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ABSTRACT

In studies of the interstellar medium in galaxies, radiative transfer models of molecular emission are useful for relating molecular
line observations back to the physical conditions of the gas they trace. However, doing this requires solving a highly degenerate
inverse problem. In order to alleviate these degeneracies, the abundances derived from astrochemical models can be converted into
column densities and fed into radiative transfer models. This ensures that the molecular gas composition used by the radiative transfer
models is chemically realistic. However, because of the complexity and long running time of astrochemical models, it can be dif-
ficult to incorporate chemical models into the radiative transfer framework. In this paper, we introduce a statistical emulator of the
UCLCHEM astrochemical model, built using neural networks. We then illustrate, through examples of parameter estimations, how
such an emulator can be applied to real and synthetic observations.
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1. Introduction

Molecules form in the interstellar medium provided it is dense
enough for collisions to bring the chemical reactants together,
and cool enough to suppress the complete dissociation of chemi-
cal products. Observations of the interstellar medium in and out-
side of our galaxy have revealed a rich and diverse chemistry
(Shematovich 2012), spanning a wide range of physical envi-
ronments. As stars form through the collapse of over-densities
inside this optically opaque dense interstellar medium (Young &
Scoville 1991), the study of molecular gas can provide a window
into the star-formation process and shed light onto the life cycle
of galaxies.

Typically, the chemistry of the cold and dense interstellar
medium is probed through measurements of molecular lines. In
order to interpret these, radiative transfer models are used to
relate the line strengths back to the physical conditions of the
interstellar medium they trace. RADEX (see van der Tak et al.
2007) is a popular non-local thermodynamic equilibrium (non-
LTE) radiative transfer model that models, for a given set of
physical conditions, the expected strength of molecular lines. By
matching the observed molecular lines to predictions from grids
of such models, it is possible to constrain the density, temper-
ature, and column density of the molecular gas (e.g. Viti 2017;
Tunnard & Greve 2016; Salak et al. 2018).

However, as molecular line intensities are dependent on a
complex interplay between the physics, chemistry, and radia-
tive transfer of the observed region, their interpretation is often
ambiguous. As such, estimating chemical parameters via the use
of radiative transfer models is a notoriously degenerate problem.
Even under a set of idealized assumptions, when one assumes
that the gas can be accurately represented using a single compo-
nent at a unique temperature and density, there exist wide ranges
of parameter values capable of fitting a set of observations (see

Tunnard & Greve 2016; Kamenetzky et al. 2018). These degen-
eracies are amplified when studying external galaxies as the tele-
scope beam sizes often encompass a wide variety of different
physical environments that must be disentangled.

Since line intensity predictions obtained from radiative trans-
fer models depend on the column densities of the studied region,
it is customary to treat column densities as free parameters of
the radiative transfer modelling to be constrained alongside the
temperature and density. Unfortunately, this makes the radia-
tive transfer modelling highly degenerate, oftentimes leading to
many very different models being able to fit the same observa-
tions. There have been attempts to address these degeneracies
through the use of astrochemical models.

Astrochemical models, such as UCLCHEM presented in
Holdship et al. (2017), are computational codes designed for
modelling the chemical composition of gas under well-defined
physical conditions. This is done through the numerical integra-
tion of a set of differential equations constructed from a net-
work of chemical reactions. It has been proposed, for example
in Viti et al. (2014) and more recently in Viti (2017) and Harada
et al. (2019), to convert the outputs of chemical models into col-
umn densities to be used as inputs to radiative transfer models.
Without including chemistry into the forward model, parameter
retrieval can give retrievals that are inconsistent with our current
knowledge of chemistry as the forward model has no knowledge
of which species should be abundant for a given set of condi-
tions. With inclusion of the chemistry, not only are column den-
sities no longer free parameters, leading to tighter bounds on the
retrieved parameters, but it becomes possible to constrain the
parameters driving the chemistry, such as for example the metal-
licity and cosmic-ray ionization rate. However, the widespread
integration of astrochemical models into the radiative transfer
process is hindered by their long running times and their com-
plexity. The long running times result in even a relatively small
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grid of astrochemical models requiring a large amount of com-
putational resources.

In this project, we address both of these issues through
the creation of a publicly available statistical emulator for the
UCLCHEM astrochemical model1. The statistical emulator is
built using a set of neural networks trained to find a multi-
dimensional fit to a training dataset of chemical simulations.
The emulator offers a considerable speed-up in modelling time,
being able to estimate molecular abundances in milliseconds,
much faster than full chemical models which run in minutes.
In addition to the speed-up, the UCLCHEM emulator has been
simplified, now being dependent on only six variables: density,
temperature, metallicity, visual extinction, cosmic-ray rate, and
radiation field rate of the region being modelled. With our emula-
tor, the complexity and computational power required to include
chemical models into the radiative transfer process has been
considerably reduced. As a by-product, we have also created a
RADEX emulator for a select few key species for an even faster
inference.

Although emulators have gained some traction in the cos-
mology community (e.g. Schmit & Pritchard 2018; Kwan et al.
2015), they remain uncommon in astrochemistry. The astrochem-
ical community instead usually favours comparison to tables of
precomputed models (e.g. Mondal et al. 2019; Meijerink et al.
2007; Maffucci et al. 2018; Bisbas et al. 2019). In Grassi et al.
(2011), a neural network was trained to replace the chemical net-
work calls in N-body simulations. Our work differs in that, by
modelling the full chemical evolution starting from a limited set of
realistic initial conditions, we have restricted the parameter space.
This avoids issues of error propagation over each time-step and
allows the use of more complex chemical models.

In Sect. 2, we give some details on the physical and chemi-
cal models being emulated as well as the emulation procedure.
In Sects. 3 and 4, we give a technical overview of our emula-
tion procedure and quantify, over our selected parameter range,
the ability of our emulator to accurately predict molecular abun-
dances and intensities. In Sect. 5, using a set of toy observations,
we demonstrate how the emulator can help to lift some of the
degeneracies present in radiative transfer modelling. In Sect. 6,
we further apply the emulators to ALMA observations of the
nearby prototypical Seyfert 2 galaxy NGC 1068 (presented in
García-Burillo et al. 2014; Viti et al. 2014) and touch upon some
of the weaknesses and strengths of our emulator.

2. Modelling molecular gas

In this section we give a brief overview of the specifics of
the chemical and radiative transfer models used for emulation.
We explain how we combined these to create a simple forward
model capable of reproducing observations of the interstellar
medium. We finish the section by covering how we can use a
neural network to create an emulator of astronomical models.

2.1. Chemical models

UCLCHEM is a time-dependent gas-grain open-source chemi-
cal model described in Holdship et al. (2017). In UCLCHEM,
chemical evolution of the gas is divided into two phases. In
the first phase (phase I), supposed to approximate the molecular
gas formation processes, the gas starts in a diffuse atomic state
and evolves following a freefall collapse. In the second phase of
the model (phase II), the physical conditions are modified so as

1 Emulator can be found at github.com/drd13/emulchem

to approximate specific observable environments. For an extra-
galactic application, this could involve high cosmic-ray rates as
would be expected in an AGN-dominated galaxy, or high UV
flux as would be expected in a starburst galaxy.

For our models, during phase I the gas started at a density of
100 cm−3 and was then compressed via freefall to a final density,
which was left as a free parameter. This freefall collapse was
isothermal, with a gas temperature of 10 K. The radius of the
region, which was also used to calculate the visual extinction,
was allowed to vary. During this phase, gas phase desorption
and freeze-out on the dust grains proceeds.

During phase II, the gas was assumed to have reached its
final density and the physical parameters were varied so as to
model a range of environments. The models were all run for
107 years, long enough for the gas to reach chemical equilibrium.
The parameters that were allowed to vary were the following.

– Temperature (T ): The temperatures of the phase II models
were increased over time up to a value T following the same
procedure as in Viti et al. (2004), where the temperature
increases with time as a function of the luminosity of an
evolving star. Indeed, the temperature dependence on time
will differ depending on which objects the chemical model
is simulating, but for the purpose of this study we simply
adopted the procedure already present in UCLCHEM. The
models were then further run at fixed temperatures until a
cumulative time of 107 years.

– Gas density (n): The phase I models were run following a
parametric freefall collapse (Rawlings et al. 1992) until a
density n was reached. The density was then kept constant
during phase II.

– Metallicity (mZ): The initial atomic abundances used by the
chemical network were constrained to be a fraction of the
solar metallicity. We defined metallicity as a multiplicative
factor with a metallicity of 1 corresponding to elemental
abundances as found in Asplund et al. (2009).

– Cosmic-ray ionization rate (ζ): This parameter represented
the cosmic-ray ionization rate used in Phase II. Additionally,
as we do not model the X-ray ionization rate, we use the
cosmic-ray ionization rate as its proxy (Xu & Bai 2016). As
noted in Viti et al. (2014) this approximation has its limita-
tions in that X-ray heating is more efficient than cosmic-ray
heating.

– Ultraviolet-photoionization rate (χ): This parameter repre-
sented the UV-photoionization rate used for phase II mod-
els. The UV-photoionization is measured in Draine where
1 Draine is equivalent to 1.6× 10−3 erg s−1 cm−2 (Draine
1978; Draine & Bertoldi 1996).

– Visual extinction (AV ): In UCLCHEM the visual extinction
of the molecular gas is controlled by the size of the modelled
region.
At its core, the UCLCHEM chemical model is centred

around a chemical network specified by the user. For this project
we used a chemical network based on the UMIST database
(McElroy et al. 2013). For each time-step, a set of coupled ordi-
nary differential equations is generated from the chemical net-
work and solved. We refer the reader to the UCLCHEM release
paper (Holdship et al. 2017) for a thorough overview of the effect
of various parameters on these rate equations.

2.2. The radiative transfer model

The non-LTE radiative transfer code RADEX (van der Tak
et al. 2007) in conjunction with collision files obtained from the
LAMBDA database (Schöier et al. 2005) was used for estimating
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line intensities. RADEX is a non-LTE radiative transfer model
that decouples the non-local radiation field from the local-level
population calculation through the escape probability approxi-
mation.

For our emulator, all radiative transfer models were run with
H2 as the unique collisional partner, assuming a background tem-
perature of 2.7 K and assuming a spherical geometry. As both
Krips et al. (2011) and Viti et al. (2014) found that different
geometry choices in RADEX gave comparable outputs for the
fitting of CO, HCN, and HCO+ in a nearby galaxy we restrict
ourselves to using a spherical geometry.

2.3. The forward model

Using molecular line intensities to constrain the physical condi-
tions of the interstellar medium is an inverse problem. In prac-
tice, this can be tackled by comparing synthetic line-intensity
predictions obtained using a forward model with the measured
molecular lines. In this paper we contrast two distinct forward-
modelling approaches:

– The forward model can encompass solely the radiative
transfer physics (from now on referred to as chemistry-
independent). This is the more established methodology for
analysing molecular lines (Imanishi et al. 2018; Michiyama
et al. 2018).

– The forward model can alternatively encompass the chem-
istry of the molecular gas in addition to the radiative trans-
fer (from now on referred to as chemistry-dependent). This
approach is less common but has been used in Harada et al.
(2019), Viti (2017), and Viti et al. (2014).
In the chemistry-independent forward-modelling approach,

the temperature, gas density, line-width, column-densities, and
beam-filling factor are the only parameters allowed to vary. The
first four parameters correspond to the input parameters used in
the RADEX modelling. The beam-filling factor is treated as a
multiplicative scaling factor.

In the chemistry-dependent forward model, the parameters
allowed to vary are the inputs to the chemical model, the line
widths, and the beam-filling factor. In this case the synthetic
observations are created by converting the output abundances
from the chemical model into column densities and using these,
as well as the final chemical model temperature and density,
as inputs to the radiative transfer model. The predicted inten-
sities from the radiative transfer model are then transformed into
mock observations by multiplying them by a beam-filling fac-
tor. In order to convert abundances into column densities, the
fractional abundances are multiplied by the column densities of
hydrogen as measured at 1 mag and by the visual extinction.
We used N(H2) = 1.6 × 1021 cm−3 for the column density of
hydrogen at 1 mag. This conversion procedure is known as the
“on-the-spot” approximation (e.g. Dyson & Williams 1997).

These models can easily be extended to include more than
one phase of gas. For example, for a two-phase gas, one can
run two single-phase models and add up their intensities (after
rescaling by the beam-filling factor). A summary of the newly
introduced parameters and their notation is as follows:

– The line width (∆v): This is the line width used as an input
in the RADEX radiative transfer calculations. For simplic-
ity, we assume in our forward model that all molecular lines
share a common line width.

– The filling factor ( f ): For each phase, the output intensities
from RADEX are rescaled by a beam-filling factor represent-
ing the fraction of the beam occupied by the emission.

Input Layer Hidden Layers Output Layer

Fig. 1. Illustration of a multilayer perceptron neural network.

2.4. Artificial neural networks

Artificial neural networks (ANNs) are a class of algorithms used
for learning mappings between an input space and an output
space (Goodfellow et al. 2016), and are trained by tuning a set of
parameters to match a training dataset composed of input–output
pairs. The building blocks of ANNs are nodes, called neurons,
connected together by edges. In an ANN, information is passed
between nodes through these edges and combined through non-
linear functions to obtain a mapping from the input to the output
space.

In feed-forward neural networks (Fig. 1), as used in this
project, the neurons are organized into sequential layers. The
neurons from each layer are connected by edges to every
neuron of the succeeding and preceding layer. Neurons are
place-holders in which numbers are stored with the first layer
containing the inputs fed to the neural network and the last layer
containing the associated predictions from the neural network.
All the neurons in other layers are place-holders for intermedi-
ate values used in the calculations. The predicted outputs, given
an input, are found by successively calculating for each layer
the values of the neurons, starting from the input layer up to the
output layer. For neuron j, the formula for calculating its value
a j is a j = Φ(

∑
i wi jai + b j) where

∑
i refers to a sum over all

the neurons of the previous layer, b j is a parameter associated to
every individual neuron usually referred to as “bias”, and wi j is
a parameter associated to every individual edge and is referred
to as the “weight of the edge”. The function Φ(x), often called
the activation function, is a non-linear function whose presence
makes it possible to approximate non-linear combinations of the
inputs. For this specific project a rectified linear unit (ReLU)
activation function was used (Vinod & Hinton 2010).

The neural network parameters (bias and weights) are deter-
mined using a set of training data. Typically, the training data
contain example inputs and their associated outputs. The neural
network then attempts to fine-tune the parameters so as to mini-
mize a user-specified loss function, designed to assess how well
the neural network predictions match the example outputs.

In this project we utilize neural networks as emulators. This
consists of using the inputs of a model as the inputs to a neural
network and training the neural network to reproduce the outputs
of the model. By training a neural network to emulate a model, it
becomes possible to bypass the model. This is advantageous if the
model is computationally intensive to run, as it allows samples to
be obtained at a fraction of the original computational cost.
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Table 1. Emulator parameters and their range.

Parameter sampling ranges
Parameter Minimum Maximum Unit

AV 1 100 mag
n 104 106 cm−3

ζ 1 103 1.3 × 10−17 s−1

χ 1 103 Draine
T 10 200 K
mZ 0 2 Z

In the application presented here, because there is a strong
overlap in the parameter space explored when modelling dif-
ferent galaxy observations, very similar grids of parameters are
run even when interpreting radically different observations. This
makes the use of an emulator particularly advantageous as the
overhead required in training an emulator will quickly be smaller
than the accumulated run-time from running redundant models.

3. UCLCHEM emulator

In this section we discuss the creation and evaluation of our
emulator.

3.1. The training dataset

A dataset of N = 120 000 chemical models was generated. The
parameter ranges for the training dataset can found in Table 1.
Since the emulator is only able to interpolate and not extrapolate,
these parameter ranges define the usable range of the emulator.

A Latin hypercube sampling scheme was used for generat-
ing the samples in the training dataset. Latin hypercube sam-
pling (McKay et al. 1979) is a statistical method for generating
near random samples, which is particularly suitable for explor-
ing parameter spaces under a restricted computational budget. It
has been used, for example, in Schmit & Pritchard (2018) for the
emulation of the epoch of reionization simulations and in Bower
et al. (2010) for emulation of semi-analytical galaxy models.

3.2. The algorithm

Feed-forward neural networks were used to predict molecular
log-abundances from the UCLCHEM inputs. A separate neural
network was trained for each molecular species in our chemical
network with each neural network sharing the same five-layer
architecture. The first layer was six neurons wide, with each neu-
ron being assigned to one of the six input parameters. The next
three layers were successive hidden layers of width 200, 100,
and 50. Finally the last layer represented the predicted output
by the neural network. All of the layers used a ReLU activation
function (Vinod & Hinton 2010).

For each molecular species, the neural network was trained
through the backpropagation algorithm (see Rumelhart et al.
1986) to minimize the MSE loss over the whole dataset between
the chemical simulation outputs and the neural network outputs

N∑
1

(yi − ŷ(xi))2, (1)

with yi being the log10-abundance predicted by UCLCHEM, xi
the neural network input parameters (see Table 1), and ŷ the

neural network prediction. As abundances cover several orders
of magnitude in scale, in order to treat the whole parameter
range equally we trained the neural network to minimize the log-
abundances. In addition, the input parameters were scaled to lie
within a range from zero to one before being fed to the neural
network by using the following transform:

Xscaled =
X −min(X)

max(X) −min(X)
, (2)

where X is an input parameter before rescaling.
Training of the neural networks was done using the pytorch

framework (Paszke et al. 2017). The neural network parameters
were optimized using Adam (Kingma & Ba 2015) with an initial
learning rate of 0.001 and training occurring over 20 epochs,
with batches of 500 in size.

3.3. Error analysis

We quantified the approximation error in our emulation proce-
dure by plotting the distribution of differences between the emu-
lated log-abundances and the UCLCHEM log-abundances for a
validation dataset, constructed by running 10 000 UCLCHEM
models with randomly sampled input parameters (Fig. 2). Reas-
suringly, the emulation error is small for all of our plotted
species, with 95% of the models agreeing with the emulator
predictions to within a multiplicative factor of 1.13 (a log10-
abundance difference of 0.05). At the tail of the distribution, the
worst emulator predictions are still within a factor of ten of the
correct abundances (a log10-abundance difference of 1).

3.4. Effect of the dataset size

We investigated the effect the training dataset size had on the
predictive power of our emulator. To do this, we trained our neu-
ral networks on differently sized subsets of the training dataset
and quantified how the training dataset size affected predictions.
For each dataset size, we averaged the validation set errors over
multiple runs. The outcome is shown in Fig. 3, where we can see
that further increasing the dataset size beyond the 120 000 sam-
ples already used would only offer very marginal improvements
to the predictive ability of our emulator.

4. Radiative transfer emulator
In addition to creating an emulator for UCLCHEM, we created a
radiative transfer emulator that replicated the results obtained by
RADEX for J < 10 molecular line transitions. As each molecule
required a brand new set of RADEX models to be run, we
restricted ourselves to emulating HCO+, HCN, CO, and CS.
Although individual RADEX models are relatively quick to run,
exploring a high-dimensional radiative transfer parameter space
can require hundreds of thousands of simulations. This makes
the use of a RADEX emulator particularly useful, especially in
cases where a slight loss in accuracy is acceptable, such as when
used in conjunction with chemical models, which themselves
have high associated uncertainties.

4.1. Training dataset

The emulator took the temperature, density, line-width, and
molecular column densities as inputs. By exploiting the degener-
acy between line width and column density for optical depth, we
were able to remove the line-width dependency from our train-
ing dataset. All the parameter ranges were kept the same as for
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Fig. 2. Violin plot of the distribution of the difference between the log10 abundance predictions from the astrochemical models and those from
the emulator using a kernel density estimate from the 10 000 simulations in the validation dataset for CO, CS, H, HCN, and HCO+. Bottom plot:
zoomed-in version of the top plot. Bottom plot: thick black lines represent the interquartile range and the thin black line the 95% confidence
interval.
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Fig. 3. Effect of training set size on emulator prediction. The
y-axis shows the mean squared error between the log10 ground truth
abundances and neural network prediction evaluated on the validation
dataset. The x-axis shows the size of the training dataset. The shaded
area represents the spread of mean squared error obtained across runs;
the 68.2% percentiles centered around the mean are shaded.

the UCLCHEM emulator, with the maximal column densities
for our RADEX emulator rounded up to be an order of magni-
tude larger than the maximal column densities in our chemical
model dataset. A Latin hypercube sampling scheme was run over
the chosen parameter range. We sampled from the log-column
density.

The escape-probability formalism that underpins RADEX
can break down for some parameter choices, leading to spuri-
ous intensities. To mitigate this effect we applied a visually cho-
sen cut-off to the intensities in our training-set; all simulations
with intensities higher than the cutoff were excluded from the
dataset.

4.2. Algorithm
We used the same neural network preprocessing, training, and
architecture as that used for the UCLCHEM emulator. We
trained the neural network using an L1 loss:

n∑
1

|yi − ŷ(xi)| , (3)

with yi referring to the intensity predicted by RADEX, xi the cor-
responding RADEX input parameters, and ŷ the neural network
prediction on a dataset of approximately 100 000 RADEX out-
puts. Because our method for removing spurious intensities was
not perfect, there remained some spurious models. This meant
that an L1 loss, which put less emphasis on fitting every single
data point perfectly, was more suitable then an L2 loss. To pre-
vent the neural network from predicting nonphysical values, we
rounded all negative intensity predictions to zero.

To assess our emulators effectiveness we plotted the dif-
ference between RADEX and our emulator alongside the dis-
tribution of RADEX intensities for comparison, for a dataset
of 10 000 unseen RADEX simulations for CO, CS, HCO+ and

A117, page 5 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935973&pdf_id=2
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935973&pdf_id=3


A&A 630, A117 (2019)

CO(6-5) HCN(4-3) HCO+(4-3) CS(7-6) CO(3-2)
0

50

100

150

200

250

In
te

ns
ity

 (K
 k

m
 s

1 )

Fig. 4. Violin plot of the distribution of RADEX intensities for different
molecular lines. The distributions are obtained using a kernel density
estimate from the 10 000 simulations in the dataset. The thick black
lines represent the interquartile range and the thin black lines the 95%
confidence intervals.
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Fig. 5. Violin plot of the distribution of the difference between intensity
predictions from the emulator and from RADEX for different molecular
lines. The distribution is obtained using a kernel density estimate from
the 10 000 simulations in the dataset.

HCN (Figs. 4 and 5). From these figures, we can see that the
errors in molecular intensity associated to using the RADEX
emulator are comparatively small compared to the errors asso-
ciated to using the UCLCHEM emulators. In addition, as it
is unlikely that all unphysical RADEX simulations have been
removed, the tails of our violin plot may be skewed from the
unphysical models. From this, we see that the uncertainties
associated to the RADEX emulator should be much smaller
than those associated to the UCLCHEM emulator. As such, the
RADEX emulator should have a minimal impact on our predic-
tions. However, we caution that this situation would change if
we were modelling multiple line transitions as, because of the
shared column density, the uncertainty from the RADEX emula-
tor would then have a much greater impact.

5. Bayesian posterior evaluation
In this paper we advocate the use of emulators as a computa-
tionally efficient way of incorporating chemical models into the
estimation of model parameters.

To assess the benefits obtained from the inclusion of a
chemical model in the forward model, we contrast parame-
ter estimation with and without chemical models. The param-
eter estimation was performed using Bayesian statistics. The
PyMultinest implementation of the Nested Sampling algorithm
(see Skilling 2006; Feroz et al. 2009; Buchner et al. 2014) was
used for sampling from our posterior probability distributions.

In the following sections we begin by giving a brief overview
of the Bayesian formalism. We then cover, using increas-
ingly complex models, the advantages and disadvantages of the
parameter estimation using our chemical emulator.

We wish to emphasize that in the following sections our
objective is to highlight how the emulator may be used for
parameter estimation. There is some level of flexibility in how
the likelihood may be parametrized, and we do not claim that
the parametrization we used is necessarily optimal.

5.1. Bayesian formalism

Given a model governed by a set of parameters, Bayesian statis-
tics make it possible to mathematically quantify the effect pre-
viously unseen data has on further focusing the parameters. In
this framework, a probability distribution is associated to each
parameter. The prior probability distribution reflects the belief
of the user in terms of the parameters before accounting for
data. This probability distribution will be high in regions of the
parameter space likely to coincide with the true parameters and
low in other regions. The posterior probability distribution rep-
resents the updated probability distribution after accounting for
observations; it is mathematically related to the prior distribution
through Bayes rule:

P(θ | d) =
P(d | θ)P(θ)

P(d)
, (4)

where P(θ | d) is the posterior distribution and P(θ) is the prior
distribution. P(d | θ) is defined as the likelihood; it describes
how plausible the obtained data is given a set of parameters.
The denominator is referred to as the “evidence”. In this project,
because the data are kept constant, the evidence behaves as a
normalization constant and can be ignored.

5.2. Application

In this section we describe how we applied the Bayesian statistical
formalism towards constraining physical parameters from obser-
vations of molecular lines. We consider the case where we have
observed N molecular line transitions obtaining observations

X =


x1
x2
..
xN

 , (5)

with xi being the intensity of the ith molecular species. Here, we
also consider that we wish to estimate p(θ | X) with θ a vector
describing the molecular gas parameters of a forward model f .
Using Bayes Rule we can express this in terms of the likelihood
and the prior distribution. For our purposes, we consider that our
observations correspond to the intensities predicted from our for-
ward model with an independent additive Gaussian noise. This
leads to a log-likelihood of the form

ln(L(θ)) = A −
1
2

n∑
i=1

(xi − f i(θ))2

σ2
i

, (6)

with A being a normalization constant, σi the uncertainty
associated to the ith species, and f (θ) the vector of intensities
predicted by the forward model f for model parameters θ.
The forward model can either be chemistry-independent or
chemistry-dependent (see Sect. 2.3).

We set uniform or log-uniform priors on all the parameters
with ranges matching the emulator range. The choice of uniform
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Table 2. Default prior distributions on model parameters.

Parameter Prior type Range

AV (mag) Uniform 1−100
n (cm−3) Log-uniform 104–106

ζ (1.3 × 10−17 s−1) Log-uniform 100–103

χ (Draine) Log-uniform 100–103

T (K) Uniform 10−200
mZ (Z) Uniform 0.2−2
f (–) Uniform 0−1
∆v (km s−1) Uniform 1−100
N(CO)/∆v (cm−2/(km s−1)) Log-uniform 1013–1019

N(CS)/∆v (cm−2/(km s−1)) Log-uniform 1010–1018

N(HCN)/∆v (cm−2/(km s−1)) Log-uniform 109–1017

N(HCO+)/∆v (cm−2/(km s−1)) Log-uniform 108–1015

Table 3. Parameters used for creating the single-phase model.

Model

T (K) 150
n (cm−3) 5 × 105

mZ (Z) 0.9
AV (mag) 40
χ (Draine) 10
ζ (1.3 × 10−17 s−1) 100
∆v (km s−1) 50

prior meant that all values within the prior bounds were expected
to be equally likely, while the choice of log-uniform priors meant
that all scales within the bounds were expected to be equally likely.
Uniform priors were used for the temperature, visual extinction,
line width, filling factor, and metallicity. Log-uniform priors were
used for the cosmic-ray ionization rate, UV-photoionization rate,
number density, and scaled column densities. Unless otherwise
stated, we used parameter priors as found in Table 2.

5.3. Posterior evaluation

It can be prohibitively expensive to evaluate a high-dimensional
posterior distribution. This motivates the use of efficient para-
meter-space exploration techniques which prioritize resource
allocation towards exploring high-probability regions of param-
eter space. Because of the multimodality found in some of our
posterior distributions, we used the pymultinest Python mod-
ule (Buchner et al. 2014) to evaluate our posterior distributions;
this is a python wrapper for the multinest package (Feroz et al.
2009) which is itself an implementation of the nested sampling
algorithm (Skilling 2006). We used the corner module (Foreman-
Mackey 2016) to visualize the marginalized posterior parameter
distributions.

5.4. One-phase model

5.4.1. Generation

So as to contrast and evaluate the two forward-modelling
approaches, we generated a set of synthetic observations using
the nonemulated UCLCHEM and RADEX. The parameters used
for generating the observations can be found in Table 3 and the
resultant intensities can be found in Table 4. In this case we
assumed a known beam-filling factor of f = 1.

Table 4. Intensities (K km s−1) of the single-phase model.

Beam-adjusted intensities
Transition Intensity Emulated intensity

(K km s−1) (K km s−1)

CO(3–2) 6760.0 6869.1
CO(6–5) 6905.0 6844.5
HCN(4–3) 905.5 958.3
HCO+(4–3) 16.1 19.9
CS(7–6) 361.05 443.7
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Fig. 6. Marginalised posterior distributions obtained when using a
single-phase “chemistry-independent” forward model. The true param-
eters, plotted in red, can be found in Table 3.

5.4.2. Posterior estimation

We attempted to retrieve the parameters using the chemistry
dependent forward model and the chemistry independent forward
model. In both cases, we assumed observational uncertainties of
20% and prior distributions as defined in Table 2. Marginalized
one- and two-dimensional posterior probability distributions for
the temperature, density, and line width, as obtained using the
corner module, are shown in Fig. 6 for the chemistry-independent
forward model and in Fig. 7 for the chemistry-dependent for-
ward model. For the chemistry-independent forward model, the
posterior distribution was evaluated using the emulated models,
while for the chemistry-dependent forward model, the posterior
distribution was evaluated using both the emulated (black) and
nonemulated model (blue).

We see that the posterior distributions obtained using the
emulated and nonemulated forward models (Fig. 7) are in excel-
lent agreement with each other. This further supports our find-
ings from previous sections that the emulator can reproduce the
RADEX and UCLCHEM model predictions with high fidelity.

From these figures, it is apparent that the chemistry-dependent
and the chemistry-independent parameter estimations give very
different predictions. While the chemistry-independent parameter
estimation struggles to constrain the temperature and density of
the molecular gas, the chemistry-dependent estimation is able to
return tight and accurate confidence bounds on the parameters.
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Fig. 7. Marginalized posterior distributions obtained when using a single-phase chemistry dependent forward model. The posterior distributions
obtained using the emulators are plotted in black while those obtained using the nonemulated models are plotted in blue. The true parameters,
plotted in red, can be found in Table 3.

5.5. Two-phase model

5.5.1. Generation

To further test our parameter retrieval process, we modeled a new
molecular gas phase by generating an additional set of intensi-
ties, approximating a lower temperature molecular phase, using
the nonemulated UCLCHEM and RADEX. We then modeled a
beam containing two molecular gas phases by adding the two
phases after scaling them by beam-filling factors. The param-
eters used for generating the two phases and the intensities of
the two phases can be found in Tables 5 and 6. These parame-
ters roughly correspond to a beam filled with one hot and dense
phase and one cool and diffuse phase.

5.5.2. Posterior estimation

Much like in the previous section, we next attempted to
fit our two-phase observations using chemistry-dependent and
chemistry-independent forward models. In both cases, we used

the emulated two-phase forward models with prior distribu-
tions identical to those used in the single-phase forward models
(Table 2) on both phases and assumed uncertainties of 20% on
the observations (Viti et al. 2014). As we set both prior distribu-
tions to cover the full emulated range, the forward model could
hypothetically fit the observations with two hot-gas phases or
two cold-gas phases. This is in contrast with what has sometimes
been done, such as in Tunnard et al. (2015), where the authors
constrained the two phases to nonoverlapping parameter ranges,
thus artificially forcing the gas to exist in two very distinct
phases. In this analysis we have forced the two phases of gas
to share the same metallicity and line width.

The marginalized posterior distributions obtained are plot-
ted in Figs. 8 and 9. Once again, we see that both approaches
give very different constraints on the posterior probability dis-
tributions. Although both methods arguably struggle to retrieve
the correct temperature and density, the chemistry-dependent
forward-model predictions occupy a more narrow range of the
parameter space.
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Table 5. Parameters used for creating the two-phase model.

Model I Model II

T (K) 50 150
n (cm−3) 2 × 104 5 × 105

mZ (Z) 0.9 0.9
AV (mag) 3 40
χ (Draine) 10 10
ζ (1.3 × 10−17 s−1) 10 100
f (–) 0.7 0.3
∆v (km s−1) 50 50

Table 6. Intensities (K km s−1) of the two-phase model.

Beam-adjusted intensities
Transition Intensity Emulated intensity

(K km s−1) (K km s−1)

CO(3–2) 2865.2 2930.0
CO(6–5) 2233.4 2225.7
HCN(4–3) 271.9 287.5
HCO+(4–3) 4.9 6.9
CS(7–6) 108.5 124.0

In addition, the chemistry-dependent forward model also par-
tially recovers the two-phase bimodality. Even though this is most
apparent in the plot of filling factor against density, it is also
visible in the temperature-versus-density plot. The above results
collectively indicate that the chemistry-dependent estimation is
capable, at least partially, of picking out the two distinct phases of
gas, even when the chemistry-independent forward model strug-
gles to constrain any of the parameters. On the other hand, we see
that our parameter estimation underestimates the line width.

6. Application to real line ratios

In the previous section, we used synthetic observations to assess
the benefits brought by incorporating chemistry into radiative
transfer forward models. However, although synthetic obser-
vations are useful in that they offer a controllable and well-
understood test bed, there are aspects of working with real
regions that cannot be easily understood with synthetic obser-
vations. Below is an inexhaustive list of these complications.

– Even though in recent years there has been tremendous
progress towards understanding the chemistry in the inter-
stellar medium (Williams & Viti 2013), there are still sig-
nificant uncertainties associated to the reactions therein.
Because of these, the chemistry in our forward model may
not accurately match that occurring in real regions.

– Is only usable for the parameter range under which it was
trained (Table 1).

– The molecular abundances predicted by our emulator are
those reached after the chemical models have been run long
enough for an equilibrium to be reached. As such, any tran-
sient chemical variation will not be captured by our emulator.

– For molecular observations, and particularly for observations
with large beam sizes, the approximation that the gas can be
represented using a small number of components is likely to
break down.
For the reasons highlighted above, we thought it important to

showcase the performance of the emulator on real observations.
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Fig. 8. Marginalized posterior distributions obtained when using a two-
phase chemistry-independent forward model. The true parameters, plot-
ted in green and red, can be found in Table 5.

To do this, we used ALMA observations of NGC 1068, a pro-
totypical nearby Seyfert barred galaxy as presented in Viti et al.
(2014) and Viti (2017). This galaxy is believed to host a rich
chemical diversity and as such it is expected to be very difficult
to disentangle the chemistry occurring within. We focused on the
spectral lines measured in the East Knot, a region of the molecu-
lar ring showing strong emission, and used the degraded resolu-
tion measurements as presented in the original paper (Viti et al.
2014); the measured intensities have been retranscribed and can
be found in Table 8. Although we have every reason to believe
that the molecular gas spans a wide range of physical conditions,
to avoid using an excessively complex forward model, we fit the
region using a single-phase molecular component.

After running an exploratory single-phase chemistry-
dependent parameter estimation, we found that our models were
consistently unable to reproduce the HCO+ intensities. To further
investigate this issue, we evaluated the HCO+(4–3)/CO(3–2)
line-intensity ratio for all of the UCLCHEM models used by
our emulator. We found that all of the chemical models in our
training dataset resulted in line-intensity ratios smaller than the
ratio observed with ALMA. This suggests that our models, over
the parameter range studied, does not produce enough HCO+ to
match the observations.

This was in itself not surprising, as chemical models have
been known to struggle with producing enough HCO+ to match
observations (e.g. Godard et al. 2010; Viti et al. 2014). In
Papadopoulos (2007), it was argued that because of the sensitiv-
ity of the HCO+ column density to the ionization degree of the
molecular gas, HCO+ can be an unreliable tracer of hot dense
gas. Furthermore, if the HCO+ is a transient species or if it is
created in low-visual-extinction and high-density clumps not
covered by our emulation, then it is likely that our models would
not capture it.

In light of our inability to reproduce HCO+ observations,
we reran a parameter estimation identical in all but the fact
that HCO+ was excluded from the fitting. The posterior plots
obtained without HCO+ can be found in Fig. 10. From this
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Fig. 9. Marginalized posterior distributions obtained when using a two-phase chemistry-dependent forward model. The true parameters, plotted in
green and red, can be found in Table 5.

we can see that the Bayesian parameter estimation, for fitting
a single phase, favors a component with moderately high tem-
perature (T ∼ 120 K) but very high density (n ∼ 106 cm−3).

It is informative to quantify the goodness of fits of some of
the models from the posterior distributions. We show, for a small
representative sample of well-fit models, the model parameters
in Table 7 and the corresponding intensities in Table 8. From
these tables, it becomes clear that the intensities predicted by
the emulated and nonemulated forward model are in excellent
agreement. These tables also highlight the strong degeneracies
which exist in the forward modeling process.

Of note is that the HCN intensity recovered by the Bayesian
parameter estimation, although at the correct order of magni-
tude, was consistently lower than the observed HCN intensity.
Almost none of the best-fitting models predicted an HCN inten-

sity greater than the observed intensity. This could be inter-
preted as the models struggling to create a high enough HCN
intensity which could be indicative that the molecular phase,
not captured by our models, which is responsible for the high
HCO+ intensity may also be at least partially responsible for a
portion of the HCN intensity.

7. Conclusions

In this paper we propose an alternative method for interpreting
the physical conditions of the interstellar medium from the anal-
ysis of molecular line intensities. This is typically approached by
running many forward models and finding the input parameters
to the non-LTE radiative transfer forward model whose predic-
tions match well with observations.

A117, page 10 of 12

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935973&pdf_id=9


D. de Mijolla et al.: Incorporating astrochemistry into molecular line modelling via emulation

4.4
4.8
5.2
5.6
6.0

lo
g 1

0(
n 

(c
m

3 )
)

20
40
60
80

10
0

v 
(k

m
 s

1 )

0.6
1.2
1.8
2.4
3.0

lo
g 1

0(
(D

ra
in

e)
)

0.6
1.2
1.8
2.4
3.0

lo
g 1

0(
/

0(
10

17
s

1 )
)

20
40
60
80

10
0

av
 (m

ag
)

40 80 12
0

16
0

20
0

T (K)

0.4
0.8
1.2
1.6
2.0

m
Z
 (Z

)

4.4 4.8 5.2 5.6 6.0

log10(n (cm 3))
20 40 60 80 10

0

v (km s 1)
0.6 1.2 1.8 2.4 3.0

log10( (Draine))
0.6 1.2 1.8 2.4 3.0

log10( / 0(10 17s 1))
20 40 60 80 10

0

av (mag)
0.4 0.8 1.2 1.6 2.0

mZ (Z)

Fig. 10. Marginalized posterior distributions obtained when using a single-phase chemistry-dependent forward model on the ALMA observations
excluding HCO+.

By feeding the outputs of a chemical model into the RADEX
radiative transfer model, as was expanded upon in Sect. 2.3, it is
possible to re-parametrize the radiative transfer forward model.
In this formalism, the forward-model dependency on column
densities is replaced with a dependency on physical parameters.
This offers the potential to lift parameter degeneracies. However,
the subsequent forward model is not computationally practical as
the required chemical models are computationally expensive to
run at scale.

We present and evaluate an emulator, created using neural
networks, capable of predicting molecular abundances at a frac-
tion of the run-time of the UCLCHEM astrochemical model, as
well as an emulator approximating the outputs of the RADEX
radiative transfer codes. We show that by using our emula-
tors it becomes computationally tractable to run the chemistry-
dependent forward models accurately at scale.

By applying our emulator to mock observations as well as
real observations we show that incorporating chemistry into the
parameter retrieval cannot only lead to tighter constraints on the
retrieved physical parameters but also constrain parameters intro-
duced by the chemical models such as the cosmic-ray ioniza-
tion rate and metallicity. We also show that our emulator-based
approach is able to distinguish between two distinct phases of
molecular gas where a traditional radiative transfer approach fails.

Finally, by applying our formalism to real observations of the
galaxy NGC 1068, we show that our emulator can effectively be
applied to obtain information from real observations. This comes
with the caveat that the emulator may struggle to reproduce
certain molecular lines such as the HCO+ molecular lines. How-
ever, we argue that this inability to reproduce HCO+ may be
indicative of molecular gas with extreme physical conditions not
within our emulation range.
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Table 7. Example input model parameters.

Model χ (Draine) ζ (1.3 × 10−17) n (cm−3) AV (mag) T (K) mZ (Z) ∆v (km s−1) f (–)

(1) 237.90 1.24 966810.74 89.10 199.24 0.26 18.81 0.75
(2) 90.46 1.02 979300.34 86.86 108.46 1.30 78.15 0.31
(3) 31.28 2.95 907548.96 71.29 102.80 1.90 99.09 0.27
(4) 13.94 1.39 857614.52 47.84 96.72 1.85 58.51 0.44

Notes. For the associated intensities see Table 8.

Table 8. Intensities (in K km s−1) obtained for the models as defined in Table 7.

Model CO(3–2) CO(6–5) HCN(4–3) HCO+(4–3) CS(7–6)

(1) Emul 2397.37 2656.13 532.01 8.38 8.89
(1) Direct 2566.15 2705.82 485.44 5.95 9.07
(2) Emul 2611.54 2347.36 470.32 1.73 7.86
(2) Direct 2577.70 2377.35 554.30 0.94 3.96
(3) Emul 2710.83 2426.85 451.47 1.55 10.30
(3) Direct 2688.81 2465.41 593.14 1.13 11.54
(4) Emul 2491.62 2215.54 454.70 1.47 9.97
(4) Direct 2422.29 2209.38 656.22 0.72 5.33
Observed 2346.28 2712.70 639.47 251.18 8.26

Notes. The emul columns correspond to the intensities obtained using the emulated UCLCHEM and emulated RADEX. The direct columns
correspond to the intensities obtained using the true UCLCHEM and true RADEX. The last column contains the measured NGC 1068 intensities
for comparison.

We would like to conclude this paper by emphasizing that
we have had to make choices in defining the likelihood for
our experiments, but that these choices may not be optimal.
For example, the likelihood could be designed to not only put
emphasis on having the line intensities at the correct scale, as
was done in our experiments, but also to put emphasis on pre-
serving the relative strength of lines tracing the same species.
Finally, the likelihood could also be designed to put stronger
constraints on species for which the chemical modeling has been
benchmarked and well understood. Furthermore, in most appli-
cations it is probably sensible to further constrain or fix some of
the forward model parameters, such as the metallicity.
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