 0.2, and d = 0.5 will produce time series with Hurst exponents 0.5
(white noise, blue diamonds), 0.7 (correlated noise, green crosses) and 1 (pink noise, pink circles)
respectively. The slopes estimated by application of standard DFA are stated at the top, and
correspond closely to these theoretical values. Panels B-D show the best fit model according to the AIC
measure in ML-DFA. The best-fit model is linear in all cases.

values respectively. In most cases (6/9 pure FARIMA scenarios), the results of AIC and BIC were
compatible. Specifically, 4 of the 9 scenarios showed almost identical results (scenarios 1, 2, 6, 9) whilst 2
were qualitatively similar in that the same models were involved albeit with varying percentages (scenarios
3 and 8). Three scenarios showed substantial differences with different models being involved (scenarios
4, 5 and 7). However, on the most important point of whether the linear model hypothesis was to be
rejected, there was strong agreement (8/9 pure FARIMA scenarios, 10/11 all scenarios) between AIC and
BIC, the only exception being FARIMA([0.4],0.2,[0]) where BIC did not reject the linear model hypothesis
in 31.1% of the runs (to be contrasted with 2.1% for AIC). This once again illustrates that because the
BIC is less likely to select models with a greater number of parameters, it may show less sensitivity to
very subtle deviations from the expected model, thus showing more false positives than AIC. To illustrate
this point, we re-examined the FARIMA([0.4],0.2,[0]) scenario systematically varying the value of the φ
parameter. Figure 3 shows that when φ = 0.4 the DFA fluctuation plot could certainly be considered
linear on visual inspection. However, closer examination (we assist the reader by providing a log-log plot
of the autocorrelation function – it is helpful to remember that the DFA exponent is directly linked to
the exponent of the power law in the autocorrelation function) reveals otherwise. Application of the runs
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Figure 2. Time series and corresponding DFA fluctuation plots for signals obtained by
FARIMA(1,0.2,1) processes with d = 0.2 taken as an representative value, and varying
values of φ and θ. Each row A-C corresponds to a different set of φ and θ coefficients, which alter the
resulting DFA fluctuation plots. In each row, the left-hand side panel shows a representative 3000
innovations of the time series, the middle panel shows the fluctuation plot fitted using standard DFA
with the resulting exponent α given above, and the right-hand side panel shows the best-fit model
determined by ML-DFA using AIC.

test [31] on the residuals of the regression shows that the residuals are not independent (p < 1e−5) which
confirms that the BIC results are false positives. For comparison, the runs test for the fractional Gaussian
noise returns p > .2. With increasing values of φ, the distortion of the fluctuation plot (and associated
autocorrelation function) becomes readily available to visual inspection and agreement between AIC and
BIC is strong. Specifically, 100% of the simulations reject the linear model hypothesis and AIC and BIC
return the same set of alternative models in more than 99% of the simulations for both φ = 0.6 and
φ = 0.8.
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Figure 3. Time series, DFA fluctuation plots and autocorrelation functions for signals
obtained by FARIMA([p],0.2,[0]) processes with varying values of p. Each row A-D
corresponds to φ taking values from 0, 0.4, 0.6, 0.8. In each row, the left-hand side panel shows a
representative 3000 innovations of the time series, the middle panel shows the fluctuation plot fitted
using standard DFA with the resulting exponent α given above, and the right-hand side panel shows the
autocorrelation function of the (complete) signal in log-log coordinates.

Sinusoidal signals

From [19], the DFA fluctuation plot of a pure sine will have a crossover at a window size corresponding to
the period of the oscillation, with a slope of 2 for low window sizes, and a slope of zero after the crossover
point. We reproduce these fluctuation plots and demonstrate that they are best fit by a two-segment
spline model, with crossovers as predicted by theory. In Figure 4A-C, we present results for three pure
sine curves with periods of 1000, 100 and 30 respectively. We observe that the crossover points in each
plot are at 3, 2 and 1.48, which are the base-10 logarithms of 1000, 100 and 30, respectively. ML-DFA
therefore recovers both the spline function and at its point of inflection the period of the original sine
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Table 1. ML-DFA results on synthetic data using AIC. From 1000 simulations of noise
time series, the table gives the proportion of times that each of the alternative models was
found to be the best fit, according to AIC values when ML-DFA was applied to fractional
Gaussian noise, FARIMA(1,d,1) processes and noisy sinusoidal signals.

Linear Non-linear
Model x x2 x3 x4 n

√
x 4-x 3-x 2-x log e

FARIMA([0],0.5,[0]) 96.6 3 - - - - - - - 0.4
FARIMA([0],0.2,[0]) 96.3 2.9 - - - - - - - 0.8
FARIMA([0],0,[0]) 95.9 2.8 - - 0.1 - - - 0.1 1.1
FARIMA([0.4],0.2,[0]) 2.1 7.5 - - 56.0 - - - 14.5 19.9
FARIMA([0],0.2,[0.4]) - 77 19.3 0.1 - - - 1.2 - 2.4
FARIMA([0.8],0.2,[0]) - - 0.3 - 90.3 - - - 7.1 2.3
FARIMA([0],0.2,[0.8]) - 47.7 2.8 2.8 - - - 45.5 - 1.2
FARIMA([0.4],0.2,[0.8]) - 64.7 - - - - - 22.1 - 13.2
FARIMA([0.8],0.2,[0.4]) - 0.4 - - 76.5 - - - 13.5 9.6
FARIMA([0],-0.2,[0])+sin(2πt200 ) - - - - - 7.4 92.6 - - -
FARIMA([0],0,[0])+sin(2πt100 ) - - - 2 - 98 - - - -

The fitted models are listed in the top row, alongside the proportion of best fits assigned to each one by
the value of the AIC measure. The shorthand n-x is used to denote a n-segment spline. The shorthand
n
√
x combines results for n = 2, 3, 4. The signals whose DFA fluctuation plots are analysed are described

in the left-hand side column.

signal.
The addition of independent noise to sinusoidal signals has also been studied [19]. The DFA fluctuation

plot of a sine signal with anti-correlated noise (Hurst exponentH ∈ [0, 0.5)) will have two crossover points,
and therefore three segments. One will be located at the window size corresponding to the period of the
oscillation, and one at a smaller window length. We demonstrate in Figure 4D that ML-DFA identifies
a three-segment spline as the best fitting model for such a fluctuation plot.

A sine curve with independent, additive white or correlated noise will show three crossovers, or four
segments in its DFA fluctuation plot. One crossover is again at the period of the sine curve. Figure 4E
demonstrates ML-DFA alongside its resulting best-fit four-segment spline.

Tables 2 and 1 provide the proportion of times out 1000 simulations of two sets of sines with added
noise that each of the alternative models was found to be the best fit by the AIC and BIC measures,
respectively. No data are provided for repeated simulations of sines without added noise since these
would produce rigorously identical fluctuation plots. Compared to the BIC measure, we found that the
AIC measure assigned a greater proportion of the DFA fluctuation plots obtained from the sine with
FARIMA([0],0,[0]) noise to the four-segment spline model (98% vs 84.9% for AIC and BIC, respectively),
as predicted by theory [19]. The BIC measure returned a higher proportion of quartic model because of
the reduced number of parameters. However, both AIC and BIC performed similarly in identifying the
three-segment spline as the best fit for fluctuation plots of the sine with FARIMA([0],-0.2,[0]) noise, as
expected.

Physiological Data

We applied ML-DFA to EEG data, according to the method set out in Linkenkaer-Hansen et al. [16].
Specifically, we took the power spectrum of the EEG, found the peak corresponding to the alpha rhythms
and bandpass filtered the signal to isolate the corresponding range. Following this, we obtained the
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Table 2. ML-DFA results on synthetic data using BIC. From 1000 simulations, the table
gives the proportion of times that each of the alternative models was found to be the best
fit, according to BIC values when ML-DFA was applied to fractional Gaussian noise,
FARIMA(1,d,1) processes and noisy sinusoidal signals.

Linear Non-linear
Model x x2 x3 x4 n

√
x 4-x 3-x 2-x log e

FARIMA([0],0.5,[0]) 96.6 3 - - - - - - - 0.4
FARIMA([0],0.2,[0]) 96.3 2.9 - - - - - - - 0.8
FARIMA([0],0,[0]) 96.8 2.3 - - 0.1 - - - 0.1 0.7
FARIMA([0.4],0.2,[0]) 31.1 4.6 - - 40.6 - - - 11.4 12.3
FARIMA([0],0.2,[0.4]) 0.1 93.9 1.6 - - - - 0.5 - 3.9
FARIMA([0.8],0.2,[0]) - - - - 90.4 - - - 7.1 2.5
FARIMA([0],0.2,[0.8]) - 71.2 1.7 - - - - 23.6 - 3.5
FARIMA([0.4],0.2,[0.8]) - 86.3 - - - - - 0.4 - 13.3
FARIMA([0.8],0.2,[0.4]) - 0.4 - - 76.5 - - - 13.5 9.6
FARIMA([0],-0.2,[0])+sin(2πt200 ) - - - - - 7.4 92.6 - - -
FARIMA([0],0,[0])+sin(2πt100 ) - - - 15.1 - 84.9 - - - -

The fitted models are listed in the top row, alongside the proportion of best fits assigned to each one by
the value of the BIC measure. The shorthand n-x is used to denote a n-segment spline. The shorthand
n
√
x combines results for n = 2, 3, 4. The signals whose DFA fluctuation plots are analysed are described

in the left-hand side column.

amplitude envelope by using the Hilbert transform, and applied standard DFA and ML-DFA.
The amplitude envelope was obtained by first applying the Hilbert transform to the time series s(t)

in order to obtain its analytic signal sa, which is a corresponding unique complex representation of a
real-valued time series:

sa(t) = s(t) +H {s(t)}
where the Hilbert transform is represented byH {}. The time-varying envelope A(t) is then the amplitude
of the analytic signal, given by:

A(t) =

√

s(t)2 +H {s(t)}2.
We demonstrate these steps in Figure 5.

DFA and ML-DFA were applied to A(t), the amplitude envelope of an EEG time series filtered between
8 and 13 Hz. The minimum box size for applying DFA was 1 second of data, in order to include at least
8 oscillations at the minimum frequency of the band-pass filter. The largest window size was set to
one tenth of the full length of the data for each subject, as suggested by [16]. This allows a sufficient
number of windows to provide a robust measure of the average fluctuation magnitude for a large window
length, thus correcting for the variability of root mean square fluctuations from one window to the next.
Note that, in [16], the window sizes are determined by inspecting a fluctuation plot that spans across all
possible window sizes, and then the range of windows that adhere to a power law is selected for further
analysis. We will return to this in the Discussion.

Human EEG Data

We report the best fit models as determined by ML-DFA for the amplitude envelope of the EEG of 20
human subjects tested, which had previously been filtered between 8 and 13 Hz. For each subject, an
EEG time series from the Cz electrode was used after artefact removal because of its central location on
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Figure 4. Time series and corresponding DFA fluctuation plots for 5 sinusoidal signals
with varying levels of independent, additive noise. Each row A-E corresponds to a different
sinusoidal function. In each row, the left-hand side panels show a representative 3000 innovations of the
time series, the middle panel shows the fluctuation plots fitted using standard DFA, and the right-hand
side panel shows the best-fit model as determined by ML-DFA using AIC.

the scalp, leading to fewer potential artefacts caused by muscle movements or eye-blinks. If the best fit
model, as assessed by the BIC value, is linear, then we also report the DFA exponent in Table 3.

Figure 6 shows 4 examples of each of the ML-DFA fit types obtained from the 20 subjects. These
data were selected to illustrate both the linear fitting by standard DFA and a range of model fits that
led to the rejection of the linear model hypothesis. In total, the linear model hypothesis was not rejected
in 12/20 (AIC) and 16/20 (BIC) of the subjects (see Table 3).
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Figure 5. Preprocessing of the time series on an example EEG data set. Panel A shows the
raw EEG signal. This is filtered between 8− 13 Hz for Panel B, and the amplitude envelope, derived
from the real part of the Hilbert transform, is plotted above the filtered data.

Minimum and Maximum Window Sizes

In neurophysiological data, the choice of window sizes over which DFA is calculated is an important
consideration. Using the data from one subject for which both the DFA fluctuation plot was best
fit by a linear model according to both AIC and BIC, we explore how the choice of minimum and
maximum window sizes affects the linearity of the DFA fluctuation plot. We demonstrate that using a
minimum window length smaller than a minimum oscillatory period of the data examined gives rise to
DFA fluctuation plots for which the linear model hypothesis is rejected. We also show that taking a
maximum window length larger than N

10 gives rise to DFA fluctuation plots for which the linear model
hypothesis may be rejected.

Figure 7 shows the application of standard DFA to the fluctuation plots of the EEG signal subject
number 7, alongside the best-fitting model determined by ML-DFA using AIC. In Panel A, the minimum
and maximum window sizes are set as suggested by [16]. In Panel B, the minimum window length is set
to 1 second of data as previously in Figure 6, while the maximum window length is N . The magnitude
of detrended fluctuations grows more slowly for large window sizes due to the finite length of the data,
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Figure 6. DFA fluctuation plots for 4 example signals from the Cz electrode of an EEG
recording. Specifically, the 4 rows A-D correspond to subjects 2,3,7,13. In each row, the left-hand side
panel shows a representative 3000 innovations of the time series, which corresponds to approximately 15
seconds, the middle panel shows the fluctuation plot fitted using standard DFA with the DFA exponent
α given above each plot, and the right-hand side panel shows the best fit model as determined by
ML-DFA using AIC.

and this gives rise to a two-segment spline as the best fit model such that the DFA exponent should not
be trusted. In Panel C of Figure 7, the minimum window size is set to 8 samples of the recording (≈ 0.31
seconds), while the maximum window length is held constant at a tenth of the length of the time series,
N
10 as before. The linear model hypothesis is rejected by the AIC method, because the best-fit model is
logarithmic. This is consistent with the fact that, as the signal was filtered in the α range of 8-13 Hz,
a minimum window length less than fs

8 , is less than a single cycle of the slowest 8Hz frequency present,
which will certainly produce a crossover, as shown in Figure 7. In order to select a suitable minimum
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Figure 7. DFA fluctuation plots when different window lengths are used to analyse the Cz
electrode signal of an EEG recording for subject number 7. Panel A shows the DFA and
ML-DFA analysis performed for Subject 7 in Figure 6. The minimum window size is 1 second, and the
maximum is N

10 , or 187 seconds, both following [16]. The arrows in each plot indicate the range over
which the fluctuation plot is calculated to obtain the DFA exponents in Tables 3, which is the full range
of the fluctuation plot in Panel A. In Panel B, the minimum window length is also 1 second of data, and
the maximum window length is N , which is the full length of the signal, or 1865 seconds (31 minutes) in
this case. In Panel C, the minimum window length is 8 samples ( 8

256 ≈ 0.31 seconds) and the maximum

window length is N
10 , or 187 seconds. In each row, the left-hand side panel shows the fluctuation plots

fitted using standard DFA with the DFA exponent α given above each plot, the right-hand side panel
shows the best-fit model as determined by ML-DFA using AIC.

window size for a signal, its characteristic frequency should be known. In this case, the characteristic
frequency is not a single value, but a range between 8 and 13 Hz, so that the crossover in the fluctuation
plot is not a single point (as with previously studied pure sine curves), but rather a range of points. We
suggest that this is why the best fit model is the smoother logarithmic model rather than a spline.

This analysis was applied to all 20 subjects. When the minimum window size was taken to be 8 samples
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Table 3. Results of ML-DFA with the EEG signal obtained from the Cz electrode in 20
healthy subjects.

Subject Number Slope AIC BIC

1 0.7861† Square Root Linear
2 0.6204† Cube Root Cube Root
3 0.7798† Quadratic Linear
4 0.7504 Linear Linear
5 0.8593† Two-segment spline Linear
6 0.9231† Two-segment spline Two-segment spline
7 0.8496 Linear Linear
8 0.8450 Linear Linear
9 0.7654 Linear Linear
10 0.7249 Linear Linear
11 0.7795 Linear Linear
12 0.6856 Linear Linear
13 0.9595† Two-segment spline Quadratic
14 0.9093† Two-segment spline Two-segment spline
15 0.8762† Two-segment spline Linear
16 0.8578 Linear Linear
17 0.7833 Linear Linear
18 0.7631 Linear Linear
19 0.7350 Linear Linear
20 0.9120 Linear Linear

Each subject is identified by number in the left-hand side column, alongside the best fit model
determined by ML-DFA using AIC and BIC. The † symbol indicates those subjects whose fluctuation
plots were rejected as not being linear by at least one of the AIC or BIC measures. When the
fluctuation plot is rejected by BIC, it is also rejected by AIC in all cases. The exponent provided in
column 2 was obtained using standard DFA.

(while keeping the maximum window size at N
10 ), the fluctuation plots of data for all 20 subjects were

rejected as not being linear by both AIC and BIC. When the maximum window size was set to N , and the
minimum kept at 1 second, application of ML-DFA resulted in 4/20 (BIC) and 10/20 (AIC) fluctuation
plots for which the linear model hypothesis was rejected. Once again, BIC shows less sensitivity than
AIC in identifying the loss of linearity due to a strong bias towards the simplest (linear) model.

Discussion

In this paper, we have presented a technique (ML-DFA) to determine whether a DFA exponent can
be trusted based on whether the linear model hypothesis for its associated fluctuation plot is accepted
or rejected by a model selection approach. We have validated ML-DFA by applying it to DFA fluc-
tuation plots obtained from FARIMA(0,d,0) time series, which have been shown to be asymptotically
linear [25, 29]. We have explored ML-DFA in relation to DFA plots obtained from time series generated
by FARIMA(1,d,1) processes, which allow flexible combinations of long and short correlations in the
time series, and which we expect will produce fluctuation plots that are rejected as not being linear. We
have recovered the piecewise linear form of the DFA fluctuation plot for sinusoidal signals, and sinusoidal
signals with additive independent noise, as previously documented [19]. Finally, we applied the method
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to the amplitude envelopes of filtered EEG time series as in [16], showing that 12 out of 20 recorded
signals were not rejected by AIC and 16 out of 20 by BIC. Without the use of a test such as ML-DFA,
the value of a DFA exponent could be meaningless and we suggest that it may be valuable to re-examine
previously published results.

We have stated the values of both the AIC and BIC measures throughout. It has been argued that
the BIC is the most reliable information criterion [32, 33]. However in this study, the AIC shows fewer
false-positive results. This is demonstrated by the fact that a greater proportion of time series generated
by FARIMA(1,d,1) processes are rejected as not being linear, which is a result that we would expect.
Furthermore, the AIC was more successful at correctly identifying the fluctuation plots that we expected
to be four-segment splines because they were obtained from a sinusoidal curve with independent, additive
anti-correlated noise. The BIC often selected a quartic model instead, because it has fewer parameters.
For this reason, we suggest that AIC should be used to determine the best-fitting model.

It is important to stress that ML-DFA does not verify or demonstrate the linearity of a plot. Merely,
it concludes that a linear model is the best choice given the set of alternative models considered. For this
reason, it is important to carefully select the set of alternative models. Since fluctuation plots should
always be monotonic because the fluctuations of a time series will yield an error of at least equal size
for windows of greater length, we have only considered models that (a) can capture the monotonicity
of a DFA fluctuation plot and (b) are informed by experience and previous studies of non-linear DFA
fluctuation plots. Note that the necessarily finite set of alternative models means that there is always a
possibility that a different model could prove a better fit and therefore one should be very cautious of
drawing conclusions about the nature of a time-series based on the best-fit model. Further, because the
best fitting models are calculated from initial parameters that are set randomly, using a set of closely-
related models with an equal number of parameters may result in different best-fit models for different
runs of ML-DFA. To address this concern, initial parameters for the polynomial models were set to those
that best fitted the fluctuation plots in a least square sense; however, this remains an open issue for
models of arbitrary functional form. It is for these two above reasons that our focus has been primarily
on whether the linear model hypothesis is rejected (which determines whether the DFA exponent can be
trusted) and not on interpreting or explaining why a particular functional form was the best fitted model.

Several papers have discussed non-linear DFA fluctuation plots for specific time series. A DFA fluctua-
tion plot which flattens out with increasing box size typically reflects a periodic signal, such as a sine [19].
Increasing fluctuations at large window sizes may be consistent with a noise process with segments re-
moved, one with spikes added, one using concatenated segments of different standard deviations, or else
with a power law trend [19–21]. Finite-size effects cause smaller windows to always have fluctuation
magnitudes below the expected regression line [34].

Additionally, a fluctuation plot can be non-linear if the DFA scaling exponent is not a single value,
but comes from a distribution. In this case, it may be relevant to apply multi-fractal DFA [35]. If the
scaling behaviour of a time series is not constant across time, then a suitable technique is Adaptive Time-
varying DFA [36], which uses optimal filtering to track changes in DFA exponent over the record. Any
of these considerations may help elucidate a DFA fluctuation plot for which the linear model hypothesis
is rejected.

We also varied the minimum and maximum window sizes used in the course of DFA application to
highlight the fact that an inappropriate window size may affect the validity of the DFA exponent. A
preliminary inspection of the whole fluctuation plot (as done by [16]) can be instructive for gaining a
broad idea of the scales over which long-range correlations may be located. However, we stress that good
practice should be to establish a priori the range of scales over which LRTCs are expected – taking into
account the constraints of both the nature of the data (e.g., sampled oscillatory data) and a statistically
appropriate number of maximum window sizes – and to accept the result returned by ML-DFA. It would
be inappropriate to use this technique to identify the range of scales over which LRTCs exist. Indeed, it
will always be possible to find a range of scales over which the linear model hypothesis will be accepted.
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For neurophysiological data, the minimum window size should include several oscillations of the lowest
frequency, and we took 1 second of the recording to ensure this. The frequencies present are determined
by the range of the bandpass filter used. FARIMA signals do not have a characteristic time scale, so
the minimum window size can be smaller, and we took 8 innovations (a smaller window size of 1 or 2
innovations would have given an artefactual result because 1 or 2 samples can always be fitted perfectly
by a line and the fluctuation magnitude will thus always be zero, a minimum window size of 4 samples
can cause inaccuracies due to finite-size effects [34]). For the sinusoidal curves, we also used 8 innovations
for the minimum window, which was smaller than the cycle period, precisely to allow us to demonstrate
the crossovers in the fluctuation plot. The maximum window size was set to a tenth of the length of the
time series for all signals considered to allow a sufficient number of values for a robust estimate of an
average fluctuation size. In order to obtain a reliable fluctuation plot for larger time scales, a longer data
series would typically be required [16]. In general, we recommend the use of these or similar guidelines
for correct application of DFA and ML-DFA. Interestingly, ML-DFA makes it possible to approach the
question of the maximum box size in a more systematic manner. The length of a neurophysiological time
series will depend on numerous considerations, many of them experimental, and using a tenth of the
data length as a maximum box size may lead to confusion when trying to infer meaning in time series
of different length. Depending on the strictness of the model selection criteria between 50 and 80% of
EEG time series did not reject the linear model hypothesis even when the entire record length, i.e. ∼
20 minutes, was considered. When the linear model hypothesis was rejected at large window sizes, the
window size above which loss of scaling occurred could be identified (see Figure 7). We suggest therefore
that ML-DFA can be used to validate relaxing a conservative choice of maximum window size (i.e., to
extend the length of meaningful correlations) to help with heterogeneous lengths of time series.

Materials and Methods

Scaling and Fit

DFA is used to assess the self-similarity in a signal [1, 2]. The application of DFA returns the value of
an exponent α, which is an estimate of the Hurst parameter, H , which in turn reveals the degree of
long-range temporal correlation (LRTC) in the time series [3]. DFA can be applied to both stationary
and non-stationary data, avoiding artefactual dependencies [37].

To calculate the DFA exponent, the time series is first de-meaned and then cumulatively summed.
After being divided into non-overlapping windows of a given size (i.e., a scale), it is detrended (linearly
for 1-DFA, non-linearly for higher-order DFA) yielding a fluctuation calculated as the root-mean-square
deviation over every window at that scale. The process is repeated for different window sizes.

For oscillatory signals, the smallest window size should be large enough to avoid errors in local root
mean square fluctuations, and is typically taken to be three or four times the length of a cycle at the
characteristic frequency in the time series. If the minimum window size is significantly smaller than this,
then the fluctuation plot will typically contain a crossover at the window length of a single period [19].
In the case of non-oscillatory signals such as those from a FARIMA process, there is no characteristic
time scale and a smaller window size may be used. The maximum window size should be small enough
to provide a robust average for the fluctuation magnitude across the time series. It is typically taken to
be N/10 where N is the length of the data [16], however, a maximum window size of N/4 has previously
also been used and shown to provide a sufficiently good estimate of the average fluctuations in some
circumstances [38].

We call ns the vector of window sizes and F the vector of corresponding root mean square fluctuations.
We label the number of distinct window sizes n, which are taken as the maximum possible to allow each
window to be non-overlapping. The base 10 logarithm of these two vectors are labelled lns and lF
respectively.



16

If the signal is self-similar, then the log-log plot of fluctuation sizes against window sizes, referred to
as DFA fluctuation plot throughout the manuscript, will be linear and the DFA exponent is obtained
by determining the slope of the best fitting regression line. A DFA exponent in the range 0.5 < α < 1
indicates the presence of long-range temporal correlations. An exponent of 0 < α < 0.5 is obtained when
the time series is anti-correlated and α = 1 represents pink noise. Gaussian white noise has an exponent
of α = 0.5. For a tutorial, see [39].

However, since there is no a priori means of confirming that a signal is indeed self-similar, an exponent
can always be obtained even though the DFA fluctuation plot may not necessarily be linear – the only
certainty being that it will be increasing (albeit not necessarily monotonously so) with window sizes. The
models used by ML-DFA are listed below, with the ai parameters to be found. The number of parameters
ranges between 2 for the linear model, and 8 for the four-segment spline model.

Polynomial - f(x) =
∑K

i=0 aix
i for K = {1, ..., 5}

Root - f(x) = a1(x+ a2)
1/K + a3 for K = {2, 3, 4}

Logarithmic - f(x) = a1log(x+ a2) + a3

Exponential - f(x) = a1e
a2x + a3

Spline with 2, 3 and 4 linear sections.

We first normalise the fluctuation magnitudes with:

lFscaled = 100× lF − lFmin

lFmax − lFmin

where lFmin and lFmax are the minimum and the maximum values of vector lF respectively. We define
a likelihood function:

L =

n
∏

i=1

p(lns(i))lFscaled(i)

which is a product across all windows i, where p(lns) represents the function:

p(lns) =
|f(lns)|

∑n
i=1 |f(lns)|

where f(lns) is the fitted model. Absolute values are used in order to ensure that p(lns) remains in the
range [0, 1], so that we reject a likelihood function if it falls below 0.

The log-likelihood is then defined as:

logL =

n
∑

i=1

lFscaled(i)logp(lns(i))

We maximise this function to find the parameters ai necessary for f(lns).
The largest log-likelihood is the model which best fits the data, however, no consideration of the

number of parameters used is taken when comparing log-likelihoods. To address this, we compute both the
AIC and BIC measures which are designed to prevent over-fitting, which should in general be avoided [33].

It should be noted that the scaling step implies that DFA exponents cannot be recovered from the
parameters of the linear or spline models following ML-DFA. For this reason, if a spline model is found
to be the best-fitting model and the user is interested in the value of the exponents at each scale – as
is sometimes used in clinical studies of heart beat variability [40] – then the user should apply standard
DFA to each segment separately to obtain the corresponding exponents.
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Akaike’s Information Criterion

Akaike’s Information Criterion (AIC) is used to compare the goodness-of-fit of probability distributions
[26]. The AIC can only be used to compare models, but gives no information on how good the model
is at fitting the data. This means that only the relative values of this measure, for different models, are
important.

For a model using k parameters, with likelihood function logL, the Akaike Information Criterion is
calculated using the following expression:

AIC = 2k − 2logL+
2k(k + 1)

n− k − 1

where k is the number of parameters that the model uses. Note that we are using the formula proposed
by [41] which accounts for small sample sizes, as advocated by [42–44] amongst others. The model which
provides the best fit to the data is that with the lowest value of AIC.

Bayesian Information Criterion

The Bayesian Information Criterion was developed by Akaike and Schwartz [27]. It puts harsher restric-
tions on the parameter number required for the model:

BIC = −2logL+ klog(n).

The lowest BIC indicates the best fit model.
There is considerable discussion regarding which of the AIC or BIC measure is more effective at

selecting the ‘correct’ model, and indeed it is possible to simulate situations in which one and the other is
optimal [42]. [42] suggests that the BIC is effective primarily when the number of observations n is large
enough, which may not be the case with DFA calculations with a typical number of window sizes of 50.
On the other hand, the BIC is considered more reliable because it is by construction an approximation
to the Bayes factor, which is considered by many to be the only possible approach to model selection (see
Chapter 1 of [32], and [45] who tries to combine the two measures).

In the analysis here, we output both the AIC and BIC measures, but ultimately base our conclusions
on the AIC when the two disagree. The BIC is the stricter approach in selecting a model with the least
number of parameters, however, this will lead to an undesired bias toward choosing the linear model.
Our results will actually show that the AIC is more reliable in determining the best fit to fluctuation
plots for signals whose functional form has previously been studied and is known.

Signal Simulation

Self-similarity is a property of signals belonging to the class of signals with long-range dependence (LRD)
[10]. In order to demonstrate and test our methodology, we apply it to signals simulated using an
Autoregressive Fractionally Integrated Moving Average model (FARIMA) [28], which provides a process
that can easily be manipulated to include a variable level of short and long-term correlations within a
signal, which in turn provide a broad range of DFA fluctuation plots.

To construct a FARIMA process a sequence of zero-mean white noise is first generated, which is
typically taken to be Gaussian, and necessarily so to produce fractional Gaussian noise. The FARIMA
process, Xt, is then defined by parameters p, d and q and given by:

(

1−
p
∑

i=1

φiB
i

)

(1−B)
d
Xt =

(

1 +

q
∑

i=1

θiB
i

)

εt. (1)
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B is the backshift operator operator, so that BXt = Xt−1 and B2Xt = Xt−2. Terms such as (1−B)2

are calculated using ordinary expansion, so that (1−B)2Xt = Xt − 2Xt−1 +Xt−2. While the parameter
d must be an integer in the ARIMA model, the FARIMA can take fractional values for d. A binomial
series expansion is used to calculate the result:

(1 −B)d =

∞
∑

k=0

(

d

k

)

(−B)k.

The left hand sum deals with the autoregressive part of the model where p indicates the number of
back-shifted terms of Xt to be included, φi are the coefficients with which these terms are weighted. The
right hand sum represents the moving average part of the model. The number of terms of white noise to
be included are q, with coefficients θi. In the range |d| < 1

2 , FARIMA processes are capable of modelling
long-term persistence [28]. As we will only consider p = 1 and q = 1 throughout the manuscript, we will
refer to φ1 as φ and θ1 as θ. We set |φ| < 1, |θ| < 1 to ensure that the coefficients in Equation 1 decrease
with increasing application of the backshift operator, thereby guaranteeing that the series converges, and
Xt is finite [28].

A FARIMA(0,d,0) is equivalent to fractional Gaussian noise with d = H − 1
2 [28]. This produces a

time series with a DFA fluctuation plot that has been shown to be asymptotically linear [25, 29]. By
manipulating the φ and θ parameters, the DFA fluctuation plots can also be distorted.

In a FARIMA(1,d,0) process, the φ parameter is non-zero, and an autoregressive term is added to
the process. In general, an increase in the φ coefficient at constant θ induces a decrease in fluctuations
for small window sizes, and a concavity is seen in the fluctuation plot [46]. The value of φ increases the
short-range exponent with an exponential relationship [46]. This means that the process at a given time
point depends linearly on the previous values in the series, so that a single impulse would affect the rest
of the process infinitely far into the future. The process is expected to behave like a FARIMA(0,d,0) time
series in the long-term, but the short term behaviour will have short-term correlations, depending on the
size of φ [28].

For a FARIMA(0,d,1) time series, the θ parameter is non-zero, which indicates exponential smoothing
and a time series with noisy fluctuations around a slowly-varying mean. The resulting DFA fluctuation
plots have fluctuation levels that are above the expected regression line at large box sizes. An increase
in θ for φ = 0 induces convexity in the fluctuation plot.

Neurophysiological Data

A total of twenty healthy subjects were recruited from the workforce at the Royal Hospital for Neuro-
disability 6 males, age range 24-59 years, of mean age 39.94 years, ±10.2. All subjects gave informed
consent. Recording procedures were carried out in accordance with the declaration of Helsinki. None of
the subjects had previous history of blackouts, faints, or psychiatric illness. None of the subjects were on
any medication known to have centro-encephalic effects. All subjects were right handed.

The EEG recordings were conducted as part of a study exploring EEG changes occurring during
music therapy. The subjects were seated in a comfortable chair with arm rests. A total of 23 Ag/AgCl
electrodes (Unimed Electrodes, Surrey, UK) were applied individually to the scalp in accordance with
the 10 − 20 system of electrode placement [47]. Electrodes were fixed in place using Ten20 conductive
paste (Weaver and Company, USA). Electrode impedances were maintained below 5KΩ. The EEG
was acquired using an XLTEK Video-EEG monitoring system (Optima Medical, Putney, UK) which
incorporated a 50 channel amplifier. The EEG signals were acquired using a sampling rate of 256Hz,
and filter settings between 0.5− 70Hz without mains suppression. The montage regime used for on-line
acquisition was common average reference [48]. Recordings were taken over a period of 40− 60 minutes.
The initial 5 minutes of the recording was designated the baseline silence period (background noise 34dB)
Here, the subjects were instructed to close their eyes on hearing a series of clicks. The initial 2.5 minutes
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of the baseline recording during the silence period were taken with the eyes open. Across the remainder
of the session, subjects listened to different sounds/music the order of delivery having been randomly
selected.

The recorded EEG signals were converted off-line to Laplacian derivation [49, 50]. Artefact rejec-
tion was performed through visual inspection of the EEG and Independent Component Analysis in
EEGlab [51]. For this reason, the length of the continuous signals subjected to analysis varied from
subject to subject but had a minimum length of approximately 20 minutes.

Matlab Code

Full code for ML-DFA is available from the corresponding author upon request. It will be made freely
available upon acceptance of the manuscript. The data from FARIMA processes were generated using
Matlab code published by [52].
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