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Abstract

Parton Distribution Functions are sets of functions that provide the momenta distri-

butions of the constituent particles within a hadron, typically the proton, at differ-

ent energy scales. This thesis describes the inclusion of Quantum Electrodynamics

(QED) corrections to the existing set of MMHT (Martin, Motylinski, Harland-Lang,

Thorne) Parton Distribution Functions (PDFs) which contains the photon PDF of

the proton. Adopting an input distribution from the LUXqed formulation, a consis-

tency is found with other recent sets and the methods of including QED effects for

the full, coupled Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of

all partons with QED at O(α), O(ααS), O(α2) are discussed. Building on this,

a set of QED corrected neutron PDFs are presented and the photon PDF provided,

separated into its elastic and inelastic contributions. The resultant effects of QED

on the other partons are investigated, as well as the effects of the evolution on the fit

quality of the PDFs, whilst outlining the sources of uncertainty for the photon. Fi-

nally the phenomenological implications of this set are explored, giving the partonic

luminosities for both the elastic and inelastic photon interactions and the effect of

our photon PDF on fits to high mass Drell-Yan measurements with the inclusion of

photon initiated processes.
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Impact Statement

The work undertaken during my doctorate, as outlined in this thesis, was towards

the development of an improved model of the proton - the most common particle

accelerated in collisions at the Large Hadron Collider (LHC) to study the nature of

matter.

In the collisions that occur between protons at the LHC, the constituent parti-

cles inside the protons, the quarks and gluon, interact to create products of interest

to particle physicists, such as Higgs Bosons. Generating such products from proton

collisions (and observing their subsequent decays) has been one of the bread-and-

butter approaches in recent decades that physicists have used to investigate matter

at the smallest scales. A model of the energy content carried by the quarks and

gluons within the proton is vital to making predictions about the outcomes of such

collisions.

My doctoral work has focused on augmenting the theoretical model of these

quarks and gluons (known as Parton Distribution Functions) inside protons to in-

clude the photon as an additional particle that may interact in LHC collisions and

other experiments where protons are accelerated at high energies. The sorts of prod-

ucts capable of being produced by photon collisions, rather than those typically

initiated by quarks and gluons, can often be distinctly different and this approach

may open a new way of investigating particle collisions in processes where the pro-

tons only collide peripherally, unlike current approaches where one can only predict

their dynamics in head-on collisions. Furthermore, certain production mechanisms

of Higgs Bosons are sensitive to photon collisions at the LHC, increasing the need

to consider the photon’s presence in the proton.

In general, an enhanced picture of the internal structure of the proton leads

to improved accuracy in the theoretical predictions made by physicists about what

kinds of behaviour they anticipate at the smallest scales of matter, supporting in a

very broad way the work undertaken at the LHC. In the process of improving this

model of the proton, similar work was also done to augment the model for the neu-

tron, which could improve theoretical predictions in nuclear physics experiments.
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Furthermore, Parton Distributions, which this thesis is concerned with, are often

central pieces of evidence in the planning of future proton collider experiments.

The technical nature of particle physics experiments is such that the influence

institutions such as the LHC exert on the public and industry are not attributable to a

single individual. Publications often involved thousands of authors (such as for the

discovery of the Higgs), citing the work of hundreds of other researchers. Therefore,

I see the contributions I have made in this space as supporting the general efforts

of the particle physics community which, as noted in STFC impact reports, has an

outsized impact on generating enthusiasm from the public for fundamental research.

I have had first hand experience of this have been involved in numerous outreach

events to directly disseminate the scientific value of my work to the public. Lastly,

the communal expertise of particle physics is often seen to guide the production of

novel technologies in industry.



“Le but de ce travail est de munir son auteur du grade de Docteur,”

- Adrien Douady
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Chapter 1

Introduction

1.1 Background

Though the results of experiments bear out its predictions extraordinarily well,

many questions remain about the Standard Model of Particle Physics, such as the

nature of mass hierarchies observed in particles and the lack of explanation for as-

tronomically observed Dark Matter [1]. In the hopes of shedding light on these phe-

nomena, the precision physics program at the Large Hadron Collider (LHC) aims

to observe processes with unprecedented accuracy and experimental sensitivity. As

part of these efforts, the majority of analyses conducted by the ATLAS and CMS

collaborations have been undertaken with theoretical cross section predictions at

Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD), with O(αS)

corrections, and increasingly many at Next-to-Next-to-Leading Order (NNLO) in

QCD [2] (O(α2
S ) corrections). At this level of precision, it is expected that elec-

troweak (EW) corrections, including those with photon initiated processes, will be-

gin to have observable effects as αQED &α2
S at the typical scales being probed at the

LHC and should therefore be incorporated in theoretical predictions. As a result,

developments are needed to match electroweak corrected partonic cross sections

with corresponding Parton Distribution Functions (PDFs), x f (x,Q2), calculated at

NLO and NNLO in QCD and the appropriate orders in Quantum Electrodynamics

(QED).

This is achieved primarily by modifying the factorisation scale evolution of
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the PDFs (governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi or DGLAP

equations [3, 4, 5]) to include QED parton splittings. The most apparent effect of

this change is the necessary inclusion of the photon as constituent parton of the

proton. Subsequently one can also begin to calculate the effect of photon-initiated

(PI) subprocesses as corrections to the leading QCD cross section of processes such

as Drell-Yan [6], EW boson-boson scattering [7] and Higgs production with an

associated EW boson [8], which are expected to be experimentally sensitive to these

effects.

In addition to providing corrections to processes typically initiated by the other

partons of the proton, semi-exclusive [9] and exclusive production of states with EW

couplings are naturally dependent on the photon content of the proton, where PI

processes play an important role (as shown in recent studies [10, 11] in the context

of compressed SUSY scenarios).

The Martin-Roberts-Stirling-Thorne group (MRST) provided the first such

publicly available QED set [12], modelling the photon at the input scale as aris-

ing radiatively from the quarks (with their respective charges) below input, using

DGLAP splitting kernels at O(α) in QED. Other such sets were subsequently de-

veloped that either adopted similar phenomenological models [13], or sought to

constrain the photon analogous to other partons by fits to Drell-Yan data [14][15],

first developed by the NNPDF Collaboration. These early sets saw relatively large

discrepancies between photon PDFs. Large modelling uncertainties persisted due to

the freedom in the assumption of the scale above which photons are produced radia-

tively, an uncertainty modelled in the MRST set as the difference between the cur-

rent and constituent quark masses, while the approach taken by the CTEQ14QED

set [13] was to attempt to fit a parameterisation based on the total momentum car-

ried by the photon from ep→ eγ +X data. In the case of NNPDF23QED [14],

which sought to fit the photon distribution primarily from di-lepton/Drell-Yan pro-

duction with little model dependency, the constraints available from the small PI

contributions directly from the data were rather weak, leading to large errors, with

O(100%) uncertainty at high x. In all cases the available data was unable to con-
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strain the photon to a high degree of accuracy.

A final significant drawback of these early sets was that the majority did not

account for the contribution to the photon PDF from elastic scattering processes, in

which the proton coherently emits electromagnetic radiation without disintegration,

in contrast to photon contributions previously accounted for from inelastic scatter-

ing processes, assumed to arise from quark splittings. This distinction between the

“inelastic” and “elastic” photons was one that was seldom systematically treated, if

considered at all.

Significant strides have been made in recent years to overcome these deficien-

cies. First, more accurate determinations of the photon distribution at input have

been developed by making use of the experimentally well determined elastic form

factors of the proton (Fel
2 , F inel

2 ). These approaches are predicated on the equiv-

alence between the electromagnetic field used to probe proton structure and the

photon PDF. This was outlined in a work by Martin and Ryskin [16] and further

developed by the Harland-Lang, Khoze and Ryskin group (HKR) [17], who also

investigated their application to central exclusive production in hadron-hadron col-

liders [18]. Theoretical work was also undertaken by the LUXqed group to demon-

strate a rigorous theoretical equivalence between the internal photon line in both

elastic and Deep Inelastic Scattering (DIS) processes and the photon PDF of the

proton. They also provided the first photon set based on this formulation [19].

In addition to these developments, QED DGLAP splitting kernels have now

been calculated to O(ααS) [20] and O(α2) [21], whose effects, as shown in Section

6.3, are not insignificant to the evolution of the photon and other partons. Finally,

since the elastic and inelastic form factors for the proton have been experimentally

determined to a high precision, this has in turn allowed for the determination of

the elastic and inelastic contributions to the photon to the level of, at most, a few

percent.

In light of this, a greater confidence may be had regarding the effects of QED

modified partons and their impact on total cross section calculations which, al-

though investigated previously, could not be determined with a high degree of ac-
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curacy.

In this thesis, the work undertaken to develop a fully consistent set of QED

partons in the MMHT framework is described, adopting the LUXqed formulation

at input for the photon, xγ(x, Q2
0 = 1 GeV2). Chapters 2 - 5 provide a broad back-

ground to PDFs and a more in depth discussion of the inclusion of QED in PDF sets.

Chapters 6 - 9 are based on an article currently being prepared for submission to a

journal that has been co-authored along with other members of the MMHT group,

but it is emphasised that all the text within this thesis has been written by the

author, with all figures, unless otherwise stated, produced independently from

data that has resulted from calculations carried out by the author.

A broad summary of the work undertaken for this thesis is as follows. QED

splitting kernels of O(α), O(αS) and O(α2) are incorporated into the usual DGLAP

evolution for all partons and the effect of these kernels is also explored. Further-

more, a model is adopted for Higher Twist (HT) effects in the quarks at low Q2,

since the evolution of the photon PDF, xγ(x,Q2), is sensitive to these corrections

due to a lower starting scale in comparison to that of other PDF sets.

As well as the conventional set of QED altered PDFs, the efforts to provide

grids containing the photon PDF separated into its elastic and inelastic components

is detailed, as well as a consistent set of QED corrected neutron PDFs. Although

the phenomenological implications of a neutron set are limited, their production is

necessary for a consistent fit to deuteron and nuclear fixed target data from neutrino

(νN) DIS scattering experiments used to constrain the PDFs, where the nuclei con-

sist of large numbers of both nucleons. The QED corrected neutron PDFs of MRST

[12] provided isospin violating partons, with u(p) 6= d(n), (as discussed in Section

7.2), which were seen to reduce the NuTeV sin2θW anomaly [22]. The breaking of

isospin symmetry may also have implications for the development of nuclear PDFs,

and our current treatment develops on our earlier approach, with new predictions

for the magnitude of isospin violation.

Finally, the phenomenological consequences of this set are explored, demon-

strating the effects of QED incorporation on F2(x,Q2) as calculated from PDFs, the
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partonic luminosities as a function of Centre-of-Mass (CoM) energy (which are ex-

pected to be significant for projects such as the Future Circular Collider) and the

change in the fit quality after refitting the partons with QED. The consequences of

fitting to high mass Drell-Yan data itself, provided by the ATLAS experiment [23],

is explored with both QED effects and Photon-Initiated corrections to the cross sec-

tion produced by the set, which also demonstrates that the effects of a fully coupled

QED DGLAP evolution is non-negligible on the gluon and quark PDFs.

1.2 Units and Notation
Throughout this thesis, the natural-units system of particle physics is used. The

base dimensions adopted are: the speed of light c, angular momentum (denoted in

units of the reduced plank constant h̄, and energy (typically represented in Giga-

electronvolts or GeV, unless otherwise mentioned throughout this thesis). In the

natural-units system, the first two are defined as c = h̄ = 1, and are therefore sup-

pressed in the notation for dimensional quantities, such that energy, momentum, and

mass are all uniformly expressed in units of GeV. Electric charge, where given, will

be expressed in units of the elementary charge, which relates to the SI (Système

International) units as 1e ' 1.6× 10−19 C (Coloumbs). Where a dot product be-

tween two for vectors is performed p · q, the metric adopted is diag (+,−,−,−).
Unless otherwise defined, x will refer to the fraction of the proton’s momentum car-

ried by the partons (as explained in Section 3), while Q2 will refer to energy scales

(squared) in the context of Deep Inelastic Scattering, where the context will make

clear whether it refers to the invariant mass squared of the outgoing products or the

energy scale in the evolution of the partons. Where the index i is used in the con-

text of PDFs (e.g. qi or fi), it will serve as an index for the active (kinematically

available, Q2 > mqi) flavours of quarks or partons, and summation of this index ∑i,

indicates that the sum of all relevant partons is being considered.



Chapter 2

Standard Model

The reductionist paradigm of physics, to understand the universe by comprehend-

ing the composition and dynamics of its most fundamental constituent parts, made

significant strides in the 20th century. This program culminated in the development

of a theory whose predictions about the smallest probed scales of matter have yet to

be surpassed by a more accurate [24] or predictive theory: The Standard Model of

Particle Physics (SM).

Historically, modern particle physics followed the development of the atomic

model of Rutherford [25], Chadwick [26] and others in the 1920s and ’30s and

built on the enhanced understanding of the dynamics of matter provided by Quan-

tum Mechanics (as developed by Bohr, Heisenberg, de Broglie, Schrödinger and

others [27]). Subsequently, an explosion of interest in particles and their possible

interactions occurred over the next few decades, driven by experimental design and

observation.

The framework developed to describe the known particles and their interac-

tions in a unified way takes the form of a Quantum Field Theory (QFT), where

the predictions of the theory (e.g. scattering cross sections, decay rates, masses)

are typically derived from the Lagrangian formulation of quantum mechanics (in a

manner consistent with special relativity). That is, for a given initial state |i〉 and

final state 〈 f |, both of which describe distinct particle content and kinematics, the

scattering amplitude A is given by A = 〈 f |eiS[ψ] |i〉, where S is the action given by

the space-time integral over the Lagrangian density, S[ψ] =
∫

d4x L (ψ), and ψ(x)
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denotes the field content of the theory as a function of the space-time co-ordinates

x = (t,~x). Note that while this notation is used throughout this section, in general, x

will have a different meaning in the context of partonic momentum for the majority

of this thesis (as explained in the next section). Furthermore, following convention,

for simplicity the Lagrangian density L , is henceforth referred to simply as the

“Lagrangian”.

It is the formulation of L (ψ) which the SM describes. In general, the SM

Lagrangian, LSM, encapsulates the interactions of two classes of particle. The par-

ticles themselves arise as products of the canonical quantisation of classical fields,

which are distinguished by their symmetry properties under the transformations of

the Lorentz group: fermions, which have half integer spin and are represented as

ψ(x) for a spin 1
2 spinor Dirac field, and bosons of integral spin (whose notation is

introduced below).

The structure of LSM arises from the mathematical principle of gauge symme-

try, in which the fields are required to obey certain symmetry considerations (out-

lined below). The generators of these symmetries are then naturally seen to give rise

to the bosonic field content of LSM (with the exception of the Higgs boson, which

we shall also briefly outline).

The gauge symmetry structure of the SM Lagrangian can be introduced from

an inspection of the Dirac free particle Lagrangian:

Lψ = ψ̄(iγµ
∂µ −m)ψ, (2.1)

which, upon use of the Euler-Lagrange equations, yields the dynamics of a free

fermionic field (the Dirac equation). Interactions between fermions and bosons

may then be introduced to this model by imposing the condition of invariance of the

Lagrangian under gauge transformations of the fields ψ(x)→ g(x)ψ(x), related to

a particular group G, g(x) ∈ G,∀x (which resemble a local phase transformation of

the form ψ(x)→ eitaθ a(x)ψ).

One eventually determines that in order to satisfy this condition for Eq. (2.1),

one must substitute in place of the ordinary partial derivative ∂µ a covariant deriva-
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tive (a more complete discussion of which may be found in chapter 10 of [28]):

Dµ = ∂µ − igAµ
a ta. (2.2)

In this expression, Aµ
a are the bosonic fields associated with the gauge group

under consideration, ta the generators of the group G (with the index a labelling

each generator) and g coming to represent the strength of coupling between the

fields and the fermions, or between the fields themselves as in the case of a non-

abelian group. For simplicity, we shall often refer to the sum of these fields, as

simply Aµ = Aµ
a ta. Under a gauge transformation, the fields transform as:

Aµ → g(x)Aµg−1(x)+
i
g
(∂µg(x))g−1(x). (2.3)

This property is deduced from the imposition of the fact that gauge invariance must

be preserved and that the fields enter the Lagrangian through the field strength ten-

sor, given by:

Fa
µν = ∂µAa

ν −∂νAa
µ +g f a

bcAb
µAc

ν , (2.4)

where f abc are the structure constants that define the properties of the group (under

the commutation of its members): [ta, tb] = ∑c f c
abtc. As explained below, the field

strength tensor in turn enters the Lagrangian in the form−1
4FµνFµν , which remains

invariant under the transformation properties outlined in Eq. (2.3).

The SM involves the invariance of the Lagrangian under three particular

groups, each of which introduces their own gauge fields Aµ
a (and associated bosons):

an SU(3) gauge group [29, 30, 31, 32, 33], responsible for the “strong nuclear

force”, or Quantum Chromodynamics (QCD), whose gauge bosons are referred

to as gluons, and a electric and “weak nuclear force”, or electroweak force (EW)

based on the gauge groups SU(2)×U(1) [34, 35, 36] (whose boson content is

elaborated below). The latter symmetry is “spontaneously broken”, due to its inter-

actions with the Higgs field, a separate complex scalar SU(2) weak doublet field,

φ = [φ+,φ0]
T , which is seen to be necessary to preserve the gauge invariance of

mass terms (∼ ψ2,∼ AµAµ ), as detailed below.
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While the entirety of the Standard Model Lagrangian would be cumbersome

to reproduce (due to the large number of fields and their possible interactions), a

general idea of its structure and the dynamics that arise from each part may be

obtained from inspection of the generalised form provided below:

LSM =−1
4

FµνFµν + iψ̄(iγµDµ)ψ +yψ̄ψφ + |Dµφ |2−µ
2
φ

†
φ −λ (φ †

φ)2. (2.5)

Taking each term in isolation:

• −1
4FµνFµν represents the dynamics of the gauge fields; both their propaga-

tion and self interaction terms. For Abelian groups (such as U(1)) the group

structure constants f abc = 0,∀c and therefore, from inspection of Eq. (2.4),

do not contain gauge boson self-interaction terms at leading order.

• iψ̄(iγµDµ)ψ describes not only the free propagation of fermions as described

above, but also introduces interaction terms: igψ̄γµAµψ , which describes a

vertex between fermion fields and a gauge boson.

• yψ̄ψφ describes the Yukawa interactions of fermions with the scalar Higgs

field φ .

• |Dµφ |2, analogous to the covariant derivative term for fermions, describes

the propagation of the free Higgs field as well as its interactions with gauge

bosons.

• −µ2φ †φ − λ (φ †φ)2 ≡ −VH(φ) describes the potential of the Higgs field

(with µ2 < 0 and λ > 0, such that the potential is bounded from below), which

also incorporates the dynamics of the Higgs self interactions. The minima of

this potential creates a continuous spectrum of vacuum state solutions for |φ |
(with a degeneracy in three of the massless real scalar fields of the complex

doublet field of the Higgs), leading to spontaneous symmetry breaking.

The introduction of the scalar Higgs field φ , serves multiple purposes from a

theoretical perspective. The idea of a scalar field potential was introduced into the
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SM long before the observation of the Higgs boson in 2012 [39, 40] (the associated

particle excitation associated with the field), in order to produce gauge invariant

particle mass terms from Yukawa couplings. Specifically, mass terms for bosons, of

the form mAµAµ , when subjected to a transformation in the manner of Eq. (2.3) do

not ordinarily maintain gauge invariance.

In the absence of the Higgs field (or some alternative mechanism), the absence

of gauge invariant mass terms in the SM Lagrangian would be impossible from a

theoretical perspective to reconcile the observed massive gauge bosons associated

with the weak force. Furthermore, the cross section for longitudinal W −W boson

scattering grows without bound in the SM, violating unitarity at the TeV scale, and

without the gauge invariance imposition on the electroweak force (which ordinary

boson mass terms do not obey), there would be no assurance of the renormalisability

of the theory [41], discussed in more detail below.

In broad terms the Higgs-Brout-Englert-Guralnik-Hagen-Kibble mechanism

[42, 43, 44, 45] (hereon referred to simply as the Higgs mechanism, following con-

vention) resolves these problem in the following manner. Unlike all other terms

given in Eq. (2.5) (whose energy is minimised by ψ,Fµν = 0), the vacuum state of

the Higgs field potential, VH(φ) = µ2φ †φ +λ (φ †φ)2, is minimised for the follow-

ing condition:

|φ |=
√
−µ2

λ
≡ v, (2.6)

where we note that because the field φ is a weak SU(2) doublet, its normalisation

follows the convention φ †φ = |φ |2/2 (which in turn, defines the field magnitude |φ |
in Eq. (2.6)). Thus, while the magnitude of the vacuum Higgs state is fixed, there is

a degeneracy (or symmetry) of solutions due to the choice in phase about the origin

of the potential. Once we define, by convention, a particular choice for the phase

however, this “breaking” of the symmetry (the selection of a particular vacuum

state), leads to a corresponding breaking of the SU(2)×U(1) electroweak symme-

try, and gives the effective gauge bosons that result from this symmetry breaking,

gauge invariant mass terms.

A brief outline of the derivation is given below, with interested readers referred
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to chapter 7 of [37]. Fixing the phase of the vacuum, using the conventional choice

of the unitary gauge, one may write the vacuum state of the Higgs field as:

〈φ〉= 1√
2

0

v

 . (2.7)

Furthermore, the covariant derivative associated with the (unbroken) SU(2)×U(1)

electroweak symmetry, is given by:

D(EW )
µ = ∂µ + ig′Bµ + ig

τa

2
W a

µ , (2.8)

where g′Bµ corresponds to the gauge field and coupling for the U(1) group and

τaW a
µ the weak doublet fields for the SU(2) group (which indicates that the gener-

ators τa correspond to the normalised Pauli matrices such as those used in the spin

1/2 algebra of Quantum Mechanics). We now consider the effect of excitations of

the Higgs field, about the minimum of the vacuum, expressed as:

φ =
1√
2

 0

v+η(x)

 . (2.9)

The term |Dµφ |2 was constructed as manifestly gauge invariant, and we may con-

sider the resultant field content of the Lagrangian upon substituting the expression

for the field as given in Eq. (2.9), which yields (after a few lines of algebra):

|Dµφ |2 = 1
2
(∂µη)(∂ µ

η)+
1
8
(v+η)2(g′2BµBµ +g2W a

µW µ,a−2gg′BµW 3,µ).

(2.10)

The first part of this equation represents the free propagation of the excited Higgs

fields, while the latter represents the interactions of this fields and the vacuum state

with the fields. It is the latter contribution which is seen to give the gauge bosons

a gauge invariant form of mass. Here we introduce redefinitions of the fields, W a
µ ,

Bµ , which we shall see, come to represent the mass eigenstates of the field content
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of the theory:

W±µ =
1√
2
(W 1

µ ± iW 2
µ ), Zµ =

−gW 3
µ +g′Bµ√

g2 +g′2
, (2.11)

Aµ =
gBµ +g′W 3

µ√
g2 +g′2

. (2.12)

The fields in Eq. (2.11) represents the massive gauge bosons of the broken

weak SU(2) symmetry (the experimentally investigated weak nuclear force), while

Aµ in Eq. (2.12) will come to represent the massless U(1) gauge boson, i.e. the

photon, associated with Quantum Electrodyanmics (QED). This is seen upon the

substitution of these definitions into the term between the brackets of Eq. (2.10):

g′2BµBµ +g2W a
µW µ,a−2gg′BµW 3,µ = (g2 +g′2)ZµZµ +2g2W+

µ W−µ . (2.13)

Note that the term Aµ , is absent from this expression, indicating that the mass of the

photon is zero and that three and four vertex Higgs-photon point interactions are

forbidden in the SM. For the remaining gauge bosons, an inspection of Eq. (2.10)

shows that when the coefficient of this term is expanded, it will contain a constant

term (proportional to the vaccum expectation of the Higgs field), v2/8, which, using

the fact that bosonic mass terms in QFT have the form m2ϕ2/2 yields MW = gv/2

and MZ = (g2 +g′2)1/2v/2.

The effective coupling of the Aµ field that emerges from this mechanism to

the fermions also differs from the naı̈ve coupling one obtains by inspection of the

coefficient of the original U(1) Bµ field given in Eq. (2.8). After redefining the

fields in terms of the mass eigenstates given above, the iψ̄(iγµDµ)ψ terms in the

SM give rise to terms of the form ieψ̄γµAµψ , where e is an effective coupling

related to the original couplings in Eq. (2.8) in the following manner:

e =
gg′√

g2 +g′2
. (2.14)

It is this coupling e, which differs for the fermion field in question, that repre-
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sents the electromagnetic couplings of the fermions to the photon in QED, as listed

in Table 2.1.

Terms that contain the excited Higgs field η then represent interactions with the

bosons (leading to couplings of the form ZZH, WWH, ZZHH and W+W−→ HH,

etc). The issue of gauge invariant masses for the fermions meanwhile is resolved

by noting that the term yψ̄ψφ , will also contain a term proportional to the constant

vacuum expectation value v, and are quadratic in the fields (and hence create mass

eigenstates). This works in particular, because all left-chiral fermions in the SM,

whether they carry the “colour” charge associated with the SU(3) symmetry of QCD

(quarks) or not (leptons) are arranged in weak doublets that also couple with the

Higgs field, and therefore its vacuum expectation value.

Of further note is the fact that the effective mass of the fermions, is then seen to

be proportional to the coupling between those fields and the Higgs, y, which are free

parameters in the model. In fact, y is more completely represented as matrices yi j,

which leads to a rotation between the mass eigenstates of the theory and the weak

interaction states. By convention, the rotation in quark flavours is defined solely for

the down type quarks, yielding the Cabibbo-Kobayashi-Maskawa [46, 47] or CKM

matrix, while for the leptons it is defined for the neutrino flavour states in terms of

the Pontecorvo-Maki-Nakagawa-Sakata [48, 49] or PMNS matrix. Since this thesis

is primarily concerned with the interactions in QCD and those of QED, we neglect

this component for our purposes and refer the reader to section 9.6 of [28].

A final feature of the weak force that is of importance in the SM is that the

SU(2)×U(1) gauge group is chiral. The charged, massive gauge bosons of the

group couple exclusively to left-chiral fermions i.e. those fermion fields which

are eigenstates of the left chiral projection operator: PL = (1− γ5)/2, where γ5

is related to the standard Dirac matrices by the relation γ5 = iγ0γ1γ2γ3. Chirality

corresponds to handedness (the orientation of spin with respect to the direction of

3-momentum) in the massless limit, and for neutrinos, due to their extremely small

masses (given below), one typically considered them occurring solely in the left

handed helicity state. Practically speaking, the left-chiral nature of the electroweak
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SU(2) interactions has implications for the kinematics of particles in scattering pro-

cesses involving the relevant gauge bosons, generating parity violation in certain

interactions. Since the details of electroweak theory are beyond the scope of this

thesis, we limit the discussion provided here.

Together, the weak gauge bosons W , Z, the photon A (more commonly de-

scribed by the symbol γ) and the gluons (which we shall denote as g) comprise

the forces of the SM. The fermion fields then consist of colour charged quarks and

colourless leptons, which are also organised by three generations with identical

coupling properties to gauge bosons but with different masses. A summary of the

fermion and boson content of the SM is given below in tables 2.1 and 2.2, respec-

tively, with their relevant properties provided. Note that the MS masses are given

for all quarks except for the top quark, for which the pole mass is given, since its

large mass means that it decays on timescales, O(1/mt), much shorter than those

that QCD causes quarks to hadronise in (O(1/ΛQCD)). Because of this, the top

quark is phenomenologically treated as a free particle, for which the pole mass is

a more readily intepretable choice of mass scheme, unlike the light quarks whose

behaviour can only be inferred from observations of the hadronic interactions, in

which they are bound.

For the purpose of this thesis, we shall be primarily concerned with the quarks,

u,d,c,s,b, (where the top is excluded for much of our theoretical discussion since

its large mass prohibits its appearance at the energy scales concerned) and the gauge

bosons of QED and QCD, the photon (γ) and the gluons.

In the next chapter, an overview of QCD in the framework of hadrons and

Deep Inelastic Scattering (DIS) is presented, the original context in which the the-

ory of QCD was developed (since quarks themselves are never observed in isola-

tion). However, in order to provide a comparison between the theories of QED and

QCD, we provide a discussion of the primary vertices (i.e. the Feynman rules) for

both theories, which will also be relevant to the discussion of splitting functions

introduced in the next section.

As indicated above, the U(1) theory of QED incorporates an abelian symmetry
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Particle EM Charge Mass [GeV]
Up u +2

3 0.002+0.0005
−0.0002

Down d −1
3 0.005+0.0003

−0.0004
Charm c +2

3 1.27+0.009
−0.003

Strange s −1
3 0.096+0.009

−0.003
Top t +2

3 173.0±0.4

Quarks

Bottom b −1
3 4.18+0.04

−0.03
Electron e− −1 0.0005
Electron neutrino νe 0 < 2×10−9

Muon µ− −1 0.1057
Muon neutrino νµ 0 < 1.9×10−4

Tau τ− −1 1.777

Leptons

Tau Neutrino ντ 0 < 18.2×10−3

Table 2.1: A table of the fermions in the SM, and their electromagnetic charges and exper-
imentally measured masses [38]. Note that the bounds on the neutrino masses
are taken from direct mass experiments, and that oscillation experiments pro-
vide an even stronger bound on all three masses of . 2 eV. Further note that the
weak and strong charge couplings are neglected since the strong force couples
to all quarks with uniform strength gS and the weak force couples to all fermions
universally with strength gW , though with different hypercharges, which lead to
Z couplings dependent on the chirality of the fermions (see chapter 9 of [28]).
Colours correspond to groupings by “generations” in the SM, which represent
identical doublets of fermions in the SM, distinguished by their masses. An-
tifermions (denoted using the bar notation, f̄ ), share identical properties with
the exception that the sign of their charges are reversed (e f =−e f̄ ).

Particle JP Mass [GeV]
Photon γ 1−1 0
Gluon g (×8) 1−1 0
W W± 1−1 80.379±0.012
Z Z 1−1 91.1876±0.0021
Higgs H0 0+1 125.18±0.16

Table 2.2: A table of all bosons in the SM, their spin and parity properties and experimen-
tally measured masses [38]. The ×8 for the gluon represents the 8 gauge fields
associated with each generator ta (the Gell-Mann matrices) of QCD (SU(3)).
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in the SM ( f abc = 0 such that there are no quadratic terms in the photon fields AµAµ

in the Lagrangian). Therefore, (neglecting the mathematical details necessary for

scattering calculations) the primary vertex in QED is simply that between a fermion

and a photon as shown in Fig. 2.1.

f

f̄

γ

Figure 2.1: The primary (Leading Order) vertex in QED between a fermion line and a pho-
ton. The factor associated with vertex is the electromagnetic coupling between
the fermion and the photon, e f .

Higher order diagrams such as Next-to-Leading-Order (NLO), Next-to-Next-

to-Leading-Order (NNLO) etc in QED are fundamentally comprised of copies of

this vertex, where each additional vertex indicates a higher order in perturbation

theory. In QCD meanwhile, as well as the coupling between quarks and gluons

(which shares a virtually identical mathematical construction to Fig. 2.1 except for

the strength of the coupling), gluon-gluon interactions are not only present, but play

an important role even at LO QCD. These vertices are shown in Fig. 2.2.

q

q̄

g

g

g

g

g

g

g

g

Figure 2.2: The primary (Leading Order) vertices in QCD between a quark line and a gluon,
and the trilinear and quadrilinear gluon interactions. The vertex factor associ-
ated with each of these diagrams is gs.

The presence of gauge boson self interaction terms in QCD is of crucial im-

portance in how it is distinct from the other forces present in the SM. To highlight
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γ γ

f f

γ

Figure 2.3: Loop correction diagrams in QED for (from left to right) a photon line, fermion
line and vertex coupling. Note that other single loop corrections exist for the
vertex, where one may replace any of the legs given in Fig. 2.1 with the loop
corrections shown on the left and middle for the photon and fermion lines,
respectively.

this, we conclude this chapter with a discussion of how the gauge couplings gi,

(and more generally other observables such as masses and decay rates) in the SM

change as functions of the energy scale of the process. It is well known [50] that

naı̈vely applying the Feynman rules adapted from certain QFT Lagrangians with

constant coupling constants (and indeed masses) leads to logarithmically divergent

predictions when computing higher order integrals (σ ∼ ∫ ∞

0 dQ2[...]/Q2→∞), par-

ticularly those which contain closed loops in the diagrams, as illustrated in Fig. 2.3.

Such divergences are known as ultraviolet divergences, since the nature of the di-

vergence corresponds to high (and prior to renormalisation, infinite) energy limits

in the integrals.

The resolution to this is found with the procedure of regularisation, in which

the kinematic upper limit to these integrals is bounded by some scale Λ, which is

taken as much greater than the energy scales being probed Λ� Q2. Alternatively,

one may characterise the divergence by the dimensions in which the integral is

performed
∫

dDk, by extending the number of dimensions D = 4→ D = 4− 2ε ,

and calculating divergences as a function of the difference (1/ε) from the usual 4

spacetime dimensions.

The procedure of renormalisation (details of which may be found in [51]), is

then used to redefine the parameters of the theory (couplings, masses etc) in finite

terms, but in doing so introduces a Q2 scale dependence of the theory (and requires

that the fixing of this scale depends upon empirical observation at some particular

value, such that the parameters are not solely deducible from the theory alone).
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We sketch how this is performed in the context of loop corrections in QED,

which leads to renormalisable parameters. In general, renormalisation rescales

divergent parameters, φ , such that the ultraviolet divergent components are “ab-

sorbed” into a rescaling constant: φ → φ0 = Zφ , where the subscript 0 represents

the bare quantity and Z the scaling constant into which divergences are absorbed.

In the instance of the electric charge coupling of QED, ge ≡ e, the scaling is of the

form e2
0 = e2/Z2

3 , more conveniently expressed as e2 = Z2
3e2

0. The subscript 3 is

used since (excluding the mass renormalisation scaling term Zm), the three scaling

parameters of QED are Z1,2,3, which denote the vertex, fermion and photon wave

function renormalisation constants.

In an abelian theory, the renormalisation of the coupling constant is insensitive

to Z1,2 (the scaling constants for the vertex and fermion line) and is dependent solely

on that of the photon wavefunction scaling, though this does not hold true in non-

abelian gauge theories. Nonetheless, for QED, we may restrict our attention to Z3

in this context.

The one loop correction corresponds to the leftmost diagram of Fig. 2.3. If

the leftmost photon line in this diagram is labelled by the index a with spacetime

index µ , four-momentum q and the rightmost photon line is indexed by b with

spacetime index ν and the momenta in the fermion loop denoted as k and q+k (for

either fermion or antifermion lines), then the photon “self-energy” (the amplitude

expressed by the graph), iπab
µν(q) is given by:

iπab
µν(q) =−4πα

∫ d4k
(2π)4

Tr[γµ(/k+/q+m)γν(/k+m)]

(k2−m2 + i0+)((k+q)2−m2 + i0+)
, (2.15)

where we introduce a widely used alternative notation for the coupling strengths

α(Q2) = g2(Q2)
4π

and use the terminology 0+ rather than ε to denote a small shift

around the complex pole in the propagator, since it will have a different usage in the

context of dimensional regularisation.

Since d4k ∼ k3dk, counting powers of the loop momentum k in the numer-

ator and denominator, on finds the integral scales as
∫

Λ

0 d|k|k ∼ Λ2 (which leads

to a quadratic divergence). However, as discussed in [52], the property of gauge
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invariance requires that πµν obeys the proportionality relation: πµν = (gµνq2−
qµqν)Π(q2). While the leading factor is finite, the term Π(q2) causes the integral to

diverge logarithmically, rather than quadratically as would otherwise be assumed,

and is responsible for the ultraviolet divergence of photon self interaction.

As briefly described above, the process of dimensional regularisation then pro-

ceeds by changing the number of dimensions in which the integral is evaluated in

the following manner:

4πα
d4k
(2π)4 → 4πα(µ2)ε d4−2εk

(2π)4−2ε
. (2.16)

This expression will be seen to diverge for ε→ 0, but, as shown below it allows us to

characterise the form of the divergence of the integral in terms of 1/ε . Performing

the regularised integral then yields:

Π(q2) =− α

2π
Γ(ε)

∫ 1

0
dx
(

4πµ2

m2− x(1− x)q2

)ε

2x(1− x), (2.17)

where Γ(z) represents the Gamma function of the form Γ(z) =
∫

∞

0 dx xz−1e−x. Here

we omit the details of the integration and evaluation of the Γ(ε) function, (referring

the reader to [52] for a more complete treatment) and highlight the salient result,

which is that the divergence of Π(q2) occurs for Π(0), with higher orders in q2

giving finite corrections, such that the divergent term may be expressed (for an

abelian theory such as QED) as:

Π(0)'− α

3π

1
ε
+O(ε). (2.18)

Since we eventually wish to take the limit ε → 0 in order to properly evalu-

ate our original integral, the latter terms will be seen to vanish in this limit. With

this result, it becomes possible to calculate the (leading order) “running” (variation

with scale) of the electromagnetic coupling, whilst eliminating the divergences that

previously plagued the theory. This is readily seen by noting that the photon propa-

gator, G0, may be renormalised by considering additions to the ordinary amplitude
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from those of photon lines, corrected by the loop self corrections π (as we have cal-

culated above) applied successively, G0→ G = G0 +G0π G0 +G0π G0π G0 + ...

For example, the term G0πG0 would correspond to the single loop photon

correction diagram on the left side of Fig.2.3, with the latter terms representing

incrementally more fermion loops on the photon line. Then, by adopting knowledge

of the fact that the longitudinal contributions vanish due to gauge invariance [52],

this series may be summed by the expression:

G = G0
1

1−Π(q2)
. (2.19)

In essence, since G0 ∼ e2
0/q2, this expression may be used to determine the renor-

malisation scaling relation for the electromagnetic coupling:

e2
0→

e2
0

1−Π(q2)
' e2

0
1−Π(0)

1
1− [Π(q2)−Π(0)]+O(α2)

. (2.20)

The first fraction represents the renormalised coupling e2 which, using the relation

given above, allows us to determine that Z3 ' 1+Π(0) = 1− α

3π

1
ε
. In general,

the numerator and denominator of the leftmost fraction on the RHS in Eq. (2.20)

are defined to yield a finite, physically observable e, the renormalised coupling

in QED, while the rightmost fraction on the RHS describes how the renormalised

coupling e obtains scaling with q2. In the limit q2� me (the mass of the fermion

in consideration, typically considered as an electron) from Eqs. (2.17) and (2.18)

one obtains, Π(q2)−Π(0)' α

3π
ln q2

m2 (the details of which are given in [52]), which

gives the LO expression for the running of the electromagnetic coupling in QED:

α(q2) =
α

1− α

3π
ln q2

m2

. (2.21)

While the exact results vary depending on the gauge theory being considered

(and the choice of renormalisation procedure in some instances), in general, gauge

couplings in the SM acquire scale dependence in line with the form of the Callan-
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Symanzik [53][54] equation:

Q
∂g
∂Q

= β (g). (2.22)

The functions β (g) then determine the form of scale variation, and play a strong

role in determining the nature of the gauge forces. Omitting the details, much of the

resultant behaviour is determined by the two cases β > 0 and β < 0. The former is

true for QED (where using Eq. (2.21), one determines at LO βQED = 2α2/3π > 0),

such that the effective electromagnetic and weak couplings after symmetry break-

ing, at low scales, are small αe,W � 1 and perturbation theory produces sensible

results.

We note that historically, α denotes the redefined coupling strength for QED

and αS that for QCD, a notation adopted for the remainder of this thesis. Due

the small electroweak values for α at low scales, the leptons may propagate freely

and their interpretation as individual particles corresponds with the results from

experimental measurements. While β > 1 implies that at high scales these couplings

(such as the expression in Eq. (2.21)) grow without constraint and eventually violate

the unitarity constraints of the theory, the point at which this happens, the Landau

pole, occurs at scales much greater than the Plank mass Q2� mP. As mentioned

in the introduction, one is almost certain that the SM should be supplemented long

before considering such scales.

In the case of QCD, unlike QED, more scaling constants must be considered

than solely Z3, corresponding to the additional vertices present in the theory, rep-

resented by the middle and rightmost diagrams of Fig. 2.2. After applying the

procedure of renormalisation for an SU(3) gauge group, one finds:

β (αS) =−
(

11− 8
3
− 2nF

3

)
α2

s
2π

, (2.23)

where nF denotes the number of interacting flavours (quarks) in the theory. Only six

quark flavours are known, and for nF < 16 one finds that in QCD β < 0 [55][56].

It is this, coupled with the fact that its bosons are massless, that distinguishes the

behaviour of QCD from the other forces. In particular, the coupling in QCD dimin-
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Figure 2.4: The strong coupling αS(Q) (solid line) and its total uncertainty (band) as deter-
mined in [57] by the CMS Collaboration.

ishes at higher scales, such that αS(Q2)→ 0, Q2→ ∞, and the quarks and gluons

decouple, a condition known as asymptotic freedom.

At low energies however, αS(Q2)& 1 and the perturbative nature of the calcu-

lations in QFT no longer yield sensible results as one approaches the vacuum states

of the theory. In fact, the interaction strength between coloured particles is of such

a high magnitude that unlike the leptons, they coalesce into colourless combina-

tions of particles known as hadrons. This phenomenon is known as confinement,

a terminology which reflects the fact that when trying to disassociate the quarks

within hadrons from one another, the energy of the incoming probe generates net-

colourless combinations of particles from the vacuum which then arrange into more

hadrons (a process called hadronisation) i.e. quarks are always confined in hadrons.

The proton is such a hadron consisting primarily of the quark combination uud.

As shown in Fig. 2.4, many experimental results for processes sensitive to

QCD are used in combination to obtain the scale variation for αS(Q2). Some exper-

iments are sensitive to α(Q2) at a given scale, while others provided a range of data

points across many values for Q2. The decrease in the coupling at higher scales

is clearly visible, indicating the presence of asymptotic freedom as Q2 → ∞, and

confinement at low scales.

It is useful to note that at LO in QCD, the scale dependence of αS adopts the
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following form:

αS(Q2)' 4π(
11− 2nF

3

)
ln
(

Q2/Λ2
QCD

) , (2.24)

where the parameter ΛQCD ∼ 200 MeV is the approximate energy scale at which

the quarks hadronise (and reflects the parameter dependence mentioned above for

renormalisable theories).

It is precisely because the quarks and gluons are bound within hadrons, that

phenomenological models must be developed in order to make predictions about

scattering experiments that involve hadrons, such as those at the LHC. In the next

chapter, the model of hadrons is reviewed from a context in which we begin with

fewer assumptions about their internal structure (since historically the presence of

quarks was stipulated as an explanation for hadron structure). This is in order to

motivate a discussion about scattering experiments and how such models, supple-

mented with QCD, give rise to the Parton Distribution Functions (PDFs). We also

discuss the conditions under which the distributions are suitably descriptive and

how they may be related at different energy scales, Q2.



Chapter 3

QCD and DIS

3.1 A Model of Hadrons

Historically, the existence of quarks was preceded by the observations of hadrons.

The most commonly observed, with which this thesis is primarily concerned, are the

proton and neutron, which comprise the nuclei of the chemical elements. Since they

were found to interact strongly relative to the electromagnetic force within nuclei

(which would later be shown to be an emergent property of their QCD interactions),

with a strength independent of their electric charges, the protons and neutrons were

associated in the same category of particles as the pions and other such hadrons

discovered in the early 20th century whose interactions were observed to be similar

(though the pion was originally posited to be the carrier of strong force interactions

within the nucleus [58]).

The primary theme of the investigation of hadrons was concerned with the

nature of their interactions with one another (decays and scattering processes), in

which certain symmetries were observed. In particular, the proton and neutron were

well related to one another by a property known as “isospin”, an effective SU(2)

symmetry that predicted the rate of interactions between the ∆ baryons, protons,

neutrons and the pions, π0, π±. In addition to this, the property of “strangeness”

was conceived of (extending the SU(2) symmetry of isospin to SU(3)) to accommo-

date the observed interactions between the K and Σ baryons, which also led to the

prediction of the Ω− baryon in 1962, two years before its experimental observation
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[59].

To explain the quantum numbers associated with these symmetries, it was con-

ceived of that hadrons were in fact comprised of more fundamental constituent par-

ticles [60, 61], where Gell-Mann’s terminology of “quarks” was adopted as the

label. The quarks, it was hypothesised, were spin ½ particles which made up the

baryons and mesons in triplets and quark-antiquark pairs respectively, where every

component of the symmetry associated with hadronic interactions was associated

with a distinct flavour of quark. The quarks would then interact identically in their

strong force interactions, but with each flavour having a distinct mass (a property of

strangeness that predicted the observed mass of the Ω−).

That this model held true [62] was determined primarily from lepton-probe

scattering events at high energy with hadrons [63]. In particular, much like the

α scattering experiments of Rutherford determined that the scattering of a probe

with the structure of the atom was best modelled from a small, concentrated charge,

which led to the determination of the nuclear model of the atom, similarly, the

inelastic scattering of leptons from scattering events that disassociated (i.e. led to

hadronisation of) the proton were found to be consistent with scattering from point-

like spin ½ particles, consistent with the quark model.

In addition to this picture, in the following section and the next chapter, it will

be demonstrated that corrections from QCD and QED necessarily lead to the need

to introduce the gluons and photons as constituents of the hadrons, alongside the

quarks.

3.2 Deep Inelastic Scattering

Experiments that involve a lepton probe interacting inelastically with hadrons, at

scales where the effects of the quark-parton model are resolvable, are known as

Deep Inelastic Scattering (DIS). In order to discuss, quantitatively, how the results

of such experiments motivate the quark model and the subsequent corrections that

arise from QCD, we first lay out the dynamics and kinematic quantities associ-

ated with DIS events, i.e. inelastic lepton-hadron scattering, lH → l′X . The lepton
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P

l

q

Figure 3.1: The primary (Leading Order) representation of a Deep Inelastic Scattering
event, where the incoming (upper left) lepton interacts via γ/W±/Z exchange
with a hadron (here represented by a proton). In the case of W± exchange, an
incoming charged lepton is converted into the corresponding neutrino flavour
νl or vice versa for an incoming neutrino probe. The outgoing products of the
proton in DIS (bottom right) will be a jet of lighter hadrons, whose kinematics
(W 2) is described in the text.

may be charged (typically an electron or occasionally a µ , since the τ decays on

timescales that prohibits its acceleration through conventionally practical means) or

a neutrino. We illustrate the leading order representation of such an event in Fig.

3.1.

The incoming lepton probe is denoted with four momentum k, the outgoing

lepton with k′, the incoming hadron (henceforth referred to explicitly as a proton)

with P (P2 = m2
p, the proton mass squared) and the exchanged boson carries q =

k− k′ from the lepton to the proton. It is useful to introduce several relativistically

invariant quantities associated with the event. :

• ν ≡ q ·P/mp = (E−E ′) is proportional to the loss of energy of the lepton in

the rest frame of the proton.

• Q2 ≡ −q2 = 2k · k′ = 2EE ′(1− cosθ), where both lepton masses have been

neglected, for reasons given below. Note that Q2 > 0, and for a DIS event
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Q2 & 1 GeV2 for a process capable of interacting with individual quarks and

hence disassociating the proton, as discussed in the rest of the chapter.

• W 2 ≡ (P + q)2 ≡ m2
X is the invariant mass squared of the entire recoiling

hadronic system (X) produced from the event (the lower right side of Fig.

3.1).

• x ≡ Q2/2mpν , a dimensionless variable (that is definitionally 0 < x < 1),

which we shall see comes to represent the longitudinal fraction of the proton’s

momentum carried by a particular parton under consideration.

• s ≡ (k +P)2, the total invariant mass squared of the system (the incoming

lepton and proton). Also referred to as the Centre-of-Mass (CoM) energy.

• y ≡ q ·P/k ·P = ν/E is known as the “inelasticity”. In the rest frame of the

proton, y represents the fractional energy lost by the lepton probe during the

scattering.

As alluded to above, for a typical DIS event Q2 � Λ2
QCD, such that the dy-

namics of the scattering process occurs on a “harder” scale (and therefore shorter

timescale) than the process of QCD interactions within the proton or subsequent

hadronisation. This will prove to be of central importance when introducing the

notion of factorisation.

We shall formulate the relevant cross section for the process, heuristically

shown in Fig. 3.1, restricting our attention to the case of a pure QED (a neutral

current without consideration of the Z weak neutral current) scattering with virtual

photon γ∗ exchange, though we note that the discussion may be extended in an ap-

propriate way to consider both unpolarised neutral current (NC) and weak current

(CC for charged current, since the W boson intermediary carries electromagnetic

charge) scattering events [65] (where the treatment of polarised scattering requires

a substantially different treatment, not considered in this thesis).

At LO in QED, (as represented in Fig. 3.1) the matrix element associated with
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the scattering is:

M = (ie)2ū(k′)γµu(k)
−gµν

q2 〈X |Jν |H(P)〉 , (3.1)

where we use the index H to denote the proton wavefunction to distinguish it

from its four momentum P and e is used to represent the electromagnetic coupling

strength at each vertex. Jν meanwhile represents the photon current which probes

with the proton. The differential cross section dσ (whose expression is provided

below) is proportional to |M |2. In squaring this amplitude, we may separate the

contribution into a leptonic (L) and hadronic (W ) tensor:

|M |2 ∝ LµνW µν , (3.2)

where we are implicitly assuming that the sum over all lepton spins, ∑spins has been

applied such that the cross section is unpolarised. Since the lepton lines of the

amplitude in Eq. (3.1) are provided by the standard spinor algebra of field theory,

some straightforward algebra yields an expression for the leptonic tensor:

Lµν = 4e2(kµk′ν + kνk′µ −gµνk · k′). (3.3)

Without any assumption about the internal nature of the proton and summing

over all possible proton final states, ∑X |X〉〈X | = 1, the hadronic tensor (derived

from the squaring of the amplitude given in Eq. (3.1) and defined in Eq. (3.2)) is

simply expressed as:

Wµν =
1

4π

∫
d4xeiq·x 〈H(P)| [ jµ(x), jν(0)] |H(P)〉 , (3.4)

where an implicit sum over all proton spin states and all possible final state hadronic

products X has also been performed. The evaluation of Wµν would depend on the

wavefunction |H(P)〉. We first introduce a parameterisation of Wµν which uses only

the considerations of the QED nature of the scattering process and Lorentz invari-

ance to constrain its form, before discussing how the quark model of the proton
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modifies this parameterisation and the difficulties (namely the non-perturbative na-

ture of QCD at low scales) associated with an explicit evaluation of Wµν in terms of

quark and gluon states. This will be shown to prevent an explicit form from being

calculable as in the case of the leptons (Eq. (3.3)).

Firstly, we note that since the nature of QED conserves electromagnetic cur-

rents (∂µ jQED
µ = 0), one finds the lower vertex of Fig. 3.1 obeys qµ,νWµν(q,P) = 0

(and likewise for the upper vertex, Lµν(q,P)qµ,ν = 0). Under this constraint, the

most general, Lorentz covariant form for the tensor under assumption of parity and

charge conservation, may be expressed as:

Wµν =

(
gµν −

qµqν

q2

)
F1(x,Q2)

+
(

pµ +
qµ

2x

)(
pν +

qν

2x

) 1
p ·qF2(x,Q2)

[
1+O(

m2
p

Q2 )

]
.

(3.5)

The functions introduced in this expression, F1(x,Q2) and F2(x,Q2), are called

the structure functions, and are representations of the internal structure of the

hadrons (generally, since such functions also serve as descriptions for the neutron)

and their determination is a central focus of DIS experiments. Their dependence on

the incoming proton and lepton momenta (P and k) are implicit in the variables x

and Q2. In weak scattering processes, that do not necessarily obey the same parity

and charge conservation, a third such structure function is also present, F3(x,Q2).

In deriving the above expression, the terms related to the lepton mass O(m2
l /Q2)

have been neglected since at the scales considered, the lepton mass is substantially

smaller than the energy scales being probed. Corrections related to the proton mass

will be explored in later chapters.

A final general observation is that if one chooses to parameterise the structure

functions in terms of the polarisation of the incoming photon, one may instead

express the structure functions in terms of longitudinal and transversely polarised

scattering. Omitting some of the details, one finds that the longitudinal component

relates to the structure functions given in Eq. (3.5) by the relation FL =F2−2xF1. In

the naı̈ve Quark-Parton model, one may determine (as shown below) that F2 = 2xF1
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and the longitudinal component disappears, known as the Callan-Gross relation.

However, corrections from QCD give non-zero contributions to FL, and indeed it

shall be seen to play a role, albeit restricted in its contributions, in the determination

of the photon PDF (Chapter 5).

In conjunction with the leptonic tensor given in Eq. (3.3), one may use the

standard expression for a differential cross section, dσ to obtain the LO expression

for pure photon exchange DIS scattering:

d2σ

dxdQ2 =
4πα

Q4

[
[1+(1− y)2]F1(x,Q2)+

1− y
x

F2(x,Q2)

]
, (3.6)

where the latter term is seen to be small in experiments (as expected from the dis-

cussion above).

We now consider how one may relate this generalised perspective of DIS to

the model of the hadrons constituted by quarks as well as the gluons that keep them

confined to the hadrons as briefly outlined in Chapter 2.

The quark-parton model (QPM) assumes that the DIS proton scattering cross

section is modelled simply as the sum of cross sections from the scattering of spin

½ quarks, as described above (though, in the following text, the term parton shall

be used more generally to refer to any particle constituent of the proton). In the ab-

sence of QCD (where we merely consider the quarks as constituents of the hadron

without any consideration of the nature of their confinement), we assume that the

transversely polarised scattering occurs simply as the sum of many spin half parti-

cles, which in sum constitute the proton’s full momentum along the direction of its

propagation.

Implicit in this, is the assumption that we have integrated over any transverse

momentum (p⊥) carried by the quarks with respect to the direction of the total

three-momentum of the proton. In principle, distributions provided as a function

of the transverse momentum can be considered and are essential when determining

the spin distributions of the quarks and other partons within the proton (and the

reader is referred to section 19.6 of [65] for a brief overview). However, since the

magnitude of the transverse momentum p⊥ induces corrections of O(Λ2
QCD/Q2),
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Figure 3.2: DIS represented in the case of the photon probe interacting with an isolated
quark from within the proton.

they are therefore negligible in the kinematic limits being considered and irrelevant

to our purposes.

In the case outlined above, the scattering of the photon occurs with one of

the quarks within the proton (an assumption elaborated on in the next section), as

shown in Fig. 3.2. From this figure, we may infer that the momentum of the quark

with which the photon interacts carries a fraction, ξ of the total momentum of the

proton, pq = ξ P. Using the invariant mass relation of the quark, we find:

m2
q = (pq +q)2 ' 2ξ P ·q−Q2 =

Q2

x
ξ −Q2 ' 0. (3.7)

In the limit of massless quarks, Q2 � m2
q, known as the Bjorken limit, the

variable x is associated with the fractional longitudinal momentum of the proton

ξ ' x. This approximation holds to a very good degree of accuracy for DIS events

and higher scales, and we shall make extensive use of it throughout this thesis (and

will often refer to x in context as simply momentum).



3.3. QCD and Parton Distribution Functions 53

In this instance outlined above, by considering that the scattering of the pho-

ton occurs with a spin ½ fermion line, the structure functions are related to the

longitudinal momentum distribution of the quarks fq(x), the probability to scatter

of a particular flavour of quark q carrying momentum fraction x, by the following

relation [66]:

F2(x,Q2) = 2xF1(x,Q2) = ∑
q,q̄

e2
qx fq(x). (3.8)

Note that this is approximately sensitive to the total (charge-weighted) sum of

quark and anti-quark distributions for a given value of x, a feature that makes it one

of many processes valuable for the determination of the individual parton distribu-

tion functions fq(x). However, although Eq. (3.8) holds to a crude approximation,

we shall see that in the process of incorporating the predictions of QCD, the fq(x)

are themselves renormalised, obtaining a dependence on Q2, as explored in the next

section.

3.3 QCD and Parton Distribution Functions
In our discussion of QCD, we stated that its non-perturbative nature was manifest at

lower scales (ΛQCD ' 200 MeV), but that the quarks experienced so called asymp-

totic freedom at higher scales (Q2 � Λ2
QCD). Therefore, although one anticipates

difficulty in explicitly calculating Wµν from field theory at lower scales, one might

assume that this tensor may be calculated in the high energy limit. In practice,

Wµν is dependent on the proton wavefunction |H(P)〉, whose momentum satisfies

P2 = m2
p, and is therefore inherently dependent on the nature of the quarks at low

energies.

Therefore, at all scales, one requires a means of separating the calculable, per-

turbative nature of QCD from the (presently) incalculable nature of QCD at the

lowest scales, even when interpreting hadron scattering events at high energies. In

order to do this, one needs to adopt a factorisation theorem. The assumption in gen-

eral terms, is that the “hard” scattering process (the vertex involving the photon and

the quark in Fig. 3.2), occurs on a timescale, O(1/Q), which is much shorter than

the “soft” scale at which the effects of QCD occur O(1/ΛQCD), both in the internal



3.3. QCD and Parton Distribution Functions 54

structure of the proton amongst the partons prior to scattering and in the subsequent

hadronisation of the proton remnants. Therefore, the dynamics of the hard process

can heuristically be interpreted as being independent of the soft physics of low scale

QCD.

While the calculation of the proton wavefunction itself may not be per-

formed perturbatively, the factorisation of the hard scattering process from the non-

perturbative factor (which we shall show may be absorbed into the definition of the

parton distribution functions) has been proven up to corrections of O(Λ2
QCD/Q2)

[67]. Furthermore, it may also be shown that the non-perturbatively factored com-

ponent in such events (DIS) may also be related to the non-perturbative elements of

hadron-hadron scattering at high scales, such as those that occur at the LHC.

In essence, under the assumption of the factorisation theorem, one may con-

sider the outgoing wavefunction of the proton |X〉 as a factorised wavefunction of

an on shell “parton” (either a quark or antiquark) with momentum k̃ and the rem-

nants of the proton X ′, |X〉 →
∣∣qi(k̃)

〉
|X ′〉, where the index i denotes the flavour of

(anti-)quark under consideration. This allows one to obtain the relationship in Eq.

(3.8).

The salient result of the factorisation theorem is that at all orders in QCD,

the structure functions (F1 and F2) may be calculated by separating the dynamics

of the hard process, from the PDFs (into which we absorb by definition the non-

perturbative phenomena associated with scales at Q2 ∼ m2
p). Using the notation

( f ⊗g)(x) =
∫ 1

x
dy
y f
(

x
y

)
g(y), we may express this as:

F(x,Q2) = ∑
i=q,q̄,g

Ci(x,Q2)⊗ fi(x). (3.9)

The Ci(x,Q2) are known as the Wilson coefficients (or simply, coefficient func-

tions) and carry the high Q2 scale information of the process, and are calculable in

perturbative QCD:

Ci(x,Q2) =C(0)
i (x,Q2)+

αS(Q2)

2π
C(1)

i (x,Q2)+
(αS(Q2))2

(2π)2 C(2)
i (x,Q2)+ ... (3.10)
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Figure 3.3: DIS represented in the case of the photon probe interacting with a gluon, by
mediation of an emitted quark line.

However, there is one further step needed in relating these function to observ-

able cross sections, associated with the regularisation of these functions in field

theory. Beyond LO, coefficient functions are susceptible to divergences at low Q2

(known as infrared divergences), a consequence of naı̈vely extending the results

of QCD to low energies (while ultraviolet, high Q2 divergences are handled with

methods such as dimensional regularisation, as outlined in the previous chapter).

To resolve this, an infrared cutoff is introduced into both the Wilson coeffi-

cients and, crucially, into the definition of the PDFs themselves, fi(x)→ fi(x,µ2
F)

where µF is the factorisation scale, an arbitrary scale adopted to regularise both the

coefficient functions and the PDFs. In adopting this procedure (elaborated in [64]),

the “bare” quark distributions (the unrenormalised distributions discussed above)

may themselves be renormalised, by considering QCD processes at higher orders.

It is in this manner that partons such as the gluons may also be considered hard

scattering objects within the proton, as illustrated in Fig. 3.3 . For the quarks, after

renormalisation, the measurable (as discussed in the next chapter) PDFs are related
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to the bare distributions, f (0)q (x) by:

fq(x,µ2
F) = f (0)q (x)+

αS(µ
2
F)

2π

∫ 1

x

dξ

ξ
f (0)q (ξ )Pqq

(
x
ξ

)
ln

Q2

µ2 + ..., (3.11)

where for µ < µF , the low scale dynamics are absorbed into the PDFs to create a

finite, observable distribution. The function Pqq will be of particular significance,

as explained in the next section. We conclude this section, by noting that while Eq.

(3.9) indicates that the structure functions are calculable in terms of the PDFs, the

measurements of DIS are in principle used in the opposite fashion; the measured

differential DIS cross section in x and Q2 is used to constrain the PDFs themselves.

Although this prevents an a-priori determination of the structure functions from

theory, a property of the factorisation theorem, mentioned above, makes this a pow-

erful observation for phenomenological purposes. The distribution measured in one

process, such as neutral current weak scattering, is readily related to the same dis-

tribution in another process sensitive to the internal structure of the proton, such as

charged weak boson scattering. The enormous advantage afforded by the universal-

ity of the PDFs in distinct scattering processes is that the precision measurements

that constrain the PDFs in certain DIS experiments (discussed in greater detail in

the next chapter) allows us to establish a well determined set of distributions that we

may apply when calculating hard cross sections in proton-proton scattering, outside

of the setting of DIS.

Specifically, the total cross section, σ may be considered as simply the hard

cross section, σ̂ between two colliding partons (such as quark-quark collisions in

the instance of Drell-Yan production, illustrated in Fig. 3.4), integrated over the

PDFs, whose momenta distributions determine the likelihood for a hard scattering

at a given scale Q2 (along with centre of mass energy of the protons). For a final

state X , produced from two incoming beams of protons A and B, this is summarised

in the following equation:

σAB = ∑
i, j∈q,q̄,g

∫
dxAdxB fi(xA) f j(xB)σ̂i j→X , (3.12)
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q
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l+

γ, Z

Figure 3.4: Drell-Yan (di-lepton) production via quark-antiquark annihilation from proton-
proton scattering. The central Feynman diagram consisting of both photon
vertices, represents our hard process σ̂ while the distribution of the quarks
(summed over any relevant flavours) is information encoded in the PDFs.

where the fi are the PDFs for the relevant incoming partons, which may be experi-

mentally determined from previous experiments.

3.4 DGLAP

As mentioned in the previous chapter, observable quantities typically acquire scale

dependence after renormalisation. The PDFs are also subject to this variation in

scale, as evidenced in Eq. (3.11). However this expression is dependent on several

bare quantities (such as f (0)q ) from which we cannot calculate observable parameters

(hence the initial need for renormalisation). Therefore it is convenient to consider

the PDFs at a given scale and formulate a means of relating the distributions at one

scale to another (referred to as the PDF’s “evolution”), in the form of a differential

equation. This is more generally known as the renormalisation group equation, and

for the PDFs one may obtain this relation by differentiating Eq. (3.11) with respect

to ln µ2
F , to obtain:

µ
2
F

∂

∂ µ2
F

fq(x,µ2
F) =

αS(µ
2
R)

2π

∫ 1

x

dz
z

Pqq

(
x
z
,αS(µ

2
R)

)
fq(z,µ2

F). (3.13)
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This equation, known as the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [3, 4, 5]

(DGLAP) equation, is of paramount importance in the study of PDFs. First, we

note that µF is an arbitrarily low scale for the purposes of regularisation and that a

separate scale µR is introduced, known as the renormalisation scale. In relating the

PDFs to a given scale, provided we are consistent in our definition, any dimension-

ally appropriate kinematic quantity may be chosen when considering an observable

scale for the process. The typical choice, adopted for the remainder of this thesis, is

µF = µR = Q.

Since experiments that measure the PDFs at different values of x and Q2 only

provide limited information about the distributions at each region in phase space, by

providing a means of relating the PDFs at one scale to another, once a given f (x,Q2
0)

is determined at a given scale, the DGLAP equations may relate the distribution to

higher (or in principle lower) scales, Q2 > Q2
0. As we shall see in the next section,

this is crucial for determining the PDF distributions in global fits to data.

Here we elaborate on the role of the function Pqq(x) (where we suppress the

dependence on αS in the notation). When introducing the notion of QCD to the

parton model, one must account for higher order corrections in field theory to the

fermion/boson lines and coupling vertices (as explored briefly in Chapter 2). In

general, the functions Pi j encapsulate this behaviour with indices that now run over

all flavours of (anti-)quark q and the gluon g (and as we shall see in Chapter 5, the

γ in QED) and describe the dependency of the PDFs on the scale Q2.

Heuristically, they may be considered as functions that “resolve” the higher

scale behaviour of the partons, in which a quark line “splits” to comprise a quark

and gluon. In fact, there are many such splittings possible, though at leading order,

the possible splittings correspond identically to the diagrams (including possible

rotations) given in Fig. 2.2 of the proceeding chapter.

Therefore, the more general form of the DGLAP equations, adopting the ⊗
convolution notation introduced in the preceding section and t ≡ lnQ2, is:

∂ fi

∂ t
= ∑

j=q f ,q̄ f ,g
Pi j⊗ f j, (3.14)
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where the sum runs over all appropriate flavours of quark, antiquark and gluon.

Henceforth, we shall refer to the PDF for a given parton, simply using the notation

for the relevant parton, e.g. fq(x,Q2)→ q(x,Q2). Typically, the splitting functions

are calculated to a given order in QCD, which for a consistently renormalised def-

inition of a total cross section (e.g. Eq. (3.12)), should match the order in which

the hard process is calculated. The leading order expressions for the quark splitting

functions are given below:

Pqq =CF

[
1+ x2

(1− x)+
+

3
2

δ (1− x)
]
, (3.15)

Pqg = TR
[
x2 +(1− x)2] , (3.16)

Pgg = 2CA

[
x

(1− x)+
+

1− x
x

+ x(1− x)
]
+

(
11
6

CA−
4
6

nFTR

)
δ (1− x), (3.17)

Pgq =CF

[
1+(1− x)2

x

]
, (3.18)

where CF = 4/3, CA = 3 and TR = 1/2 are factors associated with the SU(3) algebra

of QCD and nF the number of quarks whose mass obeys the condition mq > Q

for the scale being considered and δ (x) a Dirac delta function. The subscript +

meanwhile, refers to a prescription commonly found in splitting functions, i.e. at

NLO and NNLO in QCD:

∫ 1

0
dx

f (x)
(1− x)+

=
∫ 1

0
dx

f (x)− f (1)
1− x

. (3.19)

In general, an inspection of the form of Eq. (3.14) shows that the evolution

of the partons, q, q̄ and g, in DGLAP are in fact coupled differential equations.

That is, the splittings associated with a given distribution give rise to changes and

contributions to other parton distributions and vice versa.

Furthermore, at higher orders, the splitting kernels are modified, simply by

linearly adding the contributions from higher order splittings, such that the Pi j (such
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as Pq j in Eq. (3.14)) are extended in the following manner:

Pi j =
αS

2π
P(1)

i j +(
αS

2π
)2P(2)

i j +(
αS

2π
)3P(3)

i j + ... (3.20)

where in this instance the superscript denotes the order in QCD. When introducing

QED, we shall find that Eq. (3.20) is extended in a virtually identical manner, with

the processes that determine the splitting kernels being those of QED, or mixed

order (with internal lines that contain both photons and gluons).

Since the PDFs denote the fractional momenta distributions carried by each

flavour of parton, their evolution should be subject to the constraint that integration

of their sum should yield 1. In fact, the splittings are naturally seen to observe the

so called momentum sum rule. Introducing the notation Σ = ∑i=u,d,s,c,b qi(x,Q2)+

q̄i(x,Q2), we obtain: ∫ 1

0
x(Σ(x,Q2

0)+g(x,Q2
0)) = 1. (3.21)

In later chapters, we shall see how this equation is modified upon the inclusion

of the effects of target mass corrections, higher twist contributions, QED and more

specifically the inclusion of the photon distribution. In the next chapter, we cover in

more detail how the PDFs themselves, f (x,Q2), are determined from experimental

measurements and their uncertainties produced.

Lastly, superseding the notion of isospin, the flavour of the quarks and their

content in the hadrons is seen to provide the necessary quantum numbers to explain

the properties of the proton and neutron (under the assumption that the charges

of the u and d quarks are eu = 2/3 and ed = −1/3, respectively, in units of the

electron charge). Defining the “valence” distribution for a particular flavour as qV =

q− q̄, and denoting the proton and neutron as (p) and (n) respectively, the PDFs are

subject to the exact constraint:

∫ 1

0
uV,(p)(x)dx =

∫ 1

0
dV,(n)(x)dx = 2,∫ 1

0
dV,(p)(x)dx =

∫ 1

0
uV,(n)(x)dx = 1,

(3.22)
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known as the flavour sum rules. The nature of the valence distributions between the

proton and neutron is explored more thoroughly, with the added consideration of

the effects of QED, in Chapter 7.



Chapter 4

Parton Distribution Functions

Having introduced the Parton Distribution Functions (PDFs) in the context of DIS

scattering and proton-proton collisions, we now look to how one determines the

PDFs from empirical observations, separated by their flavours, and how their un-

certainties are calculated, in the framework of pure QCD splitting kernels. In this

chapter, and for the remainder of the thesis, we shall restrict our attention to unpo-

larised PDFs.

4.1 The Determination of PDFs
As mentioned in the previous chapter, the ability to express the cross sections for

DIS and other scattering events in terms of their explicit dependence on the PDFs,

such as in Eqs. (3.9) and (3.12), allows one to determine their values, f (x,Q2), at

given regions in x and Q2. Furthermore, the universality of the PDFs related by

different scattering processes yields multiple constraints on the same distributions,

improving the accuracy of their determination.

Typically, one considers the u,d,s,c and b flavour quark (q) and antiquark (q̄)

distributions within the proton, where the top, t, is generally excluded at the centre

of mass collision energies considered here. This is because its large mass (m2
t >>

m2
p) generally prohibits its production through splitting kernels from the gluon g→

gt (the only QCD sensitive parton capable of generating a top distribution at LO),

though some studies [68, 69, 70] have investigated the phenomenology associated

with its presence at large centre of masses, such as those of potential future colliders
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Process Subprocess Partons x range
l±p,n→ l±X γ∗q→ q q, q̄,g x & 0.01
l±n/p→ l±X γ∗d/u→ d/u d/u x & 0.01
pp→ µ+µ−X uū,dd̄→ γ∗ q̄ 0.015 . x . 0.35
pn/pp→ µ+µ−X (ud̄)/(uū)→ γ∗ d̄/ū 0.015 . x . 0.35
ν(ν̄)N→ µ−(µ+)X W ∗q→ q′ q, q̄ 0.01 . x . 0.5
νN→ µ−µ+X W ∗ s→ c s 0.01 . x . 0.2
ν̄N→ µ+µ−X W ∗ s̄→ c̄ s̄ 0.01 . x . 0.2
e±p→ e±X γ∗q→ q g,q, q̄ 10−4 . x . 0.1
e+p→ ν̄X W+{d,s}→ {u,c} d,s x & 0.01
e±p→ e±cc̄X ,e±bb̄X γ∗c→ c,γ∗g→ cc̄ c,b,g 10−4 . x . 0.01
e±p→ j+X γ∗g→ qq̄ g 0.01 . x . 0.1
pp̄, pp→ j+X gg,qg,qq→ 2 j g,q 0.00005 . x . 0.5
pp̄→ (W±→ l±ν)X ud→W+, ūd̄→W− u,d, ū, d̄ x & 0.05
pp→ (W±→ l±ν)X ud̄→W+,dū→W− u,d, ū, d̄,g x & 0.001
pp̄(pp)→ (Z→ l+l−)X uu,dd, ...(uū, ...)→ Z u,d, ...(g) x & 0.001
pp→W−c,W+c̄ gs→W−c s, s̄ x & 0.001
pp→ (γ∗→ l+l−)X uū,dd̄, ...→ γ∗ q̄,g x & 10−5

pp→ (γ∗→ l+l−)X uγ,dγ, ...→ γ∗ γ x & 10−2

pp→ bb̄X , tt̄X ggb̄, tt̄ g x & 10−5,10−2

pp→ exclusive J/ψ,ϒ γ∗(gg)→ J/ψ,ϒ g x & 10−5,10−4

pp→ γX gq→ γq,gq̄→ γ q̄ g x & 0.005

Table 4.1: A list of the processes (as outlined in [65]) whose experimental measurements
have yielded constraints on the PDFs, provided with the flavour of parton and the
approximate range in x that is constrained. The sub-process column describes
the internal Feynman diagram that probes the partons. The upper, middle and
lower segments of the table are categorised by fixed target, ep and hadron-hadron
collider experiments, respectively. In this table, j indicates the production of a
hadronic jet. Note that lepton production in proton-proton collisions provided
(weak) constraints on the photon PDF, γ , whose role is discussed more promi-
nently in subsequent chapters.

(e.g.
√

s = 100 TeV as proposed for a Future Circiular Collider).

In addition to the quarks, as mentioned previously, the gluon is also seen to

enter scattering processes with its own associated PDF, g(x,Q2) and may be con-

strained from similar processes. In Table 4.1 (adapted from [65]) we outline the

scattering processes that provide constraints to the PDFs, along with the partons

they constrain and the range in x to which they display the most sensitivity.

This table is separated into three groups that provide broad categorisations of

PDF sensitive scatterings: fixed target experiments (in which a probe impinges on a
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target stationary nucleus, N, or individual nucleon in the lab frame), high energy

electron-proton scattering in which both the lepton and hadrons are accelerated

in the lab frame, as performed by the HERA experiment, and proton-anti-proton

(Tevatron) or proton-proton scattering (LHC). At the time of writing, although only

experiments of the latter kind continue to be performed at high luminosity, the data

from HERA experiments (H1 and ZEUS) continues to provide some of the most

sensitive constraints on the PDFs, due to the fact that the uncertainties on the data

were low from a combination of high statistics and the ability to reconstruct final

state hadronic jets (in contrast to fixed target experimental designs) and the kine-

matics of the outgoing lepton probe (unlike hadron-hadron colliders).

For a given data point from an experiment, while typically able to provide data

for a given Q2, the cross sections are sensitive to a convolution of the PDFs that

involve an integral over a particular range in x, as indicated in Eqs. (3.9) and (3.12).

While at LO, (i.e. neglecting the effects of QCD and assuming the QPM), one may

suitably approximate the charge weighted sum of the PDFs as in Eq. (3.8), beyond

leading order one cannot strictly associate them with a given point in x (that is,

directly measure f (x,Q2) even indirectly) when considering scattering processes.

Furthermore, for the purposes of phenomenology, one often requires a contin-

uous representation of the f (x,Q2) in both variables. Finally to reduce the uncer-

tainty carried forward from experimental measurements to the PDFs themselves,

we also require a way of constraining the distributions in a global comparison to

the data, in order to best incorporate the information provided from it. This is of

particular importance, since hadron collider phenomenology is often constricted by

the uncertainties associated with PDFs [71].

The general methodology adopted by all major PDF sets (discussed in the next

section) is as follows. First, as noted in the previous chapter, one only needs to de-

termine the distributions at a given scale Q2
0, which we shall call the input or starting

scale, in order to relate them to higher (or lower) scales by “evolving” them via the

DGLAP equation. This allows data from a range of Q2 values to be incorporated

into a single fit to all available data.
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In order to provide a suitable representation of the PDFs in x space, one typi-

cally uses an ansatz solution in polynomial form. Parameterisations are often of the

form x f (x,Q2
0) = xa(P(x))(1− x)b, where the a,b... represent free parameters that

are fit by the data and P(x) represents a family of polynomials. Typically, PDF sets

use 14-28 such parameters (with the notable exception of NNPDF [72], discussed

in the next section), whose values determine the form of the PDFs during a fit and

whose tolerance to the data (i.e. the variation of the parameter values in a man-

ner consistent with a fit to the data) determine the uncertainties associated with the

PDFs. In the next section we will distinguish between two broad categorisations of

PDF uncertainties defined by the “Hessian” and “Monte-Carlo” strategies.

Note that at input, the c and b quark and antiquark distributions are not typ-

ically included for starting scales Q2
0 < m2

c ,m
2
b. This is because their production,

such as from the gluon PDF at low scales, g→ qq̄ at LO, is kinematically pro-

hibited due to their masses (for which reason we shall refer to them as “heavy”

flavours). Therefore, in many sets no parameterisation is provided for them, since

their appearance during evolution is determined from the splitting from other PDFs

and is therefore predicted from the determination of the other flavours. In doing so,

one must adopt a scheme for incorporating the quark masses into the evolution (and

coefficient functions for the purposes of comparison to data), which are discussed

in the next section. One may in principle include a separate “intrinsic” compo-

nent of the heavy flavour distributions, though investigation have shown that their

magnitude is likely to be small and not well determined [73, 74].

Broadly speaking, the determination of the PDFs from fits to data, which we

shall henceforth refer to simply as “fitting”, is conducted in the following manner:

• Define ansatz distributions for the PDFs, fi(x,Q2). These may be separated

by flavour, though for practical purposes related to the nature of the splitting

kernels Pi j(x) used in DGLAP evolution, linear combinations of partons that

fully span the space of flavours are often defined in ways that are efficient for

numerical integration.

• Evolve the PDFs using DGLAP evolution (outlined in the previous chapter)
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to produce values for the PDFs at given values for x and Q2. Although a per-

fectly continuous representation is not numerically feasible, by defining the

values at suitably densely spaced points in both variables, (typically logarith-

mically) one may then define interpolation routines that may provide values

at a given numerical accuracy for f (x,Q2).

• Use the coefficient functions associated with various processes (as outlined

in Table 4.1) Ci(x,Q2) or expressions for the differential cross sections dσ

to make predictions against data provided from experimental observations

in the appropriate kinematic regions. The order to which the processes and

differential cross sections are calculated are generally made to match the order

to which the splitting kernels are calculated (as in Eq. (3.20)). This then

defines the “order” of the PDFs (which are typically calculated at LO, NLO

and NNLO in QCD).

• Calculate the χ2 (which we shall give an explicit form for in Section 4.3) fit

to the data for the given PDFs.

• Repeat the above steps for small variations of the PDF parameters in order to

locally estimate ∂ χ2/∂ai, where the ai represent the free parameters in the fit

(except in the case where an optimisation scheme is performed by alternative

means, say a genetic algorithm, as covered in the next section).

• Use local information estimating the gradient of the χ2 in order to minimise

the χ2, by the use of an appropriate optimisation scheme.

The parameters found to minimise the χ2 are then adopted as the best fit values

which then define the “central” curves for the PDFs at the input scale, and serve as

the input distributions to DGLAP evolution to extend the PDFs into all ranges in Q2.

The uncertainties are then produced in a similar manner, where sufficient variation

in fit, ∆χ2, is used to define PDF uncertainties. Since each free parameter induces

an independent component of uncertainty, a range of PDF uncertainty bands are

calculated. Since the parameters may be correlated in the fit (as discussed in the next



4.2. Overview of Modern Sets 67

section), one first diagonalises the covariance matrix associated with the parameter

uncertainties in order to determine “eigenvector” directions within the parameter

space for independent uncertainties. The final uncertainties are then calculated from

a sum in quadrature of the independent uncertainty contributions.

Several groups have been involved in the determination of the PDFs using the

method outlined above. In the next section we provide a brief overview of the most

widely used sets, and the differences in their methodologies.

4.2 Overview of Modern Sets

The main distinguishing factors between modern PDF sets are the choice of data that

are incorporated into the fit, the parameterisation of the input PDFs, the methods by

which the DGLAP evolution and fit are performed and subsequently how error sets

are produced. While PDF sets exist that focus on data available from a particular

experiment or types of scattering process (restricting the fit to a subset of processes

from Table 4.1), such as the HERAPDF [75], in this section we shall restrict our

attention to the most widely used PDF sets that perform global fits (for a more

relevant like-to-like comparison with the MMHT framework). Furthermore, many

of these groups have provided sets with QED corrections, which shall be the focus

of subsequent chapters.

In the following discussion, the broad details of the parameterisation, the “Hes-

sian” approach to determining error sets based on polynomial form inputs will apply

to the ABMP [76], CT [77] Collaboration and MMHT [78] collaboration sets. The

notable exception is NNPDF [72], whose formulation based on a “Neural Network”

approach we shall discuss separately, differing from other sets in their parameter-

isation, the form of producing error sets and the manner in which their DGLAP

integration is performed.

First we outline the most common method for the parameterisation and the

production of uncertainties for PDF sets. As mentioned in the previous section, a

polynomial parameterisation is typically adopted with linear coefficients and certain

exponents serving as free parameters of the fit. We shall provide a more specific
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example in the next section. Each parameter, ai, then serves as source of uncertainty,

though not independently. As discussed in the previous section, during the fit one

obtains a matrix of how the χ2 changes as a function of varying the parameters and

their correlations, known as the Hessian matrix Hi j = 1/2(∂ 2χ2/∂a j∂ai).

It is by diagonalising the Hessian matrix that one may obtain the eigenvectors,

consisting of linear combinations of the parameters ai, that represent independent

uncertainty contributions to the PDFs. We note that in the case of MMHT, while the

PDFs have 36 free parameters in principle, practically speaking some parameters

become very highly correlated in the fit, such that the diagonalisation procedure is

numerically unstable. In particular, certain parameter combinations are seen to be

very tightly and non-linearly constrained by the data, with negligible uncertainties

(described by the tolerance condition below). In this case, a certain number of

parameters, while left free in the initial fit, are fixed when producing the eigenvector

uncertainties (such that there are 25, rather than 36 eigenvector directions).

The uncertainties on the PDFs are then obtained by creating a “tolerance” con-

dition for the confidence interval, T = ∆χ2
global , i.e. a variation in the “goodness

of fit” (heuristically speaking) that encompasses a 1σ (68%) confidence limit. The

standard parameter fitting criterion would yield T = 1 as the condition for a 1σ level

uncertainty band. However, in practice, when fitting to many disparate datasets in

tension with one another, one has to adopt a “dynamic” scheme (which we provide

more details about in the next section), in which the tolerance, T , must be increased,

T > 1 to provide sufficient variation in the fit to the data for a 68% confidence inter-

val (typically in the region of T ∼ 3). This then provides the magnitude by which

the eigenvectors, e, (in the space of parameters with independent uncertainty con-

tributions) must vary to produce the uncertainty bands. In particular, parameter

displacements away from the best fit (the values seen to minimise the χ2) values,

a0
i , may be expressed as:

ai−a0
i =

n

∑
k=1

eikzk. (4.1)

The zk determine the magnitude of the variation from the best fit values in the pa-

rameters. The condition for variation within the tolerance (to generate uncertainty
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PDF collaboration Polynomial form Number of free parameters
MMHT Chebyshev 36
CT Bernstein 28
ABMP Generalised 25

Table 4.2: A list of the major Global fit PDF collaborations (excluding NNPDF whose pa-
rameterisation is distinct), the polynomial parameterisation form adopted in their
fits and the number of free parameters in each. For the ABMP parameterisation,
more details may be found in their paper [76]. Note that the number of parame-
ters may differ between sets since the fit quality depends jointly on the form of
the initial polynomial being fit, the number of free parameters, the data being fit
to and the fitting procedures themselves, which differ as described in the main
text to provide a suitable fit while avoiding over-fitting.

bands) is expressed simply as ∑
n
k=1 z2

k ≤ T . It is often more convenient to define

this relation in terms of the parameters for the eigenvector pairs, S±k (where the ±
indicates that each parameter generates two eigenvector sets representing a positive

and negative variation in the eigenvector space) that is, the values of the PDFs at the

uncertainty bands defined by our tolerance scheme:

ai(S±k ) = a0
i ± teik, (4.2)

where the t is adjusted to give the desired T (and in the approximation that the

χ2 is a quadratic function of the parameters ai is simply t ' T , though this is not

universally true in practice [79]).

The parameters themselves (with respect to the form of the input PDF parame-

terisation) are chosen by each group to provide suitable results after fitting, capable

of providing sufficient variation to produce reasonable uncertainty sets in line with

the data, without over-fitting. The exact form of polynomials chosen are typically

done with respect to a particular kind of polynomial provided at a given order in xn,

whose details for each of the three sets presently discussed, we provide in Table 4.2.

4.2.1 NNPDF

The procedure of fitting, as described in the previous section, is an iterative process

that involves changes in the input PDFs, (Q2 = Q2
0 ∼m2

p), which are then related to

the data by first evolving the input PDFs to all relevant regions in Q2 via DGLAP
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evolution and then calculating the appropriate cross sections for the process being

considered. The former of these steps relies extensively on the convolution of the

PDFs with the splitting kernels Pi j, as in Eq. (3.13). Since the PDFs are typically

only defined by discrete points in x, an appropriate numerical scheme is needed to

approximate this integration (which due to the relatively smooth nature of the PDFs,

may be performed to a high degree of accuracy).

However, we note that in principle, the integration need not be performed in

x space. Although the initial parameterisation is given in x space, one then may

also transform the PDFs and splitting kernels into Mellin N space, defined by the

following relations:

f (N,Q2) =
∫ 1

0
dxxN−1 f (x,Q2),

γi j(N,Q2) =
∫ 1

0
dxxN−1Pi j(x,α(Q2)),

(4.3)

where the Mellin N space transformations of the splitting kernels γi j are known as

the “anomalous dimensions”.

In Mellin space, the DGLAP equations then resemble the form:

Q2 ∂

∂Q2 f j(N,Q2) =
αS(Q2)

2π
∑

i
γ ji(N,Q2) fi(N,Q2). (4.4)

Note that γi j(N,Q2) is not, as evidenced by the indexing, the photon PDF in

a Mellin space representation, but the anomalous dimension as defined above. In

certain contexts, the Mellin space evolution may be more practical to perform since

the resemblance to a first order differential equation allows for analytically defined

PDF distributions to be exponentiated (loosely speaking) by the anomalous dimen-

sion, ∼ eγi j , rather than having to perform computationally expensive convolutions.

The PDFs themselves may then be simply obtained by performing the inverse trans-

formation of Eq. (4.3).

This is the approach adopted by NNPDF, whose other distinct difference we

highlight for the remainder of this section. First, we note that rather than using a

purely polynomial parameterisation NNPDF instead defines input PDFs in terms
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of a Neural Network (NN), NNi(x), a graph of connected, computational elements

(“neurons”) with many parameters capable of providing a flexible representation of

the PDFs. With a simple polynomial term, known as the preprocessing exponents

(included to speed up the fit), their inputs are then given as:

fi(x,Q2
0) = Aix−αi(1− x)βiNNi(x). (4.5)

Gradient based approaches for many parameter models such as NNs are often

computational expensive to execute for the purposes of a fit. Therefore, in order

to minimise the χ2 to a suitable degree (without over-fitting, discussed below), a

genetic algorithm approach is adopted, in which the parameters of the network are

coded into a sequence of variables, which are then randomly generated and “bred”

(by suitably merging their strings of values for the parameters in the network) and

selected over successive generations.

Since the NN’s number of free parameters is an order of magnitude larger

than those of Hessian based PDFs, in order to prevent over-fitting, the data used

in the calculation of the χ2 is split into training and validation sets, where the χ2

calculated from the training data is minimised, while monitoring the appropriate

change in the out-sample (validation data) χ2. When the reduction in the training

fit no longer leads to similar reductions in the validation χ2 (or indeed it begins to

increase), the minimisation with respect to the former is halted, yielding a set of

parameters for the network.

Finally, errors in the NNPDF formulation are produced in the “Monte-Carlo”

fashion rather than the Hessian approach outlined above. In this strategy, the pa-

rameters of the PDFs are not systematically varied about the value of best fit but the

data themselves are varied subject to their associated errors about their own central

values (in a Gaussian manner) to create replica data-sets. The PDFs are then fit to

each of these replica data sets to produce many variations of the PDFs, which are

then averaged, with the standard deviation of the PDF replicas used to define the

uncertainty bands for the PDFs.

Recently, it has been shown that the Hessian and Monte-Carlo approach to PDF
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error generation have a correspondence to one another, and that the two representa-

tions of the PDFs may in fact be related to one another [80]. A Monte-Carlo pro-

duced set of PDFs, such as NNPDF, may be converted into a Hessian representation

by using a sample of the Monte-Carlo PDFs to determine the parameter variations

needed (as in Eq. (4.1)) for each eigenvector direction in parameter space and vice

versa [81]. Furthermore, converting one set to the other and back reproduces the

initial PDFs to a good degree of correspondence, demonstrating the robustness of

this method. Therefore, one may freely relate the error sets produced by one method

to the other, with a good agreement seen between the two approaches.

4.3 MMHT Framework
The broad features of the MMHT approach to PDF fitting, (polynomial parameter-

isation, a Hessian approach to uncertainties and x-space DGLAP evolution) were

given in the previous section. Here we elaborate on the precise methods used at

each step.

The partons are parameterised solely at the input scale, the majority of which,

as discussed in section 2.1 of [78], are based on an expansion of Chebyshev poly-

nomials (TCh
i (y)). These have the convenient property of Ti = 1 for y = ±1 and

vary in such a way that in the fit the ai are seen to be well behaved (and small in

magnitude), producing smooth PDFs that vary in the phenomenologically relevant

regions of x as outlined in Table 4.1 to produce a good fit (as studied in [82]):

x f (x,Q2
0) = A(1− x)ηxδ

(
1+

n

∑
i=1

aiTCh
i (y(x))

)
, (4.6)

with y = 1 − 2
√

x and n = 4. Distributions of this form are used for f =

uV ,dV ,S,(s+ s̄), where S denotes the light-quark sea distribution:

S = 2(ū+ d̄)+ s+ s̄, (4.7)

and the parameters A,η ,δ ,ai are all left free, determined simultaneously in the fit

to the data. An exception is the parameter A in the instance of the uV and dV distri-
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butions, where rather than being fit to data, it is determined by the valence number

rules (Eq. (3.22) of the previous section), since A is essentially the normalisation

constant of the entire distribution. The differences d̄− ū and s− s̄ are then provided

in a form with a reduced parameterisation (fewer free parameters), practically cho-

sen to reflect the inability of the data to constrain these distributions to a high degree

(outlined in section 2.1 of [78]).

In addition to this, the gluon is provided in a form similar to Eq. (4.6), but with

an additional term:

xg(x,Q2
0) = Ag(1− x)ηgxδg

(
2

∑
n=1

ag,iTCh
i (y(x))

)
+Ag′(1− x)ηg′xδg′ . (4.8)

This term is included since it has been found to significantly improve the qual-

ity of a global fit for the partons [83], and essentially provides more freedom for

the gluon at low x. In particular, ηg, η ′g, Ag and A′g are all correlated in the fit,

and are delicately balanced to provide the best fit for the gluon in this region. In

particular, while the former two terms tend to increase the gluon contributions at

low x, in the fit, the latter terms display a preference for reducing the gluon in the

same region and these effects cancel each other out to a degree during the fitting

procedure. However, unlike the other parameters Ag is not fit from the data but is

instead constrained solely by the conservation of momentum as given in Eq. (3.21).

As will be shown in Chapter 8, upon the introduction of QED effects the gluon

parameters can be artificially disrupted, leading to significant changes in the gluon

if the partons are not refit (discussed in more detail in Section 8.2). In total, the

MMHT parameterisation yields 36 free parameters, which after freezing the value

of 11 of them after determining the best fit (as described above, to ensure the stabil-

ity of the diagonalisation in parameter space) leads to 50 eigenvector variations for

the PDF uncertainties.

The Hessian matrix in the previous section was given as:

Hlm =
1
2 ∑

n

∂ χ2
n

∂al∂am
, (4.9)
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where the sum over n indicates the sum over data sets incorporated into the fit. In

the treatment of the χ2 itself as a measure of the “goodness of fit” of the PDFs,

one needs to incorporate the correlated errors associated with the data. Further-

more, systematic errors associated with the experiment in essence allow for nor-

malisations Nn of entire data sets to better align the predictions from the PDFs with

experimental observations. However, the change induced by such a normalisation

(1−Nn) must also be penalised in the fit (to prevent shifting all data in line with

the predictions and over-fitting).

To simultaneously accommodate all of these requirements, the χ2
n for a given

data set is defined, for data points Dn,i and theoretical predictions Tn,i({a}) (a func-

tion of the set of PDF parameters a) as:

χ
2
n (a,Nn) =

Npts

∑
i=1

(
D̂n,i−Tn,i({a})/Nn

σuncorr
n,i

)2

+
Ncorr

∑
k=1

r2
n,k +χ

2
Nn

, (4.10)

where χ2
Nn

= ((1−Nn)/σN
n )2 is a penalty term for normalisation against the 1σ

normalisation term for data set n, and analytic expressions for the best fit values of

rn,k may be found in section 5.2 of [79], where the statistic procedure is outlined in

greater detail (which in turn is adopted from [84, 85]).

This completes a definition for the Hessian (Eq. (4.9)) which is then minimised

with respect to the parameters using the Levenburg-Marquardt method [86, 87],

which used the information of the local gradients to incrementally reach a minimum.

During the evolution, at a given step in Q2, the PDFs are defined at 96 log-

arithmically spaced values of x. The integration procedure used to perform the

convolutions associated with DGLAP (Eq. (3.14)) is Gaussian-Legendre Quadra-

ture, in which an integral is approximated by the weighted sum of the function as

defined on several points:

∫
dx f (x)'

n

∑
i=1

wi(xi) f (xi), (4.11)

which holds to a good degree of approximation provided the number of points n is
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greater than the degree of a polynomial which can suitably approximate the function

being considered (or is greater than the degree of f (x) if it is already provided as a

polynomial).

A complete discussion of the coefficient functions, Ci(x,Q2) and differential

cross section dσ calculations used during the fit to make comparisons to the pro-

cesses provided in Table 4.1 is beyond the scope of the discussion provided here,

though is covered extensively in [79] and [78], where the details of the MMHT

(and predecessor set MSTW) are provided more extensively. However, in Chapter

10 we shall discuss the implementation of such a cross section calculation when

investigating photon-initiated Drell-Yan processes (fourth from the bottom in Table

4.1).

We conclude this Chapter by summarising the method in which the PDF sets

are stored and used in practical circumstances (for example, the calculation of a

cross section). As described above, in the MMHT framework, during the evolution

the PDFs are defined on 96 grid points in x space, which are then interpolated be-

tween when an intermediate value between those points is needed (for example, in

the calculation of a coefficient function) at a given Q2. Similarly, the DGLAP evo-

lution itself occurs incrementally in small, logarithmically spaced steps in Q2 with

the PDFs being defined at fixed points in both variables, x f (x,Q2).

Since the values are only stored computationally at fixed points, the final PDF

is represented as a grid of values at pre-defined points in x and Q2, referred to

simply as a “grid”. There is typically one such grid for the central values of the

PDFs as defined at input and their subsequent evolution, and one extra grid for

every eigenvector direction determined by the independent uncertainties (50 in the

case of MMHT). The set of grids is what is known as the “PDF set”.

In order provide a consistent manner in which such grids may be used by dif-

ferent software tools designed for cross section calculations, as well as providing

a standardised means of re-interpolating from grids to continuous representations

of the PDFs, modern grids are defined in a format consistent with LHAPDF6 [88],

a software package that provides an interface in Fortran and C++ for obtaining
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f (x,Q2) and its associated uncertainties from the PDF grids.

Provided a grid is supplied in the correct format, LHAPDF6 also provides con-

venient methods for producing PDF uncertainties. The final output from this thesis

is provided as a set of grids in the LHAPDF6 format, as discussed in Appendix B.

With a discussion of the general approach to PDF determination, for the case

of pure QCD splitting kernels, in place, we may now extend our discussion to the

inclusion of the effects of QED within the evolution itself, which is the focus of the

next chapter.



Chapter 5

The Inclusion of QED

Having laid the theoretical and practical foundations for the PDFs (in the case of

pure QCD DGLAP evolution), we now consider the effects of QED and the various

strategies one may implement to incorporate its effects into the determination of the

PDFs, beginning with a brief summary of the motivations to pursue this goal. We

note that in Chapter 2, the gluon was brought into consideration as a parton with

its own associated distribution under the theoretical framework that QCD provided,

where processes at various orders in perturbative field theory (in modern sets, up to

NNLO) provided scaling corrections and determine the form of DGLAP evolution.

In particular, the gluon emerges by extending the pure quark model of hadrons

to include diagrams such as the left-hand side of Fig. 2.2 (where a quark is seen

to emit a gluon at LO). Furthermore, in Chapter 2, we highlighted that at LO, the

emission of a gluon, up to coefficient terms related to the gauge symmetries, is di-

agrammatically identical to that of photon emission in QED. More generally, since

the quarks carry electromagnetic charge, QED processes, diagrams in which one of

the lines in the associated splitting diagram is a photon rather than a gluon, may

enter into the calculation of splitting kernels.

As mentioned in Chapter 3, technically the order to which the splitting kernels

are calculated should match the order in which the cross section for the process

being studied (in a hadron-hadron collision or DIS for example) is being calcu-

lated, e.g. NLO QCD PDFs for a process calculated to NLO in QCD. Although

the pure QCD kernel PDFs have been a reasonable approximation in most cases
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until present, as the accuracy of cross section calculations and experimental pre-

cision has become ∼ O(α), with electroweak corrections being applied to cross

section calculations, the effects of QED have needed to be incorporated. Extend-

ing the splitting kernels to include QED effects, though the calculations themselves

require the effort generally involved in the determination of higher order Feynman

diagrams, is straightforward to comprehend from a theoretical perspective, in light

of the discussion above.

As we shall discuss at greater depth in Chapter 6, splitting kernels have been

developed at O(α), O(ααS) and O(α2) [20][21], which are straightforwardly in-

corporated into the DGLAP evolution frameworks of modern PDF sets. However,

as noted in the previous chapter, the evolution of the partons to all phenomenologi-

cally relevant regions of x and Q2 involves an initial set of PDFs, constrained from

the data (as in the processes given in Table 4.1). Therefore, one must include the

photon, γ , as an independent PDF distribution at input, xγ(x,Q2
0), which must be

evolved and coupled to the other partons for a fully consistent set of QED evolved

PDFs.

As well as providing the necessary accuracy in the partons for electroweak

processes in hadron scattering events, as mentioned in the introduction to this thesis

and explored in Chapter 9, by including the photon (in both its elastic and inelastic

components, as explained below), we introduce the possibility for a growing land-

scape of phenomenology offered by photon-initiated (PI) processes, in which the

photon enters as either one or both of the incoming partons. Such processes may

be sensitive to investigation at the CoM energies of the LHC at present (13 TeV)

in proton-proton collisions, and will become more feasible to study in experimental

set ups such as those of the High-Luminosity LHC.

Examples of such processes include electroweak boson pair production, top

quark pair production, Higgs boson production associated with a W boson and pho-

ton initiated Drell-Yan at low (Mll � MZ) and high (Mll � MZ) dilepton masses,

which are illustrated in Fig. 5.1. At time of writing, the most recent investigation

[90] of the relative difference to cross sections induced by these processes (from
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Figure 5.1: Feynman diagrams illustrating examples of photon initiated (PI) processes. Top
Left: electroweak vector boson pair production from the γ-γ channel; Top
Right: tt̄ production from γ-g scattering; Bottom Left: Higgs production with
an associated W boson from γ-q scattering; Bottom Right: photon initiated
Drell-Yan (discussed in greater depth in Chapter 9).

that of the NNPDF3.1luxQED PDF set, which as will be shown in Chapter 8, bears

a strong resemblance to the γ(x,Q2) distribution developed in this thesis) are given

in Table 5.1. All PI processes shown are expected to have some experimental sensi-

tivity for a given region in phase space with the exception of tt̄ production. This is

because it is most sensitive to the high x content of γ(x,Q2), which we shall show

in later chapters is proportionally very small in comparison to the other parton con-

tributions. In Chapter 9, we shall demonstrate this more thoroughly for the case of

high mass Drell-Yan.

Having motivated the need to produce QED corrected PDFs, we now focus

the remainder of this chapter on the determination of the input distribution for the

photon, xγ(x,Q2
0) and how it differs from that of the other partons. Since, as shown

in Table 4.1, only one process (Drell-Yan) is weakly sensitive to the γ(x,Q2) dis-

tribution in the fitting process at high x, alternative approaches have typically been

used to determine its initial distribution, in contrast to that of the other PDFs. A

brief summary of the history of photon PDFs is provided below.
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Anticipated experimental sensitivity to photon-induced sub-processes
Process Cross Section

Variables
Relative change
to cross section

PDF uncertainty

High mass VV
production

MWW , pW
T ∼1-35% ∼1-5%

Top pair produc-
tion

Mtt , ptt
T ∼ 10−5 ∼ 10−2

Higgs + W PH
T ,|yh| ∼2-5% ∼1-3%

Low mass Drell-
Yan

Mll ,|yll| ∼3-4% ∼1%

High mass Drell-
Yan

Mll ,|yll| ∼1-6% ∼0.5-35%

Table 5.1: A table documenting various processes with PI contributions, the variables that
the cross section is dependent on, the relative change in the cross section in-
duced by PI contributions and, for comparison, the uncertainty associated with
the PDFs in the relevant range for PI contributions [90].

5.1 The Photon as a Parton
While QED provides a description of the production of photons from individual

quarks, the development of a theoretically well determined photon PDF distribution

requires a slightly broader framework than that provided solely from DGLAP and

the relevant QED splitting kernels.

First, as alluded to in Chapter 2, the photon itself arises as from the canon-

ical quantisation of the fields, where the photon is associated with the (emergent

from electroweak symmetry breaking) Aµ field of QED. This picture suggests that

any source of an electromagnetic field may equivalently be considered as a source

of photons, with the relevant field strength defining an increased flux of photons.

This picture was formalised by Weizsacker [91] and Williams [92] (who in turn

adapted work from Fermi [93]), which came to be known as the equivalent photon

approximation (EPA).

In such a framework, any source of charge is a source of photons that may

contribute to a scattering process. This observation leads to one of the primary dis-

tinguishing features of the photon PDF. We noted in Chapters 2 and 3 that the nature

of confinement inside hadrons due to QCD is such that isolated quarks and gluons

are not observed and that their individual, point-particle like nature is only appar-
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ent at high energy scattering processes. Because the proton carries no “net” QCD

colour charge, to be sensitive to the colored partons, such processes are necessarily

inelastic1, and leads to the proton disassociating into a jet of hadrons.

This need not be true for the photon, since the proton carries net, non-zero

electromagnetic charge, producing a net electromagnetic field flux. Using the EPA,

one can associate the presence of this electromagnetic field with a density of photons

whose kinematic distribution acts as an effective photon PDF that enters into the

calculation of cross sections in proton-proton collisions where the incoming lines

of the internal process are photons. Such was the approach adopted by Budnev et

al [94], to calculate cross sections such as those for lepton production from photon

photon scattering between protons [95] (the lower right hand side of Fig. 5.1).

Therefore, as well as the “intrinsic” photon component that arises from

DGLAP evolution, there exists a photon component that is in some sense “ex-

trinsic” to the proton. A clearer distinction between these two contributions is to

distinguish the photon distributions by the final state of the proton in the scattering

process. One associates the photon flux associated with elastic photon scattering,

simply as the “elastic” component of the photon, while inelastic proton scattering

defines the “inelastic” component of the photon flux. This terminology, specifically

in referring to the two components of the photon PDF, γ(el) and γ(inel), will be used

for the remainder of this thesis.

Further clarification will be given below, but here we highlight that in general,

the input distribution xγ(x,Q2
0) is generally modelled by considering how the pho-

ton density arises from either the point charges of the charged quarks themselves,

the proton in its entirety, or by considering the exact nature by which the photon

enters into scattering processes. The latter approach, which requires experimen-

tal determination from structure functions rather than phenomenological modelling

from the existing PDFs, has proven in recent years to be the most reliable and least

1Note that this does not mean that only inelastic scattering processes are sensitive to the QCD
nature of the proton, as the exchange of net colour-neutral QCD objects may occur, as in Pomeron
exchange, where both protons may scatter elastically. However, in such a case, one cannot treat the
incoming line of the scattering process as an individual quark or gluon, as in the Feynman diagrams
shown in previous chapters.
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susceptible to theoretical and experimental uncertainty. However, for the purposes

of completeness and comparison, we provide a brief overview of the former ap-

proaches below.

5.2 Previous Determinations
The earliest publicly available QED corrected PDF set was that of MRSTQED04

[12]. In this framework, which extended the MRST PDFs, as well as the inclu-

sion of LO QED splitting kernels in the PDFs, the input photon distribution at Q2
0

= 1 GeV2 was considered to arise radiatively from the valence quark distributions.

Specifically, a leading-logarithm approximation was used, which yielded the fol-

lowing expression for the photon at input:

γ(x,Q2
0) =

α

2π

[
4
9

log
(

Q2
0

m2
u

)
u0(x)+

1
9

log
(

Q2
0

m2
d

)
d0(x)

]
⊗ 1+(1− x)2

x
, (5.1)

where the u0 and d0 are “valence-like” distributions for the proton that satisfy the

flavour sum rules
∫ 1

0 dxu0 = 2,
∫ 1

0 dxd0 = 1. This expression also retains a depen-

dence on quark masses, mu and md , which determine the scale from which the

quarks are taken to radiate in the leading-log approximation. Since the quarks are

not observed as free particles, (and masses in QFT are technically renormalised

parameters), one may consider two approaches to accounting for these parame-

ters. The predominant approach used was the “current” mass scheme, in which the

quark masses are assumed to be light, in line with predictions from lattice QCD

(the choices used in MRST were mu = 6 MeV, md = 10 MeV). Alternatively, one

can consider the quark masses in the low energy picture in which the valence quarks

are the dominant contribution to the proton’s binding energy, the “constituent” mass

scheme (mu ' md ' 300 MeV). In practice, the difference between choices for the

quark masses was negligible for the overall fit quality of the partons, though the

current mass choice was theoretically favoured since in principle, a radiative QED

process should be largely insensitive to the strong scale binding energy of QCD

(which is essentially the mechanism of generating large masses in the constituent

mass framework).
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Figure 5.2: Left: the MRSTQED04 partons [12] at Q2 = 20 GeV2. Right: the CT14QED
partons [13] at Q = 3.2 GeV.

This set also introduced an approximation for a QED corrected neutron PDF

(discussed in greater detail in Chapter 7), using the assumption that charge sensi-

tive splitting functions would create differences in the uV and dV valence distribu-

tions, such that isospin symmetry between the hadrons (e.g. uV,(p)(x) = dV,(n)(x))

was broken. In combination, the isospin violating neutron and proton PDFs were

seen to reduce the sin2θW NuTeV anomaly [22] from a ∼ 3σ →∼ 2σ discrepancy.

The photon PDF itself was validated by considering the LO sub-process of QED

compton scattering eγ → eγ in ep scattering with data measured from the ZEUS

collaboration [97], and was shown to have modest agreement, with the current mass

photon providing a slightly better fit, though the uncertainties on the measurement

and the theoretical uncertainties (taken from a conservative variation of the PDF

scale, Eγ

T/2 < Q < 2Eγ

T ) were both relatively large.

Considering a similar approach, the CTEQ14QED [13] set generalised the

MRST approach with a method that was independent of the quark mass choices.

Instead, it relied on a more general parameterisation which absorbed the mass de-
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pendency into normalisation constants Ai = lnQ2
0/Q2

i :

γ(x,Q2
0) =

α

2π

[
4
9

AuuV (x,Q2
0)+

1
9

AddV (x,Q2
0)

]
⊗ 1+(1− x)2

x
, (5.2)

with Q2
0 = 1.295 GeV2.

Rather than attempting to determine a precise mass scale from which the ra-

diation occured, the CTEQ parameterisation constrained the normalisation of the

photon PDF by first taking the assumption that Au = Ad and then noting that in fact

the normalisation may be determined by considering the overall momentum carried

by the photon at input: pγ

0 =
∫ 1

0 xγ(x,Q2
0). This was done by considering an O(α)

corrected cross section for the Compton scattering sub-process at ZEUS used by the

MRST set for validation, to determine a best fit value of pγ

0 = 0.14. This PDF bore

a resemblance to that of MRSTQED04, but was better able to determine an uncer-

tainty for the photon PDF, making use of improved theoretical calculations for the

Compton scattering sub-process used in the fit.

While both MRSTQED04 and CTEQ14QED, illustrated in Fig. 5.2, relied on a

phenomenological model, based on radiative production from the quarks, other ap-

proaches were pursued independently by groups who sought to constrain the photon

PDF in an unbiased way purely from the data, described in the next section.

5.3 Approaches based on fitting to high-mass Drell-

Yan Data
The previously described approaches relied on phenomenological models based on

quark radiation. As such, the xγ(x,Q2) distributions associated with these sets cor-

respond to the γ(inel) distributions, since no provision was made for elastic proton

scattering. In determining xγ(x,Q2) from data, one is in principle determining the

entirety of the photon PDF γ = γ(inel)+ γ(el), since typically the data used (Drell-

Yan and DIS) does not distinguish between the state of the proton post-scattering.

However, although these approaches implicitly encompass the elastic component,

in contrast to the MRST and CTEQ sets, as described below, they are susceptible to
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large uncertainties.

The NNPDF2.3QED set [14] aimed to determine xγ(x,Q2) in a manner analo-

gous of that to the other partons, providing a general ansatz at Q2
0 = 2 GeV2, in the

form of the output from its neural network (modified by a pre-processing compo-

nent):

γ(x,Q2
0) = (1− x)mγ x−nγ NNγ(x), (5.3)

where 1 ≤ mγ ≤ 20 and −1.5 ≤ nγ ≤ 1.5 are preprocessing exponents that are se-

lected from uniform distributions for each PDF replica in the NNPDF scheme.

The processes used to constrain the photon in the fit consisted of QED correc-

tions to DIS (in which the photon enters as an initiating parton, which subsequently

radiates a quark to reproduce the LO DIS diagram for quark-photon scattering,

where the latter photon is the internal line between the quark and the lepton probe)

and Drell-Yan, which as briefly described above (and elaborated on in Chapter 9) is

one of the processes sensitive to photon initiated processes.

Although unbiased (since its ansatz assumed no theoretical prior on the pho-

ton’s production at input), the low sensitivity of both of these processes were only

able to weakly constrain the xγ(x,Q2), with the fit subsequently generating large

uncertainties, particularly at input and at low Q2 (O(100%)). At higher Q2 scales,

xγ(x,Q2) also displayed systematic differences from those of MRST04QED and

CTEQ14QED, particularly at low x as shown in Fig 5.3, which was in large part

found to be due to the manner in which the DGLAP evolution was performed

(in the Mellin space convolution). For the initial NNPDF2.3QED set, the QCD

and QED anomalous dimensions being applied successively to the PDF distribu-

tions, ∼ eγ
(QED)
i j eγ

(QCD)
i j f j(N,Q2), rather than jointly eγ

(QED)
i j +γ

(QCD)
i j f j(N,Q2), leading

to O(ααS) differences.

A similar approach based on constraining xγ(x,Q2) from data was also under-

taken by the xFitter group [15]. In their analysis, a photon PDF was fit to high-mass

Drell-Yan di-lepton production data from ATLAS (
√

s = 8 TeV) [23], using the
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Figure 5.3: A comparison of the NNPDF2.3QED xγ(x,Q2) with that of MRST04QED at
Q2 = 104 GeV2, adapted from [14].

following ansatz:

xγ(x,Q2
0) = AγxBγ (1− x)Cγ (1+Dγx+Eγx2), (5.4)

for Q2
0 = 7.5 GeV2. Errors were produced with a Monte-Carlo approach and val-

idated by comparison to a Hessian approach with ∆χ2 = 1 uncertainty bands.

Though the uncertainties were found to be somewhat smaller than that of

NNPDF2.3QED, they were still found to be large relative to the other partons,

(∼ 30% for 0.02≤ x≤ 0.1).

In general, attempts to fit solely to photon initiated corrections to processes

such as Drell-Yan at hadron hadron colliders are susceptible to large uncertainties

due to the relatively modest contributions to the overall cross section, as well as an

absence of the sufficiently high experimental precision. However, in recent years,

another approach has been used that relies on fitting to experimental measurements

of a distinctly different category. Specifically, a new theoretical underpinning was

developed that associated xγ(x,Q2) with the internal photon line of DIS scattering

processes used in the measurement of nuclear form factors.
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Since the form factors themselves are experimentally well determined, photon

PDFs based on this approach have achieved at least a tenfold improvement in ac-

curacy compared to approaches such as those of NNPDF2.3QED and the xFitter

collaboration. These approaches will be the focus for the remainder of this chapter

and will provide the foundation for the xγ(x,Q2) developed in this thesis.

5.4 Approaches based on Nuclear Form Factors/LUX

Determination
As described at the beginning of this chapter, the most general form of determina-

tion for the photon PDF comes from considering how the equivalent photon density

arises from the charge weighted structure of the proton, from the equivalent photon

approximation.

Building on this approach, Glück et al [98] proposed a means of determining

the photon PDF based on measurements of nuclear structure, in a manner that sepa-

rated the γ(el) and γ(inel) components. This approach is predicated on the realisation

that the internal photon line in lepton-nucleon scattering (as shown in the central

portion of Fig. 3.1) is in essence the same as the photon PDF (the momentum

density of the photon flux that contributes to scattering processes).

This is justifiable from the fact that the factorisation theorem, which we have

previously stated is used to utilise the universality of nucleon scattering events in

order to better determine the same PDFs from disparate scattering process, also

applies to QED. In the following discussion, we shall generalise to consider both

the proton and neutron as the nucleon undergoing scattering.

While the xγ(inel)(x,Q2) in [98] was driven solely from quark radiation from

the partons, as in previous approaches, they considered an elastic contribution of

the following form:

− α

2π

∫ tmax

tmin

dt
t

{[
2
(

1
y
−1
)
+

2m2y
t

]
G2

E(t)+ τG2
M(t)

1+ τ
+ yG2

M(t)
}
, (5.5)

where t =−Q2 and τ =−t/4m2. In this way, the two components of xγ(x,Q2) were
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defined independently.

It should also be noted that the CTEQ14QED set also defined grids that dif-

ferentiated the γ(inel) from the total (which in turn could allow one to determine the

coherent component from subtraction). However, since the entire photon PDF was

fit from momentum normalisation to the ZEUS data, instead of phenomenologically

defining different forms for the inelastic and elastic components, they estimated the

inelastic component by imposing cuts on the ZEUS data to define the contribution

solely to γ(inel), 10−3 < x < 2×10−2 for 16<Q2 < 300 GeV2, with the γ(inel) being

found to carry 0.14% of the proton’s total momentum.

Martin and Ryskin [16] proposed the following form2 which more closely re-

sembled the nuclear form factor approach adopted by [98] for xγ(el)(x,Q2) :

γ
(el)(x,Q2

0) =
α

2π

[1+(1− x)2]

x

∫ |t|<Q2
0

0
dq2

t
q2

t

(q2
t + x2m2

p)
2 F2

1 (t), (5.6)

where qt is the transverse momentum carried by the photon and

t =
q2

t + x2m2
p

1− x
. (5.7)

F1 corresponds to the electromagnetic form factor for the nucleon under considera-

tion, though for the neutron the entirety of γ
(el)
(n) is taken to be 0. This is anticipated

since the neutron carries net 0 charge and therefore the net flux of electric field

across a surface encapsulating a neutron is also 0. In Chapter 7 we shall show that

although the net charge of the neutron is 0, its small electric and magnetic dipole

moments produce a contribution to γ
(el)
(n) , though substantially smaller than that of

γ
(inel)
(n) .

In essence, Eq. (5.6) is essentially the product of a convolution of the Pγq

kernel with the charge distribution of the proton in elastic scattering. The inelastic

component meanwhile, similar to that of [98], xγ(inel)(x,Q2), is adapted from the

phenomenological model of MRST04QED, but with an additional factor (1−F2
1 )

2Note that in their original paper, the terminology adopted is that of the coherent and incoherent
contributions.
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to express that the quark-generated contribution of the photon PDF is only relevant

in inelastic scattering processes:

γ
(inel)(x,Q2

0) =
α

2π

∫ 1

x

dz
z

[
4
9

uV (
x
z
,Q2

0)+
1
9

dV (
x
z
,Q2

0)

]
1+(1− z)2

z
×∫ Q2

0

|tmin|

dt
t−m2

q
(1−F2

1 (t)),
(5.8)

where

tmin =
x

(1− x)
(m2

∆− (1− x)m2
N), (5.9)

which accounts for the fact that the lowest energy possible nucleon excitation is

to the ∆ baryon isobar state. Since the lower bound of the dt integral induces a

convolution of the valence quark distributions below the starting scales, a scheme

is developed to linearly interpolate between the point-like quark approximation at

the lowest energy scales (e.g. uV (x) = uV,non−rel = 2δ (x− 1/3)) and the standard

valence input distribution, with a dependence on the effective mass of the quarks.

The full details may be found in [16], and one notes that in this scheme, γ(inel)

still involves a dependency on a phenomenological model based on radiative quark

emission.

Though this model was further developed in some respects (such as changing

the dependence on (1−F2
1 (t)) to (1−G2

E(Q
2)), where GE is the Sachs electric form

factor, which better models the probability for coherent photon emission in elastic

scattering), in subsequent papers [17] detailing the HKR photon set (as it came to

be known), the combination of theoretical and experimental uncertainties (carried

forward from nuclear form factor measurements), led to a ∼ 10−15% uncertainty

on the total photon PDF at input, reducing to ∼ 5% at higher scales.

The final removal of dependency on phenomenological modelling of radiative

emission from the quarks came with the LUXqed [19] formulation of xγ(x,Q2). In

their paper, they drew a more direct relationship between the internal photon line

in ep scattering processes and the photon PDF. Since the xγ(x,Q2) and subsequent

delineation into the γ(el) and γ(inel) components developed in this thesis are strongly

dependent on the form of this input, we reserve a more detailed discussion of this
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for the next chapter, where we discuss the LUXqed input distribution xγ(x,Q2
0) and

its contributions.

To close this chapter, we outline how their expression for xγ(x,Q2
0) is obtained.

In essence, they note that ep scattering may be equivalently considered as a scatter-

ing process, with a subprocess consisting of eγ , where the γ is precisely the photon

PDF of the nucleon under consideration. To make this more readily apparent, they

consider a fictitious lepton scattering process l+ p→ L+ p, where the lepton probe

(massless) transforms to a massive (ML >> ml ' 0) probe at the lepton vertex of

the standard DIS diagram. The details of such a process serve only as a framework

from which to use the factorisation theorem to draw the equivalency between the

photon line in a lepton probe scattering and the photon PDF.

In particular, they show that the cross section (based on definitions of the

hadron tensor of DIS phenomenology as discussed in Section 3) for this fictitious

heavy lepton production process is as follows:

σ =
c0

2π

∫ 1− 2xmp
M

x

dz
z

∫ Q2
max

Q2
min

dQ2

Q2 α(−Q2)[(
2−2z+ z2 +

2x2m2
p

Q2 +
z2Q2

M2
L
− 2zQ2

M2
L
−

2x2Q2m2
p

M4
L

)
F2(x/z,Q2)

+

(
−z2− z2Q2

2M2
L
+

z2Q4

2M4
L

)
FL(x/z,Q2)

]
,

(5.10)

where c0 = 16π2/Λ2 and Q2
min = x2m2

p/(1− z) and Q2
max = M2

L(1− z)/z. The F2

and FL are the proton form factors described in Chapter 3, that are measured from

DIS and other nucleon scattering experiments.

As mentioned above, this may equivalently be considered as a scattering event

between the photon PDF of the nucleon and the lepton vertex of the probe. In this

framework, the same cross section may be expressed as:

σ = c0

∫ 1

x

dz
z

σ̂γ(z,Q2)×M2
L

zs
× γ

(
M2

L
zs

,Q2
)
, (5.11)

where we have assumed that the dominant contributing parton to this pro-
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cess is the photon and denote the lγ scattering sub-process as σ̂γ . By

expanding σ̂γ , neglecting terms of O(α3 ln(Q2/m2
p)(αS ln(Q2/m2

p))
n) and

O(α2αS ln(Q2/m2
p)(αS ln(Q2/m2

p))
n) and requiring an equivalence between Eqs.

(5.10) and (5.11), they obtain an expression for the photon PDF in terms of the

proton structure functions:

xγ(x,Q2
0) =

1
2πα(Q2

0)

∫ 1

x

dz
z

{∫ Q2
0

1−z

x2m2p
1−z

dQ2

Q2 α
2(Q2)

[(
zpγ,q(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

−z2FL(x/z,Q2)

]
−α

2(Q2
0)z

2F2(x/z,Q2
0)
}
.

(5.12)

Details of this expression are given in the next chapter.

This particular form for the photon, when considering the experimental sources

that constitute F2,L in particular kinematic regions of the integral, is seen to be very

well experimentally constrained, with O(2%) errors over a broad range of x and

Q2 in the corresponding γ(x,Q2). This arises as a natural result of the well con-

strained nature of the nuclear form factors from various DIS experiments, whose

exact contributions are detailed in Chapter 8.

With a well determined input distribution, and a framework for incorporating

QED splitting kernels to determine their evolution, for the remainder of this thesis,

we outline how a combination of these efforts have been used to incorporate a fully

coupled DGLAP evolution of all the partons in the MMHT framework, and explore

the consequences of the resulting set. Furthermore, after outlining the relevant pro-

cedures for the proton in the next chapter we shall detail in Chapter 7 how certain

adaptations and approximations are made to extend this framework to a QED cor-

rected neutron set.



Chapter 6

MMHTqed

The primary modification required of the existing MMHT framework was the in-

corporation of QED splitting kernels in DGLAP evolution and the form we take

for the input distribution of the photon at the starting scale, taken as Q2
0 = 1 GeV2.

Additionally, the calculation of structure functions F2, F3 and FL from the partons,

which are used to include DIS data in the fitting procedure, were amended to include

leading order QED contributions. Here, we outline how those inclusions were per-

formed and their effect on the final set of partons and corresponding uncertainties.

Furthermore, much of the discussion will pertain to our development of the QED

corrected Neutron PDFs, in Section 7.1.

6.1 QCD Basis of Comparison
Throughout this thesis, in order to meaningfully interpret the effects of including

QED in the evolution, the photon PDF and the effects of subsequent refitting, we

will compare the new partons to a baseline set of PDFs evolved and fit solely with

QCD kernels (where, unless explicitly stated, the kernels used are at NNLO in

QCD). However, it is necessary to distinguish that this set differs from the most

recent public release of partons, MMHT2014 [78].

The basis of comparison used in this thesis more closely corresponds to the set

described in reference [89], where the HERA run I + II combined cross section data

[96] has been additionally included in the fit to constrain the partons. Furthermore,

we now include some additional data on tt̄ production (σ(tt̄)) from the ATLAS and
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CMS collaborations in the fit.

Another minor improvement has been to the procedure for initiating the charm

and bottom distributions in the evolution at the appropriate energy thresholds. At

NNLO, the distributions appeared to be brought in one step in the evolution pre-

maturely, creating a very small discontinuity in the interpolation between the Q2

points used in the Gaussian-Legendre integration, an issue that was highlighted in

adapting the procedure for the QED code. This has now been corrected.

Finally, small amendments have been made to the NLO and NNLO QCD ker-

nels in the evolution, which are detailed in Section 6.3. In combination, these

changes distinguish the reference “QCD” set used in this thesis against those out-

lined in MMHT2014 and all comparisons of the partons with and without the effects

are QED in the following sections are made against the set described here.

6.2 Photon Input Distribution

To generate the partons from QED corrected DGLAP evolution (detailed in Section

6.3), requires an input distribution for the photon at some starting scale, xγ(x,Q2
0 = 1

GeV2), from which the PDFs may be evolved to higher scales.

As discussed in the last chapter, recently developed formulations of the photon

PDF in terms of proton structure functions allows one to directly produce an input

based on existing fits for the nuclear structure functions, in particular F2 and FL. In

the following discussion, since the necessary relations (Eqs. (3-6) in [19]) for relat-

ing F2,L to xγ(x,Q2
0) are only valid when the internal line between the lepton probe

and the relevant hadron in the scattering process is a photon, we will implicitly be

referring to the Neutral Current (NC) structure functions wherever mentioned (i.e.

F2 ≡ FNC
2 , FL ≡ FNC

L ). Since, at the scales concerned Q2
0 = 1GeV2�M2

Z , we can

safely neglect any contributions from Weak NC scattering processes and related

interference terms.

As mentioned in the previous chapter, the input expression used in MMHTqed

is derived from that of LUXqed with some modification. From Eq. (6) of [19] (and

also given in Eq. (3.26) of [99]), the standard form for their photon PDF (at a given
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input scale, µ2 = Q2
0) is given as:

xγ(x,Q2
0) =

1
2πα(Q2

0)

∫ 1

x

dz
z

{∫ Q2
0

1−z

x2m2p
1−z

dQ2

Q2 α
2(Q2)

[(
zPγ,q(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

−z2FL(x/z,Q2)

]
−α

2(Q2
0)z

2F2(x/z,Q2
0)
}
,

(6.1)

where Pγ,q(z) corresponds to the O(α) DGLAP splitting kernel given by:

Pγ,q(z) =
1+(1− z)2

z
. (6.2)

Note that the upper limit of the Q2 integral, Q2
0

1−z , introduces a dependency on

terms at scales higher than the input scale. It is more convenient to eliminate this

dependency in Eq. (6.1) such that one has a photon input purely dependent on

contributions from scales Q2 < Q2
0, with all Q2 > Q2

0 dependency in the partons

driven by DGLAP evolution (discussed in Section 6.3). Therefore, one separates

this integral into two, with the limits [
x2m2

p
1−z ,Q

2
0], [Q2

0,
Q2

0
1−z ]:

xγ(x,Q2
0) =

1
2πα(Q2

0)

∫ 1

x

dz
z

{∫ Q2
0

x2m2p
1−z

dQ2

Q2 α
2(Q2)

[(
zPγ,q(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

−z2FL(x/z,Q2)

]
+
∫ Q2

0
1−z

Q2
0

dQ2

Q2 α
2(Q2)

[(
zPγ,q(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

]
−α

2(Q2
0)z

2F2(x/z,Q2
0)
}
,

(6.3)

where we have dropped the FL term in the second Q2 integrand for simplicity (this

is heuristically justifiable on the grounds that FL� F2 and also by consideration of

the fact that FL ∼O(αS) in the parton model, and the expression given in Eq. (5.12)

is formally only accurate to O(ααS,α
2), a more thorough discussion of which is

given in Section 3 of [99]).
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By taking note of the fact that the scale variation of F2(Q2) and α(Q2) may be

treated as stationary at the order at which we are calculating (∂F2/∂Q2, ∂α/∂Q2 ∼
0 since the evolution of the structure functions occurs logarithmically as O(αS)

corrections), we move both terms outside of the integral and evaluate it to yield the

final expression for our input:

xγ(x,Q2
0) =

1
2πα(Q2

0)

∫ 1

x

dz
z

{∫ Q2
0

x2m2p
1−z

dQ2

Q2 α
2(Q2)

[(
zPγ,q(z)+

2x2m2
p

Q2

)
F2(x/z,Q2)

−z2FL(x/z,Q2)

]
−α

2(Q2
0)

(
z2 + ln(1− z)zPγ,q(z)−

2x2m2
pz

Q2
0

)
F2(x/z,Q2

0)
}
.

(6.4)

This corresponds to an analogous expression derived in Eq. (4.10) of [99],

where a similar approach is taken for the purpose of deriving the photon PDF’s evo-

lution. We note however that in our expression, the term of order O(m2
p/Q2

0) has

been retained, since it is more significant at the input scale adopted in MMHTqed

(Q2
0 =1 GeV2, as compared with Q2

0 =10 GeV2 in LUXqed). Finally then, Eq.

(6.4) represents the form of the photon PDF input adopted in the MMHTqed frame-

work, and for the remainder of this thesis when our photon input is referred to, it is

understood as referencing this distribution.

In order to provide an understanding of how Eq. (6.4) is evaluated, here we

elaborate on the composition of F2,L and how each source contributes to our expres-

sion for xγ(x,Q2
0). Firstly, as mentioned in the previous section, we note that F2,L

receive contributions from both elastic and inelastic scattering processes, where the

terms refers to the subsequent survival or disintegration of the proton being probed

respectively, as shown in Fig. 6.1. In other words:

F2,L = F(el)
2,L +F(inel)

2,L . (6.5)

This distinction, as we shall see, plays an important role in the separation of γ into

γ(el) and γ(inel) (as described in Section 6.4), where the former is a PDF contri-
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bution that exists in elastic proton-proton scattering. The contributions to F2,L in

the integrand are taken from fits to data. For the proton we adopt the same fits as

those of LUXqed [99], as detailed below. Many of the uncertainties associated with

these fits are also treated in an identical way (as discussed in Section 8.3), although

we adopt several modifications to these fits, particularly when relating them for the

photon PDF of the neutron (see Section 7.3).

For F(el)
2,L in the integrand of Eq. (6.4) we use data provided by the A1 collabo-

ration fit [100] to elastic scattering data, where it is provided in terms of the Sachs

electric and magnetic form factors for the proton:

F(el)
2 (x,Q2) =

[GE(Q2)]2 + τ[GM(Q2)]2

1+ τ
δ

(
1− x

)
,

F(el)
L (x,Q2) =

[GE(Q2)]2

τ
δ

(
1− x

)
,

(6.6)

and τ = Q2/(4m2
p). Noteworthy, is the fact that the fits from A1 show an apparent

divergence from the widely used dipole approximation (GE(Q2) = GM(Q2)/µ =

(1+Q2/0.71)−2, where µ = 2.79 is the proton magnetic moment and the expression

for both Sachs factors is obtained from empircal measurements, fitting to the form

obtained by expanding the plane wave scattering cross section form to O(1/Q2)).

The fits differ from the dipole model by about 10% at x ∼ 0.5 (where as x→ 1,

the divergence is seen to increase but has little effect due to the effective kinematic

cut at high x, discussed below). However, as discussed in [19], the dipole model’s

reasonably good (O(5%)) correspondence to the data at low x makes it useful in

interpreting the scaling behaviour in this region (γ(el)(x)∼ α ln(1/x)).

We anticipate the discussion of the purely elastic photon contribution in Sec-

tion 6.4 by providing an explicit formula for γ(el) from the direct substitution of Eq.

(6.6) into Eq. (6.4) to obtain:

xγ
(el)(x,µ2) =

1
2πα(µ2)x

∫
µ2

x2m2p
1−z

dQ2

Q2 α
2(Q2)

[(
xPγ,q(x)+

2x2m2
p

Q2

)
×

[GE(Q2)]2 + τ[GM(Q2)]2

1+ τ
− x2 [GE(Q2)]2

τ

]
.

(6.7)
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We also make note of the 1/α(µ2) term outside of the integral and observe

that when expanding the left hand side of Eq. (6.7) in terms of α(Q2)2/α(µ2),

the scaling behaviour that arises from the leading order Pγγ splitting kernel in the

evolution is contained within this expression.

For F(inel)
2,L , further considerations must be made with regards to its contribu-

tion in Eq. (6.4). In particular, it is known from DIS experiments that as a function

of the total momenta of the outgoing hadronic products (denoted with the standard

DIS variable W 2 = (Q2(1− x)/x)+m2
p), F(inel)

2,L displays two distinct modes of be-

haviour. For W 2 & 4 GeV2 (denoted as the “continuum” region), F(inel)
2 (W 2) is seen

to be relatively smooth at various observed values of Q2. At W 2 . 3 GeV2 (denoted

as the “resonance” region) meanwhile, F(inel)
2 (W 2) is seen to display various Breit-

Wigner type resonances due to hadronic excited states (such as the ∆ and associated

modes). To fit to both of these regions, two different fits are used above and below

a threshold of W 2
cut = 3.5 GeV2. For the continuum region (W 2 ≥W 2

cut) contribu-

tions to F2,L are modelled from data from the HERMES GD11-P [101] fit, while the

resonance region (W 2 <W 2
cut) is modelled using data from the CLAS collaboration

[102].

The HERMES collaboration provides data for FL by relating it to the available

data for F2. In particular, by considering the parameter R = σL/σT , the ratio of the

longitudinal and transverse polarisation cross sections, the two structure functions

are related in the following manner:

FL(x,Q2) =
(

1+
4m2

px2

Q2

) R(x,Q2)

1+R(x,Q2)
F2(x,Q2), (6.8)

where the function R(x,Q2), following the approach taken by HERMES [101], is

adapted from the E143 collaboration fit, R1999 [103]. Although only F2 data is

provided by the CLAS fit, FL is estimated in the resonance region by using Eq.

(6.8), with the same form of R(x,Q2) provided by HERMES.

As discussed in Section 8.3, a comparison is made to the Cristy-Bosted [104] fit

for F2 in the resonance region and the difference with CLAS is taken as a model for

the uncertainty due to this contribution. Similarly, since there is an inherent ambi-
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Figure 6.1: Leading order representations of elastic (left) and inelastic (right) Neutral Cur-
rent DIS processes. In the former, the proton is seen to remain in tact post
scattering, while in the latter it dissociates (and undergoes hadronisation) and
one interprets the lower vertex with the hadronic tensor Wµν(p,q), which may
be reformulated in the context of the parton model (see [19][99] for a more de-
tailed discussion). As demonstrated by LUXqed, the photon (γ) lines on the left
and right, which serve as probes of F(el)

2,L , F(inel)
2,L respectively, may be interpreted

as the O(α) representation of γ(el), γ(inel), as discussed in Section 6.4.

guity in the W 2
cut value above and below which resonance and continuum behaviour

is chosen to be characterised by the two data sets, rather than perform a smoothing

operation (such as in Eqs. 8.10 of [99]), we vary W 2
cut and take the resulting change

as an independent source of uncertainty (discussed in Section 8.3).

Since the structure functions themselves exhibit enhanced sensitivity to partic-

ular effects at lower starting scales (1 GeV in the MMHT framework, in comparison

to 10 GeV adopted by LUXqed) such as proton mass corrections O(
m2

p
Q2 ) and higher

twist terms, modifications are made to the evolution to account for these during the

evolution, as discussed in Section 6.3.

Finally, we note that the lower bound of the Q2 integral,
x2m2

p
1−z , introduces an

effective cut on all photon contributions above a certain point in x. In particular, by

noting that the integral in z is bounded by x, at the limits of the integral the following

inequality is imposed:

Q2 ≥
x2m2

p

1− x
, (6.9)
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which may be rearranged to express an effective upper limit on x for xγ(x,Q2):

x≤
−Q2 +Q

√
Q2 +4m2

p

2m2
p

≡ xcut , (6.10)

such that all contributions above this point in x are kinematically invalid and are

therefore identically 0 for x > xcut . Note that since the expression at input, Eq.

(6.4) is valid at all scales (Q2), we have generalised the discussion to consider all

stages of the evolution. As Q→ ∞, xcut → 1 and this constraint disappears (e.g

at Q2 = 10 GeV2, xcut = 0.918). However, at our starting scale, which as noted

involves a parameterisation at scales lower than that of other contemporary photon

PDFs, xγ(x,Q2
0) has an effective cut imposed on it at xcut ' 0.62, eliminating all

high x contributions.

In particular, the cut described in Eq. (6.10) is applied during the evolution.

As discussed in Section 6.3, this has the effect of dampening not only the leading

twist DGLAP contributions, but also the effects of other terms relevant to the photon

evolution at high x, such as higher twist and target mass corrections, which are most

prevalent at low Q2. Finally, we make note of the fact that the effect of this cut is

another independent source of momentum violation, as discussed in Section 6.5.

6.3 Modifications to DGLAP Evolution

In this section we outline the changes made to our evolution procedure to accom-

modate the effects of QED. As done previously, in the MMHT framework the QED

supplemented evolution of the partons is unidirectional in Q2 from a starting scale

of Q = 1 GeV, with the convolution for the partons at each step performed in the

standard Bjorken x space. This is in contrast to that of NNPDF3.1luxQED which

adopts an iterative process in its fit. The DGLAP evolution of the partons is reversed

from Q = 100 GeV for a photon produced from the partons at high scales (with an

elastic contribution whose expression is adopted from that of LUXqed) for the fit to

converge on a consistent starting scale photon, subject to the momentum sum rule
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constraint for the partons modified to include the photon (γ):

∫ 1

0
x(Σ(x,Q2

0)+g(x,Q2
0)+ γ(x,Q2

0)) = 1, (6.11)

where Σ is the total singlet for the quarks. In practice, as shown in section 4, the

resulting photon distributions from either approach are in agreement, differing only

by a magnitude on the order of the uncertainties. However, due to certain higher

twist effects and the procedure adopted for the treatment of our elastic photon dis-

tribution, γ(el), Eq. (6.11) is not strictly obeyed during the evolution, as discussed

further in Section 6.5.

6.3.1 PDF Basis

While Eqs. (4.6)-(4.8) in Section 4.3 reflect the input distribution parameterisations,

a different and distinct linear combination of the partons are involved in the evolu-

tion procedure itself. Previously in the MMHT framework, the pure QCD DGLAP

evolution of the partons, at all orders, was performed in a basis that was chosen to be

computationally efficient for performing convolutions. This involved a decoupling

of the partons into a singlet (consisting of the gluon and flavour combinations of

quark and antiquark distributions) and non-singlet distributions which are evolved

separately.

The linearly independent combinations of partons that were evolved consisted

of the following singlet (in the space of quark flavours) combinations:

ΣL = u+ ū+d + d̄ + s+ s̄, (6.12)

c+ c̄, b+ b̄, (6.13)

g (6.14)

and the following non-singlet combinations:

uV +dV = u− ū+d− d̄, (6.15)
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u+ ū− ΣL

3
, −(s+ s̄)+

ΣL

3
, (6.16)

dV −uV

2
, (s− s̄)− uV +dV

2
, (c− c̄)− uV +dV

2
, (b− b̄)− uV +dV

2
.

(6.17)

The subscript L in ΣL denotes the fact that the singlet consists only of the light

quarks. The charm and bottom singlet distributions (Eq. (6.13)) are evolved sepa-

rately since they only become non-zero near the relevant mass thresholds for pro-

duction (2mc,2mb > Q0). When considering QCD in isolation, the SU(n f ) flavour

invariance of the splitting kernels allows such distributions to be evolved consis-

tently.

As described below, the introduction of QED splitting kernels, P(QED)
i j , in

DGLAP evolution necessarily prohibits such combinations from being used. As

mentioned in Chapter 3, in general the splitting kernels are calculated perturbatively

in field theory for the relevant gauge group, such as:

P(QCD)
i j =

αS

2π
P(1,0)

i j +(
αS

2π
)2P(2,0)

i j +(
αS

2π
)3P(3,0)

i j + ... (6.18)

where the first superscript denotes the perturbative order in field theory at which the

splittings are calculated. Recent theoretical developments [20][21] enable the terms

P(QED)
i j =

α

2π
P(0,1)

i j +
ααS

(2π)2 P(1,1)
i j +(

α

2π
)2P(0,2)

i j + ... (6.19)

to be used in the QED supplemented evolution. Here, the first and second super-

script indices denote the order in QCD and QED respectively, and the second term

in this expansion reflects mixed order splitting kernels.

Since the non-abelian nature of QCD does not manifest at leading order in

quark interactions, the majority of the splitting functions in QCD and QED are

simply related at this order:

P(0,1)
qq =

e2
q

CF
P(1,0)

qq , P(0,1)
qγ =

e2
q

TF
P(1,0)

qg (6.20)
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P(0,1)
γq =

e2
q

CF
P(1,0)

gq , Pγγ =−
2
3 ∑

i
e2

i δ (1− y), (6.21)

where CF = 4
3 and the TF = TRnF = 1

2nF are the colour and trace factors from the

SU(3) algebra of QCD. The exception is Pγγ , which accounts for splittings of the

form γ→ qq̄, and differs considerably from the expression for Pgg, which as well as

qq̄ production also includes processes of the form g→ gg(g) at O(αS) in QCD.

A further caveat regarding Pγγ concerns lepton PDFs, which in principle enter

amongst the partons discussed so far, due to splittings of the form γ → ll̄. More

specifically, the limit of the sum nF denotes the number of active quark flavours

available during the evolution. However, technically at any scale Q2 > m2
l , lepton

splittings should also be incorporated into Pγγ , such that the sum over quarks is

modified to include the leptons:

∑
i

e2
i = NC

nF

∑
q

e2
q +

nL

∑
l

e2
l . (6.22)

In our framework, we neglect the latter term which accounts for leptonic con-

tributions to Pγγ , since the contribution of the photon itself enters as an O(α) cor-

rection to the PDFs, with the lepton contributions at O(α2), implying they are ex-

tremely suppressed. This was studied more extensively in [105, 106] where it was

found that the magnitude of the lepton distributions were many orders of magnitude

below those of xγ(x,Q2), with negligible effects on the PDFs at the scales consid-

ered in this paper.

However, it should be noted that the LUXqed PDF set [99], to which a compar-

ison is made in Section 8.2, does include this contribution in the DGLAP evolution

used to develop their xγ(x,Q2) (though they do not develop distributions for the

leptons themselves). Since the right hand side of Eq. (6.21) is a δ (1− x) term

multiplied by a negative coefficient, the extra contributions from the lepton splitting

terms in DGLAP are anticipated to slightly reduce the magnitude of a photon whose

evolution accounts for them (as one anticipates from the process γ→ ll̄). We inves-

tigate the effect of such a term on the xγ(x,Q2) developed in this thesis in Section

8.2.
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Upon inspection of Eqs. (6.20)-(6.21), even at leading order it becomes appar-

ent that the distributions in Eqs. (6.12)-(6.17) cannot be used since QED couplings

no longer support flavour symmetry, due to the charge separation of up and down

type quarks (eu 6= ed). Furthermore, one anticipates based on this observation the

breaking of isospin symmetry when comparing the valence distributons of the pro-

ton and neutron, as discussed in Section 7.2. To accommodate the requirement of

charge sensitivity, the partons are now evolved in the following basis, which are

separable by charge:

q±i = qi± q̄i, g, γ
(el), γ

(inel). (6.23)

In the following discussion the subscript i denotes any active (Q > 2mq)

flavour: i = u,d,s,c,b and the +/- superscript denotes the singlet and non-singlet

quark distributions respectively. The gluon and photon components, g, γ(el) and

γ(inel) are then evolved individually in the flavour space of the partons.

Although the basis given in Eq. (6.23) is compatible with a joint evolution in

QCD and QED, they require some modification to the form of DGLAP splitting

kernels used. Adopting the notation introduced in Chapters 3 and 4, t = ln
(
Q2) and

( f ⊗g)(x) =
∫ 1

x
dy
y f
(

x
y

)
g(y), the non-singlet distributions described in Eqs. (6.15)

- (6.17) may be evolved in the following way in pure QCD:

∂qNS
i

∂ t
= P−qi

⊗qNS
i , (6.24)

where the expression for P−qi
may be found in Eqs. (4.94) to (4.108) of [108]. The

simplicity of this equation arises from the fact that symmetry allows for evolution of

the qNS
i distributions to be diagonal in quark flavour space, such that only the term

P−qi
, which describes the diagonal elements of the quark-quark and quark-antiquark

splitting functions, is required.

The evolution for the q−i requires an additional component since although they

are also non-singlet functions of the quarks, the non-diagonal elements in flavour

space become necessary to the evolution:
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Figure 6.2: The percentage changes between the updated pure QCD NNLO partons (with
the ∆PS term shown in Eq. (6.25) and corrections to the evolution at the heavy
quark mass thresholds) and the MMHT2014 partons.

∂q−i
∂ t

= P−qi
⊗q−i +

nF

∑
j=1

∆PS⊗q−j , (6.25)

where ∆PS becomes non-zero at NNLO (O(α3)) in QCD and nF is the number of

active quarks in the evolution.

Note that this sum over valence-like non-singlet distributions corresponded to

Eq. (6.15) in the original MMHT framework, which neglected the strange, charm

and bottom distributions due to their small relative size. With the release of the set

described in this thesis, the contribution from these off-diagonal splittings for all

flavours are now included, which represent minor changes, O(10−5), in a like-for-

like comparison with the original MMHT partons purely in QCD (as discussed in

Section 6.1), as shown in Fig. 6.2.

Also included in this figure are minor improvements that were made to the pro-

cedure for adding in the charm and bottom distributions to the evolution at the ap-

propriate energy thresholds. At NNLO, the distributions appeared to be brought in
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slightly prematurely creating a small inaccuracy when interpolating between the Q2

points used in the Gaussian-Legendre integration, an issue that was highlighted in

adapting the procedure for the QED code. In general, as seen in Fig. 6.2, the overall

corrections to the evolution procedure result in changes of less than ∼ 0.01% over

a broad range in x, with the largest magnitude of change being at high x where the

relative uncertainties on the partons are large. Though of little practical significance

(as indicated in Fig. 6.2) this has now been corrected.

6.3.2 Target Mass and Higher Twist Corrections

As previously noted, MMHTqed differs in its production of a photon PDF from

other contemporary sets in adopting a straightforward evolution in Q2 space, from

a starting scale of Q0 = 1 GeV. However, at low scales such as these, target mass

corrections, which account for the finite mass of the proton, and higher twist1 terms

have non-negligible contributions to F2,L. Above Q0, the F(inel)
2 contributions to

γ(inel), as in Eq. (6.4), are modelled by the parton splittings in DGLAP, which

require some modification to capture the relevant behaviour at high x.

The target mass corrections for the proton are well known, modifying the O(α)

quark to photon splitting in an identical manner to the first term in the integrand of

Eq. (6.4):

P(0,1)
γ,q (z)→ P(0,1)

γ,q (z)+
2x2m2

p

zQ2 . (6.26)

Further modifications are also required for higher twist terms which lead to

discrepancies between F2 as calculated from the partons and experimental measure-

ments for F(inel)
2 , due to non-perturbative effects at high x and low Q2. To eliminate

this concern when comparing to DIS data in a global fit to constrain the parton pa-

rameters, kinematic cuts of W 2 > 15 GeV2 (and W 2 > 20 GeV2 at LO) are normally

imposed on the data to exclude such regions [109] (as discussed in section 5.1 of

1Here, higher twist refers to the fact that when using the factorisation theorem to separate the
short and long scale physics of QCD and to develop the parton model, strictly speaking we neglect
further contributions to the proton scattering cross section beyond those of single parton interactions,
suppressed by factors of λ/Q where λ ∼ΛQCD. Higher twist terms, O(λ 2/Q2) and above, represent
low scale corrections to the parton model, where details of this expansion may be found in [107].



6.3. Modifications to DGLAP Evolution 106

[79]). For reasons discussed below those data sets relating to ν(ν̄)N experiments to

measure xF3 have a more stringent cut of W 2 > 25 GeV2 imposed.

For the evolution of γ(inel) in DGLAP, which is sensitive to F(inel)
2 in the region

discussed, a phenomenological model must be adopted to compensate for this dif-

ference. For our purposes, we employ that of Dasgupta and Webber [110], who pro-

vide non-perturbative power corrections to the structure functions in powers of 1
Q2

by characterising the associated infrared divergences in field theory with a “renor-

malon”. In this thesis we shall use the term renormalon synonymous with higher

twist corrections of this type. In [110], they provide at O( 1
Q2 ) a modification to F2

that accounts for the change due to renormalon calculations at high x, seen to give

a better description of data from DIS experiments [111].

In lieu of F(inel)
2 , during the evolution the contributions to γ(inel) are essentially

handled by the quark splittings (q→ qγ), where the total charge-weighted quark sin-

glet Σ (the sum of Eqs. (6.12)-(6.13)) plays the role of F2 in Eq. (6.4). Therefore, to

approximate renormalon effects during the evolution, these modification are instead

made to the quarks, as passed to the splitting functions at all orders for P(QED)
γ,q , in

the following way:

q(x,Q2)→ q(x,Q2)
(

1+
A′2
Q2

∫ 1

x

dz
z

C2(z)q(
x
z
,Q2)

)
, (6.27)

where A′2 is a parameter not given a priori by the theory and C2(z) is defined in Eq.

4.1 of [110], and conserves the flavour number properties of the various q(x
z ,Q

2).

As such, higher twist contributions to F2 do not contribute to the Adler sum rule,

i.e.
∫ 1

0 dx FHT
2 (x,Q2) = 0, which enforces sensible behaviour as x→ 0. However

no such restriction applies to F3, and renormalon calculations [114] imply that they

become large, necessitating the need for the more stringent cut on F3 data used in

the fit (from the CHORUS collaboration [145]) that extend into this region.

This is of interest because the parameter A′2 is not well determined, and in

[110], is fit loosely to structure function data to yield a value of A′2 =−0.2 GeV2. As

discussed above, data sensitive to renormalon contributions are typically excluded

in the fit due to the inability to model them accurately from the partons.
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Figure 6.3: The χ2 values obtained in a global fit, with kinematic constraints on DIS data
lowered to W 2 = 5 GeV2, with different values of A′2 in the renormalon cal-
culations for F2 and F3. The dashed blue line represents a ∆χ2 = 10 variation
from the minimum to establish an uncertainty band on A′2.

However, for the purpose of determining a value of A′2 to use in Eq. (6.27),

we relaxed these constraints, lowering the threshold to W 2 > 5 GeV2 and modified

F2 and F3 as calculated in the global fit to data, to include the relevant renormalon

contributions at O( 1
Q2 ), as outlined in [110] (i.e. with modifications of the form

shown in Eq. (6.27)). We then tested a variety of different values as shown in Fig.

6.3 and compared each value with the fit quality to determine a value for A′2. Our

central value is taken as A′2 =−0.3+0.1
−0.1 GeV2, with uncertainties determined from a

generous ∆χ2 =±10 variation in the fit (to one significant figure). This is motivated

by the dynamical tolerance scheme used in our framework, as outlined in Section 6

of [79] and described in Section 4.2 in Chapter 5, where it was found that in order to

provide reasonable uncertainties when fitting to many disparate data sets in tension

with one another, one typically required tolerances T =
√

∆χ2
global ∼ 3 to provide

sufficient variation in the generation of 68% C.L. uncertainty bands, rather than the

T = 1 one would obtain from a standard “parameter-fitting” criterion. This moti-

vates our decision for ∆χ2 = ±10, which also corresponds to the fixed tolerance
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uncertainty schemes adopted by early CTEQ sets [112]. The uncertainty on this

is then propagated as an independent source of uncertainty for the photon, as dis-

cussed in Section 8.3. This represents a slightly larger renormalon contribution than

predicted from [110], though the data are unable to provide significant constraints

in either case.

As seen in Fig. 6.4, the target mass corrections lead to a ∼ 3% increase in the

photon at high x, while the renormalon contributions, which provide an increasingly

positive contribution to F2 at high x, correspondingly enhances the photon at mod-

erate to high x. Note that the turn around at x ' 0.5 occurs due to the previously

mentioned effective kinematic cut on all photon contributions at high x at low Q2

(Eq. (6.10)), due to the lower bound of the integral in Eq. (6.4), as discussed in

Section 6.2. This itself is also a function of the proton mass mp, though for our

purposes we consider the kinematic cut imposed due to the target mass (i.e. the cut

in x) as independent from the term introduced in the evolution and it is seen that the

two effects have opposite impacts on the high x photon, with the kinematic cut ul-

timately dominating. Furthermore, the relative magnitude of both effects is slightly

diminished at high Q2 scales during the evolution due to the∼ 1/Q2 scaling of both

effects, as seen in the difference between the curves in Fig 6.4. We note that both

the proton mass term and the modification to the quarks in Eq. (6.27) introduce

small, independent sources of momentum violation in the evolution, as discussed in

Section 6.5.

6.4 Production of separate γ (el), γ (inel) PDFs

As noted in Section 6.2, the photon PDF actually comprises of two component

distributions, γ(x,Q2) = γ(el)(x,Q2)+ γ(inel)(x,Q2), which represent photon contri-

butions from elastic and inelastic proton scattering events, respectively. Separating

γ(el) and γ(inel) from one another while consistently performing the evolution for

all the partons required certain changes to be made from the standard procedure for

performing DGLAP, due to the fact that the generation of γ(el) in the evolution is

independent of parton splittings, as detailed below.
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Figure 6.4: (Left) A ratio of the photon PDF with (γ(x,Q2)) and without (γx2/Q2(x,Q2))
target mass corrections, which when included are seen to increase the photon
at high x before the kinematic cut dominates as x→ 1. Furthermore, these ef-
fects diminish at higher scales, where the corrections become less prevalent in
the evolution. A similar but larger effect is seen (Right) in the photon when
accounting for the Highter Twist (renormalon) corrections to the quark distri-
butions described above (Eq. (6.27)) which have a tendency to increase the
photon PDF upon their inclusion in the photon’s evolution.

For γ(inel), the evolution is analogous to that of the other partons. The con-

tributions from the HERMES (continuum) and CLAS (resonance) data for F(inel)
2

are present only at input, above which the evolution is performed using the splitting

kernels. We emphasise that all photon contributions that arise from the splitting

of other partons (the quarks, antiquarks and both photon components themselves,

but also the gluon at O(ααS)) in DGLAP are absorbed into the definition of γ(inel)

(using the notation of the previous section):

dγ(inel)

dt
=

nF

∑
j

Pγq j ⊗q j +
nF

∑
j

Pγ q̄ j ⊗ q̄ j +Pγg⊗g+Pγγ ⊗ γ
(inel). (6.28)

This reflects the fact that scattering processes that are sensitive to the partons are

themselves inelastic and that therefore any photon contributions that arise from their

evolution in DGLAP are necessarily inelastic contributions.

While γ(el) is included at input and passed to the other partons during evolution,

its own evolution requires consideration of the contributions it receives above Q0

from F(el)
2 , since our expression for γ(el) given in Section 6.2, Eq. (6.7), holds

generally above the input scale. Incorporating this and splittings of the form γ→ qq̄
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Figure 6.5: The Elastic and Inelastic Photon components at different values of Q. Top left:
Q = 1 GeV, top right: Q = 10 GeV, bottom: Q = 100 GeV.

and γ → qq̄g at O(ααS), the evolution for γ(el) is given as:

dγ(el)

dt
= Pγγ ⊗ γ

(el)+δxγ
(el). (6.29)

The expression for δxγ(el) is given by taking the derivative of the expression

for the elastic photon, Eq. (6.7), w.r.t Q2:

δxγ
(el)(x,Q2) =

α(Q2)

2π

1
x

[(
xpγ,q(x)+

2x2m2
p

Q2

)
[GE(Q2)]2 + τ[GM(Q2)]2

1+ τ

−x2 [GE(Q2)]2

τ

]
.

(6.30)

As mentioned previously, the data for GE(Q2), GM(Q2) are taken from the A1

collaboration fits to data from, which as noted in [19] shows noticeable discrepancy
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Figure 6.6: The relative contributions of the Elastic and Inelastic Photon components at
different values of Q, as fractions of the total xγ momentum. Top left: Q = 1
GeV, top right: Q = 10 GeV, bottom: Q = 100 GeV.

from widely used dipole approximation for these functions. As discussed in the

next section, including the term introduced in Eq. (6.30) as an external contribution

(not generated from parton splittings but added into the evolution from F(el)
2 data)

introduces a small amount of momentum violation, as do subsequent splittings of

the form γ(el)→ qq̄.

Although the provisions outlined above are needed for the evolutions of γ(el)

and γ(inel), i.e. those contributions from splitting functions of the form Pγ{q,q̄,g,γ},

the treatment for the rest of the partons remains broadly unchanged.

Since the quark, antiquark and gluon contributions from P{q,q̄,g,γ}γ splittings do

not distinguish between γ(el) and γ(inel), the entire photon contribution, γ(x,Q2) =

γ(el)(x,Q2)+ γ(inel)(x,Q2), is passed to the relevant splitting kernels during evolu-

tion. Note that for the development of a neutron photon PDF, which is approximated
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Figure 6.7: The ratio of the xγ(x,Q2) distribution without δxγ(el) contributions for Q2 >Q2
0

from the evolution of that in the proton, γ
(inel)
(p) (x,Q2) is further subdivided in the

MMHT framework into components that distinguish between photon contributions

that arise from u, ū→ u, ūγ splittings and d, d̄ → d, d̄γ during the evolution. Such

bookkeeping will prove to be useful when approximating the effect of the change

in flavour content of the neutron’s partons on the resultant photon PDF (detailed in

Section 7.3).

Since γ(el) and γ(inel) distinguish between the photon in two distinct categories

of scattering processes, there is a phenomenological interest in comparing the two.

At input, the elastic contribution dominates over that of the inelastic, as F(el)
2 >

F(inel)
2 in the region Q . 1 GeV, seen in Fig. 6.5. However, evolution quickly

enhances the contributions of γ(inel), particularly at low x, predominantly due to

quark splittings, as shown in Fig. 6.6.

As discussed above, the only contributions γ(el) receives during the evolution

are those of Eq. (6.30). Since GE,M(Q2) are known to diminish with increasing Q2

and 1/τ ∼ 1/Q2, an inspection of the form of Eq. (6.30) reveals that it will be of

diminishing importance in a significant range of x. In fact, investigating the effects

of leaving out this term in Eq. (6.29) entirely yields a γ(el) with differences of just
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Figure 6.8: The ratio of the xγ(el)(x,Q2) distribution without δxγ(el) contributions for Q2 >
Q2

0

O(10−3) at low x from the form with the contributions included. One corollary

to this is that the elastic distribution’s contribution to the overall photon at input is

proportionally large at high x, and remains true even at Q2 > Q2
0 (Fig. 6.6). This

is seen in Figs. 6.7 and 6.8, where we investigate the effect of removing the elastic

component’s contribution during the evolution (leading to significant changes in

high x).

However as limx→1 γ(el),γ(inel)→ 0 and as discussed in Section 8.3, uncertain-

ties are large in this region (see Section 8.3). This makes it difficult to make very

strong predictive statements about either distribution in this region.

6.5 Momentum Conservation
In Eq. (6.11), we gave the momentum sum rule, a statement of momentum con-

servation of the proton’s entirety, carried by the partons. The inclusion of QED

necessitated that the photon be included in this equation, which naturally leads to a

redistribution of momentum in the other partons (explored in Section 8.2) in order

to obey Eq. (6.11) at input. However, due to the procedure adopted for the inclusion
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Figure 6.9: (Left) A plot showing the ratio between the total momentum carried by all the
partons, at a given point in Q2 of the evolution with the kinematic cut Q2 ≥
x2m2

p/(1− x) applied to xγ(x,Q2) and without. Since this is effectively a cut
on high x contributions, it naturally leads to a reduction in the total momenta
carried by the partons. The right plot shows an identical plot but focusing
solely on the proportional difference in momenta caused by the photon, where
the effects on the evolution are seen to peak at Q2 ∼ 10 GeV2.

of γ(el), outlined in the previous section, as well as higher twist terms, this equation

is not strictly obeyed during the evolution. This reflects the discrepancy between

effects of non-perturbative corrections, such as that of target masses, and the parton

model. In this section we outline the consequences of such changes.

First we discuss the effect of a kinematic cut on the photon, as introduced by

the lower limit of the integral in Q2 in the expression for xγ(x,Q2) (Eq. (6.4)),

which as discussed in Section 6.2 has the effect of introducing an effective cut on

the photon PDF at high x during the evolution. In essence, this removal of photon

contributions at high x is a target mass correction (since the cut has a dependence

on m2
p), which is not required to obey the momentum conservation of the partons

ordinarily found in DGLAP evolution and therefore introduces small amounts of

violation (in the form of a reduction of total momentum carried by the partons) into

Eq. (6.11) of O(10−3%). This is seen on the left hand side of Fig. 6.9, where we

display the ratio of the total momentum of the partons between two versions of the

evolution with and without this cut applied.

In particular, the right side of Fig. 6.9 indicates that the reduction to the total

momentum carried by the photon (
∫ 1

0 xγ(x,Q2)) is, as anticipated, most strongly
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affected by the kinematic cut at low scales until Q2 ∼ 10 GeV2 (with total changes

of less than 1%). Since the overall momentum carried by the photon is small during

the early stages evolution (∼ 2−3×10−3), where momentum violating effects are

most prevalent, this leads to the minuscule amount of change observed in the total

momentum of the partons.

Unlike sources of momentum violation concerned in the rest of this section,

the cut on the photon entirely eliminates a region of the phase space in which other

effects during the evolution may have an effect (since xγ(x,Q2) = 0 for x > xcut).

Therefore in the following discussion, when other effects are considered, the mag-

nitude of change they induce to the momentum of the partons is understood as the

change in comparison to the evolution in which the cut in x, discussed above, has

already been applied, i.e. the basis of comparison assumes that the kinematic cut is

active for the remainder of this section (and throughout the thesis, unless mentioned

otherwise).

We conclude this chapter with a description of other effects during the evolu-

tion which contribute to momentum conservation being obeyed somewhat differ-

ently from that of Eq. (6.11). We note that both the inelastic and elastic photons are

considered when imposing the momentum sum rule for the parameterisation of the

quarks, as in Eq. (6.11), to initialise the PDFs. However, since the elastic photon

distribution, γ(el), is in some sense external to the proton (it may be probed with-

out the proton’s disintegration), its contributions at scales Q2 > Q2
0, as described

in Eq. 6.30, are added independently of the momentum sum rule constraint during

evolution since this contribution is not part of the DGLAP evolution.

Although xγ(el)(x,Q2) is included at input when momentum conservation is

imposed, contributions to γ(el) above input are added independently (as discussed

in Section 6.3) at every step in Q2 during DGLAP evolution. This does not decouple

γ(el) from the evolution of the quarks, since γ(el)→ qq̄ splitting are still permissible.

However, any γ contribution from the quarks during evolution, e.g. q→ q+ γ is

absorbed into the definition of γ(inel). This procedure leads to a small amount of

momentum violation during the DGLAP evolution in our framework. In practice,
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this effect is negligible, with momentum violating effects of O(10−4) observed in

the total momentum of the proton during evolution, and in fact stabilises at higher

Q2 where the elastic contribution is less significant, as seen in Fig. 6.10.

Similarly, the proton mass term given in Eq. (6.26) naturally breaks the form

of momentum conservation usually obeyed between splitting functions of this type,

implied by the equation

∫ 1

0
x
[
P(0,1)

q,q (x)+P(0,1)
γ,q (x)

]
= 0. (6.31)

In essence, the proton mass term invalidates this relationship, though in rapidly

diminishing amounts as 1/Q2→ 0, leading to changes of O(10−5) in the total mo-

mentum carried by the partons.

Likewise, other higher twist terms included in the evolution for the purposes of

QED lead to small amounts of momentum violation. Since the quark distributions,

qi(x,Q2), passed to both P(0,1)
q,q (x) and P(0,1)

γ,q (x) differ due to the inclusion of renor-

malon corrections for the latter but not the former, this aspect of the evolution also

invalidates momentum violation to a small degree, also shown in Fig. 6.10, creating

a small amount of violation of O(2×10−5).

Overall, even in conjunction, the combined magnitude of momentum violation

(the difference between the sum of the parton momenta and the value of 1 suggested

by Eq. (6.11)) is still less than 10−4. In practice, this total effect is less than the

momentum violation coming from the “leakage” of the partons that occurs due to

the fact that the integration range during DGLAP does not strictly begin at 0 for the

convolutions of x f (x/z,Q2) with the splitting functions, which are instead defined in

the MMHT framework only to a finite level of precision (defined at a lower bound of

x∼ 10−12), and is already considered to be of little practical significance. Therefore,

we do not consider any of the effects described above as serious invalidations of the

parton model, even with the full spectrum of effects due to QED included.
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Chapter 7

Neutron

7.1 QED Neutron PDFs

Analogous to that of the proton, the neutron itself is also modelled by its Parton

Distribution Functions in DIS experiments and high energy hadron-hadron colli-

sions. When modified by the necessary nuclear correction factors such PDFs are

necessary for interpreting the results of deuterium scattering experiments, sensitive

to both that of the proton and neutron PDFs, which are used widely in PDF fits for

that of the proton.

Since neutron specific data is not as abundantly available at the required preci-

sion to constrain the partons, unlike the case of the proton, rather than freely param-

eterising the input distributions for the neutron and conducting a parallel analysis

with an independent DGLAP evolution, the standard practice is to approximate the

PDF set of the neutron by relating them to that of the proton. This is much more

feasible, since doubling the number of free parameters for the PDFs would leads to

considerably difficulty in constraining them from existing data.

The most widely adopted approach is to assume isospin symmetry between

hadrons in the valence and sea distributions:

uV,(p)(x,Q
2) = u(p)(x,Q

2)− ū(p)(x,Q
2) = dV,(n)(x,Q

2) = d(n)(x,Q
2)− d̄(n)(x,Q

2),

(7.1)
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dV,(p)(x,Q
2) = d(p)(x,Q

2)− d̄(p)(x,Q
2) = uV,(n)(x,Q

2) = u(n)(x,Q
2)− ū(n)(x,Q

2),

(7.2)

d̄(p)(x,Q
2) = ū(n)(x,Q

2), ū(p)(x,Q
2) = d̄(n)(x,Q

2), (7.3)

where the subscripts {(p),(n)} denote the proton and neutron respectively. Further-

more, the q±(x,Q2) as defined in Eq. (6.23) for the s,c and b flavour distributions

are assumed to be identical between the proton and neutron. In practice, this is

seen to produce a good agreement with the observed data and is well motivated by

the SU(n f ) flavour symmetry of QCD as well as the fact that the evolution treats

both quark flavours as essentially massless (m2
u/Q2,m2

d/Q2 ∼ 0 for Q > 1 GeV).

However, as discussed in Section 6.3, QED splitting kernels such as those in Eqs.

(6.20), (6.21) no longer uphold this symmetry and are expected to generate O(α)

violations in Eq. (7.1).

Therefore, to relate the distributions of the proton to those of the neutron in

a manner consistent with QED evolution, one needs to carefully account for the

effects of the relevant quark charges eu,ed in the evolution and to allow for small

amounts of isospin violation to be introduced.

7.2 Adapting DGLAP Evolution for Isospin Violat-

ing Hadrons

The primary assumption adopted in MMHTqed is that terms relating to the viola-

tion of isospin arise from the introduction of QED splitting kernels, P(QED)
i, j . By

violation, it is meant that at a given x and Q2 point, the valence distributions can

no longer be related to one another by Eqs. (7.1)-(7.3). Any modification to these

relations must still preserve the flavour quantum numbers of the proton and neutron

upon summation of the relevant valence distribution, reproduced here for conve-

nience:

∫ 1

0
uV,(p)(x)dx =

∫ 1

0
dV,(n)(x)dx = 2,∫ 1

0
dV,(p)(x)dx =

∫ 1

0
uV,(n)(x)dx = 1.

(7.4)
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Above input, one can in principle keep track of all contributions to the quarks

from splittings generated from QED. In the case of the valence distributions, the

evolution is governed by Eq. (6.24), where the splitting kernels are separable as

Pi, j =P(QCD)
i, j +P(QED)

i, j . Therefore, one can distinguish between two contributions to

the valence distributions in the proton, (uV ,dV , which will be referred to generically

as qV in the following discussion):

qV (x,Q2) = q(QCD)
V (x,Q2)+q(QED)

V (x,Q2), (7.5)

where q(QED)
V is defined as:

q(QED)
V (x,Q2) =

∫ Q2

Q2
0

α(µ2)

2π

dµ2

µ2

(
P−(QED)

qi ⊗qV
(x

z
,µ2)), (7.6)

and the integrand bears resemblance to Eq. (6.24), essentially containing all QED

splitting contributions for the valence distributions. In order to achieve this, two dis-

tinct columns are separated in the evolution to distinguish between the contributions

in Eq. (7.5), which are only evolved by the relevant splitting functions. However,

analogous to the total photon distribution in Section 6.4, wherever needed, the entire

distribution in Eq. (7.5) is passed within the evolution.

An implicit total proportionality to the QED flavour charge of the quark, e2
qi

, is

contained in P−(QED)
qi . To parameterise the isospin violating components that must

be related between the proton and the neutron, we define:

∆dV,(n)(x,Q
2) = dV,(n)(x,Q

2)−uV,(p)(x,Q
2),

∆uV,(n)(x,Q
2) = uV,(n)(x,Q

2)−dV,(p)(x,Q
2),

(7.7)

where naı̈ve pointwise isospin would lead both these expressions to evaluate to 0.

In the QED framework for the neutron, it is assumed:

∆dV,(n)(x,Q
2) ∝ u(QED)

V,(p) (x,Q2), ∆uV,(n)(x,Q
2) ∝ d(QED)

V,(p) (x,Q2). (7.8)

In particular, it is assumed that provided that the quantum number and mo-
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mentum conservation rules (Eqs. (6.11), (3.22)) are obeyed by the constant of pro-

portionality, the only further step needed in relating the valence distributions of the

proton to that of the neutron is the charge re-weighting of the relevant q(QED)
V,(p) , to

correct for charge proportional terms in the evolution. Then, we may rewrite Eq.

(7.7) in the form of the following equations:

∆dV,(n)(x,Q
2
0) = ε

(
1− e2

d
e2

u

)
u(QED)

V,(p) (x,Q2
0), (7.9)

∆uV,(n)(x,Q
2
0) = ε

(
1− e2

u

e2
d

)
d(QED)

V,(p) (x,Q2
0), (7.10)

where ε is fixed to conserve momentum at input.

Since the separation of q(QCD)
V and q(QED)

V is only practically possible above

the evolution scale, the contribution at input is extrapolated backwards from the

first step of the evolution. In order to satisfy momentum conservation, Eq. (6.11),

at input for the neutron, one needs the neutron photon distribution at input, which

is described in Section 7.3. Once given, the constant of proportionality, ε , is given

by:

ε =

∫ 1
0 dxx(γ(p)(x)− γ(n)(x))∫ 1

0 dxx(3
4u(QED)

V,(p) (x)−3d(QED)
V,(p) (x))

, (7.11)

where all the distributions are evaluated at Q2
0 = 1 GeV2. This follows a procedure

similar to that adopted in [12].

This expression implicitly depends on the assumption that the remaining par-

tons are then related to one another in the standard manner, assuming that the anti-

quark (or sea) distributions are still well approximated by

(ū)(n)(x,Q
2
0) = (d̄)(p)(x,Q

2
0), (d̄)(n)(x,Q

2
0) = (ū)(p)(x,Q

2
0), (7.12)

and all other quark flavours and the gluon being related identically between hadrons.

Using Eqs. (7.9) and (7.10) the u and d singlet distributions are then related to

one another between hadrons by:

(d + d̄)(n)(x,Q
2) = (u+ ū)(p)(x,Q

2)+∆dV,(n)(x,Q
2), (7.13)
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Figure 7.1: The ratio of valence quarks, related to one another by isospin, of the neutron to
that of the proton at the input scale Q2

0 = 1 GeV2. On the left is uV,(n)/dV,(p),
and on the right is dV,(n)/uV,(p), both as functions of x.

(u+ ū)(n)(x,Q
2) = (d + d̄)(p)(x,Q

2)+∆uV,(n)(x,Q
2), (7.14)

where ∆{d,u}V,(n) are as defined above. Though of less apparent interest, these

relations pertain to the discussion in Section 7.3, where the neutron photon PDF is

considered as primarily sensitive to distributions of the type q+ q̄ during the evolu-

tion. In anticipation of this, we note that ∆{d,u}V,(n) lead to differences between the

isospin related u and d singlet distributions between hadrons of only O(1%) (since

the ∆qV terms are proportional to the contributions to the valence quarks that arise

solely from QED evolution, which are O(α) suppressed). In practice, relating these

distributions to one another by isospin still remains a good approximation, which

will underpin our development of a photon PDF of the neutron in the next section.

For the valence distributions, in practice, the magnitude of isospin violation is

seen to be a few percent, becoming significant especially at low and high x, where

all distributions tend towards 0, as shown in Fig. 7.1. Of note is the fact that the

discrepancy between the predicted ratio of valence quarks and the naı̈ve isospin

assumption remains at the ∼ 1% level, even for the peak of the valence distribu-

tions (at x ∼ 1
3 , x ∼ 2

3)). This effect is seen to increase during the evolution, with

differences of ∼ 5% at Q = 100 GeV2.

Although the primary interest in this thesis for the development of QED cor-

rected neutron PDFs is to provide a manner of relating the PDFs to deuterium scat-
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tering experiments used to constrain the partons, we also wish to highlight the po-

tential relevance of this set in the determination of nuclear PDFs. In particular, the

assumption made in modern determination of nuclear PDFs (such as those of EPPS

[115] and nCTEQ [116]) when fitting to data is precisely that the u and d quark type

distributions in the neutron and proton may be related to one another by assumption

of isospin.

With the development of this set, we propose that this assumption need not be

applied strictly and that with the introduction of QED in scale dependence, the small

amounts of isospin violation shown in Fig. 7.1 may be of relevance when the deter-

mination of nuclear PDFs reach the O(5%) level. While current determinations do

not reach this level of precision, a QED corrected relationship between proton and

neutron PDFs may provide better fits to the available data, and is of recent interest

given that recent work has begin to adopt quark flavour dependence in fits [117].

7.3 Neutron Photon PDF

In considering the effects of QED on the PDFs of the neutron, one can also consider

the appearance of its corresponding photon, γ(n)(x,Q2). At input, the expression for

the neutron in the MMHT framework is adapted from that of the proton, Eq. (6.4),

with all occurrences of the proton mass, mp, substituted with that of the neutron

and the relevant form factors substituted or approximated in the manner discussed

below.

As in the case of the proton, one can consider the contributions to the input

as coming from both the inelastic and elastic contributions of the form factors, i.e.

the separation of F2,(n) = F(el)
2,(n)+F(inel)

2,(p) in Eq. (6.4), analogous to the discussion in

Section 6.4.

For γ
(el)
(n) at input the Sachs form factors of the neutron GE,(n),GM,(n) must be

adapted from elsewhere, since the form factors, GE,(p),GM,(p) in Eq. (6.7), pro-

vided by the A1 collaboration are provided solely for the proton. Instead, we adopt

separate models for GE,(n) and GM,(n). For the former, a phenomenological model
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Figure 7.2: The Elastic and Inelastic Photon components at Q2
0 = 1 GeV2

known as the Galster parameterisation [118] is used:

GE,(n) =
Aτ

1+Bτ
GD(Q2), (7.15)

where τ = Q2/4m2
n and GD(Q2) is the dipole form factor for hadrons (in the form

commonly used to approximate GE,(p) when multiplied by the proton’s magnetic

moment, GE,(p) = µpGD(Q2)):

GD(Q2) =
1

(1+ Q2

Λ2 )2
, (7.16)

with Λ2 = 0.71 GeV2. Values for A and B are obtained from a fit to data from

deuterium and 3He scattering experiments (e.g. polarised ~D(~ee′p)n and deuterium

quadrupole FC2 data), provided by Kelly [119]:

A = 1.70±0.04, B = 3.30±0.32. (7.17)
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For GM,(n) meanwhile, a simple dipole approximation of the form:

GM,(n) = µnGD(Q2) (7.18)

is used. For Q2
0 = 1 GeV2, Figs. 10 and 13 in a review of nucleon form factors [120]

shows this to provide a reasonably good fit (O(10%) discrepancy with the data) to

data provided from similar deuterium scattering experiments.

Due to the net neutral charge of the neutron, both form factors are significantly

smaller in magnitude than those of the proton and one expects that the relevant

elastic contribution to γ(n) at input to be significantly smaller. In fact, as seen in

Figs. 7.2 and 7.3 it is seen to scarcely contribute at all, comprising O(1%) of

the total over a large range in x, becoming a significant proportion of xγ(n)(x,Q2)

only at x ∼ 0.5, where the magnitude of the PDF itself is of vanishing importance.

Therefore, given the uncertainties associated with both models adopted for both the

GE,(p) and GM,(p), γ
(el)
(n) may reasonably be omitted for phenomenological purposes.

This is even more readily apparent for contributions to γ
(el)
(n) for Q2 > Q2

0, since the

elastic contribution is attenuated as 1/Q2→ 0 such that γ
(el)
(n) /γ(n)→ 0.

We recall that, following the procedure adopted by LUXqed, F(inel)
2 is sepa-

rated in its contributions to the photon via Eq. (6.4) by two regions separated in

the variable W 2 = (Q2(1− x)/x)+m2
p with a cut at W 2

cut = 3.5 GeV2. Below this

cut, the resonance region, the fit provided by CLAS for F(inel)
2 is also given for the

neutron, making the resonant region, W 2 <W 2
cut , trivial to adapt for the purposes of

the neutron photon PDF. For the continuum region however, much like the elastic

form factors provided by the A1 collaboration, the HERMES fit for F2 is provided

solely for the proton. Therefore, the F(inel)
2,(n) is approximated from the expression of

that of the proton by relating terms between the PDFs for the neutron and proton.

In particular, we re-weight this contribution according to

F(inel)
2,(n) = rF2×F(inel)

2,(p) , (7.19)

where rF2 is the ratio of the charge weighted singlet of partons Σ, at input for the
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.

neutron to that of the proton:

rF2 =
4(d + d̄)+(u+ ū)+(s+ s̄)
4(u+ ū)+(d + d̄)+(s+ s̄)

. (7.20)

It should be noted that in the expression above, all the distributions refer to

those of the proton, where we have used the assumption (which as discussed in the

previous section holds to a high degree of accuracy) that (u+ ū)(n) = (d + d̄)(p),

(d+ d̄)(n) = (u+ ū)(p). Note that an attempt to improve the accuracy of the expres-

sion in Eq. (7.20) by using Eqs. (7.13), (7.14) would not be feasible in the current

framework since those equations depend on the parameter ε from the previous sec-

tion, which in turn is determined from γ
(inel)
(n) itself.

By approximating the ratio of structure functions between the hadrons by their

respective quark singlets, the form of F(inel)
2,(n) substituted in Eq. (6.4) for γ

(inel)
(n) in the

continuum region at input is simply given as F(inel)
2,(n) = rF2×F(inel)

2,(p) . In Fig. 7.4, one

sees a broad correspondence between the rF2(x) and the ratio γ
(inel)
(n) /γ

(inel)
(p) (x,Q2

0),

particularly as x→ 0. Some discrepancy between the two plots exists due to the
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presence of the resonance region contribution, which as stated above is reformu-

lated based on available neutron data, rather than being re-scaled by rF2 . The gen-

eral similarity, however, persists because at low x, the behaviour of the light quark

singlets is dominated by the sea quarks, and u ' ū ' d ' d̄, such that the effect of

swapping flavours via isospin leaves the PDFs roughly invariant in this region.
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Figure 7.4: (Left) the ratio of the charge weighted light quark singlets between the neutron
and proton. (Right) the ratio of xγ(inel) between the neutron and proton, for
comparison. At low x the behaviour of rF2 dominates the behaviour of xγ

(inel)
(n)

as the continuum region is of greater importance.

Above input, γ(n) is approximated from the evolution of γ(p) in a manner anal-

ogous to that of the quarks as described in Section 7.2. Similarly, following the

manner in which the photon contributions from inelastic and elastic components

are made distinct, as described in Section 6.4, we distinguish between the flavour of

quark whose splitting leads to the evolution of the photon. In particular, the major-

ity of the contributions to γ during the evolution occur from splittings of the form

q→ q+ γ or q̄→ q̄+ γ .

One can label the contributions to γ from the originating quark or antiquark

flavour to obtain γq, given by the following expression:

γ(x,µ2)q =
∫

µ2

Q2
0

α(Q2)

2π

dQ2

Q2

∫ 1

x

dz
z

(
Pγ,q(z)q+(

x
z
,Q2)

)
. (7.21)

where the + superscript once again denotes singlet type distributions of the form

q+ q̄.

Assuming isospin symmetry, which as shown in the previous section holds to a
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good approximation, one can make assumptions based on the predicted splittings in

the neutron evolution to re-weight the contributions of each γq of the proton, based

on the scheme laid out in Eq. (7.12) to obtain:

γ(x,Q2)
(inel)
(n) =

e2
d

e2
u

γu,(p)(x,Q
2)+

e2
u

e2
d

γd,(p)(x,Q
2)+ γ{s,c,b,g},(p)(x,Q

2), (7.22)

where the final term accounts for all other flavours, whose contributions are as-

sumed to be identical for the neutron and proton.

At the level of approximation adopted, the expression given above is expected

to be accurate to O(α), with errors of O(ααS +α2). Anticipating results from

the next section, it is seen that these higher orders induce changes in the resultant

photon of ∼ 3% at high x, while the uncertainties on the CLAS fit and the PDFs

themselves each introduce ∼ 1% uncertainty on the photon PDF at low and high

x respectively. Therefore, one could conservatively estimate the uncertainty of the

photon of the neutron PDF to be O(5%) at high x and O(2− 3%) at low x where

the PDF and higher order uncertainties dominate (where any considerations of the

uncertainty due to the elastic distribution is neglected).

As seen in Fig. 7.5, although substantially smaller than that of the proton at

the input scale, at the electroweak scale, Q = 1002 GeV2, the photon of the neutron

is seen to be comparable in magnitude to that of the proton. This is anticipated
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since the ratio of charges used to re-weight the proton contributions are O(1), and

as γ
(el)
(p) becomes less significant in the evolution, as seen in Fig. 6.5, the inelastic

contribution dominates.

This is seen in Fig. 7.6, which is analogous to Fig. 7.4 at a higher scale,

showing the ratio of the charged-weighted quark singlets (ΣC) between the proton

and neutron, and the ratio of γ
(inel)
(n) /γ

(inel)
(p) (x,Q2) at the same scale. As shown above

for the input, the isospin invariance demonstrated at low x in the sea quarks means

that the valence properties of the hadrons are less relevant at higher scales, leading

to a neutron photon PDF comparable with that of the proton.



Chapter 8

Results

In this chapter a comparison of the photon outlined in this thesis with that of other

contemporary sets is presented, as well as the effects that arise incorporating QED

splitting kernels and the changes to the structure functions during the fit. We also

show the effects of re-fitting to existing data with the modified evolution and the

comparison of the photon at NLO and NNLO in QCD. We also investigate how the

inclusion of QED affects the fit value of αS when it is fit from data and discuss in

detail the uncertainty on the photon PDF and its contributing sources.

8.1 Effects on the Partons due to QED Corrected

DGLAP Evolution
Here we show the parton distributions that are produced as a result of the changes

given in the preceding sections (primarly those related to the inclusion of QED

effects in the DGLAP scale evolution of the partons). In doing so, we draw a com-

parison to the evolution of the partons without these effects, but re-emphasise that

the basis of comparison is that described in Section 6.1, fit with additional data,

rather than the publicly available MMHT2014 partons. Furthermore, we note that

in the following discussion, the inclusion of QED splitting kernels is understood to

include those at O(α), O(ααS) and O(α2), unless otherwise mentioned.

The effect of QED evolution on the quarks, prior to refitting, is relatively mod-

est, as expected due to the O(α/αS) relevance of the QED splitting kernels in com-

parison to those of QCD. On the left hand side of Fig. 8.1 we present the percentage
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change in the u,d and s distributions, as well as the gluon, when QED kernels are

included, against a default of pure QCD kernels at NNLO.

Although the change appears to become large at low x, this is in fact an artifact

of the PDF parameterisation of the gluon, the expression for which is reproduced

here for convenience:

xg(x,Q2
0) = Ag(1− x)ηgxδg

(
2

∑
i=1

ag,iTCh
i (y(x))

)
+Ag′(1− x)ηg′xδg′ . (8.1)

Recall that the η’s, δ ’s, ai’s and A’s (with one exception, discussed below) represent

free parameters within the fit. Of note is the fact that two competing contributions

to this expression dominate the form of the input distribution (and therefore subse-

quent effects in the evolution of the sea) at low x. The final term, Ag′(1−x)ηg′xδg′ , is

provided to give the gluon greater flexibility in its parameterisation and as discussed

briefly in Section 4.3, is generally seen to improve the fit quality.

As discussed in Section 4.3, there is a strong correlation between the parameter

Ag of this term and the parameter Ag′ which also determines the magnitude of the

low x gluon at input. In particular the former term, with Ag > 0, generally leads

to an increase in the gluon at low x, while the latter term with Ag′ < 0 is generally

a negative contribution in this range. During a fit to data a delicate balance and

cancellation between these effects is seen to provide the best fit quality.

However, unlike the other parameters in this expression, Ag is determined

solely from the requirement of conservation of momentum, as described in Eq.

(6.11). If all other parameter values are taken from a fit using purely QCD ker-

nels (as described in Section 6.1), the extra momentum provided by xγ(x,Q2
0) at

input is compensated for by a reduction of Ag, which diminishes the gluon contri-

bution at low x. Such an effect disrupts the delicate cancellation between the terms

described above.

This is seen to reduce the overall gluon momentum during the evolution, as

well as that of the quark singlet distributions, since the latter at low x are primarily

driven by splittings of the form g→ q+ q̄. Therefore, a reduction in g is expected
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and observed to have a knock-on effect in the same region, as shown on the left

hand side of Fig. 8.1.
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Figure 8.1: The percentage change in the u,d,s,g partons at Q = 100 GeV due to QED
evolution with (right) and without (left) refitting to data.

In anticipation of Section 8.2, we note that the right hand plot of Fig. 8.1 shows

the effects on the quarks after refitting, where it is seen that the exaggerated effects

of the evolution at low x are compensated by the other parameters of the gluon, as

discussed above.

However, the behaviour of the partons at high x, which shows a small reduc-

tion in the singlet distributions are interpreted as genuine effects pertaining to the

inclusion of the QED contribution to Pqq outlined in Section 6.3. In particular, this

reduction is primarily a natural consequence of the inclusion of Pqq in QED, which

accounts for q→ q+ γ type processes in addition to the q→ q+ g previously in-

cluded due to QCD. At high x, this has the effect of reducing the quark singlet

momenta, with corresponding increases in xγ(x,Q2).

We also make note that although it is seen that the s distribution experiences

a larger magnitude of change due to QED than that of the other partons, this effect

is better understood as a consequence of the s+ s̄ distribution being most sensitive

to the effects of refitting due to being less well constrained by the data, rather than

having an enhanced sensitivity to the effects of QED. More generally, one can see

that the singlet (q+ q̄) and gluon PDFs, upon refitting with the effects of QED, all

lie within the uncertainty ranges established by a pure QCD fit. As seen in Figs.
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Figure 8.3: The ratio of the (s+ s̄), g distributions (with uncertainties) fit with and without
the effects of QED in the evolution (both at NNLO in QCD) at Q = 100 GeV.

8.2 - 8.4, the central values and uncertainties remain only modestly affected, with

O(2%) reduction for the s+ s̄ distribution, (with a slight increase in the reduction

at high x, due to the effect of QED splittings mentioned above).

Most sensitive to the effects of refitting are the up valence quarks, uV , and to a

lesser extent the down, dV , which experience a greater magnitude of change at low x

in their central values O(2−5%). Once again it is noted that this effect is marginal

given the large uncertainties (∼ 20%) in the valence quark PDFs in this region.

In Fig. 8.5 the fractional momenta carried by the singlet distributions (sepa-

rated by flavour), the gluon and photon is given as a function of Q2, for both the
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Figure 8.4: The ratio of the (u− ū), (d− d̄) distributions (with uncertainties) fit with and
without the effects of QED in the evolution (both at NNLO in QCD) at Q= 100
GeV.
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Figure 8.5: The fraction of total hadron momentum carried by the partons for the proton
(left) and neutron (right) QED corrected PDF sets laid out in this thesis.

proton and neutron. At input, γ(p) is seen to carry 0.196% of the proton’s total mo-

mentum and at very high scales it carries O(1%) (0.7%) of the proton’s whole. As

anticipated from the previous chapter, the γ(n) is seen to carry substantially less, car-

rying 0.03%, with a somewhat lower rate of increase in the total momentum carried

due to the relative charged parton differences between the hadrons during evolution,

as described in the previous chapter.

Although the photon itself only appears in the evolution with the inclusion

of splitting kernels at O(α), one is able to investigate the effects of higher and

mixed orders in QED calculations on xγ(x,Q2). In Fig. 8.6, we observe that the
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O(ααS) and O(α2) kernels are seen to reduce the photon distribution during the

evolution, by ∼ 1−3%, particularly at high x. We also note that the effect induced

by the O(α2) kernels is of O(0.5− 1%) and that uncertainties associated with the

exclusion of yet higher orders in perturbation theory are expected to be even smaller.

It is not thought that such scale uncertainties will be significant for the photon

at the level of accuracy being discussed in this thesis, since it is smaller than other

contributions to the uncertainty, discussed in Section 8.3, where a few large sources

are seen to dominate the overall uncertainty on the photon distribution.

Similarly, the order in QCD at which the underlying evolution in DGLAP is

performed is seen to have a modest effect on the resultant photon PDF produced at

higher scales, as seen in Fig. 8.7. In this instance, the photon at NNLO experiences

a slight reduction for intermediate values of x, O(1−2%) with a slight increase at

high and low x. This is largely due to differences in the underlying quark singlet,

which as previously noted, have a strong role in influencing the form of xγ(x,Q2) at

higher scales.
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8.2 Results of a Global Fit with QED Corrections

The fitting procedure used in determining the new parton parameters is broadly

similar to that of MMHT 2014, minimising the total χ2 with respect to the available

data (3276 data points), with the exception of changes to the structure function fits

as detailed below, and the inclusion of new data sets, as described in Section 6.1.

In Chapter 9 we detail the results of an alternative fit that also includes high mass

Drell-Yan data, which is seen to have some sensitivity to the inclusion of QED

effects.

8.2.1 Fit Quality

In Table 8.1, we provide the change in the total χ2 in the fit to all data after the in-

clusion of all QED effects at NLO and NNLO, before and after refitting the partons.

In the former case, the best fit values from a pure QCD fit are used for the input

partons and fixed while the effects of the QED are applied solely to the evolution.

A full breakdown of the χ2 for each data set is given in Appendix A.

The change in fit quality due to both the changes in the evolution and O(α)
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Change in χ2 due to QED evolution compared to MMHT14+HERA I+II
NLO before fit NLO after fit NNLO before fit NNLO after fit
4180 (+41) 4151(+12) 3574 (+42) 3539 (+7)

Table 8.1: The total χ2 for partons with the effects of QED, both prior to and after refitting
the parton parameters, at NLO and NNLO. Before the fit, the parameters derived
from the QCD fits described in Section 6.1 are used. The NLO fit contains
3609 data points, while the NNLO contains a total of 3276. The numbers in the
parentheses indicate the magnitude of the change from the MMHT14+HERA
set.

corrections to the structure functions detailed below are modest, as demonstrated in

table. While the effects purely driven by the evolution naturally lead to an increase

in χ2 (where the pure QCD fit parameters are used), this is somewhat reduced after

refitting the partons to data with the full QED effects included. However, some

increase is still observed after refitting, found primarily to be due to tension with

the BCDMS F2 and ZEUS CC data, as given in Appendix A, where the former is

responsible for a∼+6 increase in the total χ2 and the latter∼+2. This is somewhat

compensated for by a ∼−2 reduction from a slightly improved fit to F2 and F3 data

from the NuTeV experiment, which see a mild improvement to the fit.

It should be noted that other changes such as the addition of new data and, to a

much smaller degree, modifications such as the inclusion of the second term in Eq.

(6.25) generate a set of distributions with a fit quality (χ2
QCD/ndata = 3532/3276)

that differs from that of MMHT 2014 [78], even in the pure QCD case.

8.2.2 Comparison of xγ(x,Q2) Distributions

As seen in Fig. 8.8 the resulting photon PDF is seen to have relatively good agree-

ment with those of LUXqed and NNPDF3.1luxQED, with agreement to within

∼ 2% over a broad range of x, and more diverging predictions at high x where uncer-

tainties are seen to be large and overlapping. In particular the photon developed in

this work displays a very slight tendency to be somewhat larger in the intermediate

range of x and predicts a somewhat smaller photon at lower x.

This is, to an extent, expected when one considers that during the evolution,

the charge-weighted singlet (∑i e2
qi
(q + q̄)) differs between MMHT and those of

PDF4LHC15 nnlo 100 [71] (which are the underlying partons used for LUXqed
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Figure 8.8: The ratio of Photon PDFs between the LUXqed and NNPDF3.1luxQED sets
with that of MMHT, at Q2 = 104 GeV2.

in the higher Q2 representation of F2,L) and NNPDF3.1 [90] as seen in Fig. 8.9.

Indeed, even in the absence of QED effects during the evolution, the baseline for the

singlet distribution of quarks in MMHT was somewhat increased after fitting to the

HERA I+II data when compared to that of MMHT2014. This ∼ 3−4% reduction

of the charge weighted singlet between the sets as compared with ours in the range

10−4 < x < 10−1 is naturally expected to manifest as a reduction in the relevant

photon PDF ratios, since the evolution of xγ(x,Q2) is sensitive to this combination

of partons, as discussed in Section 7.3. Indeed, a comparison of Figs. 8.8 and 8.9

indicates that the photon and the charged singlets for both the LUXqed and NNPDF

sets appear to become greater than the equivalent distributions developed in this

thesis at approximately the same value at high x, x' 0.5.

Another reason why we anticipate that the xγ(x,Q2) as outlined in this work

may be somewhat greater in value, in an intermediate range in x, compared to that

of LUXqed is due to the exclusion of lepton splitting contributions in our DGLAP

evolution, which are included in the evolution used to develop the LUXqed set. In

Section 6.3 we explicitly neglected the sum over lepton charges in Eq. 6.22. In

general, since γ → ll̄ splittings should reduce the photon distribution, one expects

that excluding this term should lead to a somewhat increased photon. To estimate

the effect of including this term, in Fig. 8.10 we draw a comparison to a xγ(x,Q2)
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evolved with O(α) lepton splittings included in evolution and as anticipated find

that this term does lead to a O(1−2%) reduction, which becomes more pronounced

at higher Q2. Along with the ratio of the charged singlet used in the evolution, the

neglecting of lepton splittings1 leads to an independent source of enhancement for

our xγ(x,Q2), further accounting for the difference seen in Fig. 8.8.

Finally, common to all the sets are errors of O(1%), displaying the remarkable

improvements in accuracy seen in photon PDFs developed on the strategy outlined

in this thesis and that of [17] and [19], in comparison to that of older sets. A full

breakdown of the contributing sources of error are explored in subsection 8.3.

8.2.3 QED Corrected Structure Functions

During the fit, in order to make a comparison of the PDFs to DIS data from scatter-

ing experiments, one requires a way of relating the partons to the measured structure

functions F2,3,L, for example:

F2(x,Q2) = x∑
q,q̄

e2
q

∫ 1

x

dz
z

q(z,Q2)
{

δ (1− x
z
)+

αS

2π
Cq(

x
z
)+ ...

}
+

x∑
q,q̄

e2
q

∫ 1

x

dz
z

g(z,Q2)
{

αS

2π
Cg(

x
z
)+ ...

}
.

(8.2)

Where Cq,g are the coefficient functions which act, in essence, to renormalise the

bare quark and gluon distributions and whose expressions may be found in [121].

Analogous to the splitting kernels of DGLAP Pi j, these coefficients are calculated at

a given order in perturbation theory, for the relevant gauge theory (typically QCD).

The introduction of the photon and of QED to the splitting kernels motivates the

modification of this expression to include O(α) corrections to the coefficients Ci,

introducing terms of the form C(α)
γ ⊗γ(z,Q2) for F2,3,L in both Neutral Current (NC)

and Charged Current (CC) processes.

In Fig. 8.11 we show the effect of these changes with and without refitting.

Once again, the eccentricity introduced by the gluon parameterisation is seen to

1Note that excluding this term is still a reasonable approximation given that a fully consistent
treatment with a coupled DGLAP evolution as performed in the remainder of this thesis would
require the development of lepton PDF distributions which as discussed in [105] are found to have a
negligible impact on the evolution of the PDFs on the whole.



8.2. Results of a Global Fit with QED Corrections 141

0.98

0.985

0.99

0.995

1

1.005

1.01

0.001 0.01 0.1F N
N

LO
Q

C
D
+

Q
E

D
(x
,Q

2 )
/
F N

N
LO

Q
C

D
(x
,Q

2 )

x

Structure Function (F) ratios with and without QED

F2 CC
F2 NC
F3 CC

0.98

0.985

0.99

0.995

1

1.005

1.01

0.001 0.01 0.1F N
N

LO
Q

C
D
+

Q
E

D
(x
,Q

2 )
/F

N
N

LO
Q

C
D
(x
,Q

2 )

x

Structure Function (F) ratios with and without QED (refitted)

F2 CC
F2 NC
F3 CC

Figure 8.11: The ratio of the Charged and Neutral Current F2 and Charged Current xF3
for the proton, with and without the effects of QED, both at Q2 = 104 GeV2.
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fitting of the partons (in which the artificial reduction in the low x gluon and
hence the sea quarks has an enhanced effect, as discussed in the text). (Right)
The ratio of Structure Functions after refitting the partons, with modest effects
observed in F2 CC and NC.

have an effect at low x, reducing F2 and F3 somewhat, while after fitting, the CC

F2 and F3 are moderately decreased at low x. For the NC however, F2 is generally

reduced by O(0.5%), which is anticipated by the fact that the introduction of QED

in the evolution is seen in general to diminish the quark singlet content (as seen in

Fig. 8.1 in the previous section).

8.2.4 Effects of QED on αS Determination in Global PDF Fits

As well as the fit described above, we have also performed a global fit to data with

the usual parton parameters left free while simultaneously fitting to a value for the

strong coupling constant at the Z mass scale, αS(MZ), which fixes the scale for

the running of αS(Q2) during the evolution. The value typically used during the

evolution and the comparison to data is taken as a fixed value αS(MZ) = 0.118,

which reflects a combination of both the best fit value exclusively from our fit to

data (which is sensitive to the PDFs), and the independent inclusion of the world

average of αS(MZ) = 0.1181±0.0011 [38], as discussed in subsection 5.1 of [78].

In principle, one expects that the value of αS(MZ) found after refitting with the

effects of QED included in the fit will be somewhat less than that found in a pure
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QCD fit. This is because at leading order, the effect on the q+ q̄ distributions during

the evolution, particularly at high x, is due to gluon emission, q→ qg, which leads

to a slight reduction of the singlet. In a pure QCD fit, the parameters that provide

the best fit are a combination of both the input distribution and a value of αS(MZ)

which drives gluon emission at a rate (determined by P(QCD)
qq ) in the evolution such

that the PDFs at higher scales are best fit to the data.

In leading order in QED however, the electromagnetic coupling α plays virtu-

ally the same role in the evolution of the singlet distributions, diminishing the high

x content due to photon emissions q→ qγ . Therefore at LO, one can consider the

inclusion of QED as an enhancement to Pqq with an increased effecting coupling:

αS→ α
′ =
(

αS +
e2

qα

CF

)
, (8.3)

which may be readily seen from an inspection of Eq. (6.21). In a fit that includes

the coupling constants as free parameters, one expects that α ′, rather than αS would

tend towards a value that best models the loss of the singlet during evolution to

emission (whether to a photon or gluon). Since αS is the only free parameter in the

fit (where we adopt the world best measurement value for α [38]), one naturally

expects the best fit value for αS to be reduced to accommodate the modification in

Eq. (8.3). Naı̈vely, one may expect the magnitude of this reduction to compensate

for the magnitude of the modification term e2
qα/CF ∼ 10−3. Though small, this is

similar to the global fit uncertainty on αS, and the effects of QED may therefore be

significant in its determination.

This was also investigated in the development of the original MRST QED [12],

where it was found that despite the considerations mentioned above, between the

pure QCD and QCD+QED fit, αS(MZ) remained essentially unchanged. The reason

found for this perceived lack of change in αS(MZ) after refitting is that as well as

the propensity for the value to be reduced to the effects mentioned about, is that

the fit, (especially the NMC and HERA data) prefers a larger value for the gluon

at low x, which is sensitive to αS(MZ). This is because the QCD scaling of F2

goes as dF2/d lnQ2 ∝ αSPqg⊗ g(x,Q2). In short, the fit to the gluon at low x has
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a tendency to fit for a larger value of αS(MZ) than would otherwise be obtained.

Since, as mentioned above, the inclusion of the photon in the evolution is seen to

reduce g(x,Q2) at low x due to the conservation of momentum constraint applied

at input, in order to fit to the correct scaling behaviour for F2, the tendency is for

the fit to require a larger value for αS(MZ) to compensate. This pulls in a direction

opposite to the reduction of αS(MZ) as described above, and reduces the magnitude

by which one might anticipate a change after refitting with the effects of QED.

With the updated QED parton framework, we find that αS(MZ) experiences

a reduction from 0.11808 in the pure NNLO QCD case to 0.11796 in the fit with

QED (with a reduction from 0.11991 to 0.11989 (∆αS(MZ) = −0.00002) at NLO

in QCD). Although this does represent a small, expected reduction, the difference,

∆αS(MZ) = −0.00012, is considered small, and in neither case is seen to improve

the total fits by any significant degree (∆χ2 < 1). However, in future global fits, the

inclusion of QED effects in the partons may come to be significant as the accuracy

of such measurements are improved.

8.2.5 Photon-Photon Luminosity

A sense of the photon PDF’s relevance to particle production at colliders such as the

LHC may be determined from an inspection of the γγ luminosity expected at these

energies (14 TeV), shown in Fig. 8.12. This is determined from the equation:

dLγγ

d lnm2 =
m2

s

∫ 1

m2
s

dz
z

γ(z,m2)γ

(
m2

zs
,m2
)
, (8.4)

where m is the total invariant mass of the incoming partons (and subsequent prod-

uct).

As seen in Fig. 8.8, the correspond toence between our photon and that of

other sets based on the LUXqed formulation show good agreement, and therefore

our predicted γγ luminosity, dLγγ/d lnm2, bears a strong resemblance to others in

the literature (e.g. Fig. 19 in [99]). Also shown in Fig. 8.13 is the expected

luminosity for a High-Energy LHC proposal with (CoM) energy
√

s =27 TeV, and

a Future Circular Collider with a
√

s =100 TeV, where the total γγ luminosity is
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Figure 8.12: γγ partonic luminosities as a function of invariant mass at Centre-of-Mass en-
ergies of 14 TeV. Note that for the elastic γ(el)γ(el), the multiparticle interaction
(MPI) effects are not included, and their inclusion would reduce (lower) the
blue curve to some degree (discussed in text).

comparable to that of Σi(qiq̄i + q̄iqi) at present LHC CoM energies (14 TeV).

Furthermore, since our Photon PDF is separable by its elastic and inelastic

components, we are able to distinguish between γ(inel)γ(inel) and γ(el)γ(el) contribu-

tions to the overall luminosity. The latter is of particular interest in the context of

exclusive production of particles in coherent photon-photon scattering (as discussed

in the latter half of [122]). In these events the protons collide peripherally, exchang-

ing only photons while remaining intact, such that they can be detected and their

kinematic properties reconstructed at the end caps of the ATLAS (AFP) [123] and

CMS (CT-PPS) [124] detectors. In particular, as discussed in [123] and [124], one

can obtain information about the three-momentum parallel to the beam direction,

p‖, which allows one to reconstruct the mass of invisible final states.

Previous theoretical work on Central Exclusive Processes (CEP) has often per-

formed calculations with the use of the Equivalent Photon Approximation [94][95],

in which the photon flux associated with the colliding beam of charged particles

may be expressed in terms of the elastic structure functions F(el)
2,L , in a manner sim-
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Figure 8.13: γγ partonic luminosities as a function of invariant mass at Centre-of-Mass
energies of 14, 27 and 100 TeV.
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ilar to that considered in this paper. The γ(el)γ(el) luminosity, represented in Fig.

8.12, corresponds to the luminosity that could be delivered in this approach.

However, this interpretation is qualified with an important caveat, which is that

for an exclusive production process, with both protons seen to remain in tact after

scattering, one needs to multiply the final result obtained from the naı̈ve use of γ(el)

as an incoming parton by a “soft survival” factor, that subtracts any contributions

from multiparticle interactions (MPI) [125], in order to fully exclude the influence

of other effects. Furthermore, the luminosities shown in Fig. 8.12 could not directly

be applied to the calculation of cross sections for more exclusive final states, such as

when explicit cuts are placed on the presence of additional tracks within the central

portion of the detector [9].

We conclude this section with a discussion of the effect of higher and mixed

orders of QED, O(ααS) and O(α2) during the evolution and the significance of

their impact on the total luminosity at present CoM energies at the LHC. As pre-

viously observed in Fig. 8.6, the inclusion of these higher order splitting functions

in the evolution of xγ(x,Q2) have a tendency to reduce its magnitude, particularly

at the higher range in x. In Fig. 8.14, the proportional effects of such changes in

dLγγ/d lnm2 are seen as a function of the invariant mass of the final state product.

In fact, above the electroweak and near TeV scales, the importance of these higher

orders become significant, inducing a O(5%) reduction in the total γγ luminosity.

8.3 Uncertainties on the Photon PDF

Due to the nature of our input distribution, much of the uncertainty contributions

to our photon PDF bear strong resemblance to that of LUXqed and in some cases,

our treatment of the uncertainty contributions are identical. However, as mentioned

in Section 6.3, due to the lower starting scale adopted in our evolution procedure,

we also include higher twist corrections in the form of a renormalon model, for

which the undetermined coefficient A′2 in Eq. (6.27) is fit to the data, introducing an

independent source of uncertainty.

For completeness, a full description of the uncertainty contributions is given
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below, where we also direct the reader to Figs. 8.15-8.17 for reference, where one

can also observe how the change in scale affects the form of the uncertainty.

• Elastic: The uncertainty contributions from the A1 fit for F(el)
2 are twofold. In

particular, the fits provided by A1 are given in the unpolarised and polarised

forms, where the latter accounts for potential two photon exchange (TPE)

processes between the lepton probe and the proton in DIS experiments. Fol-

lowing the approach of LUXqed, we use the latter for our estimate precisely

because it provides constraints on TPE. As well as the intrinsic uncertainty

provided by the A1 collaboration for this fit δ (F(el)
2 )a, similarly to LUX, we

adopt the symmetrised difference the polarised and unpolarised fit as an in-

dependent source of error, δ (F(el)
2 )b. The total uncertainty on F(el)

2 is then

simply the sum of these two contributions in quadrature.

• R: The contributions from FL are modelled in precisely the same manner as

that of LUX, using the parameterisation of the form:

FL(x,Q2) = F2(x,Q2)
(

1+
4m2

px2

Q2

) RL/T (x,Q2)

1+RL/T (x,Q2)
, (8.5)

where RL/T = σL(x,Q2)/σT (x,Q2) represents the ratio between the absorp-

tion cross sections for longitudinal and transversely polarised photons. Our

expression for this ratio is provided by the LUX group, who, following the

procedure used by the HERMES collaboration [102], in term adapt the ex-

pression from the R1998 fit [103] provided by the E143 Collaboration to use

in low Q2 regions and assign it a conservative ±50% uncertainty, which we

also adopt.

• W2: As mentioned in Section 6.2, since F(inel)
2 is not universally well mod-

elled by any given fit in both the “resonant” (where F(inel)
2 displays Breit-

Wigner type peaks due to hadronic excitations) and “continuum” (where

F(inel)
2 is seen to be smooth as a function of W 2) regions in phase space,

and two distinct fits for F(inel)
2 are used above (HERMES [102]) and below
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(CLAS[101] and Cristy-Bosted[104]) a threshold of W 2
cut = 3.5 GeV2. Since

W 2
cut is defined somewhat arbitrarily and theoretically induces some small

amount of discontinuity in the contributions to γ(inel), we treat the cut value

as an independent source of uncertainty, varying it the region 3 < W 2
cut < 4

GeV2. Even with a relatively conservative approach, the uncertainty on W 2
cut

is seen to be vastly dominated by other sources.

• Resonance: The uncertainty of F(inel)
2 in the resonance region described

above is taken as the symmetrised difference between the CLAS fit, which

is used as the standard for our input, and that of the Cristy-Bosted, similar to

the procedure used by LUXqed.

• Continuum: The uncertainty of F(inel)
2 in the continuum region is adapted di-

rectly from the uncertainty bands of the GDP-11 fit provided by the HERMES

collaboration. Note that this differs from the treatment in LUXqed, where the

uncertainty estimate is produced by varying the scale from which the descrip-

tion of F2 is produced from the GDP-11 fit or the quarks in the evolution.

In practice, for both sets, this contribution is only a small contribution to the

overall uncertainty.

• Renormalon: For the fitting and uncertainty of the coefficient A′2 in Eq.

(6.27), we implemented the original renormalon model of [110] into the cal-

culation of the structure functions themselves, F2 and F3, as used in the fit. A′2

was then varied to induce a ∆χ2 =±10 change in the overall fit quality of the

partons (as seen in Fig. 6.3 in Section 6.3), creating a generous uncertainty

band of −0.4 < A′2 < −0.2, with a best fit value of -0.3. We note that our

global fit to the data favours a renormalon contribution ∼ 50% greater than

the value used in the original model by Dasgupta and Weber [110]. At high

x, this is seen to be a comparable source of uncertainty with that of δ (F(el)
2 ).

Unlike all other terms discussed so far, the uncertainty in A′2 enters during the

evolution, rather than at input.

• PDFs: Similarly, since above the input scale Q2
0 = 1 GeV2, the γ(inel) contri-
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Figure 8.15: Photon PDF Uncertainty contributions (added in quadrature to give the total
uncertainty), Q2

0 = 1 GeV2. Note that the upper x range has been restricted in
this plot due to the effect of the kinematic cut given in Eq. (6.10) Section 6.2.

butions are modelled solely from the splittings of other partons during the

DGLAP evolution, the intrinsic uncertainty on the other PDFs propagate

into the form of the photon PDF as it evolves. This reflects the standard

50 eigenvector uncertainties associated with the fit of the free parameters in

the MMHT parameterisation (see Eqs. (4.6) and (4.8)), which generate the

uncertainty bands for all flavours of parton (q, q̄,g) and in turn generate un-

certainties in the photon during splittings of the form q→ qγ and g→ qq̄γ .

At low x, as is the case of LUXqed, this dominates as the primary source of

uncertainty.

Since our γ(inel) is evolved from a common starting scale and fit consistently

alongside the other partons of our set, we are alleviated of the consideration of

matching scales between the photon and other partons (though seen to be negligi-

ble even when necessary, as shown for (M) in Fig. 15 of [99]). Furthermore, in

comparison to that of LUXqed, our set neglects certain contributions to the pho-

ton uncertainty. In particular, rather than the Twist-4 uncertainties considered by
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Figure 8.16: Photon PDF Uncertainty contributions (added in quadrature to give the total
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LUXqed for FL (which an inspection of (T) in Fig. 15 of [99] reveals to be over-

whelmingly dominated by other sources), our treatment of the Higher-Twist (HT)

corrections to the structure function in the form of the renormalon lead to a more

significant uncertainty at high x, consistent with our choice of a lower starting scale

for the evolution.

Indeed, since our starting scale is at Q2
0 = 1 GeV, as shown in Fig. 8.15, the

uncertainties at input have a markedly different form to the kind that arises during

the evolution. Naturally, effects that pertain to the evolution, (the PDF eigenvec-

tor uncertainties and the renormalon) are absent at this scale, and the dominating

effects are seen to be the uncertainty on the resonance contribution to F(inel)
2 , the

uncertainties on the Sachs form factors provided by the GD-11 fit (δF(el)
2 ) and the

uncertainty on RL/T .

As the evolution occurs however, the PDFs overwhelmingly dominate as the

source of uncertainty at low x, and in conjunction with the uncertainty on the renor-

malon parameter A′2, become significant contributions along with those of the Sachs

form factors at higher x.

It is noted that we do not account for the uncertainty that arises from the Higher

Order (HO) terms missing from the QCD components of the evolution, as estimated

in LUXqed. Although we have given an indication of the magnitude of the change in

order from QCD (from NLO to NNLO) in the evolution in Fig. 8.7 of the previous

section (which broadly corresponds to the (HO) band in Fig. 15 of [99]), we do

not treat this difference as an independent source of uncertainty, since PDFs have

typically been provided at both NLO and NNLO in QCD, each with independently

derived uncertainty bands. One could therefore symmetrise the difference between

the photon PDFs provided at these orders (Fig. 8.7) to estimate the uncertainty of

this effect. Despite not being included as a default, recent work [126] has begun

to explore the possibility of incorporating such uncertainties into the PDF fitting

framework of MMHT in a standard manner.

Overall, we note the similarity between the form of our uncertainty with others,

being less than 2% for 10−5 < x < 0.5, demonstrating a drastic improvement with
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early photon PDF sets such as MRST2004QED [12] and NNPDF2.3 [14].

As stated at the end of Chapter 4, PDF sets are typically provided as grids in

the LHAPDF6 format, with each grid representing either the central value of the

PDFs, or the PDFs at a given ± eigenvector direction in the independent parameter

space PDFs. As noted above, as well as the uncertainties that are routinely given in

such sets associated with the non-photon PDF parameters, the set that is produced

as a result of the work described in this thesis now contains uncertainties associated

with the photon parameters at input and the A′2 parameter for the renormalon in the

evolution. Details of these grids are provided in Appendix B.



Chapter 9

High Mass Drell-Yan

In order to explore the phenomenological implications of the PDF set outlined in

this thesis, we calculate the effects on the double differential cross section for lepton

pair (Drell-Yan) production in a hadron-hadron collider. This process is of particular

interest, since the effects of QED, especially in the partons, is expected to be of non-

negigible significance, particularly due the inclusion of xγ(x,Q2) as a contribution

to the cross section.

In particular, we draw a comparison when including the effects of QED for the

evolution of the PDFs, as well as the effect of additions to the cross section from

photon-initiated (PI) contributions, as shown in Fig. 9.1, where the photon PDF

enters as a direct input for the colliding partons.

9.1 QED and Photon Sensitivity in High Mass Drell-

Yan

q̄

q
l−

l+

γ, Z

γ

γ

l−

l+

γ

γ

l−

l+

Figure 9.1: Leading order Drell-Yan production (left), with diagrams (centre, right) indicat-
ing O(α) photon-initiated (PI) matrix element contributions to the total cross
section.

In order to gauge the magnitude (and phenomenological significance) of these
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effects we compare to data provided by the ATLAS collaboration [23] for high

mass (116 GeV < mll < 1500 GeV) Drell-Yan lepton pair production. The focus on

production at high mass is chosen in order to reduce the effects of the Z production

peak, Q ∼ MZ = 91 GeV, since the relative contribution of the PI processes are

greater in the regions dominated by the γ channel. Therefore, the effects of PI

contributions are anticipated to be more readily observable at low1, m2
ll � M2

Z , or

high, m2
ll �M2

Z , lepton pair invariant masses.

ATLAS provides double differential cross section measurements in 5 bins of

lepton pair invariant mass, mll , and 12 (or 6) pseudo-rapidity bins in η . Figs. 9.2 to

9.6 show a comparison of the predictions using MMHT partons to produce the cross

sections for comparison: (a) in the case of the standard QCD fit partons at NNLO

as outlined in Section 6.1, (b) with QED modified partons to provide cross section

calculations at NNLO in QCD and (c) with QED modified partons and additional

contributions to the cross section from O(α) photon initiated processes as shown in

Fig. 9.1.

To calculate cross sections, we use grids provided by the xFitter collabora-

tion [15] at NLO in QCD (generated with MadGraph5 aMC@NLO [128], aMCfast

[129] and FEWZ [130]), with NNLO K-factors as well as LO QED corrections (for

the inclusion of PI processes). Such grids were developed and used in [15] with

the aim of creating a determination of xγ(x,Q2) from the same ATLAS data we aim

to draw a comparison with, making them well suited to our purposes. These are

then interfaced with a modified version of APPLgrid that has been adapted for the

purposes of this work to include γγ processes for the final calculation.

In the following analysis it is emphasised that the contributions of PI processes

implemented in the comparison to data will be most sensitive to xγ(inel)(x,Q2), due

to the prevalence of this contribution at xγ(el)(x,Q2) at higher scales (as was seen in

1In fact, such data for low mass Drell-Yan is also available from the ATLAS experiment
[127]. However, in releasing the data, they purposefully estimate and remove the expected photon-
initiated component of the contributions to the cross section, using estimates produced from the
MRST04QED set. Though this removal is likely to be less accurate than could be achieved using a
modern xγ(x,Q2) such as the one produced in this thesis which supersedes the MRST set, the cor-
rections are likely to be smaller than the magnitude of the photon-initiated component of the cross
section.
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Figure 9.2: The ratio of theory to data of the cross section for Drell-Yan production in the
mass bin 116 GeV < Mll < 150 GeV, differential in rapidity, as provided by the
ATLAS experiment [23]. The ratios are provided for cross section calculations
performed from pure QCD PDFs, QCD PDFs with QED corrections and for
the latter including photon-initiated contributions.

the lower part of Fig. 6.6 in Section 6.4).

Firstly, it is observed that the addition of QED in the process of DGLAP leads

to a tendency to decrease the qq̄ contribution to the cross section, increasingly so at

higher rapidity. This is expected since observing Fig. 8.1, one notes that the quarks

experience a reduction at high x of ∼ 1% due to q→ q+ γ type splittings.

Secondly, the inclusion of PI contributions to the cross section is seen, as ex-

pected, to lead to an increase in the cross section relative to the QED corrected

partons (the orange points in Figs. 9.2 to 9.6 as compared with the green) across all

bins, as the inclusion of xγ(x,Q2) opens up new means for lepton pair production,

unaccounted for in pure QCD calculations. Since the magnitude of the photon PDF

is seen to become larger at low x, particularly at high scales (Q2 = 104 ∼ 108 GeV2)

and η ' 1
2 ln(x1/x2) where 1 and 2 denote the incoming photons, the predominance

of the photon at low x manifests as an enhanced cross section contribution in the

lower and intermediate η bins, an effect seen to hold across all mass bins.
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Figure 9.3: As the figure above, for the mass bin 150 GeV < Mll < 200 GeV
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Figure 9.4: As the figure above, for the mass bin 200 GeV < Mll < 300 GeV
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Figure 9.5: As the figure above, for the mass bin 300 GeV < Mll < 500 GeV
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Figure 9.6: As the figure above, for the mass bin 500 GeV < Mll < 1500 GeV
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Of note, however, is the fact that, at high η , the change due to QED inclusions

in the evolution (the green points as compared with the blue, whose effect is only

manifested as changes in the quarks and the gluon, as contributing to the NNLO

QCD cross section calculation) is seen to be of comparable in magnitude to that of

PI contributions (the orange points as compared with the green). In particular, we

wish to highlight that for precision calculations of electroweak effects, one requires

that all the partons be consistently treated (i.e. to contain all QED splittings for the

quarks and gluons in an interdependent and coupled fashion) with QED in the evo-

lution, as well as including the photon for a consistent treatment. This is especially

noteworthy since the general trend of the partons after refitting with QED has an

opposing effect on the cross section compared to that of PI contributions (due to a

reduction of the total quark singlet), and as such, neglecting them can in principle

lead to an over-estimation of the cross section where PI contributions are simply

added on top of the standard QCD result, without the compensating effect in the

other partons.

In fact, at high x,η , where PI contributions are relatively less important as

xγ(x,Q2) rapidly diminishes, the effect of refitting the partons with QED is such

that even the inclusion of PI contributions after accounting for QED in the evolution

leads to a cross section less than that of the standard NNLO QCD prediction. In

other words, the reduction of the total quark singlet content has a greater impact

than the additional cross section contributions that are available from PI processes.

9.2 Sensitivity of a Global Fit to High Mass Drell-Yan

Data
In the previous section, the cross section calculations were performed using a set

of PDFs (for all three types of points represented in Figs. 9.2 to 9.6) which has not

included the Drell-Yan data from ATLAS itself in the global fit for the determination

of parton parameters. In the remainder of this section, we discuss the effects of

including these data in the fit itself and the subsequent effect on the recalculation of

the cross section.
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In Figs. 9.7 to 9.11 we present the ratio of the cross section calculation from

the QED corrected partons, including the contributions of PI processes both before

and after refitting to the data with these effects. In these figures, it is seen that there

is no substantial improvement in fit quality after refitting.

Of note however, is the fact that the PDF contributions to the uncertainties

of the predicted cross sections (the sole contributuon to the uncertainty bands in

Figs. 9.7 to 9.11) are incrementally reduced when refitting with the effects of QED

included (best observed in the bins for high η , especially in the lower mass bins).

In particular, we note that this incremental reduction is seen when refitting with the

effects of QED in the evolution and with the inclusion of PI effects, but not when

refit with purely with NNLO QCD parton evolution (and the absence of the photon).

This indicates a weak preference to the effects of QED in the partons themselves

and more accurate data may yet provide a better indication of how sensitive the

comparison to the theory is with and without the effects outlined in this thesis.
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Figure 9.7: The ratio of theory to data for the cross section of Drell-Yan production in
the mass bin 116 GeV < Mll < 150 GeV, differential in rapidity, as provided
by the ATLAS experiment [23], with all PDF errors including those of the
γ included. The ratios are provided for cross section calculations performed
from QCD+QED PDFs with photon-initiated contributions, for PDFs fit with
and without the high mass Drell-Yan data itself.
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Figure 9.8: As the figure above, for the mass bin 150 GeV < Mll < 200 GeV
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Figure 9.9: As the figure above, for the mass bin 200 GeV < Mll < 300 GeV
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Figure 9.10: As the figure above, for the mass bin 300 GeV < Mll < 500 GeV
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Figure 9.11: As the figure above, for the mass bin 500 GeV < Mll < 1500 GeV



Chapter 10

General Conclusions

In this thesis, the updated MMHT partons have been presented, modified to include

the effects of QED in their evolution. Our resultant photon PDF, xγ(x,Q2), based

on a similar methodology for the input to that of LUXqed is seen to bear a close

resemblance in form with others in the literature, despite several modifications made

to take into account our lower starting scale for the evolution and the use of a fully

consistent, coupled DGLAP evolution using the MMHT PDFs.

Also outlined was the procedure developed to provide an approximate QED

corrected DGLAP evolution for the PDFs of the neutron, leading to a neutron pho-

ton PDF (which was seen to be of a similar magnitude to that of the proton at higher

Q2), and isospin violating valence quark PDFs, which may hold importance for the

future development of neutron PDFs and more significantly, the future development

of nuclear PDFs which are already developed in the literature.

Although the fit quality remains broadly unchanged after refitting with these

effects, it was observed that for the process of high-mass Drell-Yan production,

the effects of both photon initiated processes, as well as changes in the quark and

antiquark PDFs due to the effects of evolution, may become significant with the

advent of precision measurements in this kinematic region and that the effects of

QED in the evolution may be as significant as that of the photon, highlighting a

need for a fully consistent set of QED corrected partons.

Finally, we note that the work undertaken in this thesis lays the foundation

for the analysis of future data such as more precise Drell-Yan data and other such
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processes (e.g. Higgs + W production) which are anticipated to be sensitive to

photon-induced corrections and more generally, the improved theoretical accuracy

of a QED corrected set of PDFs. In future, as the LHC is expected to move into a

High Luminosity phase, as well as the PDFs providing the theoretical predictions

needed for physics analyses, more accurate data may itself be able to provide alter-

native constraints to the photon as developed in this thesis.



Appendix A

χ2 breakdown

Here the χ2/Npts (where Npts represents the number of data points) are presented,
broken down by data set for QCD and QCD + QED PDF fits, as described in Sec-
tion 8.2, for both NLO and NNLO in QCD.

Change in χ2 due to QED evolution compared to MMHT14+HERA I+II
Data set χ2/Npts NNLO before fit

(QCD)
χ2/Npts NNLO after
fit(QCD+QED)

BCDMS µ p F2 [132] 178 / 163 182 / 163 (+4)
BCDMS µd F2 [133] 142 / 151 144 / 151 (+2)
NMC µ p F2 [134] 124 / 123 125 / 123
NMC µd F2 [134] 108 / 123 108 / 123
NMC µn/µ p F2 [135] 128 / 148 127 / 148
E665 µ p F2 [136] 65 / 53 65 / 53
E665 µd F2 [136] 61 / 53 61 / 53
SLAC ep F2 [137][138] 31 / 37 31 / 37
SLAC ed F2 [137][138] 26 / 38 25 / 38
NMC/BCDMS/SLAC/HERA FL [134, 132, 138, 139, 140,
141]

66 / 57 66 / 57

E866/NuSea pp DY [142] 224 / 184 223 / 184
E866/NuSea pd/pp DY [143] 11 / 15 11 / 15
NuTeV νN F2 [144] 37 / 53 36 / 53 (-1)
CHORUS νN F2 [145] 29 / 42 29 / 42
NuTeV νN xF3 [144] 31 / 42 31 / 42
CHORUS νN xF3 [145] 19 / 28 19 / 28
CCFR νN→ µµX [146] 77 / 86 78 / 86
NuTeV νN→ µµX [146] 42 / 84* 41 / 84*
HERA I+II CC e+p [96] 52 / 39 52 / 39
HERA I+II CC e−p [96] 63 / 42 65 / 42 (+2)
HERA I+II NC e+p 920 GeV [96] 510 / 402 510 / 402
HERA I+II NC e−p 920 GeV [96] 239 / 159 240 / 159 (+1)
HERA I+II NC e+p 820 GeV [96] 88 / 75 88 / 75
HERA I+II NC e−p 575 GeV [96] 261 / 259 262 / 259
HERA I+II NC e−p 460 GeV [96] 246 / 209 246 / 209
HERA ep Fcharm

2 [147] 80 / 52 80 / 52
DØ II pp̄ incl. jets [148] 117 / 110 117 / 110
CDF II pp̄ incl. jets [149] 60 / 76 60 / 76
CDF II W asm. [150] 16 / 13 15 / 13
DØ II W → νe asym. [151] 31 / 12 30 / 12
DØ II W → νµ asym. [152] 16 / 10 16 / 10
DØ II Z rap. [153] 17 / 28 17 / 28
CDF Z rap. [154] 40 / 28 40 / 28
ATLAS W+, W−, Z [155] 41 / 30 41 / 30
CMS W asymm pT > 35 GeV [156] 7 / 11 7 / 11
CMS asymm pT > 25 GeV, 30 GeV [157] 8 / 24 8 / 24
LHCb Z→ e+e− [158] 22 / 9 22 / 9
LHCb W asymm pT > 20 GeV [159] 14 / 10 13 / 10
CMS Z→ e+e− [160] 23 / 35 22 / 35
ATLAS high-mass Drell-Yan [6] 17 / 13 18 / 13
CMS double diff. Drell-Yan [161] 152 / 132 152 / 132
Tevatron, ATLAS, CMS σtt̄ * [162, 163, 164, 165, 166, 167,
168]

14 / 18 14 / 18

All data 3532 / 3276 3539/3276 (+7)
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Change in χ2 due to QED evolution compared to MMHT14+HERA I+II
Data set χ2/Npts NLO before fit

(QCD)
χ2/Npts NLO after
fit(QCD+QED)

BCDMS µ p F2 [132] 177 / 163 184 / 163 (+7)
BCDMS µd F2 [133] 139 / 151 140 / 151
NMC µ p F2 [134] 135 / 123 136 / 123
NMC µd F2 [134] 118 / 123 121 / 123 (+3)
NMC µn/µ p F2 [135] 128 / 148 131 / 148 (+3)
E665 µ p F2 [136] 60 / 53 61 / 53
E665 µd F2 [136] 52 / 53 52 / 53
SLAC ep F2 [137][138] 31 / 37 30 / 37
SLAC ed F2 [137][138] 31 / 38 30 / 38
NMC/BCDMS/SLAC/HERA FL [134, 132, 138, 139, 140,
141]

73 / 57 72 / 57

E866/NuSea pp DY [142] 218 / 184 217 / 184 (-1)
E866/NuSea pd/pp DY [143] 12 / 15 12 / 15
NuTeV νN F2 [144] 39 / 53 36 / 53 (-3)
CHORUS νN F2 [145] 26 / 42 25 / 42
NuTeV νN xF3 [144] 36 / 42 36 / 42
CHORUS νN xF3 [145] 23 / 28 23 / 28
CCFR νN→ µµX [146] 69 / 86 69 / 86
NuTeV νN→ µµX [146] 41 / 84* 40 / 84*
HERA I+II CC e+p [96] 51 / 39 50 / 39
HERA I+II CC e−p [96] 76 / 42 79 / 42 (+3)
HERA I+II NC e+p 920 GeV [96] 546 / 402 544 / 402 (-2)
HERA I+II NC e−p 920 GeV [96] 248 / 159 248 / 159
HERA I+II NC e+p 820 GeV [96] 89 / 75 89 / 75
HERA I+II NC e−p 575 GeV [96] 268 / 259 268 / 259
HERA I+II NC e−p 460 GeV [96] 254 / 209 253 / 209
HERA ep Fcharm

2 [147] 72 / 52 72 / 52
H1 9900 e+p incl. jets 14 / 24 14 / 24
ZEUS incl. jets 45 / 60 45 / 60
DØ II pp̄ incl. jets [148] 119 / 110 119 / 110
CDF II pp̄ incl. jets [149] 65 / 76 69 / 76
CDF II W asm. [150] 16 / 13 16 / 13
DØ II W → νe asym. [151] 33 / 12 33 / 12
DØ II W → νµ asym. [152] 16 / 10 16 / 10
DØ II Z rap. [153] 16 / 28 16 / 28
CDF Z rap. [154] 37 / 28 37 / 28
ATLAS W+, W−, Z [155] 38 / 30 39 / 30
CMS W asymm pT > 35 GeV [156] 7 / 11 7 / 11
CMS asymm pT > 25 GeV, 30 GeV [157] 7 / 24 7 / 24
LHCb Z→ e+e− [158] 14 / 9 14 / 9
LHCb W asymm pT > 20 GeV [159] 12 / 10 12 / 10
CMS Z→ e+e− [160] 19 / 35 19 / 35
ATLAS high-mass Drell-Yan [6] 21 / 13 22 / 13
CMS double diff. Drell-Yan [161] 379 / 132 385 / 132 (+5)
Tevatron, ATLAS, CMS σtt̄ * [162, 163, 164, 165, 166, 167,
168]

14 / 18 14 / 18

ATLAS jets (2.76 TeV + 7 TeV) 110 / 116 111 / 116
CMS jets (7 TeV) 139 / 133 141 / 163 (+2)
All data 4139 / 3609 4151/ 3609 (+12)



Appendix B

PDF Grids

As noted towards the end of Chapter 4 and Chapter 8, the set of QED corrected

partons, MMHTqed, developed in this thesis will be released in the LHAPDF6

format for public use. The exact nature in which the grids are provided is clari-

fied here. Each grid is a file labelled as ‘MMHT2015qed nlo {type} 00{x}.dat’ or

‘MMHT2015qed nnlo {type} 00{x}.dat’, where {type} is a label denoting which

photon contribution is included in the set (described below) and {x} represents num-

bers in the range {01,02, ...,62}. The particular uncertainties (as described above)

associated with the numbers denoting each set are detailed in the Table B.1.

File number index {x} Corresponding Uncertainty
01-50 The standard PDF uncertainties associated with the

q+ q̄, q− q̄ and g distributions for all flavours, as de-
scribed in Chapter 4

51-52 The uncertainty contributions from A′2 (51: -0.4, 52:-
0.2)

53-54 The uncertainty contributions from the Continuum
contributions (53: Upper band, 54: Lower band)

55-56 The uncertainty contributions from the Resonance
contributions (53: Upper band, 54: Lower band)

57-58 The uncertainty contributions from Wcut (57: 3 GeV2,
58: 4 GeV2)

59-60 The uncertainty contributions from R (59: +50%, 60:
-50%)

61-62 The uncertainty contributions from the Elastic contri-
butions (53: Upper band, 54: Lower band)

Table B.1: A table denoting how the numbering of the grid files (produced in the LHAPDF6
format) corresponds to the uncertainties listed in the text.
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The grids are developed as three different sets, {type} = ‘inelastic’, ‘elastic’

or ‘total’, to accommodate three distinct representations of the photon PDF, γ(inel),

γ(el) and γ = γ(inel)+γ(el). This is because the LHAPDF6 format also requires that in

each file for a given grid, each column, which represents a given PDF distribution,

be labelled with an associated number from the Monte Carlo Particle Numbering

Scheme as described in [38], where every flavour of particle is associated with an

integer. This represents an obstacle for the photon distributions as represented in

this paper, since only one such number is allocated for the γ , 22, while we wish to

distinguish between the total, the elastic and the inelastic components.

To provide users with the ability to call upon γ , γ(el), γ(inel), as needed, we

provide three separate PDF sets for each use case. Each set contains the full

62 eigenvector uncertainties as well as the central values described in Section

8.3. For example at NNLO, the ‘MMHT2015qed nnlo total’ set provides the full

γ = γ(el) + γ(inel) distribution in the column reserved for the photon (22). The

‘MMHT2015qed nnlo inelastic’ set provides the γ(inel)(x,Q2) distribution while

the ‘MMHT2015qed nnlo elastic’ set provides the γ(el)(x,Q2) distribution (with

the corresponding NLO PDF sets labelled appropriately). Users should therefore

distinguish by name the appropriate LHAPDF6 variables in code for each distinct

photon component as needed, calling each from the sets as labelled above.



Appendix C

Colophon

This document was set in the Times Roman typeface using LATEX and BibTEX, com-

posed on Overleaf and makes use of the UCL thesis template provided there. The

software used in the production of results and figures was primarily the MMHT

source code as modified by the author, with additional software provided from Ap-

plgrid. The grids were converted into LHAPDF6 format using code adapted from

that provided by Lucian Harland-Lang and Shaun Bailey. All plots, where not cited

from elsewhere, were generated using gnuplot and Feynman diagrams were gen-

erated in JaxoDraw. No physicists were seriously harmed in the making of this

thesis.
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