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ABSTRACT

Ambient plasma electrons undergo strong heating in regions associated with compressive bulk-velocity jumps ΔU that travel through
the interplanetary solar wind. The heating is generated by their specific interactions with the jump-inherent electric fields. After this
energy gain is thermalized by the shock passage through the operation of the Buneman instability, strong electron heating occurs that
substantially influences the radial electron temperature profile. We previously studied the resulting electron temperature assuming that
the amplitude of the traveling velocity jump remains constant with increasing solar distance. Now we aim at a more consistent view,
describing the change in jump amplitude with distance that is caused by the heated electrons. We describe the reduction of the jump
amplitude as a result of the energy expended by the traveling jump structure. We consider three effects: energy loss due to heating of
electrons, energy loss due to work done against the pressure gradient of the pick-up ions, and an energy gain due to nonlinear jump
steepening. Taking these effects into account, we show that the decrease in jump amplitude with solar distance is more pronounced
when the initial jump amplitude is higher in the inner solar system. Independent of the initial jump amplitude, it eventually decreases
with increasing distance to a value of about ΔU/U � 0.1 at the position of the heliospheric termination shock, where ΔU is the jump
amplitude, and U is the average solar-wind bulk velocity.The electron temperature, on the other hand, is strongly correlated with the
initial jump amplitude and leads to electron temperatures between 6000 K and 20 000 K at distances beyond 50 AU. We compare
our results with in situ measurements of the electron-core temperature from the Ulysses spacecraft in the plane of the ecliptic for
1.5 AU ≤ r ≤ 5 AU, where r is the distance from the Sun. Our results agree very well with these observations, which corroborates our
extrapolated predictions beyond r = 5 AU.
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1. Introduction

The electron temperature in the solar wind is expected to rapidly
decrease with increasing distance r from the Sun, as soon as
the electron heat conduction ceases that serves as the prime
energy source (Feldman et al. 1975; Pilipp et al. 1987; Scime
et al. 1994). At distances smaller than 5 AU, electron distribu-
tion functions have been identified as core-halo-structured dis-
tributions with an electron heat flux that decreases with a power
law according to ∝r−2.36 (see McComas et al. 1992). On the ba-
sis of electron data taken from the Helios, Wind, and Ulysses
spacecraft, Maksimovic et al. (2005) have carefully analyzed
the radial change of the core-halo-strahl structure of the electron
distribution function with distance from the Sun in the range be-
tween 0.3 AU and 1.5 AU. These authors found that while the
relative abundance of core electrons remains fairly constant with
distance, the relative abundance of halo electrons increases and
that of strahl electrons decreases, suggesting that the relative in-
crease in halo electrons is connected to the relative loss in strahl
electrons. Interestingly, however, both the core electron temper-
ature and the halo electron temperature decrease with distance.
This effect can be represented by kappa distribution functions
with decreasing kappa-indices and will be best fitted by the de-
crease of the electron kappa index from κ = 6 at r = 0.5 AU
to κ = 3 at r = 1.5 AU. The increase in the relative abundance
of the halo population is interpreted as the consequence of an

isotropization of the strahl population, which leads to a conver-
sion into the halo population (see also Štverák et al. 2009).

Beyond the outer ranges of the Ulysses trajectory (i.e., at so-
lar distances beyond 5 AU), measurements of low-energy solar-
wind electrons are not available. Up to now, electron temper-
atures have been expected to decrease to negligible values in
this region for theoretical reasons. At such large distances from
the Sun, processes such as whistler-wave-turbulence genera-
tion caused by instabilities that are driven by the electron heat
flux (see Scime et al. 1994; Gary et al. 1994) become unim-
portant. Pitch-angle scattering and energy-diffusion processes
can likewise be neglected at these distances (Schlickeiser et al.
1991; Achatz et al. 1993). However, more recently, Breech et al.
(2009) have presented a theoretical study of the heating of solar-
wind protons and electrons by dissipation of magnetohydrody-
namic (MHD) turbulent energy. While their study shows that the
theoretically obtained proton temperatures fit the Ulysses data,
the theoretically obtained electron temperatures (see Fig. 3 in
Breech et al. 2009), fail to fit almost all the data because they are
too low.

As a remedy of that failure, we most recently conjectured
that the interaction between electrons and the electric fields as-
sociated with traveling fluctuations in the solar-wind bulk ve-
locity (i.e., traveling shocks) can provide an energy source for
electron heating in this part of the heliosphere (Chashei & Fahr
2014). All solar-wind properties, including the solar-wind bulk
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Fig. 1. Solar-wind bulk velocity as a function of time in the plane of the
ecliptic at 1 AU. We show OMNI-2 data (from ftp://spdf.gsfc.
nasa.gov/pub/data/omni/low_res_omni/) from a combined set
of spacecraft observations to demonstrate the ubiquitous fluctuations
in the solar-wind bulk velocity.

velocity U, show strongly pronounced variations on many time
scales as well as shock-like structures (Feng et al. 2009; Yue
& Zong 2011; Janvier et al. 2014). We show a time line of the
measured solar-wind bulk velocity in the plane of the ecliptic at
1 AU in Fig. 1 (cf. Echer et al. 2005; Lai et al. 2010; Sokół et al.
2013). In agreement with these observations, we find a typical
occurrence rate of about 30 jumps with a significant amplitude
per year. These jumps are convected over the spacecraft with
an average solar-wind bulk velocity of U ≈ 400 km s−1, which
leads to a typical distance of about Lj = 3 AU between subse-
quent shocks.

Fluctuations ΔU(t) ≡ U(t)− 〈U(t)〉, where 〈·〉 is the time av-
erage and U is the solar-wind bulk velocity, persist to large dis-
tances from the Sun up to 20 to 40 AU, as clearly demonstrated
by Voyager observations (Richardson et al. 1995). Figure 2 in
Richardson et al. (1995) shows that while the bulk velocity fluc-
tuations survive up to large solar distances, the average bulk ve-
locity U = 〈U(t)〉 appears to be constant, implying that differ-
ential kinetic energy is not converted into kinetic energy of the
wind, but into thermal degrees of freedom of the plasma system.

We suspect that these bulk-velocity fluctuations are respon-
sible for the still poorly understood heating of electrons at larger
distances from the Sun. We have recently proposed in a quan-
titative discussion that compressional bulk-velocity waves heat
solar-wind electrons (Chashei & Fahr 2014). We determined the
fraction of the differential kinetic energy of the traveling shocks
and quantified the energy that is transferred to thermal energy of
the solar-wind electrons by means of the Buneman instability as
a function of the bulk speed U2 downstream of the velocity jump.
The joint bulk speed of electrons and protons, after passing the
jump-associated electric-field jump, is given by

meU2e + mpU2p =
(
me + mp

)
U2, (1)

where me,p denotes the mass of the electron and of the proton,
and U2 denotes the bulk velocity of the downstream center-
of-mass system. With me 
 mp, this expression leads to (see
Chashei & Fahr 2014)

U2 ≈ U2p +
me

mp
U2e ≈ U2p + s

√
me

mp
U2p, (2)

where s ≡ (U + ΔU)/(U − ΔU) is the jump compression ratio.
The difference U2−U2p is much smaller than U2p, and hence the
overshoot energy of the electrons in the downstream bulk frame
is given by

ΔWe =
1
2

memp

me + mp

(
U2e − U2p

)2 ≈ 1
2

meU2
2e. (3)

If this kinetic energy ΔWe of the overshooting electrons can be
locally converted into electron heat, this process leads to an elec-
tron temperature increase ΔTe after each jump passage given by

ΔTe =
meU2

2e

3k
=

mpΔU2

3k

(
1 − 1

s2

)
, (4)

where k is the Boltzmann constant.
This process describes an average gain of thermal energy that

leads to a systematic heating of the solar-wind electrons per ra-
dial increment dr as a result of repeated shock passages. The
resulting radial dependence of the electron temperature can be
described by a transport equation for the thermal energy. We ex-
pect that the electron heating due to accumulated jump passages
in the heliosphere beyond about 5 AU is statistical in nature.
We denote the average distance between consecutive jumps as Lj
and define the average jump occurrence rate as νj ≡ U/Lj. With
these definitions, the equation for the radial electron temperature
is given in the following differential form (see Chashei & Fahr
2014):

dTe

dr
+ 2

Te

r
= ΔTe

ΔU
LjU
= ΔTe

ΔX
Lj
, (5)

where ΔX ≡ ΔU/U. The term on the right-hand side of Eq. (5)
describes the electron heating induced by jump passages. When
they solved this equation, Chashei & Fahr (2014) assumed that
ΔTe = ΔTe(ΔU) is a constant. This assumption is true if ΔU is
independent of the distance r. In that case, the radial profile of
the resulting electron temperature is given by

Te(x) =
1
x2

(
x3 mpU2ΔX3

18k
r0

Lj
+ Te0

)
, (6)

where x ≡ r/r0 is the dimensionless spatial coordinate and Te0
denotes the electron temperature at r = r0 = 1 AU (solution
shown in Fig. 1 of Chashei & Fahr 2014). This solution suffers
from the inconsistency that the jump kinetic energy is assumed
to be constant even after transferring energy to the electrons. We
make this earlier approach more consistent in the sections below
by taking into account the energy consumption at the passage of
each jump during this process.

2. Change of the jump amplitude with distance
from the Sun

To increase the consistency of our approach, we now include
higher-order corrections to the electron heating due to the varia-
tion of the jump amplitude ΔU with distance r. This amplitude
is assumed to be the primary physical reason for the gain in ther-
mal energy of the electrons. Therefore, we have to adequately
describe the change of ΔU caused by energy expended by the ex-
cess kinetic energy of the jump structure. In situ observations by
the Voyager 2 spacecraft at distances between 10 AU and 40 AU
from the Sun (Richardson et al. 1995) showed that compared
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with solar-wind bulk-velocity measurements carried out simul-
taneously at 1 AU by IMP 8, the average solar-wind speed does
not change with distance. On the other hand, the amplitude of
the speed fluctuations strongly decreases with distance from the
Sun (see Fig. 6 of Richardson et al. 1995). This observation indi-
cates that these fluctuations do work, while the bulk-solar-wind
outflow does not. Our theoretical approach is based on these ob-
servations, adopting that the average solar-wind speed U is con-
stant with distance from the Sun. Based on this observationally
supported assumption, we consider three effects that determine
the change of ΔU with distance r:

a) heating of electrons,
b) work done against the slower side of the jump with its higher

pick-up-ion pressure, and
c) steepening of the jump profile by nonlinear superpositions of

small-scale bulk-velocity fluctuations.

In the following, we separately discuss these three different
effects.

2.1. Reduced compression due to electron heating

We consider the spatial divergence of the jump-associated flow
of excess kinetic energy on the high-velocity side of a jump with
the amplitude ΔX = ΔU/U. This jump acts as a local source
of electron thermal energy, and this heating reflects a local en-
ergy sink for the excess kinetic energy that is represented by the
compression profile ΔX(r). Using Eq. (5) for the electron tem-
perature, we can formulate an expression for the energy sink as-
sociated with this jump as the divergence of the excess kinetic
energy flow:

1
r2

d
dr

r2

(
U

1
2

nemp ΔU2

)
= −3

2
UkΔTe ne

ΔU
LjU
, (7)

where ne = np = n is the local solar-wind electron/proton num-
ber density and ΔTe is the electron temperature increase per
jump passage as given by Eq. (4). We assume that the mean bulk
velocity U = (1/2)(U + ΔU + U − ΔU) is constant and find

d
dr

(
ΔU2ne

)
+

2
r

(
ΔU2ne

)
= −3

kΔTe ne

mpU
ΔU
Lj
. (8)

Supported by Voyager data, we assume that the traveling jumps
in bulk velocity have a small amplitude (ΔU 
 U, which is
equivalent to ΔX 
 1). This observation allows us to approx-
imate the electron-temperature increase per jump passage in
Eq. (4) using the linearizations

s =
1 + ΔX
1 − ΔX

� 1 + 2ΔX (9)

and

s2 � (1 + 2ΔX)2 � 1 + 4ΔX. (10)

We can then rewrite Eq. (4) as

ΔTe � mpΔU2

3k
[1 − (1 − 4ΔX)] =

4mpU2 ΔX3

3k
(11)

and obtain from Eq. (8)

2
ΔX

dΔX
dr
+

1
ne

dne

dr
+

2
r
= −4

ΔX2

Lj
· (12)
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Fig. 2. Compression ΔX as a function of distance r from the Sun for five
different values of ΔX0 at r0 = 1 AU with r0/Lj = 1/3. The compression
decreases with distance and approaches a value of about 0.1 at the posi-
tion of the termination shock. The dependence on the jump occurrence
r0/Lj is discussed in Chashei & Fahr (2014).

Assuming a spherically symmetric decrease in density of the av-
erage solar wind flow with ne ∝ r−2, we then obtain

2
ΔX

dΔX
dr
= −4

ΔX2

Lj
(13)

and find

dΔX−2

dr
= 4

1
Lj
· (14)

From this relation, we derive in a first step

∣∣∣ΔX−2
∣∣∣r
r0
= 4

1
Lj

r∫
r0

dr =
4
Lj

(r − r0), (15)

which delivers a solution of the form

ΔX =
1√

ΔX−2
0 +

4
Lj

(r − r0)
=

ΔX0√
1 + 4r0

Lj
ΔX2

0 (x − 1)
· (16)

We show ΔX as a function of distance r from the Sun for five
different values of ΔX0 in Fig. 2. We use r0/Lj = 1/3 in agree-
ment with observations at 1 AU (see Fig. 1). The jump amplitude
ΔX remarkably decreases with increasing distance from the Sun.
The decrease is even more pronounced for cases in which the
initial value ΔX0 is higher in the inner solar system. However,
independent of ΔX0, the jump amplitude assumes values of <∼0.1
at the position of the heliospheric termination shock (i.e., at
r ≈ 90 AU).

With this result for the dependence of ΔX on r, we solve the
earlier differential equation, Eq. (5), for the resulting electron
temperature and obtain

dTe

dx
+ 2

Te

x
=

4
3

mpU2

kλ

ΔX4
0(

1 + 4ΔX2
0

x−1
λ

)2
, (17)
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Fig. 3. Electron temperature Te as a function of distance r from the Sun
for five different values of ΔX0 with r0/Lj = 1/3 and U = 400 km s−1.
The electron temperature is greater than adiabatic. In addition, we show
Ulysses observations of the in-situ electron-core temperature in the
plane of the ecliptic and the prediction from adiabatic expansion.

where λ ≡ Lj/r0. The solution of this inhomogeneous differential
equation is given by

Te(x) =
1
x2

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4
3

mpU2

kλ
ΔX4

0

x∫
1

y2

[1 + a(x − 1)]2
dy + Te0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

1
x2

{
4
3

mpU2

kλa3
ΔX4

0

[
2(a − 1) ln [1 + a(x − 1)]

+
a(x − 1)

[
1 + a(x − 1) + (a − 1)2

]
1 + a(x − 1)

⎤⎥⎥⎥⎥⎥⎥⎦ + Te0

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (18)

with a = 4ΔX2
0/λ. We show the result of Eq. (18) for five dif-

ferent values of ΔX0 in Figs. 3 and 4. We use Te0 = 2 × 105 K
and U = 400 km s−1. In Fig. 3, we show our results for 1.5 AU ≤
r ≤ 5 AU and compare them with in situ Ulysses measurements
of the electron-core temperature during the spacecraft’s first or-
bit in the plane of the ecliptic (from December 28, 1990 un-
til December 31, 1991). The data were taken with the Ulysses
SWOOPS experiment (Bame et al. 1992). Our predictions and in
situ measurements agree very well. The modeled and observed
electron temperatures are significantly higher than predicted for
an adiabatically expanding gas (i.e., Te ∝ r−4/3). We achieve the
best agreement for values ofΔX0 between 0.25 and 0.3. In Fig. 4,
we extrapolate our results beyond 5 AU and show our predictions
for 1 AU ≤ r ≤ 100 AU. The electron temperature in our model
is significantly higher than predicted from adiabatic expansion
beyond 10 AU for all values of ΔX0. It assumes values of about
Te ≈ 104 K at the position of the heliospheric termination shock.

2.2. Change of compression due to work done against
entropized pick-up ions

In this section, we consider another effect that may also con-
tribute to a decrease in the jump amplitude ΔX: the work done
by the faster front against the difference in ion pressure over the
traveling shock front. The faster regime (U1 = U + ΔU) is run-
ning into the slower regime (U2 = U − ΔU) with a differential
velocity ΔU. During this process, the plasma has to do work
against the pressure difference between the two regimes to adapt
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Fig. 4. Electron temperature Te as a function of distance r from the Sun
for five different values of ΔX0 with r0/Lj = 1/3 and U = 400 km s−1.
The electron temperature beyond 10 AU is higher than predicted from
adiabatic expansion.

the flow to the slower regime (i.e., U2). We estimate the work
done per unit time as

dε(s)
dt
= −ΔU · ΔP

D
= −ΔU

P∗2 − P∗1
D

, (19)

where D is the transit distance over the shock profile, and P∗1,2
are the adaptive pressures (i.e., the entropized kinetic energy
densities) on the upstream and downstream sides of the jump.
Especially in the outer heliosphere (r ≥ 5 AU), the ion pres-
sure is dominated by the pick-up-ion pressures on either side
of the jump. Under this assumption, the expressions for the ion
pressures are significantly simplified (see Fahr et al. 2012) for a
perpendicular jump (ΔU ⊥ B), leading to

P∗2 − P∗1 � P1,pui

[
s
3

(
2A⊥(s) +

s2

A2⊥(s)

)
− 1

]
, (20)

where the remaining pressure adaptation function A⊥(s) for a
perpendicular shock is simply given by A⊥(s) = s with s � 1 +
2ΔX . This leads to

P∗2 − P∗1 � P1,pui

[ s
3

(2s + 1) − 1
]

= P1,pui

[
1 + 2ΔX

3
(3 + 4ΔX) − 1

]
≈ 10

3
ΔX P1,pui, (21)

which allows us to formulate the ion-induced energy change as

dε(s)
dt

= −ΔU · ΔP
D

= −10
3
ΔU
D
ΔX P1,pui

= −10
3

U ΔX2

D
P1,pui. (22)

With this additional term, we now obtain the following corrected
differential equation for ΔX:

2
ΔX

dΔX
dr
+

1
ne

dne

dr
+

2
r
= −4

ΔX2

Lj
− 20

3

P1,pui

nempU2D
· (23)

We write the upstream pick-up-ion pressure in the form P1,pui =
ζnekTpui with the pick-up-ion abundance ratio ζ = npui/ne. This
leads to the new differential equation

2
ΔX

dΔX
dr
+

1
ne

dne

dr
+

2
r
= −4

ΔX2

Lj
− 20

3
1

mpU2D
ζkTpui· (24)
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Again, taking ne ∝ r−2, this relation then simplifies to

2
ΔX

dΔX
dr
= −4

ΔX2

Lj
− 20

3
1
D

ζkTpui

mpU2
. (25)

We introduce the pick-up-ion Mach number M2
pui ≡

mpU2/ζkTpui � 1 and assume that this number be constant in the
outer heliosphere (see, e.g., Fahr & Ruciński 1999; Fahr 2007).
We then find

ΔX =
1√(

3DM2
pui

5Lj
+ 1
ΔX2

0

)
exp

[
20
3

(r−r0)
DM2

pui

]
− 3DM2

pui

5Lj

=
ΔX0√(

3DM2
pui

5Lj
ΔX2

0 + 1
)

exp
[

20
3

(x−1)
M2

pui

r0

D

]
− 3DM2

pui

5Lj
ΔX2

0

. (26)

Expansion of the exponential term in Eq. (26) for D 
 r0 leads
to Eq. (16). Since the shock transit distance is much smaller than
1 AU, the corrections due to the pick-up-ion pressure lead to
profiles that are qualitatively very similar to the curves shown in
Fig. 2.

2.3. Increased compression due to nonlinear wave
steepening

There may also be processes that counteract those described in
Sects. 2.1 and 2.2: processes that support a pile-up of the bulk-
velocity jump amplitude. For instance, fluctuations in the bulk
velocity may cause such a pile-up by nonlinear superposition.
Therefore, we consider wave steepening in the system in addi-
tion to the previously discussed processes. Small-scale velocity
fluctuations described by δU(x, t) = δU(k) cos [k(x − Ut)] can
pile up into a large-scale fluctuation with L � Lj = 2π/kmin
by nonlinear wave-coupling and dissipation processes. For one-
dimensional waves, this situation is described by the follow-
ing equation (see Infeld & Rowlands 1990 or Treumann &
Baumjohann 1997):

∂

∂t
δU + δU

∂

∂x
δU = F, (27)

where F denotes a dissipation force that counteracts the nonlin-
ear term on the left-hand side and compensates for catastrophic
wave steepening and wave breaking. For the so-called Burgers’
equation (see Treumann & Baumjohann 1997), a particular dis-
sipative force is introduced in place of F that is proportional to
the second derivative of the velocity perturbation, which leads to
the following differential equation:

∂

∂t
δU + δU

∂

∂x
δU = α

∂2

∂x2
δU, (28)

where α is a positive dissipation coefficient that acts like a dif-
fusion coefficient (assumed to be constant with distance r). The
background plasma moves with the velocity U, and δU repre-
sents the superposition δU = U + ΔU. If the nonlinear steep-
ening of δU (second term on the left-hand side of the Burgers’
equation, Eq. (28)) increases, the dissipative term on the right-
hand side can compensate for the nonlinear term and can allow
for a stationary solution in the system that co-moves with the
nonlinear wave profile. We assume that this developing non-
linear wave asymptotically moves with the velocity ΔU. This

allows us to write the Burgers’ equation in this particular co-
moving system, where the first term of the left-hand side dis-
appears (i.e., ∂ δU/∂t = 0) when we transform the equation to
space coordinates y = x − ΔU t. This procedure then leads to

(δU − ΔU)
∂

∂y
δU = α

∂2

∂y2
δU. (29)

The solution of this equation is easily obtained in the form of a
velocity shock ramp given by

δU − ΔU = −ΔU tanh

(
ΔU y
2α

)
, (30)

which can be rewritten in the form

δU = ΔU

[
1 − tanh

(
ΔU y
2α

)]
· (31)

To estimate the appropriate value of α (which has the dimension
of cm2/s), we return to the original Burgers’ equation and esti-
mate the time scale for steepening (or in the opposite case: for
dissolution) of the wave profile by the pure diffusion-type equa-
tion (i.e., domination of the dissipation term) given by

∂

∂t
δU = α

∂2

∂x2
δU. (32)

We find the solution of this equation within the system
[−D;+D] by

δU(x, t) = δU0
2D√
4παt

exp

(
− x2

4αt

)
· (33)

The kinetic-energy density of the velocity fluctuations within the
two flanks [−D;+D] of such a velocity structure with the struc-
ture scale D is given by

εnl =
1

2D

+D∫
−D

1
2

mpneδU
2dx. (34)

Assuming free diffusion, its temporal change is given by

ε̇nl =
1

2D
d
dt

D∫
−D

1
2

mpne δU
2dx. (35)

Taking this expression for ε̇nl for nonlinear diffusion or steepen-
ing per unit volume, we obtain

ε̇nl =
1

2D
1
2

mpne δU
2
0

d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
4D2

4παt

D∫
−D

exp

(
−2x2

4αt

)
dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Dmpne δU
2
0

d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
√

2αt
4παt

D/
√

2αt∫

−D/
√

2αt

exp
(
−y2

)
dy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (36)

Evaluating this integral expression further leads to

ε̇nl = Dmpne δU
2
0

d
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
erf

(
D√
2αt

)
√

8παt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Dmpne δU
2
0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2e−D2/2αt d

dt
D√
2αt

π
√

8αt
− 1

2

erf
(

D√
2αt

)

(8παt)3/2
8πα

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (37)
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and finally to

ε̇nl = −
Dmpne δU2

0√
8παt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2αDe−D2/2αt

√
π(2αt)3/2

+

erf
(

D√
2αt

)
2t

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (38)

According to the profile in Eq. (31), D � α/ΔU. On the other
hand, the characteristic time τ of the shock passage is given by
τ = D/ΔU = α/ΔU2. Evaluating now the above expression for
this characteristic time τ leads to the following expression:

ε̇nl = −
Dmpne δU2

0√
8πD2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2D2 ΔU e−D2/2D2

√
π

(
2D2

)3/2
+ ΔU

erf
(

D√
2D2

)
2D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (39)

or finally (with ΔU ≈ δU0 as suggested by Eq. (33)) to

ε̇nl = −mpne ΔU3

√
8πD

[
e−1/2

√
2π
+

1
2

erf

(
1√
2

)]
. (40)

We then obtain the following transport equation with the newly
found term for ε̇nl:

1
r2

d
dr

r2

(
U

1
2

nemp ΔU2

)
= −3

2
UkΔTe ne

ΔU
ULj
− ε̇nl(ΔU). (41)

The last term on the right-hand side represents the energy that
is required to maintain the jump profile. Free diffusion would
instead destroy the profile, according to Eq. (35). The transport
equation is then given by

1
r2

d
dr

r2

(
U

1
2

nemp ΔU2

)
= −3

2
UkΔTe ne

ΔU
ULj

+
mpne ΔU3

√
8πD

[
e−1/2

√
2π
+

1
2

erf

(
1√
2

)]
. (42)

With the definition

Γ ≡
[
e−1/2

√
2π
+

1
2

erf

(
1√
2

)]
� 0.6, (43)

we find

d
dr

(
ΔU2ne

)
+

2
r

(
ΔU2ne

)
= −3

kΔTe ne

mp

ΔU
ULj
+

2neΔU3

√
8πDU

Γ. (44)

Inserting ΔTe from Eq. (11) then leads to the following differen-
tial equation:

d
dr

(
ΔU2ne

)
+

2
r

(
ΔU2ne

)
= −4U2ne ΔX4

Lj
+

2neΔU3

√
8πDU

Γ, (45)

or equivalently to

d
dr
ΔX2 + ΔX2 1

ne

dne

dr
+

2
r
ΔX2 = −4ΔX4

Lj
+

2ΔX3

√
8πD
Γ (46)

and

2
ΔX

d
dr
ΔX +

1
ne

dne

dr
+

2
r
= −4ΔX2

Lj
+

2ΔX√
8πD
Γ. (47)

For a radially symmetric density decrease, we rewrite the trans-
port equation including terms that decrease (first term) and in-
crease (second term) the compression as

2
ΔX

d
dr
ΔX = −4ΔX2

Lj
+

2ΔX√
8πD
Γ. (48)

Combining decreasing and increasing factors can lead to a van-
ishing gradient and thus to a constant compression ΔX if

ΔX =
Γ

2
√

8π

Lj

D
� 0.6

10

Lj

D
= 0.06

Lj

D
. (49)

Therefore, the newly derived term for structure steepening will
only compete with the first term if the jump amplitude has de-
creased to values of ΔX <∼ 0.06 (Lj/D). Looking for a solution of
the full equation, we start from the solution of

2
ΔX

d
dr
ΔX = −4ΔX2

Lj
· (50)

As shown in Sect. 2.1, the solution is given by

ΔX =
ΔX0√

1 + 4
Lj
ΔX2

0 (r − r0)
· (51)

The solution of the other part,

2
ΔX

d
dr
ΔX =

2ΔX√
8πD
Γ, (52)

is derived from

1
ΔX2

d
dr
ΔX = − d

dr
ΔX−1 =

1√
8πD
Γ (53)

and yields

ΔX−1 − ΔX−1
0 = −

1√
8πD
Γ(r − r0). (54)

This leads to

ΔX =
1

ΔX−1
0 − Γ√

8πD
(r − r0)

=
ΔX0

1 − ΓΔX0√
8πD

(r − r0)
· (55)

According to these considerations, the general solution is given
by the superposition

ΔX =
ΩΔX0√

1 + 4r0
Lj
ΔX2

0(x − 1)
+

ΦΔX0

1 − ΓΔX0√
8π

r0
D (x − 1)

· (56)

The corrections as a result of nonlinear wave steepening are
small as long as ΔX � 0.06. In those cases, we only need to
consider the first term and hence retain the earlier solution we
derived in Sect. 2.1 and displayed in Figs. 3 and 4.

3. Conclusions

We have shown that traveling solar-wind bulk-velocity jumps ef-
fectively process solar-wind electrons in energy at their propaga-
tion outward from the Sun through the inner heliosphere. These
fluctuations in the solar-wind bulk velocity are ubiquitous, as
shown in Fig. 1. In an earlier paper, we have shown that this
energization can be expressed in terms of a substantial tempera-
ture increase of the solar-wind electrons at larger distances from
the Sun of about 50 AU to 90 AU. Assuming that the jump am-
plitude ΔX = ΔU/U of the propagating bulk-velocity structure
does not change with solar distance r, the previous study pre-
dicts electron temperatures of more than 105 K at 90 AU (i.e.,
at about position of the solar-wind termination shock). In this
study, we introduced higher-order corrections that take into ac-
count that the energy for the energization of solar-wind electrons

A78, page 6 of 7



H. J. Fahr et al.: Bulk-velocity fluctuations and electron heating in the heliosphere

is taken from the kinetic excess energy of the propagating jump
structure. We found that the previous assumption of a constant
jump amplitude ΔX is most probably unrealistic. In addition,
the jump structures do permanently work against the ion excess
pressure on the downstream side of the shock structure. Taking
into account these two physical processes allowed us to quantita-
tively show that the jump amplitude ΔX = ΔX(r) decreases with
distance from the Sun, eventually reducing ΔX independent of
the initial value ΔX0 of the jump amplitude to values of <∼0.1 at
the termination shock, as shown in Fig. 2. The nonlinear pile-up
of bulk-velocity fluctuations counteracts these two mechanisms
with the tendency to reform the solitary jump structure by form-
ing waves at larger scales. We found, however, that this mecha-
nism is most likely not effective enough to compensate for the
reduction of ΔX with distance, unless ΔX <∼ 0.06.

Although the described mechanisms reduce ΔX with dis-
tance from the Sun, as shown in Fig. 2, the jump-induced heating
mechanism still leads to higher electron temperatures than antic-
ipated from adiabatic cooling at solar distances beyond 10 AU.
We predict values above 6000 K to 20 000 K (strongly depend-
ing on the initial value of the jump amplitude ΔX0 in the inner-
most heliosphere at r = r0 = 1 AU) at distances beyond 50 AU
with the solar-wind electron-temperature profiles Te(r) shown in
Figs. 3 and 4. Our results agree very well with in situ measure-
ments of the electron-core temperature in the plane of the ecliptic
from the Ulysses spacecraft. We achieved the best agreement for
values of ΔX0 between 0.25 and 0.3, which suggests that these
values describe the realistic initial jump amplitude in the plane of
the ecliptic. In situ observations of the electron temperature are
not available for heliocentric distances beyond 5 AU, so that our
results are a predictive extrapolation beyond the explored range.

We conclude that solar-wind electrons do not rapidly cool
with distance from the Sun, as has been generally assumed up
to now. They cannot be considered cold beyond 10 AU. Instead,
they continue to be correlated with solar-wind ion temperatures
at large distances (see Richardson et al. 1995).
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