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On The Existence Of Exponential Polynomials With Prefixed
Gaps

G. Mora, J.M. Sepulcre, T. Vidal

Abstract

This paper shows that the conjecture of Lapidus and Van Frankenhuysen on the set of dimensions
of fractality associated with a nonlattice fractal string is true in the important special case of a
generic nonlattice self-similar string, but in general is false. The proof and the counterexample of
this have been given by virtue of a result on exponential polynomials P (z), with real frequencies
linearly independent over the rationals, that establishes a bound for the number of gaps of RP ,
the closure of the set of the real projections of its zeros, and the reason for which these gaps are
produced.

1. Introduction

In [1, 2, 3], Lapidus and Van Frankenhuysen consider the functions known as nonlattice
Dirichlet polynomials, which are exponential polynomials of the form

P (z) = 1−
M∑
j=1

mjr
z
j = 1−

M∑
j=1

mje
z log rj , M ≥ 2, (1.1)

where m1, ...,mM are complex numbers (called multiplicities) and r1 > ... > rM > 0 (called

scaling ratios) with some ratio
log rj
log r1

, j ≥ 2, irrational (so, log r1 and log rj are linearly

independent over the rationals). The zeros of the functions P (z) are connected to the concept
of fractal string : a set that is a disjoint union of open intervals whose lengths form a sequence

L = l1, l2, ... of finite total length

∞∑
j=1

lj .

These authors also define the complex dimensions of a fractal string L as the poles of the

meromorphic extension of the geometric zeta function of L, which is defined by ζL(z) =
∞∑
j=1

lzj .

For the case of self-similar strings (an important subclass of fractal strings) with scaling ratios
r1, r2, ..., rN (repeated according to multiplicity) and gaps g1, ..., gK (whose construction is
reminiscent of the construction of the Cantor set), with 1 > r1 ≥ r2 ≥ ... ≥ rN > 0, gj > 0 and
N∑
j=1

rj +

K∑
k=1

gk = 1, it has the form

ζL(z) =
Lz

∑K
k=1 g

z
k

1−
∑N

j=1 r
z
j

,

where L is the total length of L [1, Theorem 5.2].
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An important subclass of self-similar strings is provided by the generic nonlattice case, which
is produced when the scaling ratios generate a multiplicative group of maximal rank, i.e. the
logarithms of the underlying scaling ratios are independent over the rationals.
Also, the set of dimensions of fractality of a fractal string is defined as the closure of the

set of real parts of its complex dimensions. In fact, in [1, 2, 3], the authors give a conjecture
about the density of the real parts of the complex dimensions for the case of nonlattice strings
(associated to the nonlattice Dirichlet polynomials (1.1)) which they formulate, respectively,
in the following form:
– ([1, Conjecture 8.3]): If L is a generic nonlattice string, the set of dimensions of fractality

of L is equal to the entire interval [Dl, D], where Dl is defined in (2-16) and D is the
Minkowski dimension of L.

– ([2, Conjecture 4.9]): Let L be a nonlattice string. Then the real parts of its complex
dimensions form a set that is dense in the connected interval [σl, D].

– ([3, Conjecture 3.55]): The set of dimensions of fractality of a nonlattice string, as
defined above, is a bounded connected interval [σl, D], whereD is the Minkowski dimension
of the string; in other words, the set of real parts of the complex dimensions is dense in
[σl, D], for some real number σl. In the generic nonlattice case, σl = Dl.

They define D (the Minkowski dimension of the string L) as the unique real solution of the
equation

M∑
j=1

|mj |rxj = 1

[3, Remark 3.8 and expression (3.8a)] and Dl as the unique real number such that

1 +
M−1∑
j=1

|mj |rDl
j = |mM |rDl

M

[1, expression (2-16)].

Finally, σl is defined as σl = inf{Rew :
N∑
j=1

rwj = 1} which coincides with Dl in the generic

nonlattice case [2, Theorem 4.2].
In this paper we will prove that this conjecture is true for a particular and important case

when the fractal string L is a generic nonlattice self-similar string, while it is false for the
general case. The significance of the conjecture is that the set of dimensions of fractality of a
generic nonlattice self-similar string is dense in a single interval.
On the other hand, to our best knowledge, the first work on the existence of zeros of an

exponential polynomial arbitrarily close to any line contained in certain substrips of its critical
strip was made by Moreno [5], whose main result we quote:
MAIN THEOREM (Moreno [5, p. 73]). Assume that 1, α1, ..., αm are real numbers linearly

independent over the rationals. Consider the exponential polynomial

φ(z) =

m∑
k=1

Ake
αkz, z = σ + it,

where the Ak are complex numbers. Then a necessary and sufficient condition for φ(z) to have
zeros arbitrarily close to any line parallel to the imaginary axis inside the strip

I = {σ + it : σ0 < σ < σ1, −∞ < t < ∞}

is that

|Aje
σαj | ≤

m∑
k=1, k ̸=j

|Ake
σαk | , (j = 1, 2, ...,m)
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for any σ with σ + it ∈ I.
So, in order to prove that the conjecture of Lapidus and Van Frankenhuysen is true when

the fractal string L is a generic nonlattice self-similar string and to give a counterexample to
the general case, we need to figure out the maximum number of gaps that the set

RP := {Re z : P (z) = 0} (1.2)

can have, and likewise to understand the reason why the gaps are produced. Here the

exponential polynomial P (z) will be of the form 1 +
n∑

j=1

mje
wjz, n ≥ 2, mj ∈ C \ {0}, with

positive real frequencies w1 < w2 < ... < wn linearly independent over the rationals. In fact,
for this type of exponential polynomial, our paper proves the following:

i) The set RP is the union of at most n disjoint non-degenerate closed intervals (see Theorem
9). From this result, we can construct examples that point out that the mentioned
conjecture fails in general.

ii) RP is a single interval when |mj | = 1 for all j = 1, ..., n (see Theorem 10), which proves that
the mentioned conjecture is true in the important case of a generic nonlattice self-similar
string.

iii) If z0 is a zero of P (z) such that its real part is a boundary point of RP , then z0 is a simple
zero of P (z) (see Theorem 11).

iv) P (z) can have pair zeros, i.e. zeros having the same imaginary part (see Theorem 12).

2. First Results

Firstly we point out that Moreno’s Main Theorem [5, p. 73] holds by assuming only that
α1, α2, ..., αm are linearly independent over the rationals and in this way we obtain the second
version of Moreno’s result. Indeed, by following step by step the proof of Moreno we observe
in page 75 of his paper (1973) that inequality (6), crucial in the proof, is the direct application
of Kronecker-Weyl theorem, that the author obtains from Cassel’s book An introduction to
diophantine approximations, Cambridge (1957), stated under the form:
(Kronecker-Weyl). If 1, α1, α2, ..., αm are real numbers which are linearly independent over

the rational number field, γ1, γ2, ..., γm are arbitrary real numbers, and T and ϵ are positive
real numbers, then there exist a real number t and integers p1, p2, ..., pm such that t > T and∣∣∣tαk − pk − γk

2π

∣∣∣ < ϵ

for k = 1, 2, ...,m.
However by substituting the above Kronecker-Weyl theorem by Kronecker theorem, Theorem

444, p. 382 of Hardy-Wright’s book An introduction to the Theory of Numbers (Fifth edition),
Clarendon Press (1979), stated under the form:
(Kronecker) Let {a1, a2, ..., am} be a linearly independent set of non-null real numbers. For

arbitrary real numbers b1, b2, ..., bm and T , ϵ > 0, there exist a real number t > T and integers
n1, n2, ..., nm such that

|tak − nk − bk| < ϵ, for all k = 1, 2, ...,m,

Moreno’s main theorem follows, by assuming only that α1, α2, ..., αm are linearly independent
over the rationals.
From this second version of Moreno’s result we have the following theorem in terms of the

set RP := {Re z : P (z) = 0} .
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Theorem 1. Let

P (z) = 1 +
n∑

j=1

mje
wjz, n ≥ 2, mj ∈ C \ {0} (2.1)

be an exponential polynomial with positive real frequencies w1 < ... < wn linearly independent
over the rationals. Then an open interval (σ0, σ1) is contained in RP if and only if the n+ 1
inequalities

1 ≤
n∑

j=1

|mj | ewjσ; |mk| ewkσ ≤ 1 +
n∑

j=1, j ̸=k

|mj | ewjσ, k = 1, 2, ..., n, (2.2)

are satisfied for any σ ∈ (σ0, σ1).

Proof. Given the frequencies w1, w2, ..., wn, consider in R the additive subgroup G :={∑n
j=1 qjwj : qj ∈ Q

}
. Then as G is countable, there is some real number, say α, such that

α /∈ G. By multiplying P (z) by eαz, we obtain the exponential polynomial

φ(z) = eαz +
n∑

j=1

mje
(α+wj)z

with frequencies α, α+ w1, ..., α+ wn which are linearly independent over the rationals by
virtue of the linear independence over the rationals of w1, ..., wn. Then by applying the second
version of Moreno’s result to φ(z) we have that a necessary and sufficient condition for φ(z)
to have zeros arbitrarily close to any line parallel to the imaginary axis inside the strip

I = {σ + it : σ0 < σ < σ1, −∞ < t < ∞}

is that the n+ 1 inequalities

eασ ≤
n∑

j=1

|mj | e(α+wj)σ; |mk| e(α+wk)σ ≤ eασ +

n∑
j=1, j ̸=k

|mj | e(α+wj)σ, 1 ≤ k ≤ n,

are satisfied for any σ with σ + it ∈ I, which is equivalent to say that the interval (σ0, σ1) is
contained in Rφ := {Re z : φ(z) = 0}. Dividing the above inequalities by eασ we obtain the
inequalities (2.2) and, noticing that P (z) and φ(z) have the same zeros, the theorem follows.

Given an exponential polynomial P (z) of type (2.1), at any boundary point of the set RP

the equality is attained in only one of inequalities (2.2).

Lemma 2. Let

P (z) = 1 +
n∑

j=1

mje
wjz, n ≥ 2, mj ∈ C \ {0}

be an exponential polynomial with positive real frequencies w1 < ... < wn linearly independent
over the rationals. If σ0 is a boundary point of RP , then it satisfies all the inequalities (2.2)
and only one of them is an equality.

Proof. As RP is closed, the boundary of RP , denoted by ∂RP , is a subset of RP . Then
σ0 ∈ RP , hence there exists a sequence of zeros zl = σl + itl of P (z) satisfying lim

l→∞
σl = σ0.

Since 1 +
n∑

j=1

mje
wjzl = 0 for any l = 1, 2, ..., by taking modulus and applying the triangular
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property, the inequalities (2.2) are obviously satisfied for any σl. Now by taking the limit when
l → ∞ on each inequality, we have

1 ≤
n∑

j=1

|mj | ewjσ0 ; |mk| ewkσ0 ≤ 1 +

n∑
j=1, j ̸=k

|mj | ewjσ0 , k = 1, 2, ..., n. (2.3)

If some of the above inequalities is an equality, as any couple of equalities are incompatible, the
lemma follows. Otherwise we have n+ 1 strict inequalities and by continuity there are n+ 1
open neighbourhoods (ak, bk), k = 1, 2, ..., n+ 1 of σ0 verifying strictly those inequalities. Thus
any σ ∈ (a, b) :=

∩n+1
k=1 (ak, bk) satisfies (2.2) and, from Theorem 1, (a, b) ⊂ RP . But σ0 ∈ (a, b)

and this means that σ0 is an interior point of RP , which is a contradiction because σ0 ∈ ∂RP .
The lemma is then proved.

3. The extremes of the critical interval

Given an exponential polynomial P (z) of the form (2.1), we define the extreme points of its
critical interval [4, Lemma 2.5], that is the minimal interval that contains the real projection
of its zeros, as

aP := inf {Re z : P (z) = 0}

and

bP := sup {Re z : P (z) = 0} .

Associated with the above bounds we define the numbers x0
P , x

1
P as the unique real solutions

(it will be justified in the proof of the next theorem) of the real equations

1 =
n∑

j=1

|mj | ewjσ

and

|mn| ewnσ = 1 +
n−1∑
j=1

|mj | ewjσ,

respectively. These four numbers are related of the following manner.

Theorem 3. If P (z) is an exponential polynomial of type (2.1), then aP = x0
P and bP = x1

P .
Moreover, there exist σ1 > aP and σ2 < bP such that the intervals [aP , σ1] and [σ2, bP ] are both
contained in RP .

Proof. The real function

f0(σ) :=
n∑

j=1

|mj | ewjσ

is strictly increasing and satisfies lim
σ→−∞

f0(σ) = 0 and lim
σ→∞

f0(σ) = ∞. Then the equation

f0(σ) = 1 has only the solution σ = x0
P , so x0

P is well defined and for all z = σ + it with
σ < x0

P we have

1 > f0(σ) =

n∑
j=1

|mj | ewjσ ≥

∣∣∣∣∣∣
n∑

j=1

mje
wjz

∣∣∣∣∣∣ ,
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which implies that Re z < x0
P is a zero-free region of P (z). Therefore it follows

x0
P ≤ aP . (3.1)

On the other hand, since f0(x
0
P ) = 1, that is,

n∑
j=1

|mj | ewjx
0
P = 1, we deduce that |mj | ewjx

0
P < 1

for all j and then

|mk| ewkx
0
P < 1 +

n∑
j=1,j ̸=k

|mj | ewjx
0
P for any k = 1, 2, ..., n.

From the fact that 1 < f0(σ) for all σ > x0
P and from continuity applied to the above n strict

inequalities we can determine σ1 > x0
P such that any σ of the interval (x0

P , σ1) satisfies the
n+ 1 inequalities (2.2). Then Theorem 1 implies that (x0

P , σ1) ⊂ RP . Noticing RP is closed it
follows that [

x0
P , σ1

]
⊂ RP (3.2)

implying that

aP ≤ x0
P . (3.3)

From (3.1) and (3.3) we obtain x0
P = aP so, noticing (3.2), the first part of the theorem is then

proved.
In order to prove that x1

P = bP we define the real function

f1(σ) := |mn| ewnσ −
n−1∑
j=1

|mj | ewjσ.

Since lim
σ→−∞

f1(σ) = 0 and lim
σ→∞

f1(σ) = ∞, there exists at least a real number α such that

f1(α) = 1. As the derivative

f ′
1(α) = wn |mn| ewnα −

n−1∑
j=1

wj |mj | ewjα > wn−1 |mn| ewnα −
n−1∑
j=1

wj |mj | ewjα =

= wn−1

1 +

n−1∑
j=1

|mj | ewjα

−
n−1∑
j=1

wj |mj | ewjα =

= wn−1 +

n−1∑
j=1

(wn−1 − wj) |mj | ewjα ≥ wn−1 > 0,

the function f1(σ) is strictly increasing at the point α and then the equation f1(σ) = 1 has
only the solution σ = x1

P . Therefore, on one hand x1
P is well defined and, on the other hand,

f1(σ) < 1 for all σ < x1
P ; f1(σ) > 1 for all σ > x1

P . (3.4)

From the last inequality in (3.4) it follows

|mn| ewnσ > 1 +
n−1∑
j=1

|mj | ewjσ ≥

∣∣∣∣∣∣1 +
n−1∑
j=1

mje
wjz

∣∣∣∣∣∣ for all z = σ + it with σ > x1
P ,

which means that Re z > x1
P is a zero-free region of P (z) and then

bP ≤ x1
P . (3.5)
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Now, noticing f1(x
1
P ) = 1 and the first inequality of (3.4), we have

|mn| ewnx
1
P = 1 +

n−1∑
j=1

|mj | ewjx
1
P (3.6)

and

|mn| ewnσ < 1 +
n−1∑
j=1

|mj | ewjσ for all σ < x1
P . (3.7)

From (3.6) it follows

1 <
n∑

j=1

|mj | ewjx
1
P ; |mk| ewkx

1
P < 1 +

n∑
j=1, j ̸=k

|mj | ewjx
1
P , k = 1, 2, ..., n− 1,

and then by continuity we can determine σ2 < x1
P such that any σ ∈

(
σ2, x

1
P

)
satisfies the n

inequalities

1 <
n∑

j=1

|mj | ewjσ; |mk| ewkσ < 1 +
n∑

j=1, j ̸=k

|mj | ewjσ, k = 1, 2, ..., n− 1. (3.8)

Now, (3.7) and (3.8) allows us to apply Theorem 1 and then
(
σ2, x

1
P

)
⊂ RP . Noticing RP is

closed we get [
σ2, x

1
P

]
⊂ RP , (3.9)

involving that

x1
P ≤ bP . (3.10)

Then, because of (3.5) and (3.10), we have x1
P = bP and according to (3.9) the second part of

the theorem is proved. Hence the theorem follows.

By the triangle inequality for complex numbers we obtain a result that will be very useful
throughout the paper. If a zero z0 of an exponential polynomial P (z) is such that the
corresponding term Ake

αkz0 satisfies (3.11), then that term is in the opposite sense that the
rest of the terms of P (z).

Lemma 4. Let P (z) =

n+1∑
j=1

Aje
αjz, n ≥ 2, Aj ∈ C \ {0}, αj ∈ R. Assume that z0 = σ0 + it0

is a zero of P (z) for which there is some k ∈ {1, 2, ..., n+ 1} such that

|Ak| eαkσ0 =

n+1∑
j=1, j ̸=k

|Aj | eαjσ0 . (3.11)

Then the principal argument arg(Ake
αkz0) = arg(Aje

αjz0)± π and arg(Aje
αjz0) are equal for

all j ̸= k.

Proof. Since P (z0) = 0, one has |Ak| eαkσ0 =

∣∣∣∣∣∣−
n+1∑

j=1, j ̸=k

Aje
αjz0

∣∣∣∣∣∣ and by (3.11),

∣∣∣∣∣∣
n+1∑

j=1, j ̸=k

Aje
αjz0

∣∣∣∣∣∣ =
n+1∑

j=1, j ̸=k

|Aj | eαjσ0 . (3.12)
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Then by using the property that two non-null complex numbers u, v verify |u+ v| = |u|+ |v|
iff there is some λ > 0 such that v = λu, from (3.12), one has that arg(Aje

αjz0) is equal for all

j ̸= k. Now, according to Ake
αkz0 is the opposite of

n+1∑
j=1, j ̸=k

Aje
αjz0 , we get arg(Ake

αkz0) =

arg(Aje
αjz0)± π. This proves the lemma.

By applying the above lemma to a normalized exponential polynomial P (z) we obtain a
result on the order of multiplicity of its zeros.

Corollary 5. Let P (z) = 1 +
n∑

j=1

mje
wjz be an exponential polynomial with 0 < w1 <

... < wn and z0 = σ0 + it0 a zero of P (z) such that σ0 is the unique solution of one equation
(3.11) for some k = 2, ..., n. Then z0 is a zero of second order.

Proof. Since for some 1 < k < n+ 1, σ0 satisfies (3.11) with A1 = 1 and Aj+1 = mj for
j = 1, ..., n, by applying Lemma 4 it follows that 0 = arg(1) = arg (mje

wjz0) for all j ̸= k
and arg (mke

wkz0) = π. Then mje
wjz0 > 0 for all j ̸= k and mke

wkz0 < 0. Hence mje
wjz0 =

|mje
wjz0 | = |mj | ewjσ0 for all j ̸= k and mke

wkz0 = − |mke
wkz0 | = − |mk| ewkσ0 . Consequently

we can write

P (z0) = 1 +
k−1∑
j=1

|mj | ewjσ0 − |mk| ewkσ0 +
n∑

j=k+1

|mj | ewjσ0 = 0.

By defining the real function

Q(σ) := 1 +
k−1∑
j=1

|mj | ewjσ − |mk| ewkσ +
n∑

j=k+1

|mj | ewjσ,

the number of changes of the sign of its coefficients, say W , is 2. Then if N is the number of
zeros of Q(σ), by Pólya’s result [6, Pg.46], W −N is an even nonnegative integer and, since
σ0 is by hypothesis the unique solution of equation Q(σ) = 0, σ0 is necessarily a double zero
of Q(σ). Therefore z0 is a zero of P (z) of second order.

Apart from the possible zeros on the line x = aP , an exponential polynomial P (z) of type
(2.1) with negative coefficients does not have any zero whose real part be a boundary point of
RP .

Proposition 6. Let P (z) = 1−
n∑

j=1

mje
wjz be an exponential polynomial of type (2.1)

with mj > 0 for all j = 1, ..., n. If z0 is a zero of P (z) such that Re z0 ∈ ∂RP , then necessarily
Re z0 = aP .

Proof. Since Re z0 ∈ ∂RP , by Lemma 2, σ0 := Re z0 satisfies only one of the n+ 1 equalities

1 =
n∑

j=1

mje
wjσ0 ; mke

wkσ0 = 1 +
n∑

j=1, j ̸=k

mje
wjσ0 , k = 1, 2, ..., n.

If σ0 satisfies the first equality, from Theorem 3, σ0 = aP and then the proposition follows. If
σ0 satisfies some of the rest of equalities, since z0 is a zero of P (z) one has (3.11) for some k > 1
with A1 = 1 and Aj+1 = −mj for all j = 1, ..., n, we apply Lemma 4. Hence, since arg(1) = 0,
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one has arg(−mje
wjz0) = 0 for all j ̸= k and arg(mke

wkz0) = 0, which means, by taking some
j ̸= k, that ewjz0 < 0 and ewkz0 > 0. Then necessarily there exists some odd integer p such
that the imaginary part of z0, say t0, verifies wjt0 = pπ, so t0 ̸= 0 (consequently if z0 is real
the proposition follows). Analogously, wkt0 = πq for some even integer q which will be non-null

because t0 does. Now by dividing we obtain
wj

wk
=

p

q
, which is a contradiction because wj and

wk are linearly independent over the rationals.

A relevant theorem [1, Theorem 8.1] is directly obtained from Proposition 6 and Theorem
3.

Theorem 7. The set of the real projections of the zeros of an exponential polynomial

P (z) = 1−
n∑

j=1

mje
wjz of type (2.1), with mj > 0 for all j, has no isolated point.

Proof. If the real projection of a zero z0 of P (z), say σ0, were an isolated point of
the set {Re z : P (z) = 0}, necessarily σ0 would be a boundary point of the set RP :=
{Re z : P (z) = 0} . Then, by Proposition 6, σ0 = aP . But, from Theorem 3, there exists σ1 > aP
such that the interval [aP , σ1] ⊂ RP , which contradicts the fact of that σ0 be an isolated point
of the set {Re z : P (z) = 0}.

4. The gaps in RP

The number of gaps that can have the set RP := {Re z : P (z) = 0} associated to an
exponential polynomial P (z) of type (2.1) depends on the number of real solutions of the
n− 1 intermediate equations

|mk| ewkσ = 1 +
n∑

j=1, j ̸=k

|mj | ewjσ, k = 1, 2, ..., n− 1. (4.1)

Lemma 8. Let P (z) = 1 +
n∑

j=1

mje
wjz be an exponential polynomial of type (2.1). Then

each equation (4.1) has at most 2 real solutions.

Proof. Fixed k = 1, 2, ..., n− 1, we define the real function

Pk(σ) := 1 +
k−1∑
j=1

|mj | ewjσ − |mk| ewkσ +
n∑

j=k+1

|mj | ewjσ.

Then, since the numberWk of changes of sign of the coefficients of Pk(σ) is 2, from Pólya’s result
[6, Pg.46], Wk −Nk is an even nonnegative integer, where Nk is the number of zeros of Pk(σ)
counting multiplicities. Hence, necessarily Nk is either 0 or 2. If Nk = 0, then equation (4.1) has
no solution. When Nk = 2, equation (4.1) can have either 1 solution whether the zero of Pk(σ)
is of second order or 2 solutions (distinct) when Pk(σ) has two simple zeros. Consequently the
corresponding equation (4.1) can have 0, 1 or 2 solutions and then the lemma follows.

Now we are ready to give the description of the set RP := {Re z : P (z) = 0} associated to
an exponential polynomial P (z) of type (2.1).
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Theorem 9. Given an exponential polynomial P (z) of type (2.1), RP is either [aP , bP ] or
the union of at most n disjoint non-degenerate closed intervals. In the latter case, the gaps of
RP are exclusively produced by those equations (4.1) having 2 solutions.

Proof. Assume σ0 is a boundary point of RP distinct from the extreme points aP and bP .
Then, by Lemma 2, σ0 satisfies only one of n− 1 equations (4.1) and the rest of inequalities (2.3)
are satisfied strictly. From Lemma 8, equation (4.1), for some k = 1, 2, ..., n− 1, that satisfies σ0

has 1 or 2 solutions. Firstly we suppose that it has 2 solutions σ01, σ02 with σ01 < σ02. Then, if

σ0 = σ01, because the continuity of the real functions |mk| ewkσ and 1 +
n∑

j=1, j ̸=k

|mj | ewjσ and

taking into account that wk < wn, there exists some σ−
0 < σ0 such that any σ of the interval(

σ−
0 , σ0

)
satisfies the inequalities (2.3). Then, by Theorem 1,

(
σ−
0 , σ0

)
⊂ RP and, noticing RP

is closed, one has [
σ−
0 , σ0

]
⊂ RP . (4.2)

Analogously, by supposing that σ0 = σ02, we obtain[
σ0, σ

+
0

]
⊂ RP . (4.3)

Furthermore, an elementary analysis on the above functions proves that

|mk| ewkσ > 1 +
n∑

j=1, j ̸=k

|mj | ewjσ for all σ ∈ (σ01, σ02) ,

which means that the strip {z : σ01 < Re z < σ02} is a zero-free region of P (z), so the interval
(σ01, σ02) is a gap of RP .
If we suppose that the equation (4.1), for some k = 1, 2, ..., n− 1, has only the solution σ0,

it follows immediately that

|mk| ewkσ < 1 +

n∑
j=1, j ̸=k

|mj | ewjσ for all σ ̸= σ0.

Then, by repeating verbatim the above reasoning, there exist two numbers σ−
0 and σ+

0 with
σ−
0 < σ0 < σ+

0 such that
[
σ−
0 , σ0

]
and

[
σ0, σ

+
0

]
would be contained in RP . That means that[

σ−
0 , σ

+
0

]
⊂ RP and consequently σ0 would be an interior point of RP which is a contradiction

because we are assuming that σ0 is a boundary point of RP . This proves that, apart from the
extreme points, the existence of a boundary point of RP is due to the fact that some equation
(4.1) have 2 solutions σ01 < σ02. Then, as there are n− 1 equations, RP can have at most n− 1
gaps and, consequently, at most 2(n− 1) boundary points which are distinct from the extreme
points aP , bP . Finally, if no equation (4.1) has 2 solutions, there is no boundary point different
from aP , bP . Then, noticing Theorem 3, one has RP = [aP , bP ]. For those equations (4.1) that
have 2 solutions, from (4.2), (4.3) and Theorem 3 again, RP is a finite union of disjoint closed
intervals of positive length. The proof is completed and then the theorem follows.

From Theorem 9 it follows an easy property on the set RP of an exponential polynomial
P (z) of type (2.1) with |mj | = 1 for all j = 1, ..., n.

Theorem 10. If P (z) = 1 +

n∑
j=1

mje
wjz is an exponential polynomial of type (2.1) with

|mj | = 1 for all j = 1, ..., n, then RP = [aP , bP ].
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Proof. It suffices to check that, as |mj | = 1 for all j, any equation (4.1) does not have any
solution and to apply Theorem 9.

Moreno in [5, p.77] deduces from his Main Theorem that the polynomial exponential

P (z) =
∑
p≤n

1

pz
, p prime, n ≥ 5,

has zeros near any line contained in the strip {z : 0 ≤ Re z ≤ 1}.
As a consequence of Theorem 10, we are going to obtain an alternative proof to that of

Moreno. Indeed, if pkn is the last prime less than or equal to n, then Q(z) := pzkn
P (z) is

an exponential polynomial with positive increasing frequencies linearly independent over the
rationals and coefficients 1, having the same zeros that P (z). Then by applying Theorem
10, RQ = [aQ, bQ], so RP = [aP , bP ]. Now, from Theorem 3, aP = x0

P and bP = x1
P and

after an elementary computation we have that aP < 0 and bP > 1. Therefore [0, 1] ⊂ RP and
consequently Moreno’s example follows.
Another consequence from Theorem 9 is that if an exponential polynomial P (z) of type (2.1)

has a zero whose real part is a boundary point of RP then it is simple.

Theorem 11. Let P (z) = 1 +
n∑

j=1

mje
wjz be an exponential polynomial of type (2.1) and

z0 = σ0 + it0 a zero of P (z) such that σ0 ∈ ∂RP . Then z0 is a simple zero of P (z).

Proof. From Theorem 9, σ0 is an extreme aP , bP or σ0 is a solution of an equation (4.1)
having exactly two solutions. If σ0 = aP , from Theorem 3, σ0 is the unique solution of the
equation

1 =
n∑

j=1

|mj | ewjσ.

On the other hand, as z0 is a zero of P (z), from Lemma 4 one has arg (mje
wjz0) = π for all

j = 1, 2, ..., n. Therefore mje
wjz0 < 0 for all j and then mje

wjz0 = − |mje
wjz0 | = − |mj | ewjσ0

for all j. Consequently we can write

P (z0) = 1−
n∑

j=1

|mj | ewjσ0 = 0.

Now we define the real function

Q(σ) := 1−
n∑

j=1

|mj | ewjσ.

Since the number of changes of the sign of the coefficients, say W , of Q(σ) is 1; if N is the
number of zeros (counting multiplicities) of Q(σ), by Pólya’s result [6, Pg.46], W −N is an
even nonnegative integer which means that σ0 is necessarily a simple zero of Q(σ). Therefore
z0 is a simple zero of P (z) and in this case the theorem follows.
If σ0 = bP , from Theorem 3, σ0 is the unique solution of the equation

|mn| ewkσ = 1 +
n−1∑
j=1

|mj | ewjσ.

Again Lemma 4 applied to z0 involves that arg (mje
wjz0) = 0 for all j = 1, 2, ..., n− 1 and

arg (mne
wnz0) = π. Then mje

wjz0 > 0 for all j ̸= n and mne
wnz0 < 0. Hence mje

wjz0 =
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|mje
wjz0 | = |mj | ewjσ0 for all j ̸= n andmne

wnz0 = − |mne
wnz0 | = − |mn| ewnσ0 . Consequently,

we can write

P (z0) = 1 +
n−1∑
j=1

|mj | ewjσ0 − |mn| ewnσ0 = 0.

Now, by defining

Q(σ) := 1 +
n−1∑
j=1

|mj | ewjσ − |mn| ewnσ,

since the number of changes of the sign of its coefficients is 1 and Q(σ0) = P (z0) = 0, by Pólya’s
result [6, Pg.46], as above, one has that σ0 is a simple zero of Q(σ). That means that z0 is a
simple zero of P (z) and also in this case the theorem follows.
Finally, if σ0 satisfies, for some k = 1, 2, ..., n− 1, one equation (4.1) having two solutions

σ01 < σ02, by repeating the above argument, we write

P (z0) = 1 +

k−1∑
j=1

|mj | ewjσ0 − |mk| ewkσ0 +

n∑
j=k+1

|mj | ewjσ0 = 0

and

Q(σ) = 1 +

k−1∑
j=1

|mj | ewjσ − |mk| ewkσ +

n∑
j=k+1

|mj | ewjσ.

Then as Q(σ) has two simple zeros at σ01, σ02 and σ0 can only be equal to some of them,
we get Q

′
(σ0) ̸= 0. Since it is immediate that P ′(z0) = Q

′
(σ0), then P ′(z0) ̸= 0 and so z0 is a

simple zero of P (z). The proof is now completed.

A new property on the zeros of an exponential polynomial P (z) of type (2.1) can be derived
from Theorem 9, namely, that P (z) can have pair zeros, that is, zeros having the same imaginary
part.

Theorem 12. Let P (z) = 1 +
n∑

j=1

mje
wjz be an exponential polynomial of type (2.1) and

z0 = σ0 + it0 a zero of P (z) such that σ0 is a boundary point of RP , distinct from aP , bP .
Then there exists another zero z1 = σ1 + it0 of P (z), called pair zero of z0.

Proof. From Theorem 9, σ0 is a solution of an equation (4.1) having exactly two solutions
σ01 < σ02. Hence either σ0 = σ01 or σ0 = σ02. In the first case, the pair zero of z0 is z1 =
σ02 + it0 and, if σ0 = σ02, then the pair zero of z0 is z1 = σ01 + it0. We only prove the first
case, the other is completely analogous. Indeed, since z0 is a zero of P (z) and σ0 satisfies an
equation (4.1) for some k = 1, 2, ..., n− 1, Lemma 4 implies that arg(mje

wjz0) = arg(1) = 0 for
all j ̸= k and arg(mke

wkz0) = π, which means that mje
wjz0 > 0 for all j ̸= k and mke

wkz0 < 0.
Then, since z0 = σ0 + it0, it follows that mje

iwjt0 > 0 and mke
iwkt0 < 0, so mje

wjσ1eiwjt0 > 0
and mke

wkσ1eiwkt0 < 0. Therefore, by taking z1 = σ02 + it0, we have

mje
wjz1 = mje

wjσ02eiwjt0 =
∣∣mje

wjσ02eiwjt0
∣∣ = |mj | ewjσ02

and

mke
wkz1 = mke

wkσ02eiwkt0 = −
∣∣mke

wkσ02eiwkt0
∣∣ = − |mk| ewkσ02 .
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Then, because σ02 is the other solution of the same equation, we get

P (z1) = 1 +
n∑

j=1,

mje
wjz1 = 1 +

n∑
j=1, j ̸=k

|mj | ewjσ02 − |mk| ewkσ02 = 0,

which proves that z1 = σ02 + it0 is the pair zero of z0. The proof is now completed.

5. Lapidus and Van Frankenhuysen’s conjecture

As it was defined in the introduction, the set of dimensions of fractality of a

fractal string associated to an exponential polynomial P (z) = 1−
M∑
j=1

mje
z log rj with

{log rM , log rM−1, ..., log r1} linearly independent over the rationals (r1 > r2 > ... > rM > 0)
and multiplicities mj , is the closure of the set of real parts of its complex dimensions, i.e. this
concept coincides with the set RP defined in (1.2).
Recall also that the authors define the Minkowski dimension, D, of a string as the unique

real solution of the equation
M∑
j=1

|mj |rxj = 1

and Dl as the unique real number such that

1 +

M−1∑
j=1

|mj |rDl
j = |mM |rDl

M .

Hence, from Theorem 3, observe that −D and −Dl coincides respectively with the minimum
and the maximum of the critical interval of P (−z) (which has weights w1 < w2 < ... < wM ,
with wj = − log rj).
So, we answer to the conjectures presented in the introduction in the following sense:

Theorem 13. The conjectures [1, Conjecture 8.3], [2, Conjecture 4.9] and [3, Conjecture
3.55] are true in the case that L is a generic nonlattice self-similar string.

Proof. By the given conditions, the scaling ratios r1, r2, ..., rN of L are distinct and the
weights wj = − log rj are linearly independent over the rationals. So, from Theorem 10, as
the coefficients mj ∈ C of its associated Dirichlet polynomial are such that |mj | = 1 for each
j = 1, 2, ..., N , the conjectures are true for this case.

But, in general, these conjecture are false as we will show through the following example.

Counterexample 14. Let L be the nonlattice self-similar string with scaling ratios r1 =
1

2
, r2 = r3 = r4 =

1

7
, r5 =

1

23
and a simple gap g1 =

9

322
. Its associated Dirichlet polynomial

is

f(z) = 1− 1

2z
− 3

1

7z
− 1

23z
= 1− ez log 1

2 − 3ez log 1
7 − ez log 1

23 .

Therefore, g(z) := f(−z) is an exponential polynomial of the form (2.1) with weights w1 =
log 2, w2 = log 7 and w3 = log 23 and it occurs that Zf = −Zg, where Zf and Zg denote the
sets of zeros of f and g respectively.
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Figure 1. Zeros of g(z) with one gap

Let [ag, bg] denotes the critical interval of g(z) which, according to Theorem 3, is determined
by the unique real numbers that satisfy the equations

2σ + 3 · 7σ + 23σ = 1

and

1 + 2σ + 3 · 7σ = 23σ.

That is, ag ≈ −0.979 and bg ≈ 1.031.
Also, the inequalities (2.2) are given by

1 ≤ 2σ + 3 · 7σ + 23σ,

2σ ≤ 1 + 3 · 7σ + 23σ,

3 · 7σ ≤ 1 + 2σ + 23σ,

23σ ≤ 1 + 2σ + 37σ.

Now, by using Theorem 9, we can calculate the boundary points of Rg which are produced
when we find two solutions in some of the following equations:

2σ = 1 + 3 · 7σ + 23σ (5.1)

and

3 · 7σ = 1 + 2σ + 23σ. (5.2)

Equation (5.1) has no solutions and σ1 = 0 and σ2 ≈ 0.71612 are the solutions of (5.2).
Therefore, the two dense intervals are [ag, σ1] and [σ2, bg]. In fact, we can observe through
the Figure 1 the location of its zeros and we check that, in a large interval included in the
critical interval [ag, bg], specifically (σ1, σ2), the property of density is not accomplished. So, it
also occurs for the zeros of f(z).
Consequently, we have just proved that the conjecture is not true for this case.

Nextly, we consider an exponential polynomial of the form (2.1) which has three gaps.
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Figure 2. Zeros of h(z) with three gaps

Example 15. Consider the generic nonlattice case provided by

h(z) = 1 + 5 · 2z + 25 · 53z + 11 · 443z + 997z

whose distribution of zeros with imaginary part between −900 and 900 can be observed on
Figure 2 (observe that h(−z) does not come from any self-similar string because the sum of
the associated scaling ratios is greater than 1: r1 = ... = r5 = 1

2 , r6 = ... = r30 = 1
53 , r31 = ... =

r41 = 1
443 and r42 = 1

997 ).
The value ah is determined by

5 · 2σ + 25 · 53σ + 11 · 443σ + 997σ = 1,

whose solution is ah ≈ −2.326.
The value bh is the unique real number that satisfies the equation

1 + 5 · 2σ + 25 · 53σ + 11 · 443σ = 997σ,

whose solution is bh ≈ 2.96.
Furthermore, the inequalities (2.2) are given in this case by

1 ≤ 5 · 2σ + 25 · 53σ + 11 · 443σ + 997σ,

5 · 2σ ≤ 1 + 25 · 53σ + 11 · 443σ + 997σ, (5.3)

25 · 53σ ≤ 1 + 5 · 2σ + 11 · 443σ + 997σ, (5.4)

11 · 443σ ≤ 1 + 5 · 2σ + 25 · 53σ + 997σ, (5.5)

997σ ≤ 1 + 5 · 2σ + 25 · 53σ + 11 · 443σ.

We use Theorem 9 again in order to calculate the large intervals of Rh. The equality in
(5.3) is reached in d1 ≈ −2.31829 and d2 ≈ −0.639416. Also, the equality in (5.4) is reached in
d3 ≈ −0.343644 and d4 ≈ 0.2911116. Finally, the equality in (5.5) is attained in d5 ≈ 0.4763893
and d6 ≈ 2.95071. Therefore, the gaps inRh are (d1, d2), (d3, d4) and (d5, d6), such as we observe
in Figure 2.
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Note 16. During the refereeing process, one referee drew our attention to the fact that the
second edition of the book [3] has an example (Example 3.55) related to our Counterexample
14. This second edition (New York, 2013) appeared after our paper had been submitted (June,
2012).
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