
 1 

 

Brain Responses Track Patterns in 

Sound 

Rosemary Southwell 

 

Thesis submitted in partial fulfilment for the degree of Doctor of Philosophy.  

Ear Institute, Faculty of Brain Sciences, University College London, UK. 

May 2019 

 

Supervisors: 

Professor Maria Chait 

Professor Karl Friston 

 

 

  



 2 

 



 3 

Declaration 

I, Rosemary Southwell, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis. 

 

 

Rosemary Southwell 

August 2019 

  



 4 

 



 5 

Abstract 

This thesis uses specifically structured sound sequences, with 

electroencephalography (EEG) recording and behavioural tasks, to understand how 

the brain forms and updates a model of the auditory world. Experimental chapters 

3-7 address different effects arising from statistical predictability, stimulus 

repetition and surprise. Stimuli comprised tone sequences, with frequencies varying 

in regular or random patterns. In Chapter 3, EEG data demonstrate fast recognition 

of predictable patterns, shown by an increase in responses to regular relative to 

random sequences. Behavioural experiments investigate attentional capture by 

stimulus structure, suggesting that regular sequences are easier to ignore. 

Responses to repetitive stimulation generally exhibit suppression, thought to form a 

building block of regularity learning. However, the patterns used in this thesis show 

the opposite effect, where predictable patterns show a strongly enhanced brain 

response, compared to frequency-matched random sequences. Chapter 4 presents 

a study which reconciles auditory sequence predictability and repetition in a single 

paradigm. Results indicate a system for automatic predictability monitoring which is 

distinct from, but concurrent with, repetition suppression. 

The brain’s internal model can be investigated via the response to rule violations. 

Chapters 5 and 6 present behavioural and EEG experiments where violations are 

inserted in the sequences. Outlier tones within regular sequences evoked a larger 

response than matched outliers in random sequences. However, this effect was not 

present when the violation comprised a silent gap.  

Chapter 7 concerns the ability of the brain to update an existing model. Regular 

patterns transitioned to a different rule, keeping the frequency content constant. 

Responses show a period of adjustment to the rule change, followed by a return to 

tracking the predictability of the sequence.  

These findings are consistent with the notion that the brain continually maintains a 

detailed representation of ongoing sensory input and that this representation 

shapes the processing of incoming information.  
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Impact Statement 

My research investigates behavioural and brain responses to abstract sound 

sequences in young human volunteers with no known hearing or neurological 

problems. Automatic brain responses to sounds are a widely-used measure in 

clinical neurological research. The way the brain responds to sound is known to be 

impacted in a range of conditions, such as schizophrenia, autism, disorders of 

consciousness and even in (otherwise asymptomatic) mild traumatic brain injury. 

However, there are still some crucial elements we do not fully understand about 

how the brain extracts patterns from sensory input even in the non-clinical 

population; and this is what my research focuses on. 

It is thought that our perception comes from the interaction between incoming 

sensory information and the brain’s current ‘best guess’ of the state of the world. 

An important aspect of brain function in general is in separating important ‘signal’ 

from irrelevant ‘noise’. In hearing, this means finding the balance between what our 

ears seem to tell us and what we already know about the world. Making good use 

of such prior knowledge requires that the brain always tracks the wider context 

within which every momentary sensation is embedded.  

Previous research from our lab has shown that regular patterns are rapidly 

detected, even when a listener’s attention is engaged elsewhere; as revealed by a 

larger brain response whilst a pattern is occurring. The size of the brain response 

appears to closely track the degree of predictability, as revealed by using different 

types of pattern. This is potentially one such mechanism which allows the brain to 

use context to optimally learn about the world. 

I envisage this work will disentangle the roles of several possible mechanisms or 

how the brain learns about regularities, which have been difficult to dissociate in 

previous studies. For instance, passive neurophysiological effects versus 

expectation-driven, ‘top-down’ influences. My project will contribute to better 

understanding the neural mechanisms for detecting pattern and using this to 

reason about the world. This basic research is vital to inform future research into 

the underlying neural basis of altered information processing in various medical 

conditions, for instance psychosis and auditory processing disorders. 
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Chapter 1. Introduction 

1.1 From Sound to Perception 

Often proceeding beneath the radar of our conscious awareness, the auditory 

system carries out a remarkable task. Sound is constantly evolving, intangible and 

exists only as a thread through time. Within milliseconds, ripples in pressure at the 

tympanic membrane are converted into spatial patterns of electrical activity in the 

auditory nerve. The ensuing cacophony of currents and action potentials somehow 

allows a percept to settle: the ripples become a voice in a crowd, a familiar tune, or 

a warning. Although the result feels stable, the meaning is not inherent in the input. 

The current best understanding of how the brain instantiates this process is that, 

rather than a unidirectional inward progression of data, the brain seeks to 

incorporate existing knowledge with information from the sensorium in a delicate 

balance of learning and inference. Crucial to this is the recognition of regularity in 

the world, for it is a deep though tautological truth that understandable 

phenomena possess some form of statistical predictability.  

Hearing has long been a fertile ground for investigating how automatic and rapid 

information-processing is implemented by the brain, and has revealed much 

support for the view of the brain as an active hypothesis-forming organ. This 

evidence mostly takes the form of context-sensitive responses: where sounds which 

are considered acoustically identical in isolation actually reveal rather different 

effects when presented within a different context. One form of prior context which 

is often used is regularity itself, and its influence measured by proxy of the response 

to violations of the regularity. This thesis seeks to explore the influence of regularity 

more directly, using sounds that differ principally by the regularity of their ordering 

in time, whilst keeping constant the acoustic properties of their constituent parts. 

Building on recent work using similar techniques, I will present a series of 

experiments on human listeners, which together provide evidence that the brain 

tracks ongoing patterns in sounds, automatically, and this has immediate impact on 

contextualising responses to violations of expectations in a manner consistent with 

predominant quantitative and qualitative models of brain function.  

1.1.1 Structure in natural sounds 

Natural environmental sounds are characterised by stable statistical rules (Attias 

and Schreiner 1997; Singh and Theunissen 2003; Turner 2010), reflecting the 

regularity inherent in their underlying physical and biological causes. This has been 

true throughout the entire history of the evolution of the auditory system, over the 
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past three hundred million years or so. It is therefore unsurprising that the present-

day mammalian auditory system seems precisely tuned to efficiently recognise and 

represent regularity in sound (Lewicki 2002; Rieke et al. 1995; Nelken et al. 1999; 

Daikoku 2018).  

Animal calls and the human voice are tonal, harmonic complexes of arithmetically-

related frequencies forming a perfect, regularly spaced ladder in the frequency 

domain. Vocalisations are also often patterned in time, incorporating regular 

modulation in pitch and time, and repetition of motifs (Wiley and Richards 1978; 

Bradbury and Vehrencamp 1998; Berwick et al. 2011). Rhythmic sound even arises 

from the temporally-patterned nature of animal locomotion (Delcomyn 1980).  

Speech, perhaps the most fundamental sonic activity in our lives, consists of nested 

regularities occurring over multiple timescales (Rosen 1992). Fine-grained patterns 

in both timing and frequency information are crucial to discerning it (e.g. Popham et 

al. 2018). Music is governed by implicitly-learned abstract rules, and the making and 

breaking of these rules is fundamentally what makes music so compelling to us 

(Gebauer et al. 2012; Zatorre and Salimpoor 2013). In today’s technological era, we 

bring ever-more precisely regular sounds into our own environments. Our daily lives 

are increasingly filled with countless stereotyped noises from the user-interfaces of 

our devices and vehicles. 

1.1.2 Auditory scene analysis 

The task of the hearing brain is to quickly assess the most likely sources of sound, 

separate that which is most behaviourally pertinent from other sounds, and follow 

it through time. In the real world, sound waves arriving at the ears are the result of 

multiple overlapping causes, degraded by multiple sources of noise. The archetypal 

example, employed by auditory literature, of an ecologically-valid situation that 

Homo sapiens often finds herself in is the cocktail party (Cherry 1953; McDermott 

2009). The voice of the person to whom she is listening is jumbled with a multitude 

of sound sources including other voices, music and clattering crockery. The 

resultant waveform arriving at each ear is fundamentally ambiguous: 

mathematically speaking, an infinite array of possibilities exist as to possible 

components that would sum to produce it: this is an ill-posed problem (Hadamard 

1923). We can however (usually) disentangle the sound sources quite successfully: 

with recourse to knowledge from other senses, from experience of the past, and 

from various properties of the sounds themselves.  

This process is often referred to as auditory scene analysis (Bregman 1990), which 

delineates a view of auditory perception informed by the Gestalt school of 

psychology: a key tenet of which can roughly be translated as “The whole is 
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something else than the sum of its parts” (Koffka 1935). In other words, auditory 

perception represents a form of inference (Helmholtz and Ellis 1875). Parsing the 

auditory scene involves making inferences from regularities. I shall review evidence 

for the role of regularity detection in auditory scene analysis in the following 

paragraphs. 

1.1.2.1 The parts 

Sound information arrives in the brain already separated by frequency. As sound 

waves enter the cochlea, the continuously-varying stiffness along the basilar 

membrane means that different frequencies excite certain portions of the basilar 

membrane, and hence preferentially activate particular populations of the hair cells 

which synapse with the dendrites of the auditory nerve (Pickles 2008). This forms a 

biological instantiation of wavelet analysis, where the signal is decomposed as the 

summation of multiple arbitrary sinusoidal carriers varying in their contribution 

over time (Daubechies 1992). This frequency separation persists as signals enter the 

primary auditory cortex, where the neurons are arranged tonotopically. In order to 

induce a percept of the original sound-making process, the right parts must be 

somehow reunited at some level of representation in the brain: the perceptual 

correlate of this is an auditory object. Grouping of the correct features to re-create 

the real-world causes of sensation also implies segregation of the components 

forming different objects.  

1.1.2.2 Inferring the whole 

Similarity of auditory features between sound components tends to induce 

grouping into the same auditory object, and differences tend to induce segregation. 

This phenomenon has often been explored through the streaming paradigm, where 

tone pips at two (or more) different frequencies are played, each frequency 

repeating regularly (Bregman and Campbell 1971). This stimulus is perceptually bi-

stable, meaning that the percept fluctuates between a united whole and separate 

parts (Denham and Winkler 2006), making it an important paradigm to study 

auditory scene analysis. The parameters of the stimuli affect the relative prevalence 

of an integrated or a segregated percept. The more distant the frequencies, and the 

faster the rate of tone presentation, the more likely the subjective percept is of two 

independent streams (Bregman and Campbell 1971). This led Bregman to 

hypothesise that the pitch spacing was crucial: tones that were similar in frequency 

tended to be grouped together in the same stream, whilst a relatively large 

frequency gap separating tones tended to form the boundary between two 

perceived streams (Bregman and Campbell 1971; Bregman 1990). As well as pitch, 

similarity in other sound features such as timbre (Deike et al. 2004) and amplitude 

envelope (Cusack and Roberts 2004) have also been shown to act as cues for co-

segregation of sounds sharing the features into a single auditory object.  
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At the level of the auditory pathway, this has been hypothesised to be due to 

separate populations of feature-selective neurons responding to the putative 

scenes (van Noorden 1975; Fishman et al. 2001; Carlyon 2004; Fishman et al. 2004). 

However this is not the whole story: sounds overlapping in pitch can segregate 

(Vliegen and Oxenham 1999; Grimault et al. 2002) and conversely sounds distant in 

some feature-dimension, and coded for in distinct neural populations, can be 

integrated into a single object (Deutsch 1974; Elhilali et al. 2009). For instance, In 

the absence of spectral cues, similarity in timing of onset (and offset) can induce 

formation of auditory objects (Elhilali et al. 2009).  

1.1.2.3 The role of spectro-temporal patterns 

In reality, competing sounds in the cocktail party will partly overlap in frequency, 

time and other attributes, yet are still separable. One solution to this problem is for 

the auditory system to detect patterns expressed in a complex dance of time and 

frequency, when either alone do not suffice.  

Bendixen et al. (2010) used a streaming paradigm where the individual streams 

themselves could contain a regular pattern in frequency or intensity. They found 

that regularity in one of these features could increase the chance of a segregated 

percept. Andreou & Chait (2010) observed that temporal regularity of scene 

components influences the ability of the listener to segregate a target stream from 

an irrelevant background stream: the more regular the distractor stream, the easier 

it was to follow the target stream. Therefore regularity also plays an important role 

in segregating auditory objects, whether the regular object is specifically attended, 

or actively ignored, or neither.  

Regularity in its simplest form, repetition, can be exploited by the auditory system 

to extract novel auditory objects from background noise. Kidd et al. (1994; 2003) 

used artificial auditory scenes composed of simultaneous tones at multiple, 

randomly-changing frequencies, and showed that a regularly-repeating target 

stands out as a separate stream, so long as the background changed whilst the 

target tone remained constant. This effect remains when the target ‘figure’ is 

composed of multiple frequencies across a wide band, overlapping with the random 

background, and even varying in frequency over time (Teki et al. 2013; 2016). 

Extending this idea to naturalistic stimuli, McDermott et al. (2011) measured the 

ability of listeners to segregate a synthesised, repeated target from entirely spectro-

temporally overlapping noise, and found that so long as the noise varied on each 

presentation of the mixture, the target could be recovered, even when attention 

was engaged elsewhere (Masutomi et al. 2016). In all these experiments, repetition 

enabled streaming of a hitherto novel sound. This demonstrates that the auditory 

system is capable of rapidly recognising abstract pattern anew based on serial 

repetition of a spectro-temporal regularity. 
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1.1.2.4 Predictions are key to auditory scene analysis 

The recognition of temporal regularity allows the brain to form valid predictions 

about how an auditory object unfolds over time, and it is thought that such 

predictions indeed play a crucial role in auditory scene analysis (Denham and 

Winkler 2006; Winkler et al. 2009; 2012; Winkler and Schröger 2015). A predictive 

rule, which can account for a subset of sound components over time, leads to these 

components being grouped as a perceptual whole (for a review see Winkler et al. 

2009; Andreou and Chait 2010; e.g. Bendixen et al. 2010; 2013). Importantly, 

multiple predictive schemes can be somewhat compatible with the input. The 

perception of ambiguous stimuli can be stabilised by prior acoustic events which 

render one interpretation more parsimonious (e.g. Chambers et al. 2017). Taking 

into account such prior information, the predictive scheme that best explains the 

incoming patterns of stimulation dominates later perception and action (Winkler et 

al. 2005). So long as the properties of the learnt rule remain relatively stable, these 

expectations will usually be met. Expected events are generally processed faster 

and more accurately (de Lange et al. 2018; Rimmele et al. 2018). 

Denham and Winkler (2006) argue that the same predictive processing lies at the 

core of following existing sources (such as segregating voices in a conversation) and 

the detection of change (such as a familiar friend’s voice entering the room). When 

expectations arising from the current sensory hypothesis are not met consistently, 

this forms the basis for detecting a change, and potentially diverting processing 

resources to learn a new predictive rule. In fact, this process of forming and refining 

predictions about sensory input is now thought to be fundamental to brain 

function, and will be discussed in more detail in §1.3. Knowledge supporting the 

formation of predictions can arise from the recent history of the stimulus itself, or 

can be drawn from past experience over a lifetime (such as in the case of 

knowledge of musical rules and language), both of which Bregman (1990) refers to 

as schema-based segregation. However, this thesis investigates the acquisition of 

rules from novel, abstract stimuli with no such cultural or linguistic context. 

We have seen in this section that spectro-temporal patterns describe the sounds 

elicited by natural causes in the world, and that the detection of spectro-temporal 

patterns is a crucial component of auditory scene analysis, by allowing the 

formations of hypotheses about future incoming information. The following 

paragraphs outline the evidence for regularity-sensitive auditory processing, in the 

form of experimental work directly measuring neural evoked responses in humans 

and animals.  
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1.2 Regularity-Sensitive Neural Responses 

1.2.1 Auditory-evoked responses 

1.2.1.1 Direct neuronal recordings  

The experiments in this thesis use scalp electroencephalography (EEG) to provide 

insight into the regularity-detection mechanisms in the human brain. However, 

context-sensitivity is present in the very earliest of subcortical responses, as 

measured using direct neuronal recordings.  

The term adaptation is often used to describe reduction in responses to repeated 

stimuli, but for clarity this thesis uses the term repetition suppression to refer to the 

former. ‘Adaptation’ will refer specifically to any ‘passive’ habituation of neurons to 

repeated stimuli caused by fatigue, for example of neuronal firing rate or through 

synaptic depression or long-term depression (see Grill-Spector et al. 2006 for a 

review). Even this form of adaptation is a powerful mechanism for representing 

statistical structure in the world (Fairhall et al. 2001). Stimulus-specific adaptation 

(SSA) refers to the tendency of single neurons to respond to the same stimulus with 

greater magnitude when it is presented rarely than commonly, whilst responsivity is 

preserved to other stimuli to which the neuron is sensitive. SSA has been observed 

in primary auditory cortex (A1) of the cat (Ulanovsky et al. 2003) and in even earlier 

processing stages: in the thalamus (Antunes et al. 2010) and the inferior colliculus 

(Malmierca et al. 2009). SSA can account for the encoding of stimulus history over 

multiple timescales, up to possibly hundreds of seconds (Ulanovsky et al. 2004).  

Automatic regularity sensitivity goes beyond SSA; representing a more nuanced 

memory trace already at the level of the midbrain. For instance, a subset of neurons 

in the inferior colliculus in rats are sensitive to the spectro-temporal patterning in 

sound sequences (Malmierca et al. 2019). Using similar spectro-temporally 

patterned sequences to this thesis, Barcazk et al. (2018) found the macaque 

thalamus to be sensitive to sequential structure. 

Regularity-sensitive modulations in single-neuron activity form the basis of the 

pattern detection capacities which we can measure through brain imaging and 

behaviour, reviewed below. Where relevant, known equivalences between 

responses from single-unit and human neuroimaging are stated.  

1.2.1.2 Onset responses in EEG 

Sound onset evokes a stereotyped series of response components, which can be 

measured using EEG and MEG. Within the first fifty or so milliseconds, the 

feedforward sweep of initial auditory processing is revealed. Successive 

components originate first from subcortical sources, then increasingly from primary 
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auditory generators in Heschl’s Gyrus (HG), and later from wider sources in 

supratemporal cortex (Picton et al. 1974; Godey et al. 2001; Yvert et al. 2005). For 

scalp-measured EEG, such as used in this thesis, these early components, termed 

the middle-latency response, or MLR, generally appear as an single unresolved 

peak, with a positive polarity over the centre of the scalp, known as the P1 (or P50) 

(Liégeois-Chauvel et al. 1994). At around 100 ms, EEG responses show a prominent 

peak with negative polarity over fronto-central electrodes; this is the N1 (referred 

to as the N1m for MEG, hereafter N1 refers to both). These onset responses occur 

whether sounds are attended or unattended, and even in the absence of 

consciousness (Weitzman and Kremen 1965). Nevertheless, there is evidence that 

even such early responses are sensitive to contextual regularities, and as such are 

relevant for discussing the process of initial regularity extraction.  

The N1 amplitude and latency depend on the sound’s physical parameters such as 

pitch, loudness and envelope (Beagley and Knight 1967; Picton et al. 1978; Roberts 

et al. 2000; Billings et al. 2017). Additionally, the same sound can produce different 

onset responses dependent on preceding context. Both the N1 and the MLR show 

attenuation and/or delay on successive presentations of the same tone (Slabu et al. 

2010; Grimm et al. 2016); an effect potentially explainable by neuronal adaptation. 

However, the opposite effect, an enhancement with repetition, on the P1 has also 

been observed (Costa-Faidella et al. 2010). Either way, this phenomenon has been 

interpreted as implementing a primitive form of sensory memory; forming a 

building-block for ever more refined representations of auditory structure; 

discussed in more detail in §1.2.3. 

1.2.1.3 Later auditory responses reflect cognitive processes 

Following this is generally another positive deflection around 200 ms, the P2, with 

similar EEG topography to the N1. By this latency, the response reflects multiple 

active sources, including feedback connections from outside the auditory cortex 

(Garrido et al. 2007). The P2 amplitude has been shown to reflect the build-up of 

regular structure in stimulus streams, showing an increase over repetitions (Costa-

Faidella et al. 2010; 2011; see also §1.2.3).  

Later auditory responses are more variable, visible as more indistinct peaks in the 

evoked response, and reflect activity of attentional networks and other cognitive 

processes. The P3a, at around 300 ms, is thought to accompany attentional 

orienting following the detection of a change in a sound (Wronka et al. 2008; 

Masson and Bidet-Caulet 2019), or indeed in a visual stimulus. Its sibling, the P3b, 

reflects subsequent processing the behavioural significance of the change (reviewed 

by Friedman et al. 2001).  
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Related to the above discussion of auditory scene analysis, EEG responses have 

been identified as a correlate of the streaming of an object based on spectro-

temporal coherence. The first of these, the so-called object-related negativity, or 

ORN, occurs at around 150-300 ms, and reflects the automatic detection of a 

coherent auditory object. The second at around 500 ms reflects task-relevant 

processing of the target object (Tóth et al. 2016). 

1.2.1.4 Sustained and offset responses 

Following sound onset is a sustained response which persists as long as the stimulus 

continues, although as one progresses up the auditory hierarchy, this becomes 

attenuated (Phillips et al. 2002), such that measured neural responses largely reflect 

changes in the level of stimulation rather than the absolute stimulus intensity. 

Ongoing sounds which are also changing throughout the stimulus tend to produce 

stronger sustained responses, though this may be due to summation of individual 

onset responses (Pantev et al. 1993). Sustained responses may also reflect the 

accumulation of evidence throughout the stimulus, such as revealed in the 

contingent negative variation (CNV; Tecce 1972; Chennu et al. 2013). Sound offset 

also evokes a measurable response; although this is less prominent than the onset 

response, it appears to be generated by similar sources (Hari et al. 1987; Phillips et 

al. 2002). It may be due to the cessation of stimulus-induced inhibition causing a 

rebound in activity (Hillyard and Picton 1978). However, Chapter 4 in this thesis will 

present evidence that the offset response reflects the strength of complex 

regularities in the preceding stimulus.  

1.2.2 Deviance responses reflect regularity extraction 

Patterned sound sequences, which include an eventual deviant sound which 

violates the predictive rule, have been used to obtain evidence for the sensitivity of 

the brain to auditory regularity. If the violation evokes a measurable response, one 

may infer that the pattern was recognised in the first place. There is an abundance 

of auditory studies which use such an electrophysiological effect, the Mismatch 

Negativity (MMN), to demonstrate the automatic extraction of a range of regular 

structures from sound sequences. Presented in the context of a repeated standard 

tone, a deviant tone which differs in its physical properties (usually pitch) elicits a 

greater measured neural response; this procedure is known as the oddball 

paradigm (Näätänen et al. 1978). The roving-standard paradigm (Cowan et al. 1993; 

adapted by Baldeweg et al. 2004; Garrido et al. 2008) is a modification of the 

oddball paradigm, where standards at a given frequency are repeated a variable 

number of times, before changing to a different standard frequency. Because the 

same physical stimuli act as standards and deviants, this ensures that the difference 

in response to standard and deviant tones (i.e. the MMN) cannot be explained 

purely by the fact that different frequencies were used. The first tone of the new 
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standard frequency indeed elicits an MMN (Baldeweg et al. 2004; Näätänen et al. 

2004; Haenschel et al. 2005; Costa-Faidella et al. 2011). 

The MMN is not an EEG component but a difference between components: the 

response to the standard is subtracted from that to the deviant, and the MMN is 

manifest in the resulting waveform as a relative negativity over fronto-central 

channels, at a latency of around 100-250ms. Whilst this is broadly similar in timing 

and topography to the N1, many argue separate neural processes play a part in its 

generation, as evidenced (for example) by the presence of sources outside of 

auditory cortex (e.g. Alho 1995; Garrido, Kilner, Stephan, et al. 2009). The MMN is 

often claimed to represent the extraction of the regularity rule defined by 

successive repetition. Initially, this was described in terms of the formation of a 

memory trace (Näätänen et al. 1993) to which the deviant tone is subsequently 

compared. When the pattern is broken by the deviant tone, automatic change-

detection processes produce the negative deflection of the MMN, in addition to the 

standard onset responses to the deviant tone.  

1.2.2.1 The MMN is sensitive to the degree of violation  

The magnitude and latency of the MMN has been shown to vary with the extent of 

violation in some physical feature dimension, with greater magnitude and/or 

decreased latency found to more extreme deviants. For instance, Amenedo & 

Escera (2000) found the magnitude of the MMN to vary with how different in 

duration the deviant sounds were to the standard sounds. The greater the loudness 

difference between standards and deviants, both the earlier and the larger the 

MMN (Näätänen et al. 2007). Similar effects have been found with respect to 

deviant frequency distance (Todorovic and de Lange 2012; Grotheer and Kovács 

2015) although this is not always reported (Desimone 1996; Budd et al. 1998; Grill-

Spector et al. 2006; Kok, Jehee, et al. 2012). In a more abstract sense, a deviant 

occurring after a longer train of identical standards forms a stronger violation than a 

deviant following only a few standards. Indeed, the MMN is sensitive to the number 

of preceding standards (Haenschel et al. 2005). 

1.2.2.2 The MMN reflects violation of complex regularities 

Other studies have used standards which themselves vary in a predictable manner, 

and deviants which break this pattern, to show that the MMN can occur to more 

abstract violations of a predictive rule. In the context of paired standard tones, 

which consistently ascend within the pair, a deviant descending tone pair elicits an 

MMN (Saarinen et al. 1992). Many other studies report mismatch responses using 

variations of this kind of frequency rule (Todorovic and de Lange 2012). The MMN 

to such abstract violations can be elicited even in situations where the listener is 

not attending to the stimuli and/or is unaware of the predictive rule (Grotheer and 

Kovács 2015). Also, in paradigms using multiple deviants with different chances of 
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occurring, the evoked mismatch response magnitude is inversely proportional to 

the probability of the deviant (Feuerriegel et al. 2017), which can be interpreted as 

sensitivity to summary-statistic descriptions of regularity. A similar effect is seen in 

auditory cortex of cats (Grotheer and Kovács 2016), where the less probable a 

deviant tone, the greater the response of single neurons.  

Beyond tone-pip sequences, naturalistic paradigms also show that the MMN 

reflects rule-based processing. In musical sequences, even when unattended, out-

of-key and out-of-tune notes elicit a larger MMN than in-key notes (Segaert et al. 

2013). Detecting such deviants requires implicit knowledge of musical structure, so 

this demonstrates that early auditory responses are sensitive to abstract culturally-

acquired regularity; however it may reflect subtly different neuronal processing 

than, say, the oddball MMN (e.g. Petit et al. 2006; Henson et al. 2008). Even 

linguistic violations elicit an MMN; the latency of which depends on the experience 

of the listener; it being earlier for native speakers of the language (Stefanics et al. 

2018). 

1.2.3 Repetition suppression as regularity detection 

As inferred via the MMN, auditory-cortical responses are sensitive to the context 

established by regularities in preceding stimuli. One key consideration when 

interpreting this evidence is that the MMN is not an evoked response, rather a 

difference between evoked responses. Therefore, the MMN effects described so far 

implicitly rest on the response to the standard tones themselves, and it is important 

to establish whether the pattern of results is driven by the response to the deviant 

or to the standard. It is also important to look at how the responses to standards 

change over time, as this provides a more direct view of the evoked responses 

accompanying pattern detection.  

Indeed, the N1 response to standard tones diminishes in magnitude with increasing 

repetitions the standard (Recasens et al. 2015). This repetition suppression explains 

the existence of the MMN in the oddball paradigm and casts some doubt on the 

existence of the MMN as an independent component of cortical responses (Friston 

2005; Feldman and Friston 2010). It also explains the gradated modulation of MMN 

magnitude dependent on the number of preceding standards (Friston 2005; 

Auksztulewicz and Friston 2016).  

Repetition suppression is suggested to be a correlate of the stimulus-specific 

adaptation (SSA) effect measured at the level of single neurons and local field 

potentials (e.g. Haenschel et al. 2005). Costa-Faidella et al. (2010) modelled EEG 

responses in a modified oddball paradigm, and showed that the time-course of 

adaptation of the response around the latency of the MMN over stimulus 



 25 

presentations resembles that seen for SSA (Ulanovsky et al. 2004; Costa-Faidella et 

al. 2010). However, the existence of similar repetition suppression effects in far 

earlier EEG components, such as the MLR, suggests adaptation in the MLR, rather 

than the N1 suppression, to be the most likely candidates to coincide with the SSA 

effect (Malmierca et al. 2014; Grimm et al. 2016). 

1.2.3.1 Repetition positivity 

Using the roving-standard paradigm, Haenschel et al. (2005) found a reduction in 

the N1 peak with successive repetitions of the standard. They observed an 

additional effect: a superimposed, slow positive component which increased in 

magnitude over repetitions, and extended from 50ms to 250 ms post-onset 

(Repetition positivity; see also Baldeweg et al. 2004). This positive shift served to 

decrease the N1 magnitude, but also to increase the P1 and P2. The repetition 

positivity was interpreted as a direct correlate of the encoding of the repetition 

rule’s strength. Together, these modulations of the response to the standard fully 

explained the context effects on the MMN.  

However, repetition positivity does not appear to be entirely consistent with a 

purely adaptation-based explanation. Costa-Faidella et al. (2011) show the 

repetition positivity is reduced in the roving paradigm when the timing of the 

stimulus stream is unpredictable, as compared to the usual isochronous condition. 

This suggests that the repetition effects in fact reflects active suppression of 

responses to tones enabled by their predictable temporal and spectral properties 

(discussed further in §1.3.3). 

1.2.3.2 Interpretations of MMN revisited 

Taken together, the MMN results reveal similar properties of error responses to 

violations of many types of auditory rules. Furthermore, mismatch responses are 

modulated such that their magnitude correlates with the strength of the preceding 

regularity rule. This rich body of work provides a valuable window onto the types of 

pattern which can be automatically extracted.  

However, viewing similar experimental paradigms from the viewpoint of 

suppression of the standard tone, suggests an alternative, adaptation-based 

explanation which can account for some of the properties of the MMN. As 

evidenced by repetition suppression results described above, the MMN in oddball 

paradigms can be explained in terms of a suppressed N1 response, rather than the 

activation of a separate deviance detection mechanism (Jääskeläinen et al. 2004; 

May and Tiitinen 2010). This would suggest that the extraction of regularity rules 

does not necessarily require the formation of a predictive scheme such as proposed 

to account for behavioural phenomena in auditory scene analysis (§1.1.2).  
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Nevertheless, the MMN, and repetition suppression, cannot always be explained 

entirely as an adaptation-driven phenomenon. Numerous studies support the 

interpretation of the MMN as reflecting a more complex form of change detection, 

separable from modulation of basic auditory evoked responses; in particular the N1 

(for a review see Näätänen et al. 2007).  

Findings from the various MMN paradigms, and the different interpretations 

thereof, have more recently been unified with recourse to the predictive coding 

framework (Garrido, Kilner, Stephan, et al. 2009; Winkler et al. 2009). Predictive 

coding, and the evidence for its operation in the auditory system, will be discussed 

in more detail in §1.3. To briefly summarise, during the presentation of the 

standards, the auditory system forms an expectation that the stream of tone-pips 

will continue to repeat (or to follow whatever pattern). This extraction of the 

regularity rule allows the formation of predictions about what sound will come 

next; regardless of whether this is described as the establishment of a ‘memory-

trace’, or is mechanistically explainable by adaptation to the standards. Either way, 

the relatively-enhanced deviant response results from an interaction between prior 

knowledge of regularities acquired during the stimulus sequence, and any 

discrepancy with incoming stimuli. The discrepancy, or prediction error, is signalled 

by an increase in neural activity passed up the auditory hierarchy, measurable as 

the MMN.  

Computational modelling of cortical network activity, based on evoked responses in 

the roving paradigm, show that a combination of adaptation and plasticity changes 

in hierarchical connections, manifest over different latencies, explains the 

combination of repetition suppression and deviant response enhancement effects 

(Garrido, Kilner, Kiebel, et al. 2009). Overall, the experimental evidence indicates 

multiple processes of regularity extraction, progressing from the detection of simple 

repetitions within tens of milliseconds, to more complex rule extraction after 100 

ms, revealed by the MMN to abstract regularities (as reviewed by Escera and 

Malmierca 2014).  

1.3 Perception as Probabilistic Inference 

We will return for a moment to discussing predominant theoretical perspectives on 

brain function, which form part of the motivation for the experiments carried out in 

this thesis. Then, evidence arising from auditory studies for the validity of such 

theories will be (re)visited. 

A unifying principle in sensory perception, garnering increasing empirical support, is 

that of perception as inference (Helmholtz and Ellis 1875; Gregory 1980); wherein 

the state of the external world is deduced through combining prior knowledge with 
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input from sensory systems. Cognition has strong parallels with the scientific 

process (Gregory 1980). Hypotheses, whether scientific or cognitive, represent an 

attempt to generalise from limited observations. This generalisation could take the 

form of inference about the future, but not necessarily so: a hypothesis could also 

concern the cause of some noisy input in the past, or interpolation from a small 

number of observations. There are multiple flavours of such predictive processing 

models falling into this overarching family, with various degrees of specificity and 

different neuronal implementations (Clark 2015; Spratling 2016). The key unifying 

characteristics are that neural activity and connectivity instantiate a generative 

model of the world, from which predictions are formed and compared to sensory 

data. Predictive coding in the brain equates to comparing an internally-generated 

prediction of sensory input with the actual afferent neural activity, and only 

communicating the difference, prediction error, in efferent activity. Prediction 

errors, the residual input unexplained by the current model, are minimised in order 

to optimise the predictive model.  

1.3.1 Uncertainty in the Bayesian brain 

Extending the observation of Gregory (1980) that perceptual inference resembles 

the scientific process of forming and testing hypotheses, is the idea of brain 

function as Bayesian inference. 

Bayesian statistics concerns the amalgamation of present knowledge with new 

information optimally under uncertainty. Mathematically, Bayesian inference 

describes how prior information and observations are combined to estimate the 

posterior probability of an underlying cause, such as an auditory object 

corresponding to a listener’s phone ringing in the milieu of a noisy party. In the 

following equation, the probability of a candidate cause of sensory input is 

estimated as proportional to the prior probability of the cause occurring in general 

(how often does my phone ring?) multiplied by the probability that the candidate 

cause would generate this exact pattern of input (what is the probability that my 

phone ringing would cause these exact sounds?); this latter term is the likelihood. 

The estimated probability of the cause given the sensory input is termed the 

posterior; this is the strength of the final belief that the phone is indeed ringing.  

𝑃(𝑐𝑎𝑢𝑠𝑒|𝑖𝑛𝑝𝑢𝑡) ∝ 𝑃(𝑖𝑛𝑝𝑢𝑡|𝑐𝑎𝑢𝑠𝑒)𝑃(𝑐𝑎𝑢𝑠𝑒) 

The brain may entertain multiple possible causes in such a way, selecting the cause 

with the greatest posterior probability to drive subjective perception and 

behaviour.  

This mathematical framework has parallels with phenomena in perception and 

action, and has inspired a large body of experimental work, testing quantitative and 
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qualitative predictions arising from the hypothesis that the brain performs Bayesian 

inference. A frequent approach is to show that a behaviour reflects a Bayes-optimal 

combination of ‘top-down’ expectation and ‘bottom-up’ input, given controlled 

manipulation of these quantities by the experimenter (reviewed by Knill and Pouget 

2004). 

The key point of relevance to the present thesis is that uncertainty plays a crucial 

role in optimal inference, as well as in perception (Yu and Dayan 2005; Bach and 

Dolan 2012). For Bayesian inference, the probabilities in the above equation can 

actually be represented not as single, point estimates but as probability 

distributions, parameterised (for instance) by their mean and variance (Knill and 

Pouget 2004). The variance of these distributions influences the power balance 

between the existing predictions and the new input, with the more precise (low 

variance) term having the strongest influence on the posterior belief, and hence on 

updating the brain’s internal model (Yu and Dayan 2005). Relatedly, the tracking of 

different sources of uncertainty is important for determining the optimal learning 

rate (Courville et al. 2006). The level of noise in sensory inputs is often stable over 

some context, such as when speaking over a poor phone connection in a loud 

office; the resulting uncertainty is often called expected uncertainty. This is 

important for ensuring the robustness of perception or behaviour to chance 

fluctuations. In contrast, unexpected uncertainty refers to a truly surprising change 

in input, and may signal a change in contextual regularities, which, normatively, 

should trigger an increase in the learning rate to update the internal model (Yu and 

Dayan 2005). Therefore the inferential brain needs to be able to estimate and 

represent current uncertainty levels.  

Bayesian inference and predictive coding are often discussed together, however it is 

important to note that the two concepts are not equivalent: Bayesian inference 

describes the prediction-generating process which may be approximately 

implemented neuronally using hierarchical predictive coding (Aitchison and Lengyel 

2017). Predictive coding, at its heart, is a scheme for representing information 

parsimoniously, and doesn’t itself stipulate that predictions and prediction errors 

are combined according to Bayes theorem.  

1.3.2 Hierarchical predictive coding 

Hierarchical predictive coding, where predictions are formed at higher-order brain 

regions about expected neural activity in lower-order regions, accounts for ‘non-

classical’ receptive fields in visual processing (Rao and Ballard 1999). In this case, 

neuronal activity depends on the surrounding context in visual space, as well as on 

the configuration of inputs falling into the neuron’s own ‘classical’ receptive field. 

Each area of the brain receives predictions from, and sends prediction errors back 
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to, a higher level of the hierarchy. At each subsequent stage of processing, the 

predictions and prediction errors concern an ever more abstract and integrative 

representation of states in the world. This system is agnostic to whether input at a 

given level arrives directly from sensory neurons or as the prediction errors from 

another neuronal population within the brain.  

1.3.2.1 Generalised predictive coding 

Such a hierarchical implementation of predictive coding is at the core of Friston’s 

(2005; 2006) free energy principle of brain function as approximate Bayesian 

inference. This particular formulation of predictive coding will be used to motivate 

hypotheses throughout the thesis, and for clarity will be referred to as generalised 

predictive coding (gPC) after Shipp (2016). 

Friston et al. (2006) describes how a hierarchical predictive coding system 

implements Bayesian perceptual inference. The model parameters encode a 

probabilistic distribution, parameterised by a mean and a variance, over modelled 

real-world causes of sensation. The probabilistic nature of the representations 

allows for an approximate Bayesian inference scheme where beliefs are updated by 

prediction errors in proportion to the relative strength, or precision, of the two 

quantities. The priors at one hierarchical level are provided by predictions from the 

level above. The ‘context’ supplied by these prior expectations encoded by higher 

order brain regions can therefore influence the posterior beliefs in lower-order 

sensory regions. The generative model is refined by the minimisation of a statistical 

quantity, variational free energy, which approximates the overall discrepancy 

between the model and the world. Neuronally, this equates to minimising 

prediction error at all levels of the hierarchy in the long run. Free-energy 

minimisation has been shown to be a metabolically efficient path to an accurate 

representation of the world (Sengupta et al. 2013). Free energy minimisation also 

penalises complexity of the generative model, preventing overfitting of the model 

to empirical data; or in more concrete terms, imbues robustness of perceptual 

inference to noise. The free energy principle describes learning, perception and 

behaviour in a compelling unified theory (Friston et al. 2010). 

1.3.2.2 Neuronal implementation 

A plausible neuronal underpinning has been described to implement gPC. Prediction 

errors are passed up the hierarchy via excitatory synapses from superficial 

pyramidal cells, and predictions are carried in inhibitory top-down and lateral 

connections onto superficial from deep pyramidal cells (Bastos et al. 2012). 

Feedforward connections are thought to be excitatory, and feedback connections 

are modulatory, acting via inhibitory interneurons to suppress prediction error. 

Several studies have demonstrated support for this implementation (reviewed in 
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Bastos et al. 2012; Shipp 2016). For instance, separate neural populations represent 

predictions and prediction errors (Markov et al. 2013; Bell et al. 2016).  

1.3.2.3 Precision & attention  

Apart from prediction and prediction error, there is a third quantity which the brain 

must represent to allow optimal inference: precision. Precision is mathematically 

the inverse of variance, or in other words, of uncertainty. In gPC (as in related 

hierarchical Bayesian schemes; Mathys 2011) prediction errors are associated with 

an estimate of how certain they are, as based on inference from contextual 

information in much the same way as the predictions themselves. Precision wields 

its influence through weighting prediction errors according to their reliability; it is 

precision-weighted prediction errors which are passed up the hierarchy and used to 

refine the generative model. This precision parameter determines the balance of 

influence between prior prediction and novel sensory input, possibly through 

modulation of synaptic gain on prediction-error neurons, determined by 

modulatory connections from precision-expectation units in higher levels (Friston 

2008; Shipp 2016).  

Agnostic to the details of the inference scheme used by the brain, gain mechanisms 

have been shown to be related to selective attention (Hillyard et al. 1998; Spratling 

2008), with some going further and proposing precision-weighting and attention to 

be equivalent (Feldman and Friston 2010; Vossel et al. 2014).  

1.3.3 Predictive coding in auditory responses? 

These conceptual models; that the brain instantiates a model of the world in 

general, and gPC in particular, can account for several phenomena in auditory 

responses (reviewed by Denham and Winkler 2018; Heilbron and Chait 2018). 

1.3.3.1 Prediction error 

According to gPC (Friston 2005) scalp-measured evoked responses predominantly 

reflect the prediction error signalled by superficial pyramidal cells. Predictive coding 

explains the auditory responses measured in MMN paradigms in terms of a 

mismatch between predicted and actual bottom-up neural activity; and this applies 

both to the standard tones and the deviants. For the standards, prediction error is 

suppressed in response to repeated stimuli because they are predictable; not 

because they are repeated per se. The extraction of this predictability rule by 

higher-order areas, through changes in synaptic connectivity, allows suppression of 

prediction errors arising from the sensory input (Garrido, Kilner, Stephan, et al. 

2009). Modelling of evoked responses recorded in the roving paradigm indeed 

shows that neural responses, both to the standards and the deviants, are best 
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explained as reflecting prediction error, and that both adaptation and regularity-

learning are implicated (Garrido et al. 2008). 

A recent modelling study (Rubin et al. 2016) used the single-unit recordings from 

Ulanovsky et al. (2004) to infer attributes of the information encoded by auditory 

cortex neurons. Using the assumption that neural responses in auditory cortex 

encode prediction error, the authors deduce properties of the predictive 

representation from which prediction errors are calculated. They find that models 

which use the recent past to calculate prediction error correlate with the measured 

neural responses, and models which explain the greatest proportion of neuronal 

activity utilise a long memory of previous sounds. Interestingly, they found most 

support for those models using a somewhat reduced representation of stimulus 

history, which constitutes a trade-off between complexity and predictive power. 

This study provides evidence that auditory responses to stimuli in a sequence 

represent prediction error, without stipulating a particular neural implementation 

of predictive coding.  

Pieszek et al. (2013) found evoked-response correlates of both prediction and 

prediction errors, in an audio-visual paradigm where visual cues could also provide 

predictive information about tone pips. The CNV signal was interpreted as reflecting 

predictions, via preparation for making a behavioural response. Violations of 

expectations arising from auditory, visual, and bimodal predictive relationships all 

resulted in an increased error response. Multiple violations were associated with a 

linear summation of the underlying prediction errors, provide indirect evidence that 

multiple predictive models are maintained and evaluated simultaneously.  

Beyond MMN-like paradigms, prediction errors explain responses to more complex 

stimuli. For instance, Blank et al. (2016), using fMRI responses to speech in noise, 

elegantly showed that the influence of prior expectations on multivariate patterns 

of neural responses were best explained via suppression of prediction error, as 

compared to an alternative hypothesis whereby expectations sharpen neural 

representations.  

1.3.3.2 Expectation suppression 

Interpreted in terms of predictive coding, repetition suppression such as that seen 

to standards in the roving oddball paradigm results from the top-down 

communication of predictions, acting to suppress responses to the sensory input 

(Auksztulewicz and Friston 2016). This position is strengthened by paradigms which 

manipulate expectation independently from repetition. Reduced responses to 

predicted stimuli in such paradigms is often termed expectation suppression. Here, 

stimuli which are predictable, or expected, evoke smaller responses than equivalent 

unpredicted stimuli, even when expectations are manipulated independently of 
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repetition. For instance, Costa-Faidella et al. (2011) show that repetition 

suppression is greater when the timing of repeated tones is itself predictable. When 

repetitions are expected based on the context of the current block, repetition 

suppression of MEG responses is greater than when repetitions are infrequent in 

the current block (Todorovic et al. 2011).  

Expectation suppression also arises when comparing identical auditory stimulation 

that is internally generated versus exogenously presented; in the former case, the 

pattern of auditory stimulation can be predicted accurately by the observer, as they 

were responsible for generating the stimulus (e.g. Eliades and Wang 2008; reviewed 

by Bendixen, SanMiguel, et al. 2012).  

1.3.3.3 Anticipatory predictions 

Although predictive coding doesn’t specify that the ‘predictions’ in predictive coding 

are necessarily anticipatory predictions, one of the advantages of predictive coding 

is its facilitation of processing input which is expected to occur at a defined future 

time; a situation which arises often in natural auditory scenarios.  

Support for anticipatory predictions underlying auditory responses comes from the 

omission response (Raij et al. 1997; Hughes et al. 2001). Here, an evoked response 

occurs to unexpected omissions of sounds, at a similar latency to the early 

responses to actual sounds; often only when the preceding sequence context allows 

a prediction to be formed about the omitted tone’s properties (Bendixen et al. 

2009). Similarly, responses to the offset of a temporally regular sequence occur 

with the expected timing of the next tone, given the rhythm of the preceding 

sequence (Andreou et al. 2015). 

During sentence comprehension, the build-up of a slow negative potential 

correlates with the predictability of the final word in the sentence, determined by 

the preceding context (León-Cabrera et al. 2019). As the same potential was 

observed regardless of whether the sentence was presented in the auditory or 

visual modality, its origin is thought to be from top-down processes implementing 

semantic prediction. 

1.3.3.4 Hierarchical auditory network 

There is evidence from the auditory system in humans and other animals, as 

recorded both from direct neuronal recordings and at the scalp, that a hierarchically 

organised system of cortical and subcortical areas communicate predictions and 

prediction errors corresponding to increasing levels of rule complexity (see also 

§1.4.2). 

The ‘local-global’ paradigm is a modification of the oddball paradigm, where deviant 

tones occur regularly at the end of every ‘chunk’ of four standard tones at a 
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repeated frequency; such that the motif AAAAB repeats consistently. Whilst the 

deviant ‘B’ tones still elicit an enhanced response, this is reduced in blocks where 

the AAAAB sub-sequence repeats (Bekinschtein et al. 2009). In fact, when instead 

the fifth tone is another standard, i.e. a subsequence of AAAAA presented within a 

block of AAAAB, the expectation of a deviant occurring on every fifth tone is itself 

violated, a deviance response is reported. This response is later than the MMN, and 

has sources in a wider network including prefrontal cortex, measured with 

intracranial recordings (Bekinschtein et al. 2009; Chennu et al. 2013). Similar 

manipulations have shown different timescales of EEG responses corresponding to 

prediction violations evaluated at different levels of the auditory hierarchy (Grimm 

et al. 2011; Lecaignard et al. 2015). In a simpler paradigm contrasting expected and 

unexpected repetition within pairs of tones (Todorovic et al. 2011), a similar 

dissociation was found in evoked responses at different latencies: repetition 

suppression occurred around 50 ms, followed by expectation suppression between 

100 and 200 ms. There is also direct evidence for hierarchical prediction errors 

along the auditory pathway from single-neuron recordings in rodents (Parras et al. 

2017). These studies shows that expectations at multiple levels of abstraction 

influence evoked responses in different levels of the processing hierarchy, 

independently from repetition (reviewed by Escera et al. 2014). 

1.3.3.5 Precision and gain  

Of all the components of predictive coding, there is perhaps the least direct 

evidence for precision signalling in the auditory pathway. One problem is that 

manipulations of precision are hard to achieve independently of prediction and 

deviance. Another is that precision should act to increase the responses to reliable 

streams of input, whereas prediction should silence these responses. It appears, at 

least when predictability is manipulated by repetition, that the latter, suppressive 

effect is dominant. Using more complex spectro-temporally patterned stimuli, 

experiments from this lab have shown evidence for the augmentative impact of 

predictability on the evoked response (Barascud et al. 2016; described in more 

detail in Chapter 3; Sohoglu and Chait 2016a), which can be interpreted as 

precision-weighting. This thesis includes similar experiments, which test the relative 

influence of precision-weighting, prediction error and repetition on evoked 

responses.  

1.4 Learning Sequential Regularities 

Auditory predictions can be derived from many sources, including explicit and 

implicit visual cues, and a lifetime of previous experience with particular categories 

of auditory object. However, this thesis isolates a different source of auditory 

predictions: namely, implicit predictive relationships between subsequent elements 

in a sequence. Such effects are well-studied in the statistical learning literature, 
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which uses novel and arbitrary rules to probe the initial phase of learning and 

evaluating predictions. Finally, putative brain areas and network schemes which are 

implicated in detecting and evaluating ongoing sequence structure are discussed. 

1.4.1 Statistical learning 

This section will review evidence from naturalistic and artificial auditory and visual 

statistical learning paradigms that the brain tracks statistical structure in the 

environment. In many ways, the findings from this body of literature are 

complementary to the auditory scene analysis and mismatch negativity experiments 

reviewed above. However, statistical learning paradigms generally probe the 

detection of more complex, changing and serial interdependencies than are 

implicated in oddball-like paradigms. Additionally, the capacity for such learning 

appears in different sensory modalities, in that it is capable of extracting similar 

transitional rules from visual, auditory and even tactile items. This ability of the 

brain to flexibly extract arbitrary rules is also a necessary, but not sufficient, 

prerequisite for corroborating both predictive processing and Bayesian accounts.  

1.4.1.1 Statistical learning of transition probabilities 

The field known as statistical learning provides a rich repository of studies on 

sequential regularity learning in particular. Humans are remarkably adept at 

extracting statistical interdependencies between successive elements in a 

sequence. This appears to be an automatic and obligatory process, as evidenced by 

implicit learning paradigms, where the subject is presented with rule-governed 

sequences whilst remaining uniformed of the existence of any structure. Artificial 

grammar paradigms use sequences of stimuli, governed by artificial rules expressed 

by the probability of transitions between successive elements in the sequence 

(forming a Markov chain). These sequences can be presented to subjects during an 

exposure phase, then implicit learning of the structure is probed by the responses 

to tokens which violate the regularities. Eight-month old infants exposed to 

continuous streams of artificial syllables, which are generated using such transition-

probability rules, show subsequent attentional bias towards pseudo-words which 

would be unlikely to arise from the rules governing the sequences in the exposure 

phase (Saffran et al. 1996). Analogous regularities can be extracted from sequences 

of tone-pips (Saffran et al. 1999), numbers (Rose et al. 2005), visual forms (Turk-

Browne et al. 2005) and tactile stimuli (Conway and Christiansen 2005a). Although 

there are similarities in statistical learning across domains, and even evidence for 

some shared processing, there is increasing evidence weighing in favour of 

somewhat encapsulated mechanisms for statistical learning in different modalities 

(reviewed by Milne et al. 2018). Temporal interdependencies are particularly crucial 

in defining sounds, and there is evidence that such statistical learning capacity is 

particularly biased towards the auditory modality (Conway and Christiansen 2005a). 



 35 

Such sequential regularities can be used to facilitate subsequent behaviour, such as 

responding faster to sequence elements which follow the regularity (Rose et al. 

2005; Turk-Browne et al. 2010), or mapping meaning onto the learnt pseudo-words 

(Graf Estes et al. 2007). This advantage exists even when participants are unaware 

of having learnt a rule, as assessed by de-briefing after the experiment (Rose et al. 

2005; Turk-Browne et al. 2010). Behavioural facilitation afforded by statistical 

learning need not be limited to processing features relevant for the rule extraction. 

For instance, Tillmann et al. (2010) presented tone sequences generated using 

similar artificial grammars, whilst asking participants to judge whether target tones 

were in or out of tuning. Target tones that were ‘grammatical’ were detected as in 

or out of tune faster than ones which violated the grammar, even though the pitch 

judgement and grammaticity were orthogonal.  

When a sub-sequence of elements recurs repeatedly, these elements may come to 

be represented in terms of ‘chunks’, with each chunk comprising all the stimuli in a 

repetition cycle (Dehaene et al. 2015). This scheme provides an alternative 

interpretation of the MMN findings in the local-global paradigm (§1.3.3d): the five-

element sub-sequence of the type ‘AAAAB’ forms one chunk, and the ‘deviant’ 

AAAAA subsequence forms another. At the chunk-level, this paradigm now reduces 

to the basic oddball paradigm, offering an interpretation of the ‘global’ MMN in 

terms of memory representation rather than rule extraction. Such a chunking 

explanation can also apply to statistical learning findings such as the pseudo-word 

learning capacity of infants (Saffran et al. 1996). In fact, that study was explicitly 

designed to capture the learning of word boundaries, formed by the contrast 

between high-probability transitions within words, and low-probability transitions 

between words. Chunking and learning of transition-probabilistic rules are not 

mutually-exclusive: for the subject to detect regularly-occurring chunks in the first 

place must rest on recognising sequential relationships between elements. 

1.4.1.2 Sensitivity to level of disorder in complex sequences 

As described in §1.3.1, tracking the overall level of uncertainty in sensory streams is 

important for inference. The detection of changes in the level of disorder has been 

recently studied using rapid tone-pip paradigms similar to those used here. As 

discussed by Chait et al. (2007), transitions to a more disordered state are 

processed differently to changes towards order. Brain and behavioural responses to 

transitions to disorder are faster than symmetrically-opposite transitions to order 

(Chait, Poeppel, de Cheveigné, et al. 2007; Barascud et al. 2016). Recently, Zhao et 

al. (2018) show that pupil dilation occurs selectively to violations of regularity, and 

not to emergence of regularity, save in the simplest case of regular repetition of a 

single tone.  
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Sequence-level statistical properties influence subjective responses to individual 

elements. Agres et al. (2017) generated non-musical tone sequences, for which 

information-theoretic measures of expectation were estimated both at the level of 

individual tones and at the level of entire pseudo-melodies. In general, participants 

judged probe tones to be more expected the lower the information content of the 

tone under their perceptual model. However the strength of this relationship 

depended on the overall level of disorder of the sequence, being stronger in 

sequences governed by strong transition-probability rules, than in more entropic 

sequences. Sequence entropy also correlates with being harder to remember (Agres 

et al. 2017) and subjective perception of overall uncertainty (Hansen and Pearce 

2014). Uncertainty arising from the level of entropy in the sequence may tracked 

separately from complexity (which follows an inverse-U relationship with respect to 

predictability), as evidenced by different patterns of BOLD activity parametrically 

varying with the two quantities (Nastase et al. 2015).  

1.4.1.3 Deterministic sequence learning 

In statistical learning paradigms, rules are often expressed as transition probabilities 

between items, with regularities embodied by a transition probability closer to 1. 

However, these regularities, taken to their logical extreme, become entirely 

deterministic. Studying the responses of the brain to entirely deterministic structure 

may provide an optimal window onto rule detection (a position defended in 

Bregman 1990). Is deterministic structure represented qualitatively differently from 

stochastic rules, given that perceptual inference can never be truly certain? Whilst a 

definitive answer to this question is beyond the scope of this thesis, both 

deterministic and probabilistic structure govern the sequences used herein.  

Implicit learning of both deterministic and probabilistic structures is shown in serial 

reaction-time (SRT) tasks. Here, subjects are asked to respond specifically to each 

element in a temporal sequence, without being told that the sequence will repeat. 

Reduction in reaction times throughout the sequence is used to infer the learning 

process online. Post-session reports often indicate that deterministic regularities 

are learnt explicitly and are accessible to conscious report, whilst participants 

remain unaware of implicitly-learnt probabilistic rules (e.g. Vandenberghe et al. 

2006). However, these findings from SRT are limited to the acquisition of slow 

patterns as time must be allowed for a response after each element.  

In a series of experiments upon which the stimuli used in this thesis are based, 

deterministic structure was contrasted with probabilistic structure in rapid 

sequences of tone-pips (Barascud et al. 2016; see §1.5.1), which were presented to 

participants engaged in an incidental visual task. Regularly-repeating sequences of 

between 5 and 15 elements evoked an increased brain response, as compared to 

random sequences containing the same elements (see Figure 1.1). Here, learning of 
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the regular structure occurred on the sub-second timescale of individual trials; 

assessed by behavioural detection of the emergence of regular structure; and was 

associated with a sustained increase in MEG and BOLD response power.  
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Figure 1.1  MEG responses to regular versus random sounds 
Figure reproduced from Barascud et al. (2016). MEG response power to 
regular and random patterns of tone pips generated from different alphabet 
sizes. a: detection of the emergence of regular cycles of different lengths, as 
shown by a significant increase in brain response. b, c, d: comparison of 
response magnitude for regular and random patterns composed from the 
same alphabet of tones. Bars underneath plots denote time periods showing 
significant differences between pairs of conditions. 

As assessed by behavioural and EEG responses to deviants, the representation of 

the recurring sub-sequence seems to be coded in terms of relative pitch relations, 

showing (some) transfer of sequence knowledge to transposed sequences (Bader et 

al. 2017).  

1.4.2 Pattern-sensitive networks 

There is converging evidence for a hierarchically-arranged network of subcortical, 

primary auditory, and association cortex regions involved in recognizing, tracking 

and evaluating auditory patterns . Depending on the acoustic properties of the 

stimuli, auditory scene analysis can begin in subcortical areas, though links to 

human perceptual measures of auditory organization are more readily established 

from primary and higher-order auditory cortex (reviewed by Shamma and Micheyl 
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2010). Inference on the basis of sequential properties seems to involve interactions 

between auditory and frontal regions, as well as the hippocampus.  

1.4.2.1 Encoding in AC 

Primary auditory cortex, and subcortical structures, extract short-term physical 

properties of sound elements, such as periodicity and timbre (Seger et al. 2013). As 

discussed in §1.2, the extraction of regularity can already be implemented by 

repetition suppression in A1, and even earlier stages of processing. More complex 

features are encoded in planum temporale (PT); outside of primary auditory cortex. 

PT is activated in correlation to the subjective perception of a new auditory object 

(Teki et al. 2011; 2016). PT also tracks entropy in sequences (Overath et al. 2007). 

1.4.2.2 IFG-temporal network 

The inferior frontal gyrus (IFG) plays a prominent role in domain-general sequential 

processing (Wang et al. 2015), as well as playing a specialised role in the perception 

of language (left IFG; e.g. Opitz and Friederici 2007) and pitch (predominantly right 

IFG ; e.g. Uluç et al. 2018).  

Converging lines of evidence provide strong support for the role of frontal 

connectivity (specifically IFG) to auditory temporal areas in monitoring the 

environment for violations of regularity. fMRI, EEG, MEG and intracranial electrode 

measurements all find activation of this network to underlie the MMN (Doeller et 

al. 2003; Garrido et al. 2008; Phillips et al. 2016). Dynamic causal modelling of MEG 

responses allowed Phillips et al. (2015) to infer that evoked responses to auditory 

deviance in multiple dimensions is explained by top-down signals from inferior 

frontal gyrus (IFG) modulating activity in superior temporal gyrus (STG) and A1.  

In the context of music, Bianco et al. (2016) find the right IFG to be a hub mediating 

sequencing of both auditory perception and motor responses during sequences 

which follow musical rules. Melodic violations are associated with increased IFG 

activity, in sub-regions with high connectivity to STG (Seger et al. 2013; Bianco et al. 

2016), providing further evidence for a frontal-temporal monitoring of auditory 

pattern. 

1.4.2.3 Hippocampus 

The hippocampus is involved in temporally-structured memory (Jensen and Lisman 

2005; Kumar et al. 2014), and may be involved in extracting adjacent dependencies 

in particular (Opitz and Friederici 2007). Hippocampal activation is sensitive to 

sequence regularity, showing relative activation to deterministic sequences with 

respect to random ones (Barascud et al. 2016). Interestingly, the opposite 

relationship between sequence predictability (indexed by entropy) and 
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hippocampal activation was observed with non-deterministic sequences (Strange et 

al. 2005).  

 

Figure 1.2  Pattern-sensitive regions 
Schematic depicting the main auditory regularity-processing regions referred 
to in the literature and in this thesis. IFG: inferior frontal gyrus. HG: Heschl’s 
gyrus. PT: planum temporale. Hc: hippocampus. IC: inferior colliculus. MGB: 
medial geniculate body. 

1.4.2.4 Sequencing and predictability 

Nastase et al. (2014) measured BOLD responses to both auditory and visual 

sequences with varying levels of disorder. Domain-specific findings were stronger 

than domain-general effects, with auditory disorder encoded by STS and lateral 

temporal cortex, as well as left IFG; a region often implicated in language-related 

processes and artificial grammar learning. Auditory sequence encoding may also 

occur in traditionally motor-related areas, even when behavioural motor responses 

are not acquired, such as the SMA (Nastase et al. 2014) and basal ganglia (Janata 

and Grafton 2003; Green et al. 2018). 

1.4.2.5 Neuromodulatory mechanisms 

Neuromodulators play a crucial role in influencing global brain state, to rapidly 

deploy neuronal plasticity optimally according to current uncertainty levels. 

Acetylcholine (ACh) is thought to signal known levels of uncertainty, as estimated 

from contextual cues. In terms of the brain’s hierarchical generative model, ACh 

specifically communicates the level of uncertainty of top-down predictions, 

promoting a greater influence of bottom-up input on model updates (as proposed 

by Dayan and Yu 2002). Neuronally, ACh may enhance the strength of feedforward 

synaptic connections through increasing gain of superficial pyramidal cells, 



 41 

increasing the influence of new sensory information (Moran et al. 2013). 

Corroborating this account, direct manipulation of cholinergic activity, by applying 

ACh to IC neurons, reduces stimulus-specific adaptation (Ayala et al. 2016), in a 

manner consistent with altering the balance of information flow in favour of 

bottom-up activity. 

The occurrence of unexpected uncertainty, in other words a surprising occurrence 

which is not accounted for by expected noise in the environment, is associated with 

a phasic increase in noradrenaline (Payzan-LeNestour et al. 2013). Zhao et al. show 

that pupil dilation, an indicator of noradrenergic activity, occurs when auditory 

sequences transition from a more-ordered to a less-ordered state (Zhao et al. 

2018). Noradrenaline acts as an ‘interrupt’ signal, inducing a rapid increase in 

learning rate (Yu and Dayan 2005). 

1.5 Thesis Outline 

1.5.1 A more complex model of auditory regularity 

This thesis aims to address some of the lesser-studied aspects of learning from 

regularity in the auditory environment. With so much claimed for the explanatory 

power of predictive coding, and with a substantial part of the evidence for its 

operation in the auditory system coming from very simple models of regularity 

engendered by the oddball paradigm and its variants, it is important to bridge the 

gap between simple repetition and more intricate forms of regularity. This thesis 

represents a step towards real-world signals whilst still retaining the distilled purity 

of tone-pip paradigms. 

The stimuli themselves will be presented in more detail in Chapter 2 and in each 

experimental chapter. The stimuli are adapted from those used by Barascud et al. 

(2016). Briefly, the stimuli are rapid sequences of tone pips spread across a wide 

range of pitches. The individual ‘notes’ in the sequences are arranged according to 

certain rules, which remain stable throughout each exemplar. Regular stimuli (REG) 

are arranged in cyclically repeating patterns, representing a fully predictable rule, 

and are contrasted with random (RAND) sequences. RAND sequences can also vary 

in the number of unique elements, representing probabilistic acoustic structure 

with different levels of uncertainty.  

These stimuli are presented at a much faster inter-tone interval than tones in the 

oddball or streaming paradigms, and are fully adjacent with no silent inter-tone 

interval. In contrast to statistical learning paradigms, the regularities I use are 

extractable over the course of a single trial; only a few seconds. There are several 

advantages of this property. Firstly, we hope to specifically probe automatic 
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processing of regularity rules, distinct from any conscious reasoning of sequential 

structure. Secondly, the flux of the spectro-temporal information in natural stimuli 

can be very fast, with changes occurring without an intervening silent gap. Thirdly, it 

allows us to measure response evoked by the sequence as a whole, which is a direct 

measure of how auditory context is encoded, which is a complementary approach 

to the common auditory evoked response paradigms where responses are 

extracted to individual tones.  

1.5.2 Predictability and attention 

One explanation proposed for the increased MEG response to regular patterns 

relative to random ones shown by Barascud et al. (2016), was that regular patterns 

capture attention to a greater extent. This explanation is compatible with the 

proposed link between precision and attention in gPC (§1.3.2.3). In Chapter 3, EEG 

responses to REG and RAND stimuli were recorded, whilst subjects attended to a 

visual task. These EEG responses demonstrate fast recognition of predictable 

patterns. As previously seen in MEG, this was revealed by an increase in responses 

to regular relative to random sequences. One explanation given for this effect was 

that predictable sequences preferentially capture attention thanks to their higher 

precision. Behavioural experiments investigate attentional capture by stimulus 

structure, suggesting that regular sequences are easier to ignore, and do not 

exogenously capture attention.  

1.5.3 Predictability and repetition 

Responses to repetitive stimulation generally exhibit suppression. This repetition 

suppression is thought to form a building block of regularity learning. However, the 

patterns used in this thesis show the opposite effect, where predictable patterns 

show a strongly enhanced brain response, compared to frequency-matched random 

sequences. One possible reason for this discrepancy is that the simple tone pip 

sequences used in most MMN studies confound predictability with repetition. 

Furthermore, the differences in temporal properties of the sequence, where MMN 

studies use an ITI of several hundred milliseconds, but REG and RAND are presented 

much faster with no intervening silent gaps, may play a role. Chapter 4 presents an 

EEG study which reconciles auditory sequence predictability and repetition in a 

single paradigm, by including sequences of tone pips at a single frequency but with 

the same temporal properties as REG and RAND. Results indicate a system for 

automatic predictability monitoring which is distinct from, but concurrent with, 

repetition suppression. 
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1.5.4 Predictability and deviance detection 

The brain’s internal model can be investigated via the response to rule violations, as 

most prominently utilised by the MMN literature. Such studies lend support to the 

idea that deviations from expected auditory input are encoded in evoked 

responses, and that the deviance response reflects a precision-weighted prediction 

error. Chapter 5 and Chapter 6 present behavioural and EEG experiments where 

violations are inserted in REG and RAND sequences. REG and RAND represent a 

high-precision and a low-precision context respectively, and as such it was expected 

that equivalent deviant events would be preferentially processed and lead to a 

larger response in REG than in RAND sequences. Outlier tones within regular 

sequences indeed evoked a larger response than matched outliers in random 

sequences. However, this effect was not present when the violation comprised a 

silent gap.  

1.5.5 Changes in predictability  

Chapter 7 concerns the ability of the brain to update an existing model. Regular 

patterns transitioned to a different rule, keeping the frequency content constant. 

EEG shows a mismatch response, then a period of adjustment to the rule change, 

followed by a return to tracking the predictability of the new sequence as reflected 

by the sustained response magnitude.  
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Chapter 2. General Methods 

2.1 Stimuli  

The stimuli used throughout this thesis are sequences of tone-pips arranged 

according to various rules. The aim of the paradigm is to probe brain mechanisms 

which track the pattern, rather than simple acoustic properties, of the stimulus. 

Similar stimuli have been used previously (Chait, Poeppel, de Cheveigné, et al. 2007; 

Chait, Poeppel, and Simon 2007; Chait et al. 2008; Patel and Chait 2011; Chait et al. 

2012; Jaunmahomed and Chait 2012; Barascud et al. 2016; Barczak et al. 2018; 

Herrmann and Johnsrude 2018). 

2.1.1 Tone-pip sequences 

Each tone pip is 50-ms in duration, and is ramped on and off with a raised cosine 

ramp with 5 ms rise and fall time, to minimise transients. Tone pips are 

concatenated without any gap. The frequencies of the tone pips are drawn from a 

pool of logarithmically-spaced values (12% frequency increments). The frequency 

ranges covers between approximately 200 and 3500 Hz, which coincides with 

important frequencies in speech, and the peak of human auditory thresholds 

(Suzuki and Takeshima 2004). Sound sequences are between 3 and 4.5 seconds in 

duration, and are always unique on every trial. This ensures that the processes 

tapped are related to short-term echoic memory and initial regularity extraction, 

rather than memory retrieval. Sequences of frequencies are either regularly cycling 

(REG) or random (RAND), each composed of a number alph of frequencies, forming 

the ‘alphabet’ used in each sequence. For example REG10 refers to a sequence of 

10 frequencies, which repeats every 10 tones. For each trial, a number alph of 

values are drawn from the frequency pool to generate a sub-pool. In Chapter 3, the 

selection was drawn with replacement, as per Barascud et al. (2016). In Chapter 4 

and onwards, alph frequencies were drawn without replacement. The advantage of 

the latter technique is that a sequence generated from a sub-pool of size alph is 

guaranteed to contain exactly alph unique frequencies. With the former technique, 

the true alphabet size was likely to be lower.  

2.1.2 Randomisation 

To generate REG, alph frequencies are drawn from the pool (with replacement in 

Chapter 3; without replacement elsewhere). These frequencies are then iterated 

until the sequence is complete. To generate RAND, two different methods were 

used. In Chapter 3, to keep the method as similar as possible to previous work, each 
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frequency was drawn from the sub-pool at random with replacement. However, for 

later chapters, the randomisation procedure was modified to ensure both REG and 

RAND contained the same number of tones at each frequency over the entire 

stimulus duration. Each RAND sequence was obtained by simply generating a REG 

first, then shuffling the order. A further control was applied in Chapter 4 onwards. 

REG, being a repeated cycle of unique tones, never contains adjacent tone pips at 

the same frequency. RAND, on the other hand, is expected to contain adjacent 

repeats on 1/alph of the sequence elements. This could lead to differential 

adaptation in REG and RAND, as the repeated tone is known to evoke a smaller 

response (see §1.2). To avoid this, RAND sequences were generated by shuffling 

REG sequences up to 1000 times and the sequences with fewest adjacent repeats 

were chosen. This proves too strict a set of constraints for smaller alph, so this 

control was only used for alphabet size of 10 or more in Chapter 4 onwards.  

2.1.3 Ideal observer modelling of stimuli 

Stimulus sequences used throughout the thesis were analysed to generate an 

estimate of how surprising each new tone is, given a learnt model of the statistical 

structure over the previous tones presented in the experiment. The motivation is to 

compare brain responses to an ‘ideal’ observer. This approach has previously been 

used for REG and RAND stimuli, and the model output closely replicates the 

dynamics of the brain response measured with MEG (Barascud et al. 2016). The 

sequences were analysed using an unsupervised learning model of musical 

expectation: Information Dynamics Of Music (IDyOM. Pearce 2005; Pearce et al. 

2010). The model optimally forms statistical predictions about the likely 

continuation of a sequence of notes given a memory of which transitions between 

adjacent tones have occurred previously.  

IDyOM was designed for modelling musical melodies, but is also suitable for use 

with non-musical stimuli such as these. This is because the modelled data feature is 

simply a sequence of note identities (expressed in an arbitrary unit such as musical 

notation, or musical intervals, or here as frequencies in Hz); timing information and 

other score markings are not included in generating predictions. IDyOM models the 

sequence as a variable-order Markov chain, where the probability of a note at a 

given timepoint is conditioned on the identity of the previous n notes, where n is 

the order of the Markov chain. The model incorporates predictions from multiple 

different simultaneously estimated Markov chains at different values of n, allowing 

it to learn higher-order dependencies requiring a long stimulus history to predict, as 

well as local dependencies. 

The model was presented with the sequences in a stimulus set one note at a time, 

paralleling the information available to a real subject. The present thesis uses a 
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particular configuration of the model, LTM+, which begins with an empty model, 

then progressively learns over the entire corpus of sequences presented thus far in 

the simulated experimental session, updating the model after each note. This 

configuration was found by Barascud et al. (2016) to most closely correspond with 

brain responses.  

The model infers multiple variables, but for the purposes of this thesis, the 

information content associated with each tone was used as a measure of surprise. 

At each note xt in the melody, occurring at position t in the sequence, information 

content IC is defined as the negative log-probability of xt given the preceding 

sequence context under the model M; giving the expression 𝐼𝐶 =

−log(𝑃(𝑥𝑡|𝑥𝑡−𝑛, 𝑀𝑡) 

This is equivalent to surprisal under the internal model fit by the algorithm. Given 

that EEG evoked responses are thought to reflect prediction error (Friston 2005), it 

is hypothesised that EEG response power will closely track this information 

measure. Indeed, evoked response magnitude and behavioural reports of surprise 

correspond closely to information content from this model (Egermann et al. 2013; 

Omigie et al. 2013; Agres et al. 2017).  

2.2 Presentation Conditions and Equipment 

For behavioural experiments, sounds were presented through circumaural 

headphones (Sennheiser HD595) using a soundcard (Roland Tri-Capture) attached 

to a Windows laptop computer. For EEG experiments, participants listened to 

stimuli through non-metallic extended earphones (3M E-A-Rtone) such that there is 

minimal magnetic field interference from the speaker driver with the EEG recording. 

All experiments took place in a sound-proof booth, at a listening level chosen to be 

comfortable for each participant. Rests were provided at most every ten minutes. 

Auditory stimuli were binaurally presented, and controlled by the Psychophysics 

Toolbox extension in Matlab (Kleiner et al. 2007). 

EEG recordings were made using a Biosemi system (Biosemi Active Two AD-box 

ADC-17, Biosemi, Netherlands) with either 64 or 128 Ag-AgCl electrodes. The 

recording was obtained at 2048 Hz and subsequently downsampled. 

All subjects were aged between 18 and 35 years, fluent English speakers with 

normal or corrected-to-normal vision. Participants were reimbursed for their time. 

None reported a history of hearing impairment or neurological disorder. All 

experimental procedures reported in this thesis were approved by the research 

ethics committee of University College London, and written informed consent was 

obtained from each participant. 
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2.2.1 Visual decoy tasks 

A visual decoy task was used for the EEG experiments in Chapters 3 and 7. The 

visual task was displayed on a separate computer, using the Cogent 2000 toolbox 

for MATLAB (www.vislab.ucl.ac.uk/cogent.php). The timing was not correlated with 

that of the auditory stimuli. For each trial, 3 colour photographs of landscapes were 

shown for 5 s each, and images faded gradually from one image to the next to 

minimise visual transients, which could themselves produce an evoked response. 

Subjects were instructed to press a keyboard button if the first and third image 

within a trial were identical (10% of trials), and to withhold a response otherwise. 

There were a total of 288 unique images. The inter-trial interval was jittered 

between 2 and 5 s. The session was split into four consecutive blocks. Feedback 

(number of hits, misses and false alarms) for the visual task was provided at the end 

of each block. Behavioural performance on the visual task was at ceiling. 

For Chapters 4, 5 and 6, no visual task was used. Instead, subjects watched a film of 

their choice with subtitles and the volume muted. Subjects were instructed to relax 

and minimise movement, particularly jaw-clenching and facial movements.  

2.3 EEG 

Brain responses throughout this thesis were measured with 

electroencephalography (EEG). This technique measures electrical activity on the 

scalp with sub-millisecond precision, which is advantageous for studying the rapid 

processes of sequence extraction from sound. As reviewed in Chapter 1, there is a 

rich history of using EEG to learn about how the brain processes sound in particular, 

and patterns in general.  

2.3.1 Physical principles 

The link between neuronal activity and measured EEG is complex. EEG simply 

measures electric potential differences between sensors on the scalp. Neuronal 

activity influences the electric potential in each neuron’s surroundings in a myriad 

of ways: transmembrane currents, action potentials and postsynaptic currents, 

though most of the former cancel out locally. Electrical currents conduct differently 

through the various tissues of the brain, skull and scalp, leading to idiosyncratic 

contributions of each source of activity over multiple sensors, as well as simply 

dropping in power with the inverse square of distance travelled. As a result, each 

sensor on the scalp measures the net effect of any number of neurons’ activity, as 

well as other sources of electrical activity in the environment. For a neuronally-

generated current to reach the scalp with measurable amplitude (approximately in 

the order of 0.1 µV), many neurons must be simultaneously active, with an 
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estimated lower bound of some 10-50,000 neurons (Murakami and Okada 2006). 

These neurons must also be approximately aligned spatially: axons facing in 

different directions will each generate electrical current locally, but opposing 

directions will cancel out on the macroscopic scale (Ahlfors et al. 2009). The 

arrangement of pyramidal neurons in the cortex is highly regular, with a 

predominantly perpendicular arrangement with respect to the local cortical surface, 

so such favourable summation does thankfully occur.  

2.3.2 Source modelling 

The primary generators of neural current, even though they have a spatial extent, 

can be adequately modelled as a point source with an oriented net current: a 

dipole. An infinite number of such dipoles (characterised by their location, 

orientation and power) can explain a given pattern of neural activity. To 

(approximately) solve this ill-posed inverse problem requires constraints from 

assumptions grounded on other sources of knowledge. 

Detailed information can be gleaned from a structural MRI on an individual 

subject’s head shape, and the thickness and shape of individual tissues, and the 

configuration of their cortical surface. Such information allows the estimation of a 

realistic forward model, namely a mapping from sources in the brain to potential 

measured at each sensor.  

Various approaches for estimating an inverse solution are available which differ in 

the underlying assumptions (reviewed by Yao and Dewald 2005; Grech et al. 2008; 

López et al. 2014). In this thesis, the source inversion uses Minimum Norm 

Estimation (MNE; Dale et al. 2000) as implemented in the Fieldtrip toolbox 

(www.fieldtriptoolbox.org/; Oostenveld et al. 2010). This method simultaneously 

fits multiple dipole strengths over the whole brain, allowing any combination to be 

simultaneously active. The solution is constrained by selecting the combination of 

dipoles with the lowest total energy which adequately explain the sensor-level data. 

The distributed nature of the solution is particularly ideal for locating the 

differences between REG and RAND; as from previous work (Barascud et al. 2016) it 

is expected that the response to these sequences involves multiple sources.  

2.3.3 Noise 

The neural electrical potentials measured by EEG are tiny, and can be dwarfed by 

other sources of electrical noise (reviewed in Luck 2005). For instance, the 

movement of facial muscles and eye movements both produce artefacts many 

times larger than fluctuations in the EEG. Mains electricity produces a 50Hz signal. 

Slow drifts in the EEG signal are known to occur due to changes at the skin-

electrode interface during the recording (Huigen et al. 2002), and these drifts are 
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generally uncorrelated across channels, precluding the use of component analysis 

techniques to remove them (de Cheveigné and Arzounian 2018). The impact of 

noise is mitigated by event-related averaging (Luck 2005), as most noise sources are 

assumed to be uncorrelated with the cognitive process of interest. In this thesis, 

around 100 repetitions of each condition were recorded for each subject. Further 

signal-to-noise improvement was enabled by the use of various preprocessing 

techniques. 

2.3.4 Preprocessing 

Data were analysed using the Fieldtrip toolbox (www.fieldtriptoolbox.org/; 

Oostenveld et al. 2010) for Matlab (2015a, MathWorks). The analysis pipeline 

described below was developed throughout the course of the PhD research. 

Therefore, earlier studies do not make use of all the preprocessing techniques. The 

true chronological order of the chapters was 3, 5, 6, 4 then 7; however for flow of 

the thesis argument these were re-ordered.  

2.3.4.1 Filtering 

Most EEG preprocessing pipelines include a high-pass filter to remove the slow drift 

in the signal and improve the signal-to-noise ratio (Huigen et al. 2002; Kappenman 

and Luck 2010). Commonly used cut-off values for auditory evoked responses are 1 

or 2 Hz. However, the slow dynamics of the sequence-evoked response are of 

particular interest here as they may represent the tracking of predictability, such as 

has been reported with similar stimuli previously (Barascud et al. 2016; Southwell et 

al. 2017). Also, the introduction of filter-related distortion of evoked responses 

becomes a concern with increasingly high cut-off frequencies (e.g. above 0.3Hz; 

Tanner et al. 2015). A much lower cut-off of 0.1 Hz is used here to preserve slow 

dynamics whilst mitigating some of the slow drift. However, for comparison to 

‘traditional’ evoked responses such as the N1 and MMN, additional analyses of 

transient evoked potentials here use a high-pass cut-off of 2Hz. Unless otherwise 

specified, high-pass filtering was applied on the continuous dataset, before splitting 

the data into epochs, in order to minimise the impact of filter edge artefacts (de 

Cheveigné and Arzounian 2018). Unless otherwise specified, a fifth-order 

Butterworth filter was applied in forward and reverse directions, implementing a 

zero-phase-shift (acasual) filter. The acausal filter is the default method in Fieldtrip, 

and has the advantage that it does not delay the apparent latency of peaks, 

however as its output at a given sample depends on both the past and the future, it 

can also lead to the appearance of effects beginning at an earlier latency than in 

reality due to influence from future peaks (de Cheveigné and Nelken 2019). 

Data were also low-pass filtered prior to down-sampling, at or below the Nyquist 

frequency, to avoid aliasing artefacts. The focus of this thesis is relatively slow EEG 
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components, so a 30 Hz low-pass filter is applied prior to statistical analysis. This 

also removed 50 Hz noise from electrical mains and high-frequency muscle 

artefacts. 

2.3.4.2 Detrending 

Signal-to-noise ratio can be improved by using a high-pass filter; however such 

filtering may introduce distortions. For instance, discontinuities or spikes in the raw 

data can introduce ringing artefacts (de Cheveigné and Arzounian 2018). Filtering 

can also affect the apparent timing of response peaks (see de Cheveigné and Nelken 

2019), and, crucially for the sustained response effects, filters may distort true slow 

components in the EEG signal (Tanner et al. 2015; Widmann et al. 2015; Maess et 

al. 2016). Detrending is an alternative option to preserve these slow dynamics 

whilst removing the electrode drift. Here, a polynomial function of arbitrarily-

specified order is fitted to the data in each channel, then subtracted. However, this 

is also vulnerable to introducing distortions if there are discontinuities or glitches in 

the data. Robust detrending is a variant of this process, where a weighting is applied 

to each sample in the timeseries, to determine its influence on the polynomial 

fitting (de Cheveigné and Arzounian 2018). Weighting can be used in several ways 

to render the process more resilient to artefacts. Firstly, a thresholding can be 

applied such that all samples exceeding a set number of standard deviations from 

the mean are given a weight of 0, and 1 otherwise. In this thesis, a threshold of 3 

standard deviations was used. Secondly, periods of the signal known to contain no 

brain responses of interest, such as the inter-trial interval, can be uniquely used to 

anchor the fit, applying a low or zero weighting to the peristimulus interval. This 

helps prevent the fitting of, and removal of, brain evoked slow potentials. Thirdly, 

known glitches in the data can be down-weighted (if not already addressed by the 

thresholding). 
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Figure 2.1  Example raw and detrended data 
Data from a single block recorded from a subject taking part in the EEG 
experiment in Chapter 7. Each coloured line is the signal at channel FCz over an 
entire epoch. a: raw data. b: data after detrending.  

2.3.4.3 Artefact rejection  

Remaining artefacts can be removed by eliminating entire epochs and channels 

from the dataset. Outlier channels and trials were removed manually with the aid of 

Fieldtrip’s visual artefact rejection tool, which displays summary statistics for each 

trial and channel: variance, range, kurtosis, z-score and maximum absolute values. 

The user then manually selects individual trials and channels to remove on this 

basis. The proportion of trials retained according to these criteria varied 

substantially between experiments, probably reflecting different levels of noise in 

the datasets and individual differences in signal quality, but was never over 25%. As 

the number of trials generally outweighed the number of channels, first trials were 

rejected then channels.  

In the final stages of preprocessing, just before computing the average over trials, 

data from rejected channels were then reconstructed as the average of the signal 

from all immediately neighbouring channels. Subsequently, data were re-

referenced to the average over all channels and baseline-corrected by removing the 

mean voltage during the interval prior to the event of interest. 

2.3.4.4 Independent component analysis 

Independent component analysis (ICA) can be used to separate sources of activity 

which are statistically independent from one another, including sources of noise 

and independent neural signals. ICA decomposes the data into a linear combination 

of component timeseries which share minimum mutual information. Here, it was 
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used to identify eye-blink, eye-movement and (occasionally) cardiac artefacts. The 

runica algorithm implemented in EEGLAB, included in Fieldtrip, was used (Makieg 

et al. 1997; Delorme and Makeig 2004). Artefact components were visually 

identified from their topographies and timeseries and the relevant components 

omitted when projecting back into the sensor domain.  

2.3.5 Denoising source separation  

Further signal-to-noise improvement was achieved using denoising source 

separation (DSS; Särelä and Valpola 2005; de Cheveigné and Simon 2008; de 

Cheveigné and Parra 2014). This allows separation of the stimulus-evoked response 

from various sources of noise. DSS finds a linear decomposition of the dataset into a 

set of mutually-orthogonal components. Each component is described by a ‘spatial 

filter’: a time-invariant weighting over sensors, and is associated with a bias score, 

quantifying how much in common the component has with a bias filter, which 

determines what is considered ‘signal’ to be emphasised. The component selection 

represents a rotation of the original dataset to maximise variance in the 

components aligned with the bias filter. There is freedom to choose any bias filter, 

for example to minimise power line noise, maximise narrowband oscillatory activity 

or maximise evoked power (de Cheveigné and Parra 2014). The final stage is to 

select the best k components, as ordered by their bias score, to project back into 

the same dimensionality as the original dataset, yielding ‘clean’ data with an 

enhanced SNR.  

DSS uses two steps of principle component analysis (PCA), but unlike PCA it orders 

components by similarity to the bias function rather than simply proportion of 

response power explained, which when used as a denoising technique assumes the 

signal of interest is more powerful than the noise. Unlike ICA, DSS produces an 

ordered set of components according to the criterion set out in the bias function.  

Here, DSS was applied to maximise the reproducibility of scalp activity patterns 

across trials, for each subject. The bias filter is simply the trial-averaged data for 

that subject. In order to avoid circularity in the statistical inferences that were 

eventually drawn from the data, DSS was applied to trials from all conditions pooled 

together, thereby ‘blindly’ improving the SNR for all conditions together. 

DSS to maximise repeatability is only able to detect exactly time-locked repeatable 

features, and as such may be ineffective for later, less stereotyped brain responses. 

DSS will also thus boost the contribution of any repeatable noise. One such source 

of noise would be any slow drift not previously accounted for: the slow drifts tend 

to be fairly consistent across trials so show up in the event related average used to 
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derive the bias function. However, as shown in the example plot below, it can have 

a strong impact on the data quality.  

 

Figure 2.2  DSS: before and after 
Trial-averaged data a: before and b: after applying DSS to maximise evoked 
repeatability. Data from a single subject taking part in the EEG experiment in 
Chapter 7. Here, the bias filter was the average evoked response power during 
the first 500 ms after stimulus onset.  

2.3.6 Quantifying evoked responses 

The principle measure of the evoked responses used in this thesis is the global field 

power, calculated as the root-mean-square (RMS) of the electrode readings at each 

time point over all channels (Murray et al. 2008). This quantifies the response 

strength over the whole scalp, and retains the same units (µV) as the responses in 

individual channels. The RMS is used for analyses examining the sustained response 

magnitude. In previous work using MEG (Barascud et al. 2016) and the EEG 

responses in this thesis (see Figure 2.3), the sustained portion of the sequence-

evoked response, from around 300 ms, shows no zero-crossings. All channels show 

a similar shaped response. The RMS captures the overall dynamics of the response, 

substantially reducing the dimensionality, without disregarding any of the channels. 

Group averages of the RMS over all subjects are also computed as the root-mean-

square rather than the arithmetic mean (Murray et al. 2008).  
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Figure 2.3  EEG butterfly and RMS 
Example plot of the sustained response to a REG5 sequence (taken from 
Chapter 3). Individual channels are shown in grey, and the root-mean-square 
average over all channels is shown in black.  

2.4 Statistics  

2.4.1 Multiple comparisons 

EEG data is high-dimensional, yet the theoretical conclusions ultimately drawn from 

it are low-dimensional. Qualitative conclusions drawn from the high-dimensional 

dataset, such as “condition A shows decreased evoked response power as 

compared to condition B”, are based on a multitude of statistical tests performed at 

each point in space and time. When multiple statistical tests are carried out, the 

chance of obtaining a false positive on one of the tests increases; this is known as 

the multiple comparisons problem (MCP). If a conclusion is drawn from the outcome 

of such a family of statistical tests, each with threshold α for significance of p = 0.05, 

solving the MCP amounts to controlling the overall family-wise error rate (FWER) 

under the null hypothesis to be no greater than α. 

There are different approaches to this, which fall on a spectrum of more 

conservative, and therefore more likely to falsely show no effect, to more lenient, 

and therefore more likely to falsely show an effect. Bonferroni correction is the 

most conservative, simply dividing the critical α by the number of statistical tests 

undertaken. However, if there is some co-dependence in the data, such as 
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correlation over space or time, this is overly conservative. Both parametric and non-

parametric methods exist to solve the MCP whilst taking account of this structure in 

the data to perform a less conservative correction.  

2.4.2 The cluster-based permutation test statistic 

This thesis uses a non-parametric procedure to control the FWER, taking account of 

the co-dependency between nearby channels and time samples in the data. The 

advantage of using a non-parametric approach is that no assumptions are made 

regarding the underlying statistical distribution describing the dataset. This 

procedure is described in (Maris and Oostenveld 2007). For example, to compare 

two conditions A and B, the difference at each sample is quantified by some metric, 

such as the t-statistic. Then a threshold is applied, identifying samples which show a 

difference greater than the threshold value. Contiguous values exceeding the 

threshold are subsumed within a single cluster. Then, correction for multiple 

comparisons is performed over these clusters, which are less numerous than the 

original samples. A cluster-wise statistic is computed; commonly the sum or 

maximum of the individual metrics. A null distribution of the value of the cluster-

wise statistic is estimated using a permutation approach: condition labels are 

randomly permuted before repeating the process of computing the cluster-wise 

statistic. This is repeated for some large number of iterations, and from this a 

probability of obtaining a test statistic greater than the one obtained from the true 

dataset is computed. If this probability is smaller than the desired α, there is a 

significant difference between conditions, controlled for a family-wise error rate of 

0.05.  
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Chapter 3. Predictability and Attention 

3.1 Summary 

In this series of behavioural and electroencephalography (EEG) experiments we 

investigate the extent to which repeating patterns of sounds capture attention. 

Work in the visual domain has revealed attentional capture by statistically 

predictable stimuli, consistent with predictive coding accounts which suggest that 

attention is drawn to sensory regularities. Here, stimuli comprised rapid sequences 

of tone pips, arranged in regular (REG) or random (RAND) patterns. EEG data 

demonstrate that the brain rapidly recognises predictable patterns manifested as a 

rapid increase in responses to REG relative to RAND sequences. This increase is 

reminiscent of the increase in gain on neural responses to attended stimuli often 

seen in the neuroimaging literature, and thus consistent with the hypothesis that 

predictable sequences draw attention. To study potential attentional capture by 

auditory regularities, we used REG and RAND sequences in two different 

behavioural tasks designed to reveal effects of attentional capture by regularity. 

Overall, the pattern of results suggests that regularity does not capture attention. 

3.2 Statement of Contribution 

This chapter has been adapted from a published paper: Southwell R, Baumann A, 

Gal C, Barascud N, Friston K, Chait M. 2017. Is predictability salient? A study of 

attentional capture by auditory patterns. Philos Trans R Soc Lond, B, Biol Sci. 

372:20160105–20160111. For the purposes of this thesis, I added sections to show 

modelling of sequence information content using IDyOM (§3.4.1, Figure 3.2), and 

additional discussion of results with more recent references (Addendum, §3.8). 

AB, CG, NB, MC and I designed the experiments. CG and I acquired the data for 

Experiment 1, and I analysed the data. I acquired and analysed the data for 

Experiment 2. AB acquired and analysed the data for experiment 3. AB, CG, NB, KF, 

MC and I interpreted the results. MC and I wrote the article.   



 58 

3.3 Introduction 

The human brain is highly sensitive to patterns in sensory input (Saffran et al. 1999; 

Chait, Poeppel, de Cheveigné, et al. 2007; Turk-Browne et al. 2009; Barakat et al. 

2013; Wang et al. 2015). A growing body of work in vision (Fiser and Aslin 2001; 

Turk-Browne et al. 2009), touch (Conway and Christiansen 2005b), language 

(Huigen et al. 2002), and audition (Gebhart et al. 2009; Agus et al. 2010; Bendixen, 

Schröger, et al. 2012; Garrido et al. 2013; Paavilainen 2013; Bendixen 2014) has 

demonstrated that subjects rapidly and automatically learn complex sensory 

statistics, and that these are exploited to improve perceptual inference, even when 

outside of conscious awareness. This capacity is often interpreted as a fundamental 

element of the predictive mechanisms which are proposed to constitute the 

principal substrate of perception (Friston 2005; Clark 2013; Hohwy 2013). 

In hearing, automatic sequence learning has commonly been studied via the 

mismatch negativity (MMN); an electrophysiological marker for the processing of 

sounds that break an established rule (Paavilainen 2013). MMN to sequence 

violations has provided (indirect) evidence that the auditory system can learn 

complex rules governing sequences (Nordby et al. 1988; Bendixen 2014). The 

repetition positivity, which increases with the number of repeated stimuli, is 

another neural marker of simple regularity extraction (Baldeweg 2006). Recently, 

Barascud et al. (2016) provided direct evidence of the process of regularity 

extraction in more complex tone sequences. They used rapid sequences of tones 

with frequencies changing in a regular, cyclical pattern, and matched sequences of 

tones arranged in a random order. Behavioural reaction times and neural response 

dynamics indicated rapid recognition of regularity, on par with the latency 

predicted from an ideal observer model.  

Learned knowledge about regularities, whether from low-level statistical learning or 

conceptual understanding of the phenomena causing sounds, enables predictions 

to be formed about future sensory input (Winkler et al. 2009). Such expectations 

improve behavioural performance in predictable contexts; for example, by orienting 

resources to a point in time when a stimulus is expected (Nobre et al. 2007), or by 

facilitating selective attention and segregation of concurrent sound streams 

(Denham and Winkler 2006; Bendixen et al. 2010; Andreou et al. 2011; Bendixen 

2014). In addition, recognition of regularities can aid detection of changes in the 

environment, which causes sensory input that is in disagreement with these 

predictions (Bendixen, Schröger, et al. 2012; Schröger et al. 2013; Barascud et al. 

2014). It has been proposed that the same predictive mechanisms underlie both the 

detection of regularity violations and auditory scene analysis (Winkler et al. 2009; 

Schröger et al. 2013).  
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3.3.1.1 Attention 

Attention allows the prioritisation of useful streams of information for further 

processing. Within this context, the relationship between predictability and 

attention is attracting increasing research interest (Feldman and Friston 2010; Kok, 

Rahnev, et al. 2012; Chennu et al. 2013; Summerfield and de Lange 2014; 

Summerfield and Egner 2016). However, there is disagreement as to whether it is 

unpredictable, surprising events (Pearce and Hall 1980; Itti and Baldi 2009) or 

predictable ones (Mackintosh 1975) that are the most informative in scene analysis, 

and should therefore (in the parlance of Itti & Kock Itti and Koch 2000; 2001) be 

flagged as more ‘salient’ and attract selective attention (Dayan et al. 2000; see also 

Pearce and Mackintosh 2010). In visual studies, it has been shown that learning of 

regularities helps guide attention to expected locations (Chun and Jiang 1999; 

Summerfield et al. 2006) and features (Chun and Jiang 1999; Chalk et al. 2010). 

Zhao et al. (2013) recently proposed a framework for attentional guidance whereby 

automatically-learned regularities in the sensorium bias attention, even if not 

relevant for performing a task, and demonstrated this to operate in guiding visual 

search. They presented sequences of abstract shapes; the order of which was 

statistically structured at a particular location in the search array and random at 

others. This was followed by a static visual search array. Reaction times were faster 

to targets presented at the statistically structured array location, despite the 

regularity carrying no predictive information as to the target location.  

Zhao et al. (2013) suggest that the prioritisation of regular features is a means to 

focus resources on stable aspects of the world, which can then be learnt. The notion 

that the brain is ‘hardwired’ to prioritise regularities is at the heart of popular 

models of the brain as a statistical organ of prediction. The expected precision of 

bottom-up information streams plays a vital role in such predictive processing 

accounts (Friston 2005; Feldman and Friston 2010). Reliable prediction errors are 

up-weighted in proportion to their expected precision, thereby refining the brain’s 

generative model based on the most informative streams (Feldman and Friston 

2010). 

3.3.1.2 Increased responses to regular stimuli: exogenous attention? 

These ideas may help explain an intriguing recent finding concerning the passive 

brain response to acoustic patterns. Barascud et al. (2016) found a substantial 

increase in the neural response to regularly-repeating sound sequences over similar 

random sequences. This finding seems contrary to a large body of work showing 

reduced responses to predictable stimuli (Haenschel et al. 2005; Alink et al. 2010; 

Costa-Faidella et al. 2011; Meyer and Olson 2011; Todorovic et al. 2011; Todorovic 

and de Lange 2012). The proposed explanation for the discrepancy is that, unlike 

many of the signals used in previous work which often consist of oddball or roving 

sequences (Haenschel et al. 2005; Baldeweg 2008), the stimuli used by Barascud et 



 60 

al. (2016) were complex auditory patterns where the predictability of sound 

sequences was not confounded with neural adaptation resulting from repetition of 

identical sounds. There are several possible explanations of the increased response 

to regularity. One is that it reflects the engagement of neural circuits for sequence 

learning, whose activity in addition to the basic response to the stimulus in auditory 

cortex results in a net increase in magnetic field strength. Another is that the same 

neural population is simply more active, with the effect resulting from an increased 

gain on the activity of auditory neurons responding to the stimuli, potentially 

signalling greater expected precision. At the cognitive level, the result could 

potentially indicate that subjects were having their attention spontaneously biased 

towards the regular sounds, even though they were engaging in an unrelated visual 

task. Indeed, it has been shown that neural response magnitude is enhanced to 

attended, predictable stimuli in audition (Hsu et al. 2014; Auksztulewicz and Friston 

2015), and in vision (Kok, Rahnev, et al. 2012). 

In the experiments presented in this paper, we investigate whether regularity 

captures (exogenous) attention. We use the same stimuli as Barascud et al. (2016), 

consisting of tone-pip sequences whose frequency pattern is either regularly 

repeating (REG) or random (RAND; Figure 3.1). In Experiment 1 we demonstrate 

that the increased brain response to REG relative to RAND also occurs in 

electroencephalography (EEG). In a series of behavioural experiments, we then 

investigate the capacity of REG and RAND to exogenously capture attention when 

they act as auditory distractors (Experiment 2) and test whether auditory regularity 

biases attention in scenarios where multiple sound streams are attended and task-

relevant (Experiment 3). In both of these paradigms, we find no evidence for 

attentional capture by acoustic regularity. 

3.4 Experiment 1 (EEG) 

3.4.1 Methods 

3.4.1.1 Stimuli 

Stimuli (Figure 3.1) were 3000-ms long sequences of 50-ms tone-pips (60 tone pips 

altogether; each ramped on and off with a 5-ms raised cosine ramp). Tone 

frequencies were drawn from a pool of 20 logarithmically-spaced values between 

222-2000 Hz. A unique sequence was presented on each trial. Sequences were 

defined by two parameters: alph (alphabet size) - the number of frequencies chosen 

(at random, with replacement) from the pool, and regularity (REG or RAND). In 

regular (REG) sequences, a sub-pool of alph frequencies were chosen from the full 

pool, and arranged in repeating cycles of length alph. Random (RAND) sequences 

were generated by drawing each tone at random from the sub-pool of alph 

frequencies. REG and RAND sequences of the same alph were generated in pairs, 
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using the same sub-pool, such that conditions were matched for the occurrence of 

each frequency (Figure 3.1). REG conditions used alph = 5, 10 and 15; RAND 

included an additional condition of alph = 20 (using the whole frequency pool), 

yielding 7 conditions (REG5, REG10, REG15, RAND5, RAND10, RAND15 and 

RAND20). These sequences are too rapid to allow deliberate reasoning of the order 

of individual tones; nevertheless the repetitions in REG sequences lead to a strong, 

‘pop-out’ percept of a pattern (Barascud et al. 2016). Examples of the stimuli used 

are provided as Supplementary Materials in the paper (Southwell et al. 2017). 

 

 

Figure 3.1  Stimuli 
Example schematics of the REG and RAND stimuli used. RAND20 contains all 20 
frequencies from the pool, in random order. REG5, REG10 and REG15 (left) 
consist of a regularly repeating pattern of 5, 10 or 15 tones, with frequencies 
chosen at random, with replacement, from the pool. For each REG stimulus, a 
matching RAND stimulus, consisting of the same frequencies but in random 
order, was generated. All stimuli were unique (never repeated) and generated 
anew for each participant.  
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3.4.1.2 Ideal observer modelling procedure 

The degree of surprise associated with each tone in the sequence reflects the 

degree to which the sequence has been acquired by the brain. This process was 

modelled using an ideal observer model of music expectation, IDyOM (Pearce 2005; 

Pearce et al. 2010; Barascud et al. 2016, see §2.1.3 for more details). The field 

strength of MEG responses to REG and RAND was shown to closely follow this 

measure of information content (Barascud et al. 2016), with a negative relationship 

such that the lower the information content of the tone, the greater the field 

strength. Here, in a similar approach to that used by Barascud et al. (2016), the 

stimuli from an entire experimental session, arranged in the same random order, 

were analysed to estimate transition probabilities between adjacent notes, from 

which the information content of each tone was derived. The LTM+ model 

configuration was used, which is initialised with flat prior expectations, but updates 

the observer model at each successive tone over the entire simulated ‘session’. At 

each tone, the model outputs the probability distribution over the possible 

frequencies of the next tone, given the current model configuration. From this, the 

information content of the actual next tone is stored.  

3.4.1.3 Ideal observer results 

The mean and standard error of the information content of each tone, for each of 

the sixty positions within the sequence, was estimated with bootstrap resampling 

with 1000 iterations. Pairs of conditions were compared statistically using a FWER-

correction procedure with cluster-wise correction (Maris and Oostenveld 2007) at 

an alpha level of p < .05. Figure 3.2 shows the mean information content, 

interpretable as the level of ‘surprise’ elicited by each tone, as a function of 

sequence position. RAND20 is shown in both plots, representing the stimulus with 

the most uncertainty, and is used as a baseline against which to asses ‘learning’ of 

sequence structure by the model. Indeed, the model shows high information 

content for RAND20 throughout the sequence, remaining at a similar level of 

around 5 bits per tone. However, the information content for REG conditions drops 

rapidly during the first repetition cycle (Figure 3.2a). This drop in information 

content can be interpreted as the model successfully recognising the regularity in 

the sequence. For REG5, the information content first significantly differed from 

RAND20 at 8 tones; for REG10 at 13 tones, and for REG15 at 18 tones. The 

information content diverges from RAND20 at 3 tones into the first repeating cycle, 

for all values of alph. Following this drop, the information content of REG levels off 

to between 1-2 bits per tone. The information content for REG5 remains 

significantly lower than for REG10 and REG15 throughout the sequence, beginning 

at the eighth tone .  

Figure 3.2b shows the information content for the four RAND conditions. This 

remains at a much higher level throughout the sequence, between 4 and 5 bits per 
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tone. It appears that the information content tends to be smaller for smaller alph. 

This makes sense, as the smaller the alphabet used to generate a sequence, the 

fewer total possibilities there are for the identity of the next tone, even if the exact 

frequency is chosen at random. RAND5 has a significantly lower information 

content than RAND20 throughout the sequence (from tone 3), though RAND10 and 

RAND15 only sporadically show a significant difference from RAND20. 
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Figure 3.2  Modelled information content  
Mean information content per tone, derived from an ideal observer model of 
frequency expectation, computed over an entire experimental session of 700 
trials. Shaded regions represent standard deviation over trials. a: REG 
conditions as compared to RAND20. The information content drops during the 
first repetition of the sub-sequence, diverging from RAND20 three tones into 
the repetition. Henceforth, all three REG conditions show low information 
content per tone, but this is slightly lower for smaller values of alph. b: All four 
RAND conditions show similar information content, remaining roughly 
constant throughout the sequence. However, as alph decreases, the 
information content per tone also decreases slightly, representing the 
predictability arising from the reduced frequency pool.  

3.4.1.4 Procedure 

The procedure was similar to the MEG experiment described in Barascud et al. 

(2016). Subjects were engaged in an incidental visual task and were naïve about the 

nature of the auditory stimuli. Auditory stimuli were presented binaurally with the 

Psychophysics Toolbox extension in Matlab (Kleiner et al. 2007). In total, subjects 

heard 700 unique stimuli (100 for each condition). The inter-stimulus interval (ISI) 

was jittered between 1100 and 1500 ms. The visual task was displayed on a 

separate computer using Cogent 2000 in MATLAB 

(www.vislab.ucl.ac.uk/cogent.php). The timing was not correlated with that of the 
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auditory stimuli. For each trial, three colour photographs of landscapes were shown 

for 5 s each, and images faded gradually from one image to the next to minimise 

visual transients. Subjects were instructed to press a keyboard button if the first 

and third image within a trial were identical (10% of trials), and to withhold a 

response otherwise. Inter-trial interval was jittered between 2 and 5 s. The session 

was split into four consecutive blocks. Feedback (number of hits, misses and false 

alarms) for the visual task was provided at the end of each block. 

3.4.1.5 Recording & data preprocessing 

EEG signals were recorded using a Biosemi system (Biosemi Active Two AD-box 

ADC-17, Biosemi, Netherlands) with 64 electrodes; at a sampling rate of 2048 Hz. 

Recording was re-started at each block. Data were analysed with SPM12 (Statistical 

Parametric Mapping; http://www.fil.ion.ucl.ac.uk/spm/) and Fieldtrip; 

(http://www.fieldtriptoolbox.org/; Oostenveld et al. 2010) toolboxes for MATLAB 

(2015a, MathWorks). All filtering was performed with a two-pass, Butterworth, fifth 

order filter. Data were low-pass filtered at 110 Hz, downsampled at 256 Hz, high-

pass filtered at 0.1 Hz, re-referenced to the average, divided into 5000 ms epochs 

(with 1000 ms pre stimulus onset and 1000 ms post-offset) and baseline-corrected 

relative to the pre-onset interval. Outlier epochs were removed, if the average 

power over all time samples and channels exceeded 2 standard deviations from the 

mean over trials; on average, 76% of epochs were retained. Subsequently, data 

were low-pass filtered at 30 Hz and De-noising Source Separation (DSS; de 

Cheveigné and Simon 2008; de Cheveigné and Parra 2014) was applied to maximise 

reproducibility across epochs, keeping the first five components and projecting back 

into sensor space. Finally, data were averaged over epochs for each channel, 

condition and subject.  

3.4.1.6 Data analysis 

For each participant and condition, the root-mean-square (RMS) over channels was 

calculated at each time sample in the epoch. This was used as a measure of brain 

activation over time. The distribution of RMS (mean, standard error) was then 

estimated for each condition using bootstrap resampling across subjects (1000 

iterations; Efron and Tibshirani 1993). This was used to calculate the group-level t-

statistic of the difference between pairs of conditions at each time-point. T-tests (2-

tail) were performed using t-statistics computed on clusters in time, and controlled 

for a family-wise error rate of 0.05 (Maris and Oostenveld 2007). Additionally, a 

repeated-measures ANOVA with factors of regularity and alphabet size was 

performed on the mean RMS power between 1000 and 3000 ms, including all 

conditions except RAND20 to give a balanced design.  
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3.4.1.7 Subjects 

23 paid subjects took part (mean age 23.3 years, range 20-29 years; 11 female). 

Two subjects were excluded due to exceptionally noisy EEG data.  

3.4.2 Results 

Group RMS (RMS of all subjects’ RMSs) for the three regular conditions, REG5, 

REG10 and REG15, alongside RAND20 as a common control, are shown in Figure 

3.3a. The brain response shows an N1 peak (at 100 ms post-onset; Figure 3.3d) 

before rising gradually and reaching a sustained level which persists until stimulus 

offset. An offset response is visible about 100 ms after sequence cessation. The 

sustained evoked response is characterised by regular fluctuations at 20 Hz 

reflecting responses to individual tones. All three REG conditions show an increased 

sustained response as compared to RAND20. The timing at which the group RMS for 

REG conditions diverge from RAND20 (taken to reflect the time required by the 

brain to discover the regularity) increases with cycle length: 406ms [8 tones], 750 

ms [15 tones], 1067 ms [21 tones]; for REG with alph = 5,10,15 respectively. This is 

during the second cycle in each case (1.6, 1.5 and 1.4 cycles respectively), before 

the pattern has repeated completely, although stable statistical significance is 

reached somewhat later (horizontal lines beneath the RMS plot). As discussed in 

Barascud et al. (2016), this demonstrates the operation of a rapid, automatic 

process of regularity detection. Group RMS for REG and RAND of matched alph are 

shown in Figure 3.4. The response to REG is consistently higher than its matched 

RAND. The scalp voltage map of the difference between REG and matched RAND 

conditions, calculated between 2.4 and 2.6 s post-onset, is also shown in Figure 3.4. 

The latency of the divergence between alphabet-matched REG and RAND reflects 

the time to discover the regular pattern, independently of discovering the 

frequency pool. For alph = 5, means diverge at 421 ms, which is during the 9th tone, 

reaching significance at 570 ms. For alph = 10, the means diverge at 756 ms, during 

the 16th tone, but only becomes significant much later at 2.66 seconds. REG15 

diverges from RAND15 at 968 ms, during the 20th tone, again only becoming 

significant much later at 1.91 s. 

The RMS, over the interval 2000-3000 ms post-onset, extracted from each 

condition, was subjected to a repeated-measures ANOVA with regularity (REG vs. 

RAND) and alph (alphabet size of 5, 10 or 15 tones) as within subject factors. This 

yielded significant main effects of regularity (F1,20 = 29.9, p < 0.0001) and of alph 

(F2,40 = 3.68, p = 0.034), with no interactions. Post-hoc comparisons on the main 

effect of alph revealed significant differences only between alph=5 and alph = 15 (p 

= 0.017). The relative mean increase between RAND and REG of matched alph was 

29.7%, 36.7% and 27.5 % for alph = 5, 10 &15 respectively.  
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Figure 3.3  Sequence-evoked responses 

EEG sequence-evoked responses for Experiment 1. Shaded error margins show 
±2 SEM. a: EEG evoked responses (group RMS over all channels) for RAND20 
and REG of different alph, over the entire epoch. Horizontal bars below plots 
indicate time intervals where cluster-level statistics showed a significant 
difference between each of the REG conditions and RAND20, colour of the bars 
denotes which two conditions are compared. b: Comparison of all four RAND 
conditions with different alph. There were no significant differences between 
RAND20 and RAND5, 10 or 15. c: RMS average power over 1000-3000 ms. 
There is a main effect of alph and of regularity with no interaction. d: N1 onset 
response (80-120 ms) to all conditions. 
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Figure 3.4  Sequence-evoked responses 
EEG sequence-evoked responses for Experiment 1. The responses to REG are 
re-plotted alongside their respective RAND controls; for a: alph = 5, b: alph 
=10, and c: alph =15. Horizontal grey bars below plots indicate time intervals 
where cluster-level statistics showed a significant difference between each pair 
of conditions. The scalp voltage map of the difference between each pair of 
REG and RAND conditions, calculated between 2.4 and 2.6 s post-onset, are 
plotted inset below each RMS plot.  

3.4.3 Discussion 

Experiment 1 demonstrated a rapid differentiation in brain response between 

regular and random sequences, replicating the MEG results (Barascud et al. 2016). 

However, the EEG responses are somewhat noisier than those measured with MEG, 

likely influenced by a number of factors including ambient electric noise and the 
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smaller number of sensors used here (64, versus 274 in MEG) which impairs the 

efficiency of de-noising. Electrode voltage drifts, which introduce low frequency 

noise, may also have affected the robustness of the observed sustained responses. 

Overall, the data demonstrate that regular, predictable sequences lead to a 

dramatic power increase of some 30% which is remarkable for evoked responses, 

and suggests a large change in the underlying neural activity. This finding is 

surprising in light of previous work consistently reporting reduced evoked responses 

to predictable patterns and interpreted as reflecting reduced prediction error 

(Costa-Faidella et al. 2011); for a review see (Baldeweg 2008). The discrepancy with 

previous work may be due to much of the existing work using sound patterns which 

confound repetition with predictability, making it difficult to dissociate adaptation 

effects from those purely due to prediction. The present paradigm, using wide-band 

signals and complex sound patterns, allows us to control for simple effects of 

adaptation (see additional discussion in Barascud et al. 2016). Furthermore, we use 

very rapid sequences, where the perception of patterns pops-out spontaneously 

rather than being consciously trackable. It is likely that the neural processes 

involved in extracting the regularity are different from those implicated in work 

using slower temporal patterns (e.g. Hsu et al. 2014; Auksztulewicz and Friston 

2015), which allow high-level (conscious or mnemonic) prediction of future events. 

One possible explanation for the activation pattern observed here is that it reflects 

automatic, bottom-up driven attentional capture by REG patterns. This attentional 

process will be the focus of the rest of this paper. The behavioural experiments 

below investigate the hypothesis that the large, sustained amplitude shift which 

was observed for the REG stimuli may reflect increased perceptual salience (Itti and 

Koch 2000; 2001). That is to say, the more reliable REG stimuli trigger an automatic 

(exogenous) attentional bias. This proposition leads to the testable prediction that 

REG and RAND will have different effects on behaviour, reflecting an attentional 

bias towards regularity in REG sequences, even when task-irrelevant.  

3.5 Experiment 2 

This experiment aimed to measure the (assumed) behavioural consequences of 

attentional capture by regular sounds. We evaluated performance on a demanding 

listening task, with REG or RAND sequences presented concurrently, as task-

irrelevant distractors. If REG patterns spontaneously capture exogenous attention, 

we predicted that REG sequences will prove more detrimental to performance than 

RAND sequences. This prediction is in line with previous behavioural experiments, 

whereby task-irrelevant stimuli outside the focus of attention can result in 

attentional capture manifest as degradation in performance in a behavioural task 

(Escera et al. 1998; Cervantes Constantino et al. 2012; Sohoglu and Chait 2016b). 
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The main task was based on an auditory change-detection paradigm (Cervantes 

Constantino et al. 2012; Sohoglu and Chait 2016b). Stimuli were artificial acoustic 

scenes, comprised of multiple simultaneous tone-pip streams, each characterized 

by a distinct, constant frequency and amplitude-modulation (AM) rate. The task 

required listeners to detect occasional changes (appearance or disappearance of 

one stream) within these scenes. This simulates the challenges faced by listeners in 

natural acoustic scenes, in which many concurrent sound sources must be 

processed and monitored simultaneously.  

We presented the change detection task and REG/RAND distractor sequences 

concurrently to different ears, such that they competed directly throughout the trial 

(Figure 3.5a). If REG patterns spontaneously capture exogenous attention, we 

predicted that REG sequences will prove more detrimental to performance than 

RAND sequences. 

3.5.1 Methods 

3.5.1.1 Stimuli 

The stimuli and experimental approach for the change detection paradigm (Figure 

3.5a) are described in detail in a previous study (Cervantes Constantino et al. 2012). 

In brief, stimuli were artificial acoustic scenes consisting of 8 concurrent streams of 

tone pips, each with a unique frequency (between 200 and 4000 Hz) and AM rate (3 

to 35 Hz). 50% of the stimuli contained a change partway through the scene: 

appearance (CA) or disappearance (CD) of a stream. Scene changes occurred 

between 1000 and 2000 ms post-onset. The overall stimulus duration was between 

2000 and 4000 ms.  

On each trial, a scene stimulus and a REG10 or RAND10 distractor sequence (with 

equal probability) were presented concurrently at the same dB level, to different 

ears, such that they competed directly throughout the trial. Each REG/RAND 

sequence consisted of between 40 and 80 tones. For REG sequences this 

constituted between 4 and 8 cycles; i.e. sufficient for the regularity to become 

perceptually established.  

3.5.1.2 Procedure 

Stimuli were blocked by change type (CA or CD), with 50% of the trials in each block 

(160 overall) containing a change. The ISI was randomized between 700 and 2000 

ms. REG or RAND sequences were randomly paired with each scene stimulus. 

Subjects were instructed to attend to the ear containing the scene and respond by 

button-press as soon as they heard a change. To avoid confusion, the ear of 

presentation was fixed throughout the experiment, but counterbalanced across 

subjects. Subjects were naïve to the structure of the REG/RAND sequences, and told 
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these were simply distractors to the main change-detection task. The block order 

was counterbalanced between subjects, and a break was allowed after every 40 

trials. The session began with a short training block where feedback was given on 

each trial.  

3.5.1.3 Subjects  

10 subjects participated in this experiment (mean age 24.0 years; 7 female). 

3.5.2 Results 

Figure 3.5b,c shows reaction times (RT) and sensitivity (d’; Tanner and Swets 1954) 

scores for detection of scene changes with REG or RAND distractors presented 

concurrently. A repeated-measures ANOVA was performed on RT and d’; with 

change type (CA/CD) and distractor regularity (REG /RAND) as factors. RT showed 

main effects of change type (F = 16.299; p = 0.003) and regularity (F = 8.064; p = 

0.019) with no interaction. Similarly, d’ showed a main effect of change type (F = 

18.244; p = 0.002) and regularity (F = 9.786; p = 0.012) with no interaction.  

The results reveal that, contrary to our hypothesis, RAND is more detrimental to 

performance than REG. The data are consistent with the interpretation that RAND is 

harder to ignore, at least when in direct competition with a concurrent, task 

relevant, auditory stream (see also Andreou et al. 2011, and discussion in §3.7.2).  
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Figure 3.5  Experiment 2 
a: A schematic representation of the stimulus paradigm. Scene stimuli and REG 
or RAND sequences (RAND in this example) were presented concurrently to 
different ears (counterbalanced across subjects). All scenes contained eight 
streams. This example shows a scene with an appearing stream, which is 
indicated in red. b: Behavioural results; performance (indexed by d’) and c: 
reaction time for detection of change events. Error bars show ±1 SEM.  

3.6 Experiment 3 

Rather than using REG or RAND sequences as task-irrelevant distractors, 

Experiment 3 placed REG and RAND sequences in direct competition as task-

relevant streams. Here REG and RAND were presented concurrently and both 

actively monitored for targets (a silent gap). This is in contrast to Experiment 2, 

where performance on the task required ignoring REG or RAND stimuli. We 
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predicted that, when both sequence types are monitored simultaneously, gaps in 

REG sequences should be more readily detectable than gaps in RAND sequences. 

This design is similar to that used in Zhao et al. (2013), who demonstrated that 

targets embedded within regularly repeating visual streams are more easily 

detected, even though the regularity of the stream was not itself goal-relevant. 

3.6.1 Methods 

3.6.1.1 Stimuli 

This experiment used REG5 and RAND5 sequences consisting of 50-ms tone pips 

interspersed with 50-ms gaps. Trials involved the presentation of two concurrent 

sequences, one in each ear (Figure 3.6). Sequences could be both REG or both 

RAND, or one of each. In order to facilitate the perception of the two sequences as 

independent concurrent streams, the sequences were staggered by 50 ms such that 

tones occurred in alternation between the ears. In addition, sequences were 

spectrally separated such that the sequence in the right ear was always a higher 

pitch. The tones were chosen from a pool of 13 logarithmically-spaced frequencies 

between 1587 and 6205 Hz for the right ear and between 280 and 1122 Hz for the 

left.  

On 50% of trials, one of the sequences contained a target (an omission of two 

consecutive tones). Stimuli were 6000 ms long. When present, the target occurred 

at least 2000 ms after stimulus onset (following 4 REG cycles); i.e., at a point in the 

REG stimulus when the regular pattern has been established. 

The main experiment consisted of the following conditions: (ii) RAND sequences in 

both ears (RAND-RAND, 25% of trials); (ii) REG sequences in both ears (REG-REG, 

25% of trials); (iii) REG sequence in one ear and RAND in the other (REG-RAND, 50% 

of trials). The target occurred in one of the two sequences with equal probability. 

For REG-RAND, we denote the stream containing the target using the prefix t for 

‘target’, and the other sequence with the prefix d for ‘distractor’; thereby sub-

dividing this condition into (iiia) tREG-dRAND and (iiib) dREG-tRAND. Each condition 

was counterbalanced across the two ears such that target occurrence and REG 

versus RAND sequences were equally likely in each ear. Before the main session 

subjects also completed a block where only a single sequence (REG or RAND) was 

presented to one of the ears with equal probability; a target was present on 50% of 

trials. These conditions are denoted as REG- and RAND-. 

3.6.1.2 Procedure 

Subjects were instructed to press a keyboard button as soon as they heard a gap in 

a sequence. Feedback was provided after each trial. The single-sequence block 

contained 80 stimuli (40 for each of REG- and RAND-). The main experiment 
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contained 120 trials for each of the four dual-sequence conditions, presented in a 

randomised order. Subjects were given short breaks every 10 minutes. 

3.6.1.3 Subjects  

11 subjects participated in this experiment (mean age = 25.7; 7 female)  

3.6.2 Results 

We used hit rates as our primary outcome measure, as most subjects produced low 

false positive rates (2.1% for single-sequence, 2.0% for dual-sequence) yielding 

‘artificially’ high d’ scores. Hit rates were deemed the most unambiguous and 

representative outcome measure of performance in this task. 

Figure 3.6b,c show the hit rate for all conditions, separated by whether the target is 

in the REG or the RAND stream, for both single-sequence and dual-sequence 

stimuli. The hit rates for targets in the single sequence (REG- and RAND-) conditions 

are the left-most bars in each plot. In the single-sequence condition, subjects were 

better at identifying targets in regular streams compared to random streams (F = 

20.6; p = 0.001). These findings are consistent with previous work showing that 

performance is improved when targets are embedded in temporally regular 

sequences (Barnes and Jones 2000; Jones et al. 2002; 2006). This is the case even 

when the dimension in which the regularity expressed is independent of the 

dimension along which targets differ. 

In order to test the main hypothesis that regular sequences would ‘pop-out’ and 

attract attention, we compared performance for dREG-tRAND and tREG-dRAND, as 

both contain simultaneously presented random and regular sequences (Figure 

3.6d). We postulated that regularity would bias attention, leading to improved 

performance when targets were embedded in regular streams (tREG-dRAND) as 

opposed to random (dREG-tRAND). A repeated-measures ANOVA showed no 

significant difference between the average hit rate values for tREG-dRAND and 

dREG-tRAND (hit rates were 0.67 and 0.65 respectively; F = 1.2; p = 0.3). These 

results suggest that regular sound patterns do not bias attention. 

A repeated-measures ANOVA was conducted on hit rates in the dual-sequence 

conditions, with factors for regularity of the target stream (REG/RAND) and the 

parallel stream (REG/RAND). There was a main effect of target stream (F = 51.48; p 

< 0.01); here again subjects were overall better at detecting targets in REG. We also 

found a main effect of parallel stream (F = 26.97; p < 0.01); revealing overall poorer 

target-detection when the parallel stream was RAND relative to when it was REG. 

This pattern is in agreement with the outcomes of Experiment 2, and consistent 

with the interpretation that RAND patterns incur increased demand on processing 

resources (discussed further below). However, there was no interaction between 
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the two factors, suggesting that a RAND parallel stream incurred an equal cost to 

target detection performance in a RAND or a REG stream.  

 

Figure 3.6  Experiment 3 

a: A schematic representation of the stimulus paradigm. On each trial, two 
concurrent sequences (each either REG or RAND) were presented, one to each 
ear. Individual tones were interleaved as demonstrated with the black dashed 
line. On 50% of the trials, one of the sequences contained a 200 ms gap 
(target, shown in grey, top). The sequences presented to the right ear were of 
a higher pitch than to the left, such that the frequency ranges did not overlap. 
b: Hit rate for all conditions with a target in the REG stream; single-sequence 
REG (left) and dual-sequence (right). c: As for b; except all conditions had a 
target in the RAND stream. Error bars show ±1 SEM. d: Hit rate re-plotted for 
target detection when REG was presented to one ear and RAND to the other. 
The sequence containing the target is indicated with the prefix t for ‘target’, 
the other stream is denoted with the prefix d for ‘distractor’. 

3.7 Discussion 

Brain responses measured with functional magnetic resonance imaging (fMRI), MEG 

(Barascud et al. 2016) and EEG (as seen here) show consistently increased activation 

to regular acoustic patterns, relative to matched random stimuli. One interpretation 

of these systematic, pronounced effects is that they indicate large differences in 
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attentional capture between regular and random patterns, such that regular 

patterns automatically and involuntarily attract more attention. This account of the 

imaging data is consistent with previous behavioural work in the visual modality 

(Zhao et al. 2013) and is broadly in line with the fact that sensitivity to predictable 

patterns in the natural environment is a major pre-requisite for survival. Organisms 

produce regular, periodic motor sequences, such as locomotion and vocalizations, 

which are expressed as a pattern in the temporal succession of sensations. The 

ability to automatically orient towards such patterns within a crowded, noisy scene 

is often critical for continued existence.  

3.7.1 Attentional capture by regularity? 

The behavioural experiments reported here aimed to identify a behavioural 

correlate for the observed brain response effects. Using two tasks designed to 

probe different aspects of attentional capture, we consistently find no evidence for 

the exogenous capture of attention by regular acoustic patterns. Despite the 

sizeable change in the EEG signal associated with processing regular (REG), relative 

to random (RAND) tone pip patterns, REG sequences were not more distracting 

than matched random sequences when task irrelevant, and were also no more 

perceptually salient when participants were actively monitoring REG and RAND 

streams concurrently.  

Whilst there is no evidence for REG sequences being more perceptually salient than 

RAND sequences (or vice versa), Experiments 2&3 suggest that RAND sequences are 

more computationally demanding, and hence more distracting, than REG sequences 

(e.g. Falk and Konold 1997; the discussion below disentangles these issues). 

The paradigm in Experiment 2 shared key similarities with the EEG experiment 

(Experiment 1). Participants were naïve to the nature of the distracting REG or 

RAND patterns and focused on a different task. A change detection task, rather than 

a visual task similar to that in the EEG experiment, was chosen because: (i) its rapid 

nature allowed us to probe behaviour more frequently, and hence efficiently; and 

(ii) a competing auditory (rather than a visual) task is more likely to reveal effects of 

distraction, because it poses more competition for shared resources (see review in 

Chait et al. 2012). It is therefore unlikely that failure to observe effects of 

attentional capture is due to the difference in task per se. Furthermore, by 

removing the decoy task altogether, Experiment 3 constitutes a stricter test for a 

possible attentional bias. When REG and RAND are monitored concurrently, we 

observe equal gap-detection performance whether the target is in REG or RAND, 

which suggests that they do not differ in their perceptual salience.  
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The reasons for the discrepancy with results from vision (Zhao et al. 2013), where 

effects of attentional capture by regularity have been reported, is unclear and may 

be due to many factors, perhaps including a genuine difference in the mechanisms 

of attentional allocation in the visual and auditory domain. Further work, directly 

comparing the two modalities, is required to resolve this issue.  

3.7.2 Processing of regular vs. random sequences 

The results of Experiment 3, demonstrating increased sensitivity to targets in REG 

relative to RAND sequences when presented alone, are consistent with many 

previous demonstrations that regularity facilitates behavioural performance. These 

studies, albeit mostly using regularity in the temporal dimension rather than in 

frequency as we do here, consistently show that regularity facilitates behavioural 

performance. Expected events are detected and assessed more rapidly and 

accurately than unexpected events (Barnes and Jones 2000; Jones et al. 2002; 

Correa and Nobre 2008; Bendixen et al. 2009; Leaver et al. 2009; Ellis and Jones 

2010; Jaramillo and Zador 2011; Geiser et al. 2012; Rohenkohl et al. 2012; Lange 

2013). This occurs, as is the case here, even when the task dimension is orthogonal 

to the feature dimension over which the regularity is defined (e.g. Jones et al. 2006) 

and hypothesised to arise due to the ‘pre-activation’ of the relevant neural 

machinery for processing predicted events (Hughes et al. 2001; Bendixen et al. 

2009).  

The same processes have been demonstrated to contribute to the suppression of 

regular streams when they are not behaviourally relevant. For example Andreou et 

al. (2011) demonstrated that it is easier to ignore a temporally regular sequence, 

relative to a temporally irregular sequence (Bendixen et al. 2010; Devergie et al. 

2010; see also Rimmele et al. 2012). Similarly, in Experiment 2, we show that REG 

sequences are less distracting than RAND sequences when participants are required 

to ignore those sequences and focus on a competing change detection task. A 

potential mechanism for this effect is supplied by predictive coding (Clark 2013; 

Hohwy 2013), whereby predictable inputs are attenuated by top-down predictions, 

and the resulting prediction error triggers a process of updating the internal 

predictive model. Regularity allows the derivation of a predictive rule, therefore it 

becomes easier to ‘explain away’ the irrelevant stimulus, by suppressing the 

prediction error with a closely-matching top-down prediction. Irregular stimuli 

demand more resources for processing as they elicit a constant stream of prediction 

errors and thus constantly trigger model updating. This may be taken to suggest 

that (unpredictable) RAND sequences are more perceptually salient. From the point 

of view of predictive coding, this is sensible because RAND sequences are 

characterised by higher information content than REG sequences. Friston et al. 

(2012) define salience in terms of the ability to reduce uncertainty or to inform 
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hypotheses about the sensory scene being sampled. In the visual domain, this is 

usually measured in terms of Bayesian surprise (Itti and Baldi 2009) and more 

generally as information gain or epistemic value (Friston et al. 2015). However, 

whether the theoretically information-rich RAND signals are useful in reducing 

uncertainty about high level representations is an open question. In other words, is 

unpredictability itself salient? The lack of a bias in performance between REG and 

RAND sequences presented in direct competition (Experiment 3) suggests not.  

3.7.3 If not attentional capture, what is the source of the EEG effect? 

EEG and MEG measurements demonstrate an increase in the amplitude of the 

sustained response for REG relative to RAND stimuli. In fMRI this is associated with 

greater activation for REG relative to RAND sequences across a large portion of the 

superior temporal gyrus, including Heschl’s gyrus and planum temporale (Barascud 

et al. 2016). The behavioural results reported above suggest that this increased 

activation is not associated with attentional bias towards (or increased perceptual 

salience of) REG sequences. 

Critically, the above explanation for why RAND sequences were, in some cases, 

more detrimental to performance than REG sequences implies more activation 

(increased demand for computational resources) for random patterns relative to 

regular ones. This may seem contradictory to the brain-level effects. However, it is 

possible, that the increased auditory cortical activation for regular patterns 

observed in M/EEG and fMRI reflects increased inhibition. It is difficult to dissociate 

excitatory and inhibitory activation with non-invasive brain imaging techniques, 

rather future computational and electrophysiological tools would be critical for 

exploring this possibility. Indeed, recent findings in animal models demonstrate a 

critical role for inhibition in shaping the response of primary auditory cortex 

neurons to regularly repeating sounds in the context of an oddball paradigm (Natan 

et al. 2015). 

Another potential explanation for the larger response to REG is that regularity 

detection is associated with heightened sensitivity (increased gain) of the sensory 

units activated by the regular pattern. According to this precision-weighting 

account, precise, i.e. highly predictable, sensory streams are preferentially weighted 

by increasing the post-synaptic gain of the relevant (prediction error) units (Friston 

2005). Importantly, this can occur within the remit of automatic processing, so 

doesn’t entail attentional capture (Feldman and Friston 2010).  

Lastly, it is possible that the increased sustained response we observe is due to 

another process (or indeed multiple processes) such as learning, working memory 

or recognition of a match to a memory of previous stimulation (see Barascud et al. 
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2016 for further discussion). This interpretation is consistent with the diffuse source 

network including auditory cortex, hippocampus and inferior frontal gyrus identified 

by Barascud et al. (2016) as contributing to the brain response to structured 

sequences. 

To summarise, a picture emerges from these results in which regularity in non-

attended items does not capture attention. In fact, as demonstrated in Experiment 

2, it is random stimuli which can be more distracting than regular ones. Consistent 

with the literature, we found that regularity does, however, aid in scene analysis by 

being easier to ignore (Experiment 2) and requiring fewer resources to process 

(Experiment 3). Collectively the behavioural and brain imaging findings can be 

reconciled by considering both to result from mechanisms that minimise surprise 

and uncertainty about the world (Schröger et al. 2013; Bendixen 2014).  

3.8 Addendum 

3.8.1 EEG methods & results 

This chapter presents work carried out and published at the start of the PhD. In 

later experiments, techniques for analysing the EEG data to better account for slow 

drift in the signal were developed (see §2.3) and applied in the pre-processing 

stages in later chapters. Because the present chapter has already been published, 

the decision was taken not to re-analyse the EEG results in Experiment 1.  

However, it has since become clear that the pre-processed data are noisier than in 

several subsequent chapters. For instance, there was no difference between RAND5 

and RAND20 at any time during the sustained response. However, the RMS 

amplitude was significantly higher for RAND5 than for RAND20, and for RAND15 

relative to RAND20, in Barascud et al. (2016). Further, in Chapter 4, RAND5 evokes 

significantly higher response power than RAND20, and this effect is present for 

much of the sequence (see Figure 4.3). REG10 and RAND10 show a significant 

difference in the present chapter only briefly, from 2.66 seconds after onset, whilst 

the means diverge much earlier, at 750ms, which is a similar latency to the mean 

divergence time seen in Chapter 5 as well as the MEG study (Barascud et al. 2016).  

3.8.2 Discussion of relevant recent papers 

Recently, more evidence has come to light that predictability does not capture 

attention. Meijs et al. (2018) used a visual cue-target paradigm to determine 

whether predictable stimuli reduce (as shown here) or increase (as shown by Zhao 

et al. 2013) attentional capture. In Meijs et al.’s study, cues could appear at one of 

two spatial locations, and could validly or invalidly predict the location of a 
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subsequent target, with equal probability. When the cue and target mismatch, 

reaction times are expected to be slower than when they match: this difference is 

termed the validity effect, and indexes how distracting the (irrelevant) cue location 

is to detecting the target. Manipulating the prior predictability of the cue location, 

by biasing the cue to occur on one side on 80% of trials, did not modulate the 

validity effect, leading the authors to conclude that prior information on the 

features of the distractor does not modulate attentional capture. However, 

Experiment 2 in this chapter found that distractor predictability was indeed 

advantageous to target detection, which was interpreted as regularity being easier 

to ignore or suppress. The discrepancy could be down to any of several differences 

between the paradigms. Exogenous attentional capture can be measured in many 

ways, and different tasks present different demands on different perceptual 

systems. Suppressing the distractor was arguably advantageous in the behavioural 

tasks presented in this chapter, because the target and distractor were never 

presented in the same ear, and it is known that humans are capable of strongly 

inhibiting competing information presented dichotically (Broadbent 1952; i.e. 

different stimuli delivered to each ear: Cherry 1953). However, as the authors 

themselves discuss, it would be disadvantageous to suppress the spatial location of 

the cue, even though its location does not provide information on the target 

location, because the target may occur in that same spatial location and only after a 

short delay. The present Experiment 3 measured exogenous attentional capture 

using a different paradigm, and, like Meijs et al. (2018), also found no evidence for 

attentional bias towards or away from predictable features, when regular and 

irregular stimuli were presented simultaneously. In contrast to Zhao et al. (2013), 

stimulus predictability was shown not to attract visual attention when irrelevant 

(Alamia and Zenon 2016). The experimental design distinguished predictive stimuli 

(from which future stimuli could be predicted) from predicted stimuli, and neither 

attracted (visual gaze) attention except for when the predictable relationship 

pertained directly to the task target.  

Predictable stimuli have even been found to be less distracting, or less salient, in 

several recent studies; in line with the results of Experiment 2. A behavioural and 

eye-tracking study provided further demonstration that repetitive stimuli do not 

capture attention (Huang and Elhilali 2017). Naturalistic auditory scenes were 

presented dichotically whilst participants continuously indicated which stream 

captured their attention more. Identical scene components resulted in a lower 

salience rating on subsequent repetitions. In an audio-visual study, Xie et al. (2018) 

found unpredictable sequences of auditory stimuli to slow reactions to visual 

targets when compared to the same auditory stimuli presented in repetitive sub-

sequences.  
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Chapter 4. Predictability and Repetition 

4.1 Summary 

This chapter expands on the work presented in Chapter 3, using EEG to measure the 

response to complex tone-pip sequences (REG and RAND) presented to distracted 

subjects. Simpler regularities are used than in the previous chapter, in order to 

better link the sustained response phenomenon to existing literature. 

In classical studies of auditory pattern learning, responses exhibit repetition 

suppression, where sequences of repeated tones show a reduced neural response. 

This may be due in part to adaptation, but also may indicate suppression of 

expected stimuli. This is thought to form a building block of regularity learning.  

However, more complex patterns used in this thesis show the opposite effect, 

where predictable (REG) patterns distributed over a range of frequencies show a 

strongly enhanced brain response, compared to frequency-matched random 

(RAND) sequences. This effect cannot be explained by neuronal adaptation, and sits 

at odds with reduced evoked responses to predicted stimuli more generally.  

This experiment reconciles auditory sequence predictability and repetition in a 

single paradigm, by incorporating a condition where sequences consist of exactly 

repeating tones at a single frequency, alongside more complex REG and RAND. Our 

results indicate a system for automatic monitoring of predictability in the auditory 

environment which is distinct from, but concurrent with, repetition suppression. 

Further, it is suggested that exact repetition of a single frequency does not 

constitute a good model for regularity from which generalisable conclusions can be 

drawn. 

4.2 Statement of Contribution 

The work in this chapter was undertaken with a Masters student (Candida Tufo) 

under my supervision. Maria Chait and I designed the experiment. CT collected the 

data. I wrote the code for stimulus presentation, and analysed the data. MC and I 

interpreted the data. I wrote this chapter. 
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4.3 Introduction 

4.3.1 Motivation  

The EEG results in Chapter 3 replicate previous work (Barascud et al. 2016) in 

showing that predictability and response power over the whole scalp are related for 

rapid, passively-perceived sound sequences. However a divide exists between these 

results and previous literature on the direction of this relationship. Decreased 

responses to repeated stimuli (Haenschel et al. 2005; repetition suppression; Grill-

Spector et al. 2006) are seen in a wide range of sensory modalities and imaging 

methods (Desimone 1996; Summerfield et al. 2008; de C Hamilton and Grafton 

2009; Auksztulewicz and Friston 2016). Reduced responses are also seen the more 

generally predictable a stimulus is, conceptualised by predictive processing 

accounts as a manifestation of reduced prediction error (Friston 2005). In fact, 

repetition suppression is often cited as evidence for predictive coding accounts 

(Baldeweg 2006; Garrido, Kilner, Kiebel, et al. 2009; Auksztulewicz and Friston 2016) 

which consider repetition suppression as the result of regularity detection and 

subsequent ‘explaining-away’ of the repeated input.  

4.3.1.1 Repetition as a model of predictability 

As a model of predictability, stimulus repetition is potentially problematic in that 

the observed effects may not be due to the formation of predictions, but could 

instead reflect fatigue of neuronal populations (Budd et al. 1998; Grill-Spector et al. 

2006); without invoking anticipatory, top-down suppression informed by an internal 

model of the regularity (but see e.g. Summerfield et al. 2008). Perhaps more 

importantly, even if repetition suppression is not merely a result of neuronal 

adaptation, it represents only a very basic predictability rule, and it is not a given 

that findings using repetition paradigms would generalise to more complex forms of 

regularity. Alternative procedures have been designed to dissociate the effects of 

repetition and expectation, (Todorovic et al. 2011; Todorovic and de Lange 2012), 

finding that indeed reduced responses occur to predicted tones, regardless of 

whether the predictability is manipulated through repetition.  

4.3.1.2 REG and RAND as a model of predictability 

In Chapter 3, two forms of predictability were manipulated, both serving to increase 

evoked responses. A potential factor in this discrepancy, relative to previous 

literature, is the nature of the stimuli and analyses used in the present work. The 

sequences are much faster and the tone pips much shorter than are typically used 

for auditory evoked potential studies, which often employ tone durations, and 

silent intervals between tones, of hundreds of milliseconds. This could contribute to 

altering the observed effects in several ways. As the tones I use are presented 

without any silent ITI and with such a short SOA of 50 ms, the cortical evoked 
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responses to each tone overlap with the next. Disentangling the influence of these 

overlapping but time-shifted responses is a difficult problem, particularly if the 

responses to individual events aren’t linearly summated (e.g. as discussed in Crosse 

et al. 2016). Additionally, the evoked response measure used here is a slow, DC-like 

shift which accumulates over several tones. This is only visible if timeseries data are 

pre-processed without any high-pass filter or with a very low cut-off; whereas a 

filter cut-off of 1 or 2 Hz is commonly applied at the start of the pre-processing 

pipeline. Thirdly, auditory studies exhibiting repetition suppression mostly use exact 

repetition of tone pips at a single frequency as a model of stimulus regularity. REG 

sequences are more complex, covering a wide bandwidth of frequencies, so the 

repeating section itself is more intricate. The regularity effect is present when 

comparing REG and RAND with the same frequency content, thus controlling for 

neuronal adaptation. Using these stimuli may therefore tap different processes 

than the classical auditory studies, despite both types of stimuli being employed to 

model the effects of predictability. For all of the above reasons, it is difficult to 

relate the sustained response to REG and RAND to findings from commonly-used 

paradigms in the field.  

To reconcile these opposing effects of predictability on auditory responses, in 

addition to ‘standard’ REG and RAND sequences, we included in this experiment 

increasingly simple regularities including sequences consisting of a single repeating 

tone. RAND patterns in the present experiment had an alphabet alph of 3, 5 or 20 

unique tones, shuffled in equal quantities. REG used an alph of 1, 3 or 5. Shorter 

regularity cycles were included, allowing comparison to the results in Chapter 3 

whilst expanding the range of stimuli to incorporate ever-simpler repetition. Taken 

to the extreme, the shortest cycle (REG1) implements simple repetition as used in 

the literature demonstrating stimulus-specific adaptation, repetition suppression 

and adaptation of the standard in MMN paradigms. However the temporal 

structure of REG1 was matched to the other REG and RAND stimuli, permitting 

more direct comparison of the regularity enhancement seen in the sustained 

response, and repetition suppression. 

From the repetition suppression literature, the evoked response to REG1 should 

show evidence of decreased responses when compared to less repetitive stimuli. 

However, REG1 is highly predictable; according to an alternative account arising 

from Chapter 3, this should serve to increase the sustained response above a 

random, less predictable sequence.  

The EEG responses to these stimuli were analysed in a time-resolved manner, 

focussing separately on the onset, sustained and offset portions of the evoked 

response. This approach increases sensitivity to potentially opposite effects 

occurring at different times. The onset responses likely reflect initial processing in 
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auditory cortex. The sustained response is expected to reflect more complex 

processing. The overall sustained response power has previously been shown to 

follow stimulus predictability. Due to the cyclical nature of the regularity used here, 

it is hypothesised that this regularity itself will be visible as a peak at the cycle rate 

in the brain response, on each trial. Such an effect was indeed seen in local field 

potential (LFP) recordings in non-human primates in response to repetition of 

spectral patterns in tone pip streams (Barczak et al. 2018), using similar stimuli to 

the present thesis. The strength of the response to individual tones was separately 

estimated using spectral power at the tone rate; to provide an alternative measure 

of gain on auditory responses. This measure is again expected to be correlated with 

sequence predictability. Sequence offset is anticipated to reveal the statistical 

properties of the preceding sequence (Andreou et al. 2015). Specific hypotheses for 

particular conditions are set out in more detail below. 

4.3.2 Hypotheses 

4.3.2.1 Regularity increases evoked responses 

Firstly, replication of the effects seen for REG5 and RAND5 in Chapter 3 and in MEG 

(Barascud et al. 2016) is expected: namely, that REG will rise above RAND in the 

sustained response power, diverging after a cycle plus four tones; i.e. at around 450 

ms, then remaining at a higher level for the remainder of the sequence. It is 

predicted that REG3 will show a similar increase in the evoked response relative to 

RAND3, tending to the same level as REG5, but with an earlier divergence time. 

Based on an ideal observer model it is suggested that this divergence would occur 

at a cycle length plus 4 tones, which corresponds to 350 ms (see Figure 4.1b). A less 

precise expression of this prediction is that REG3 will diverge from RAND3 before 

REG5 diverges from RAND5. Finally, offset responses are expected to be greater the 

more predictable the sequence; i.e. greater for REG than for RAND.  

4.3.2.2 Regularity increases induced responses at the cycle rate 

As REG contains a repeated cycle, at a periodicity of 150 or 250 ms for alph = 3 and 

5 respectively, it is expected that this will be detectible in the brain response as a 

peak in the frequency spectrum at 6.67 or 4Hz (respectively). However, as the 

repeated chunk is different on each trial, the phase of this response can’t be 

expected to align across trials, as such the power spectral density at the 

frequencies-of-interest will be computed on a single-trial basis. This would be 

expected to be absent for matched RAND; forming the condition against which the 

presence of a cycle-rate oscillation will be assessed. As REG1 does not have a 

matched RAND condition, this effect will only be assessed for alph = 3 and 5.  
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4.3.2.3 RAND response power is inversely related to alph 

Second, the sustained responses to the three RAND conditions will be modulated by 

alphabet size such that the sustained response magnitude will be 

RAND3>RAND5>RAND20; replicating the effect seen in MEG (Barascud et al. 2016).  

4.3.2.4 REG1 behaves like REG3 and REG5 

REG1 is the key condition where predictions informed by the literature and by the 

results in Chapter 3 differ. Based solely on the explanations put forth in the 

discussion of Chapter 3, it is hypothesised that the sustained response to REG1 will 

be of similar magnitude as compared to REG3 and REG5, because all are 

deterministic, and have a similar information content per tone (Figure 4.1b). 

However it will rise to this level sooner, as the regularity begins from the second 

tone, as opposed to the fourth or the sixth for REG3 and REG5 respectively. The 

response will then remain flat until offset. An alternative hypothesis is that the 

REG1-evoked response will exhibit adaptation, manifest as a decrease of the 

sustained response throughout the trial.  
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4.4 Methods 

Electroencephalography (EEG) was used to record the evoked responses to regular 

(REG) and random (RAND) sequences of tone pips, varying the size of the frequency 

‘alphabet’ used. The participants were naïve to the experimental manipulations, 

and were asked to ignore the sounds; watching a silent, subtitled film of their 

choice throughout. 

4.4.1 Stimuli 

As for Chapter 3, stimuli were 3000-ms sequences consisting of 60 tone pips (50 ms 

each) with frequencies drawn from a pool of 20 logarithmically-spaced values (222 

to 2000 Hz; increasing by 12% at each step). Sequences were either regular (REG) or 

random (RAND) and were generated anew for each trial with Matlab (R2015a; 

Mathworks). 

Figure 4.1a shows example spectrograms for each stimulus condition. For the REG 

conditions, a number alph of frequencies (1, 3 or 5 for REG1, REG3 and REG5 

conditions respectively) were randomly chosen from the frequency pool, arranged 

in random order and then repeated for the duration of the sequence, yielding a 

regularly-repeating pattern. Matched RAND3 and RAND5 sequences were 

generated by shuffling the REG conditions with alph = 3 and 5. RAND20 was a 

randomised sequence using the full frequency pool, with equal proportions of all 

frequencies, disallowing repetitions of a frequency on successive tone pips, in order 

to minimise the opportunity for adaptation to frequency.  
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Figure 4.1  Stimuli 
Tone-pip sequences varied in alphabet size alph from 1 to 20, and were either 
regular (REG) or random (RAND). a: Schematics depicting typical frequency 
patterns for the six conditions; squares represent individual tone-pips of 
duration 50 ms. For alph = 3 and 5, REG and RAND were generated in matched 
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pairs with the same frequency content. b: Mean information content per tone, 
estimated from a model of expectation computed over an entire experiment 
session. Mean information content computed over 100 trials of each 
condition. Shaded regions around lines represent standard deviation over 
trials. Bottom plot shows the same data re-plotted with a zoomed-in scale to 
show divergence between information content at the start of the sequence as 
regular pattern emerges.   

4.4.2 Procedure 

Trials were presented in random order and each trial consisted of the presentation 

of a unique sequence of tone-pips, generated according to one of the 6 conditions 

described above. The inter-stimulus interval (ISI) was jittered between 1100 and 

1500 ms. Each condition was repeated 108 times over the entire experiment, for a 

total of 648 trials overall. Equal proportions of each condition were presented in 

each of 6 blocks, which lasted for approximately 10 minutes including self-timed 

breaks.  

The experiment was conducted in a soundproof booth while subjects watched a 

muted, subtitled film of their choice. Stimuli were presented binaurally using the 

Psychophysics Toolbox (Kleiner et al. 2007) for Matlab, using insert earphones.  

4.4.3 Ideal observer model 

The different conditions were modelled using an ideal observer model (Pearce 

2005; Pearce et al. 2010; Barascud et al. 2016). This model tracks the transition 

probabilities between successive tones. From the model an estimate of the 

information content of each tone was derived, which can be interpreted as the level 

of surprise associated with each tone; the lower the value the more predictable it is. 

This model has previously been shown to closely correspond to the sustained 

response power and to the times at which brain responses diverge from one 

another (Barascud et al. 2016). IDyOM was used to simulate the detection of 

sequence predictability for 648 trials in random order, which was equivalent to the 

order of a true experimental session. The LTM+ model configuration was used (see 

Chapter 2 for more details), which initiates with an empty model, then learns over 

the stimulus set, updating the model after each tone. The information content of 

each tone was averaged over trials of the same condition, and the standard error 

estimated with bootstrap resampling with 1000 iterations. Pairs of conditions were 

compared statistically using a FWER-correction procedure with cluster-wise 

correction (Maris and Oostenveld 2007) at an alpha level of p<.05. The resultant 

plots are provided alongside the stimulus schematics in Figure 4.1, showing the 

dynamics of the surprise associated with each tone as regularities become 

established.  



 89 

All conditions start with the same information content, then start to diverge. The 

information content for REG1 drops substantially from only the second tone, 

indicating that the model rapidly comes to ‘expect’ tone repetition. REG3 and REG5 

show a significant, steep drop in information content at 7 and 9 tones respectively, 

suggesting that it takes a cycle plus four additional tones for the model to learn the 

regularity. However, during tones 2-4 for alph = 3, and for tones 3-6 for alph = 5, the 

reverse effect is actually seen: the information content of RAND is slightly lower 

than that of REG. This is possibly due to the fact that adjacent repetitions of the 

same frequency are possible in RAND, but not in REG. As the model learns a strong 

prior probability for repeats from REG1, any adjacent repeats occurring in RAND 

(with probability 1 in 3 or 1 in 5 for alph = 3 and alph = 5 respectively) would lead to 

a lower information content than different successive tones. The information 

content for REG1 levels off at a value lower than all the conditions, suggesting REG1 

is indeed more ‘predictable’ than even the other REG conditions.  

RAND3, RAND5 and RAND20 show fairly stable information content throughout the 

sequence, but the information content is significantly lower for successively smaller 

alphabets, indicating the model successfully detects the stochastic predictability 

due to restricted alphabet size. 

4.4.4 Recording and data preprocessing  

EEG signals were recorded using a 64-electrode Biosemi system at a sampling rate 

of 2048 Hz. Data were analysed using the Fieldtrip toolbox 

(www.fieldtriptoolbox.org/) (Oostenveld et al. 2010) for Matlab (2017a, 

MathWorks). Data were split into 5000-ms epochs, with 1000 ms before stimulus 

onset and after offset. An anti-aliasing 100 Hz low pass filter was applied before 

down-sampling at 256 Hz. Detrending was applied by fitting a linear trend over 9-

second segments, taken from the raw recording, centred on each epoch (de 

Cheveigné and Arzounian 2018; see also §2.3.4).  

Outlier channels and trials were removed manually using Fieldtrip’s visual artefact 

rejection tool (see Chapter 2 for details). Around 95% of trials were retained. 

Further signal-to-noise improvement was achieved using DSS (de Cheveigné and 

Parra 2014) to maximise the reproducibility over all trials, keeping the two 

components which explained the greatest proportion of the variance over trials. 

Finally, data were re-referenced to the average over all channels. 

Three phases of the evoked response were analysed, the first two represent the 

sequence-evoked response, and the third the offset-evoked response. (i) The onset-

evoked response was considered to be from 0-300 ms post-onset, including the 

highly-stereotyped N1 and P2 waves of the auditory-evoked response. (ii) The 

http://www.fieldtriptoolbox.org/)
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sustained response, from 300-3000 ms, where the response power over all 

channels increases, resembling a DC-shift: polarity reversals generally cease, and 

this is where the effects of complex sequence regularity are expected to begin. (iii) 

The offset-evoked response, which resembles the N1-P2 complex, but has been 

shown to be influenced by the statistics of the preceding sequence (Andreou et al. 

2015). For ERP plotting and statistical analysis, all evoked responses were low-pass 

filtered at 30 Hz.  

4.4.5 Sequence-evoked responses 

Epochs were baseline-corrected relative to the interval 200ms before sequence 

onset. Epochs were averaged over trials for each condition, yielding the evoked 

response in each channel. However, for statistical analysis, this evoked response 

was quantified as the root-mean-square (RMS) over channels, giving a measure of 

overall evoked power at each time sample; as in Chapter 3.  

Statistical analysis was performed separately for the onset and sustained portions 

of the sequence-evoked response. A two-tail T-test was used to find contiguous 

clusters of time-points showing pairwise differences between conditions, with the 

threshold alpha level set at 0.05 (0.025 per tail). Correction for multiple 

comparisons over time used a non-parametric approach to estimate the significance 

of the effect in each cluster, using as the test statistic the summed t-values within 

each cluster. To estimate the null distribution of this statistic, a Monte Carlo 

permutation approach with 10000 iterations was used (Maris and Oostenveld 

2007). This measure renders transient differences less likely to cross the threshold 

than temporally-extended ones. The existence of sustained differences between 

conditions will increase the threshold for significance and thus render it less 

sensitive to any additional effects which occur over short intervals resulting in a 

smaller summed t-statistic (Maris and Oostenveld 2007). For this reason, a separate 

a-priori latency range from 0 ms to 300 ms after stimulus onset was chosen to 

analyse the onset-evoked response. The sustained response was analysed in the 

time range 300-3000 ms. Subsequently, bootstrap resampling was used to estimate 

the mean and the standard error of the responses over subjects, for plotting of the 

grand averages shown in Figure 4.2a-e.  

The following pairs of conditions were contrasted: REG5 vs RAND5; REG3 vs RAND3, 

REG5 vs REG1; REG5vs REG3; REG3 vs REG1; RAND3 vs RAND5; RAND3 vs RAND20; 

RAND5 vs RAND20; REG1 vs RAND20. These contrasts correspond to the hypotheses 

presented in §4.3.2.  
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4.4.6 Offset-evoked responses 

The sequence-evoked response displays a prominent peak at offset in the RMS plot 

(Figure 4.2), which was analysed separately as follows. The sequence-evoked 

epochs were high-pass filtered at 2 Hz and baseline-corrected in the 100-ms 

window preceding stimulus offset, in order to remove any differences in the slow, 

sequence-evoked response between conditions. These data were then trimmed to 

epochs with 100 ms before and 300 ms after stimulus offset. 

The offset-evoked response was analysed over a subset of channels showing the 

same response polarity. Taking an RMS over all channels would misrepresent the 

shape of such a response, as it contains zero-crossings owing to the baseline-

correction directly preceding offset. The average signal was taken over the 10 

channels showing the strongest negative deflection of the offset response over all 

subjects and conditions (from 50-150ms post-offset, in order to capture the initial 

N1-like deflection). This fronto-central group of channels comprised AFz, AF3, Fz, 

F1, F2, F3, F4, FCz, FC1, FC2; see topography in Figure 4.2j. The resulting timeseries 

(one per subject and condition) were compared pairwise, from 3000 ms to 3300 ms, 

utilising the same cluster-based permutation procedure as for the sequence-evoked 

response. The latency of the N1 offset peak was computed, for each subject and 

condition, as the time of the most negative value between 50 and 150 ms post-

offset. This was entered into a one-way ANOVA with a factor for each condition. 

4.4.7 Tone-locked responses 

Whilst the responses to individual tone pips are overlapping, it is possible to 

estimate the strength of the onset responses to each tone pip, by calculating 

response power at 20 Hz, corresponding to the ITI of 50ms. The power at 20Hz was 

computed in individual trials between 1000 and 3000 ms; a window chosen to 

represent the sequence-evoked response once it has stabilised. Frequency 

resolution for a discrete Fourier transform depends on the length of the input data; 

the difference between adjacent frequency bins in Hz is given by 
1

𝑙𝑒𝑛𝑔𝑡ℎ (𝑠)
. To obtain 

a high frequency resolution, these 2-second epochs were taken from individual 

trials, then concatenated to form a single ‘epoch’ per subject and condition. In 

order to compensate for different numbers of trials for each subject owing to 

outlier removal, the concatenated trial was trimmed to 51200 samples for each 

subject for each condition, to give a frequency resolution of 
1

200
𝐻𝑧. This approach 

isolates activity with consistent phase across trials, because trials were 

concatenated consistently at the onset of the 20th tone in the sequence. Power over 

the entire frequency spectrum was calculated using the fast Fourier transform 

implemented in Fieldtrip’s ft_freqanalysis function, using the multitaper method 
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(Thomson 1982). The resulting power spectra were then RMS-averaged over all 

channels. The power at 20 Hz was then normalised relative to power of surrounding 

frequencies, to give a signal-to-noise ratio (SNR). The ‘signal’ was computed as the 

RMS over the five bins centered on 20Hz. The RMS over the remaining bins 

between 19 and 21 Hz were taken as ‘noise’; and the SNR computed as SNR =

 
signal

noise
 . The effect of condition on 20Hz SNR was assessed using two statistical tests. 

First, a 1-way ANOVA with the 6 conditions as 6 factors. Second, a 2-by-2 factorial 

ANOVA with one factor for alph (3 or 5) and another for regularity (REG or RAND) 

was run on the 20Hz SNR from the four relevant conditions. 

4.4.8 Cycle-rate responses 

It is possible that there is also periodicity in the brain response corresponding to the 

duration of the repeating cycles in REG3 and 5. Because these sequences were 

unique on each trial, this effect would most likely be manifest in the induced 

activity, i.e. non-phase-locked oscillation. However, the inter-trial phase coherence 

(ITPC) at the cycle rate was also computed. The frequencies of interest correspond 

to the cycle durations of REG3 (150 ms) and REG5 (250 ms); 6.67 and 4 Hz 

respectively. The fast Fourier transform was computed for each trial using the 

multitaper method (Thomson 1982), for frequencies between 1 and 8 Hz. The entire 

trial was used, in order to gain as high as possible frequency resolution, and in 

addition the trial duration was zero-padded to bring the number of samples the 

next power of 2, corresponding to 8 seconds to give a frequency resolution of 
1

8
 Hz. 

For the power spectral density, the SNR at the frequencies-of-interest was 

computed as for the tone-locked response, but as the frequency resolution was 

much lower, only a single bin was taken the signal and the surrounding 2 bins on 

each side as noise. To compute the ITPC for each subject and condition, the 

complex vectors representing phase and power at the frequency-of-interest in each 

trial were normalised to unit length, then averaged. The modulus of this averaged 

vector represents the consistency in phase across trials with a value between 0 and 

1 (Lachaux et al. 1999), and the angle of the vector represents the predominant 

phase. A paired-sample t-test was used to test for differences between REG and 

RAND, in response power and ITPC, at the cycle rate for alph = 3 and alph = 5.  

4.4.9 Participants 

21 normal-hearing young participants took part, with no known neurological or 

hearing problems. One subject was excluded due to noise during the EEG recording, 

leaving 20 subjects, 6 male, aged between 20 and 33 (mean 24.4). None of the 

subjects had participated in similar experiments conducted in the lab.  
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4.5 Results 

I investigated effects of sequence regularity and alphabet size on evoked responses 

by contrasting the power of the response between different conditions over 

peristimulus time. I found effects of regularity and alphabet size throughout the 

sustained response, as well as more transiently at stimulus onset and offset.  

4.5.1 Sequence-evoked response 

Figure 4.2a-e shows the average voltage (RMS over channels) of the evoked 

response. For clarity, only a subset of conditions is shown in each plot. Comparisons 

were made between certain pairs of conditions for which a hypothesis was 

described in §4.3.2. Statistical analysis employed a permutation procedure to 

correct for multiple comparisons over time (§4.4.5), to derive the following 

significant temporal clusters at FWER< 0.05; shown in Figure 4.2 as horizontal bars 

below the evoked responses.  

All conditions are characterized by a series of onset peaks corresponding to the N1 

and P2 time windows, a rise to a plateau (sustained response) of around 2µV for the 

remainder of the trial, and in some cases a clear offset peak. The offset response is 

discussed separately below.  

4.5.1.1 Regularity increases the sequence-evoked response for alph = 3 and 

5 

The effect of sequence regularity, controlled for (long term) tone probability, is 

seen when contrasting REG and RAND of the same alphabet size (Figure 4.2a-b). 

Based on previous EEG (Southwell et al. 2017) and MEG (Barascud et al. 2016) 

findings with similar stimuli, it was predicted that the sustained response to REG 

would be greater than to RAND throughout the entire sequence, both for alph = 3 

and 5. Indeed the sustained response is greater for REG5 than for RAND5 

throughout the sequence. REG5 diverges from RAND5 at 453 ms, which is 

immediately following the fourth tone in the first repeated cycle; exactly as 

predicted from the ideal observer model (see Figure 4.1b). The REG5 sustained 

response remains significantly higher in five clusters covering most of peristimulus 

time. From the ideal observer model, the divergence between REG and RAND was 

expected to be earlier for REG3 than REG5, at around 350 ms which corresponds to 

7 tones. The difference between REG3 and RAND3 is significant from 359 ms, which 

closely matches the prediction. However REG3 does not entirely behave as 

hypothesised; whilst the sustained response is initially higher for REG3, from 1051 

ms it dropped back to a similar level as RAND3, remaining statistically 

indistinguishable for the remaining 2 seconds of the stimulus. The response to REG3 
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initially rises above REG5, likely reflecting the earlier discovery of regularity, rising 

significantly above REG5 from 258-551ms (Figure 4.2c). 

4.5.1.2 RAND response power is inversely related to alph 

The effect of alphabet size, independent of regular cycle length, is revealed by the 

comparison between RAND3, RAND5 and RAND20 (Figure 4.2d). This represents a 

manipulation of non-deterministic predictability from the most predictable (RAND3) 

to the least (RAND20). The response to RAND3 is significantly greater than RAND20, 

from 188-230 ms after stimulus onset, then again from 520 ms until the end of the 

sustained response. Likewise, the response to RAND5 is higher than to RAND20, but 

significantly so for less of the sequence (between 527 and 2137 ms). There was no 

significant difference between RAND3 and RAND5; although the mean sustained 

response level appears to be consistently higher for RAND3 than RAND5, this is a 

small difference.  

4.5.1.3 REG1 responses do not behave as predicted 

In order to investigate the effect of simple tone repetition in regular conditions, 

REG1 was compared to REG3 and REG5 (Figure 4.2c). In the onset response, REG3 

showed a briefly larger peak than REG1 in the range 180-215 ms. Both REG3 and 

REG5 evoked a larger sustained response than REG1, despite REG1 containing a 

lower information content than the other REGs (according to the IDyOM modelling). 

This first reached significance at 625 ms for REG3 and 879 ms for REG5. Both 

contrasts with REG1 did not show stable significance throughout the sequence, 

although significant clusters were seen for REG5>REG1 until offset. Response power 

to REG3 dropped throughout the sequence and was no longer significantly different 

from REG1 after 2164 ms; although the grand average power never drops to that of 

REG1. 

REG1 was compared to RAND20 (Figure 4.2e), the least repetitive stimulus, to 

determine if repetition suppression or repetition enhancement is dominant in the 

sequence-evoked response. At onset, repetition suppression was seen with RAND20 

significantly above REG1 from 176-227 ms. During the sustained response the 

opposite effect was seen; REG1 greater than RAND20 from 402 ms, continuing to be 

a significant effect intermittently throughout the trial. 

To summarise; REG sequences evoked a higher sustained response than matched 

RAND sequences, for alphabet size 3 and 5, although this was only the case for the 

first second of the sequence for REG3. Within random sequences, decreasing alph 

was associated with an increased sustained response, replicating Chapter 3. REG1 

did not behave like the other five conditions, exhibiting a nuanced combination of 

repetition suppression and enhancement. REG1 evoked a consistently lower 

response throughout the trial than REG3 or REG5.  
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Figure 4.2  Evoked responses 
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Bars under plots denote periods of significant difference between conditions; 
the two colours indicate which pair of conditions are represented. Sustained 
response shown in a-e; offset response shown in f-j. The lower panel shows 
topography averaged over all conditions during the specified time ranges. The 
topography below j indicates 10 channels over which the offset-evoked 
response is averaged in white. 

4.5.2 Offset-evoked EEG response 

The offset responses were analysed separately, removing the pre-existing sustained 

response differences through baseline correction and high-pass filtering (see 

§4.4.6). These evoked responses, averaged over a selection of 10 channels to retain 

the polarity reversals of successive peaks, are shown in Figure 4.2f-j. All responses 

resemble the classic N1-P2 responses to sound onset, so are referred to as offset N1 

and offset P2 below. One-way ANOVAs were carried out on the peak latency and 

peak magnitude of the offset N1, for the peaks identified separately for each 

subject and condition. There was a main effect of condition on peak magnitude 

(F5,119 = 7.3, p <0.0001) and latency (one-way ANOVA; F5,119 = 7.7, p <0.0001). Post-

hoc comparisons used Tukey’s honestly significant difference procedure and are 

reported below. 

4.5.2.1 Regularity increased the offset-evoked response for alph = 3 and 5 

Figure 4.2 f-g shows the offset response for REG was substantially larger than for 

RAND, for alph = 3 and 5. This effect was significant for the offset N1 from 74-168 

ms for alph = 3; and from 102-172 ms for alph = 5. For the offset P2, REG was more 

positive than RAND from 195-245 ms for alph = 5 and from 176-266 ms for alph = 3. 

REG3 showed a greater negative deflection than REG5 from 74-141 ms, and a 

correspondingly larger P2 than REG5 from 164-234 ms. These significant effects for 

REG3 as compared to RAND3 and REG5 are interesting, as the sustained response 

for REG3 was not different directly preceding offset, suggesting that the offset and 

sustained responses probe different processes. 

4.5.2.2 The offset N1 occurred earlier for REG1 

Figure 4.2h shows offset responses to the three REG conditions. The offset N1 falls 

significantly earlier than for the other conditions, with a mean latency of 96 ms, as 

opposed to over 116 ms for all other conditions. The latency of the N1 did not differ 

for all other conditions. The N1-latency response appears to be smaller than for 

REG3 and REG5, however according to post-hoc comparisons the REG1 offset N1 

was not significantly different from either REG3 or REG5. REG1 again shows an 

earlier peak in the P2 window, but it is somewhat larger than for either of the other 

conditions. As this effect is likely correlated with the earlier N1 latency, the P2 peak 

was not subject to a separate statistical analysis.  
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The comparison between REG1 and RAND20, respectively the most repetitive 

sequence and the least, resulted in significant differences throughout the offset 

epoch, beginning at 0 ms. This implies that ongoing differences in the sustained 

response between REG1 and RAND20 have not adequately been removed, as it is 

not possible for an auditory evoked response to occur with such a short latency. 

This might reflect the increased tone-locked response for REG1 during the final few 

tones of the sequence, which leads to larger, transient ‘troughs’ in the evoked 

response just before offset (see §4.5.3); however this seems to be superimposed on 

a slower downward trend; which could reflect adaptation in the slow response to 

REG1. Alternatively it is possible that the acausal high-pass filter introduced 

spurious differences between REG1 and RAND20 before they really occur (see de 

Cheveigné and Nelken 2019, and §2.3.4.1). Nevertheless, it does appear that the 

offset responses are much larger and more pronounced than to RAND20, confirmed 

by the ANOVA on offset N1 magnitude. 

4.5.2.3 The effect of alph on the RAND response 

All RAND conditions show the same offset response profile, but greatly attenuated 

in magnitude as compared to the REG conditions. The only difference is seen 

between RAND3 and RAND20 after 207 ms, with RAND3 showing a slightly larger P2 

response. 

Overall, the offset response effects mirror those seen in the sustained response, 

reflected instead in a phasic, brief response rather than a tonic, temporally 

extended potential. However, notably, there is a more pronounced offset response 

for REG3 than RAND3 despite the sustained responses being statistically 

indistinguishable for the latter two seconds, and the means overlapping. Moreover, 

the offset P2 to REG1 is larger than for REG3 and REG5 despite exhibiting a lower 

sustained response. 

4.5.3 Tone-locked response 

The power spectral density (PSD) around 20Hz for all conditions is shown in Figure 

4.3a. It can be seen that there is a highly pronounced peak at 20Hz for all 

conditions. The signal-to-noise ratio (SNR) of the response at 20Hz is shown in 

Figure 4.3b, representing the tone-locked response; this is much larger for REG1 

than for all other conditions. A one-way repeated-measures ANOVA revealed an 

effect of condition on the tone-locked response (F5,119 = 13.35, p < 0.0001). Post-hoc 

comparisons were performed using Tukey’s honestly significant difference 

procedure (Tukey 1949), revealing a single significant difference between REG1 and 

all other conditions. As the four conditions REG3, REG5, RAND3 and RAND5 

represent a balanced design, the effects of regularity and of alphabet size on the 

tone-locked response were analysed using a two-way repeated-measures ANOVA, 
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with factors of regularity and alph (Figure 4.3). This shows a main effect of 

regularity (F1,19 = 5.48, p = 0.030), a main effect of alphabet size (F1,19 = 4.69, p = 

0.043) and no interaction (F1,19 = 1.636, p = 0.22); the SNR at 20Hz being higher for 

REG than for RAND, and higher for alph = 3 than alph = 5. That there are effects of 

regularity and alph for the 2-way ANOVA but no differences between any of the 

comprising conditions, indicates that the effect of regularity is too small to detect in 

individual conditions. 

 

 

Figure 4.3  Tone-locked response 
Frequency analyses. a: Power spectral density around 20Hz. b: Signal-to-noise 
ratio at 20Hz for each condition. c: Signal-to-noise ratio at 20Hz for matched 
REG and RAND conditions. Grey lines connect group means for REG and RAND 
of different alph. Boxplots show distribution over subjects: median with lower 
and upper quartiles, whiskers show range. Extreme observations, falling 
outside of 1.5 times the interquartile range from the start of the whisker, are 
shown by a red cross. 
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4.5.4 Cycle-rate response 

There is a significant effect of regularity on the cycle-locked response at the cycle 

rate in both REG3 and REG5 as compared to their matched RANDs (Figure 4.4 a&b). 

REG3 shows a larger response at 6.67 Hz than RAND3 (t19 = 3.03, p = 0.0068), and 

REG5 shows a larger response at 4 Hz than RAND5 (t19 = 2.40, p = 0.0268). This 

means that the periodicity of REG is reflected in the response on individual trials, 

but this is likely to be an idiosyncratic pattern which does not have a consistent 

phase across trials, because the regularity comprises a different pattern each time. 

Indeed, the ITPC did not significantly differ between REG and RAND (alph = 3: p = 

.62 , alph = 5: p = 0.51; Figure 4.4 c&d). 

A similar effect was seen by Herrmann and Johnsrude (2018), who measured EEG 

oscillatory responses to RAND and REG stimuli similar to the present chapter, 

finding no difference in ITPC between REG and RAND; as was the case here. The 

authors also included a REG condition where the tone frequencies themselves 

followed a sinusoidally frequency-modulated (FM) pattern with consistent phase 

across trials. They found the ITPC to be greater in REG which followed such an FM 

pattern, than in matched RAND sequences. However, they did not look at a phase-

insensitive measure of the cycle-rate response such as the induced response power 

as used here.  
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Figure 4.4  Cycle-rate response 
a: Signal-to-noise ratio at cycle rate of 6.67Hz for alph = 3. b: Signal-to-noise 
ratio at cycle rate of 4Hz for alph = 5. c: ITPC at 6.67Hz for alph = 3. d: ITPC at 
4Hz for alph = 5. Boxplots show distribution over subjects: median with lower 
and upper quartiles, whiskers show range. Extreme observations, falling 
outside of 1.5 times the interquartile range from the start of the whisker, are 
shown by a red cross. . **p < .01, *p < .05  
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4.6 Discussion 

4.6.1 Summary of results 

To summarise, predictability in two forms is associated with an increase in brain 

response; whether the predictability arises from a deterministic order of 

frequencies being repeated (REG) or from a restricted alphabet size (RAND3 as 

compared to RAND5 and RAND20). However this was not universally the case; 

notably the response to REG1 behaved differently from the rest in several respects. 

The sustained response to REG1 never reached as high as for REG3 and REG5, 

despite being equally predictable. Yet, the response to maximally-repetitive REG1 

was still higher than for the least adapting stimulus, RAND20. This suggests that 

opposing effects of repetition suppression and regularity enhancement influence 

the sustained response. 

4.6.2 Onset effects 

The long sequences offer the opportunity to observe how the brain response 

unfolds over several seconds. The manipulations in this experiment affected 

different phases of the evoked response in different ways. A reduced response was 

seen in the first 300 ms for REG1 relative to other conditions with a larger alphabet, 

and for RAND3 relative to RAND20. This could be explained as adaptation to tone 

frequency, as in all these cases the suppressed condition contains more repetitions 

over frequencies encountered in the sequence so far. The sub-300-ms timescale of 

these effects is in line with the timing of repetition suppression observed in multiple 

paradigms (Budd et al. 1998; e.g. Grill-Spector et al. 2006; Herrmann et al. 2015). 

This onset effect precedes the rise to the sustained response when, it is argued in 

this thesis, the representation of predictability influences the response magnitude.  

4.6.3 The sustained response reflects predictability for complex 

sequences 

For the sustained response, some of the hypothesised effects were indeed seen. 

The more restricted the alphabet in random sequences, the greater the evoked 

response magnitude; which is in line with the decreased information content of 

each tone in RAND with a restricted alphabet (Figure 4.1b). Although this is 

surprising from the standpoint of neuronal adaptation, there is accumulating 

evidence that the sustained response encodes this aspect of sequence 

predictability. Similarly, regularity boosted the sustained response over random 

sequences of the same tone alphabet. The timing of the initial divergence between 

REG and RAND was related to alphabet size as predicted. However, for REG3 this 

effect was transient before the evoked power dropped back to the level of RAND3, 
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following around 7 repetition cycles. This decrease could be explained by 

expectation suppression: as the regularity is extracted, top-down expectation 

signals serve to suppress evoked responses. However, this explanation is at odds 

with the account that the sustained response represents the level of predictability 

in the sequence. It is entirely possible that the response to REG stimuli with larger 

alphabets would also exhibit a similar drop in power eventually, but the sequence 

would need to be longer for this effect to be seen. Likewise the 20 Hz response was 

enhanced by regularity, for alph = 3 and 5, though this effect was small enough that 

it is not significant when individual conditions are analysed.   

4.6.4 Offset responses reflect sequence predictability 

A different way of probing the brain’s internal model of stimulus regularity is to 

violate the pattern and observe the deviance response. This will be covered in detail 

in Chapter 5, but in the current experiment there is a form of deviance consisting of 

the stimulus offset (Andreou et al. 2015); this violates the simple expectation of 

each tone pip being followed by another, established over the preceding three 

seconds. Indeed, when the sustained response is subtracted away and epochs 

analysed following offset, an N1-P2 series is observed (Picton et al. 1978). The offset 

response to REG was larger than for alphabet-matched RAND. Interestingly, the 

offset response to REG3 was markedly larger than to RAND3, despite the sustained 

response showing no difference immediately preceding offset. The offset-evoked 

response can be considered a precision-weighted prediction error, where the error 

in question refers to the violated expectation that a sound will occur. The precision-

weighting would be largest for REG, then RAND in increasing order of alph.  

An alternative explanation for the existence of the offset response is that it reflects 

adaptation to the rhythmic stimulus stream. May et al. (2001) hypothesised the 

existence of neural circuits in auditory cortex implementing selectivity for particular 

auditory modulation rates, consisting of coupled excitatory and inhibitory neurons, 

which have a particular resonant oscillatory frequency. This model entailed the 

prediction that these micro-circuits would continue to oscillate temporarily on 

cessation of an isochronous stimulus train, producing evoked responses resembling 

the response to the sounds themselves. With empirical MEG data they showed that, 

at least in the case of isochronously-presented tones, there is such a rebound 

response at offset. This model could explain the REG versus RAND effect in the 

offset response here; as REG can be considered as several interleaved isochronous 

streams of tone pips at a given frequency. This model was formulated for, and 

tested on, tones at a single frequency, and is not explicit whether the rate-sensitive 

circuits are also frequency-selective. If frequency- and rate- selective circuits exist, 

they would entrain to the regular occurrence of each individual frequency in REG, 

then lead to an offset response as the oscillations continue. However this exact 
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model cannot fully account for the present results. Both the model and the 

empirical results showed a linear relationship between the stimulus presentation 

rate and the latency of the offset responses; such a relationship does not seem to 

be present here as the offset latencies are very similar across alphabet sizes. Also, 

the model of May et al. postulates that the rate-selective circuits are active during 

stimulus presentation, showing an even stronger oscillation than that present after 

offset. The present sustained responses show periodic activity at a much lower 

amplitude than the observed offset responses. 

4.6.5 REG1 does not behave as predicted 

Notably, the REG1-evoked response was lower than for REG3 and REG5, despite 

being as predictable, which strongly indicates that adaptation at least has a sizeable 

contribution to the observed sustained responses. REG1 represents the most 

predictable stimulus, which also theoretically leads to the greatest degree of 

adaptation in units selective for the repeated frequency. Here, repetition 

suppression is indeed seen. Whether the mechanism is adaptation, or whether it 

also depends on prediction-generated suppression from higher-level areas remains 

unknown. What is clear is that the responses to this stimulus set cannot solely be 

described by repetition suppression, as demonstrated most strongly by the 

comparison with RAND20. The response was still higher than to RAND20, both 

during the sustained response and at offset. Adaptation caused by neuronal 

refractoriness may be ongoing throughout the sustained response for more 

complex sequences, but is mostly offset by other processes. 

Tone-locked responses at 20 Hz for REG1 were considerably enhanced relative to all 

other conditions. This 20-Hz response may reflect the summed result of overlapping 

onset responses to tone onsets. Although an adaptation-based account would 

predict tone-onset response to be lower for REG1 due to low-level adaptation. the 

opposite effect was seen quite strongly. This would be consistent with increased 

gain due to the precise expectation of the repeated frequency. However, to speak 

against the precision-based account, the 20Hz response did not appear to be 

affected by regularity as strongly for more complex sequences consisting of multiple 

frequencies. Alternatively, the increased 20Hz response could instead be a 

reflection of more precisely time-locked responses to each tone. As the frequency is 

the same for each tone, the same neural population responds each time, perhaps 

manifesting as less temporal jitter in the scalp-level response. Regardless of the 

mechanistic explanation, it is clear from the 20Hz response that the REG1 response 

exhibits very different behaviour than for all other conditions. The offset response 

to REG1 is also earlier than for all other conditions, but not larger in magnitude. This 

could again be due to more precisely time-locked tone-onset responses than for 

other conditions, such as the earlier offset response seen when manipulating 
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temporal regularity (Andreou et al. 2015). These findings provide evidence of 

opposing processes underlying the influence of tone repetition on the evoked 

response. To put this in a wider context, the differences between the REG1 

response as compared to all other conditions indicates tone repetition does not 

form a generalisable model of regularity. 

4.6.6 Repetition suppression or repetition enhancement? 

Overall, these results reveal opposing effects underlying the sustained responses to 

rapidly-presented sequences. The dichotomy of repetition suppression and 

repetition enhancement are exhibited for REG1 over different timescales. This can 

be related to examples of overlapping yet dissociable repetition-evoked 

phenomena in the literature (Todorovic and de Lange 2012; Grotheer and Kovács 

2015). 

4.6.6.1 Dissociable repetition-related responses 

Predictability-related suppression of measured responses can result from a 

combination of different underlying processes, whether neuronal refractoriness, 

prediction error suppression or sharpening of representations (Desimone 1996; 

Budd et al. 1998; Grill-Spector et al. 2006; Kok, Jehee, et al. 2012). Even at the 

neuronal level within a given cortical area, adaptation to repetitive stimuli affects 

excitatory and inhibitory inputs at different timescales (Solomon and Kohn 2014; 

Chen et al. 2015), and has complex downstream effects (Solomon and Kohn 2014). 

At the population level, different timescales of repetition effects correspond to 

different cognitive phenomena. Expectation suppression and repetition suppression 

to sound have been demonstrated to have distinct temporal profiles (Todorovic and 

de Lange 2012), with repetition affecting earlier response components (between 40 

and 60 ms) than expectation (from 100 to 200 ms). This effect was generalised to 

the visual modality in fMRI (Grotheer and Kovács 2015) and EEG (Feuerriegel et al. 

2017). These findings support a two-stage account of repetition suppression, 

incorporating a hierarchically-higher stage of expectation suppression following an 

earlier primary-sensory stage of repetition suppression (Grotheer and Kovács 2016). 

The divergent effects on the sustained response of simple repetition (REG1) and 

complex regularities (the other 5 conditions) seen here supports a similar model. 

These studies reveal that stimulus structure can influence different hierarchical 

levels of processing in different ways, even in early evoked responses. Although the 

present experiment involved passive listening in naïve subjects, so any expectations 

formed on the basis of regularities are most likely implicit, a similar multi-stage 

model could account for at least some of the results here. However, distinct from 

the cited findings, this study revealed multiple instances of enhancement according 

to predictability, even for the simplest model of predictability engendered by the 
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repetition in REG1. Repetition enhancement, although less investigated than 

repetition suppression, has been reported in multiple domains (Segaert et al. 2013). 

It is most often observed in explicit paradigms requiring behavioural responses such 

as priming (e.g. Petit et al. 2006; Henson et al. 2008) but it has been reported in 

responses to passively-presented stimulation (Stefanics et al. 2018). Of most 

relevance to the present chapter, concomitant repetition suppression and 

repetition enhancement effects were observed in an MEG study of passively 

presented auditory roving-standard sequences (Recasens et al. 2015). Repetition 

suppression occurred during the N1m, and was localised to temporal cortical 

sources. Later repetition enhancement was observed between 200 and 300 ms 

during a sustained potential with greater field strength than the N1m, with 

generators in the same temporal areas but also in inferior frontal gyrus. Although 

EEG and MEG have different sensitivities, it is tempting to relate this to the current 

EEG sustained response displaying repetition enhancement when comparing REG1 

and RAND20.   

4.6.6.2 Predictive coding interpretation 

Predictive coding provides two neuronal mechanisms for response enhancement 

(precision and prediction), and one mechanism for response suppression (reduced 

prediction error), consistent with the processing of a predictable stimulus stream. 

These accounts apply not only to immediate, exact repetition (as in REG1) but also 

to more complex predictability (as in REG versus RAND, and RAND with low alph as 

opposed to high). The sequences used in this chapter represented a constant level 

of predictability throughout each trial, such that by the first half-second or so of 

each stimulus, it is possible to form an expectation of both the identity of the next 

tone and the precision of this estimate, given the context provided by the previous 

tones. The neuronal mechanism for precision signalling in predictive coding is 

postsynaptic gain on the superficial pyramidal prediction-error units, leading to 

ascending prediction errors up-weighted by (expected) precision (Friston 2005; 

Feldman and Friston 2010). Such increased superficial pyramidal activity plausibly 

forms a large contribution to measured EEG signals (Murakami & Okada 2006; see 

§2.3.1}. An explanation for the sustained response and tone-locked response 

differences in terms of increased precision remains consistent with the present 

results, bar the lower sustained response magnitude to REG1 as compared to REG3 

and REG5.  

However, the extraction of regularity may also lead to greater prediction-related 

activity. These expectations may be formed in higher-order areas such as prefrontal 

cortex, but also intrinsically within auditory cortex (Friston 2005; Auksztulewicz and 

Friston 2016), resulting in suppressed prediction error signalling arising directly 

from sensory input. However, this increased prediction activity for REG relative to 

RAND, which is established through descending inhibitory connections, could 
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perhaps be detected as an increased evoked response within higher-order sensory 

and prefrontal areas. Response enhancement at the whole-scalp level could actually 

be due to activation of additional sources rather than enhancement of responses in 

the same neural populations, as discussed in Chapter 3.  

4.6.7 Conclusion 

The results presented in this chapter demonstrate that subtle interactions between 

enhancement and suppression of auditory responses are involved in automatic 

tracking of stimulus statistics, implicating multiple, parallel processes. 
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Chapter 5. Deviance Responses in 

Regular and Random Sequences 

5.1 Statement of Contribution 

This chapter is adapted from a published paper: Southwell R, Chait M. 2018. 

Enhanced deviant responses in patterned relative to random sound sequences. 

Cortex. 109:92–103.  

5.2 Summary 

The brain draws on knowledge of statistical structure in the environment to 

facilitate detection of new events. Understanding the nature of this representation 

is a key challenge in sensory neuroscience. Specifically, it is unknown whether real-

time perception of rapidly-unfolding sensory signals is driven by a coarse or detailed 

representation of the proximal stimulus history. We recorded 

electroencephalography brain responses to frequency outliers in regularly-

patterned (REG) versus random (RAND) tone-pip sequences which were generated 

anew on each trial. REG and RAND sequences were matched in frequency content 

and span, only differing in the specific order of the tone-pips. Stimuli were very 

rapid, limiting conscious reasoning in favour of automatic processing of regularity. 

Listeners were naïve and performed an incidental visual task. Outliers within REG 

evoked a larger response than matched outliers in RAND. These effects arose 

rapidly (within 80 ms) and were underpinned by distinct sources from those 

classically associated with frequency-based deviance detection. These findings are 

consistent with the notion that the brain continually maintains a detailed 

representation of ongoing sensory input and that this representation shapes the 

processing of incoming information. Predominantly auditory-cortical sources code 

for frequency deviance whilst frontal sources are associated with tracking more 

complex sequence structure.  

5.3 Introduction 

Detection of new events within a constantly fluctuating sensory input is a 

fundamental challenge to organisms in dynamic environments. Hypothesized to 

underlie this process is a continually-refined internal model of the real-world causes 

of sensations, made possible by exploiting statistical structure in the sensory input 

(Dayan et al. 1995; Friston and Kiebel 2009; Winkler et al. 2009; Rubin et al. 2016). 

Evidence from multiple domains, including speech (Saffran et al. 1996), abstract 
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sound sequences (Saffran et al. 1999; McDermott et al. 2013), vision (Turk-Browne 

et al. 2009) and motor control (Bestmann et al. 2008) reveals sensitivity to 

environmental statistics, which in turn influences top-down, expectation-driven 

perceptual processing. When the organism encounters sensory input that is 

inconsistent with the established internal model, a ‘surprise’ response is generated 

(Friston 2005), promoting a rapid reaction to the associated environmental change. 

Understanding what aspects of stimuli are ‘surprising’, and how they are processed, 

is therefore central to understanding this network.  

5.3.1.1 MMN reflects mismatch computation 

The auditory system has been a fertile ground for probing sensory error responses, 

at multiple levels of the processing hierarchy (Nelken 2014; Aghamolaei et al. 2016; 

Ayala et al. 2016). A common approach involves using a stream of standard sounds 

to establish a regularity that is occasionally interrupted by ‘deviant’ sounds (Garrido 

et al. 2008; Garrido, Kilner, Stephan, et al. 2009; Khouri and Nelken 2015; Heilbron 

and Chait 2017). Deviants usually evoke an increased response relative to that 

measured for the standards (Ulanovsky et al. 2003; Garrido, Kilner, Stephan, et al. 

2009; Herrmann et al. 2015). Since many of the investigated sequences have been 

very simple, often a repeated tone; neural adaptation is likely a major contributor 

to the observed deviant responses (Grill-Spector et al. 2006; Briley and Krumbholz 

2013; Nelken 2014). However, accumulating evidence suggests that at least part of 

the deviant response arises from neural processes associated with computing 

‘surprise’ or detecting a mismatch between expected and actual sensory input 

(Taaseh et al. 2011; Daikhin and Ahissar 2012; Khouri and Nelken 2015, Parras et al. 

2017). The underlying network, consistently implicated in these processes, is 

comprised of bilateral auditory cortex (Heschl’s Gyrus and superior temporal gyrus) 

and right inferior frontal gyrus (Opitz et al. 2002; Garrido et al. 2008; Garrido, Kilner, 

Stephan, et al. 2009; Barascud et al. 2016; Chennu et al. 2016; rIFG; Heilbron and 

Chait 2017).  

5.3.1.2 Contextual influences on deviance responses 

What information is used in calculating surprise? Mounting evidence suggests that 

the deviant response is shaped by the statistics of the sequence as it unfolds. 

Garrido et al. (2013) demonstrated that MEG responses to probe tones are sensitive 

to the statistical context (mean and variance of frequency) of randomly generated 

tone-pip sequences such that larger responses occurred to the same probe tone 

when presented in a context with low-variance than with high-variance. Rubin et al. 

(2016) modelled brain responses to two-tone sequences with different 

probabilities. They demonstrated, in line with conclusions from Garrido et al. 

(2013), that trial-wise neural responses in auditory cortex are well explained by the 

probability of occurrence of each tone frequency, calculated from the recent history 

of the sequence. The models that best fit neural responses were based on a 
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relatively long stimulus history (~10 tones); but were a coarse representation, 

reflecting a small set of summary statistics. 

Most previous work investigating the effect of context on deviant processing has 

focused on simple, random frequency patterns (May and Tiitinen 2010; Herrmann 

et al. 2015; Khouri and Nelken 2015). For these signals, a coarse representation, 

possibly underpinned by adaptation processes (May and Tiitinen 2010; Herrmann et 

al. 2015; Khouri and Nelken 2015), may indeed be sufficient to capture 

behaviourally-relevant attributes. However, it remains unclear whether the brain 

also keeps track of a detailed history of past sensory experience. To reveal these 

processes, the stimulus must contain some structural regularity. Whilst some 

previous research (Koelsch et al. 2000; Maess et al. 2001; Pearce et al. 2010; 

Koelsch et al. 2016), investigated complex sequence structure, the experiments 

mostly involved fixed patterns and exposure over very long durations, likely 

reflecting long-term structure learning. Here we focus on structure which emerges 

anew in each sequence. We seek to understand whether the brain represents this 

structure, and identify the underlying brain networks.  

5.3.1.3 Deviance responses in REG and RAND 

We used fast tone-pip sequences, unique on each trial, that occasionally contained 

a frequency outlier presented outside of the spectral region occupied by the 

standards. To determine whether the deviant response merely reflects an 

unexpected change in frequency between the standards and outlier, or whether it is 

also affected by the specific order of elements in the sequence, we used as 

standards either regular (REG) or random (RAND) sequences of otherwise matched 

frequencies (see Figure 5.1), such that the frequency span is identical but the 

precision of the available information regarding successive frequencies is either low 

(RAND) or high (REG). Notably, the sound sequences were very rapid (20 tones per 

second) such that conscious reasoning about the sequence order is unlikely to be 

possible. 

Based on the hypothesis that the human brain tracks and evaluates incoming 

sensory information against the specific pattern established by the sequence 

context, we expect outlier tones to be more readily detectable in REG than in RAND 

sequences. The experiments reported below investigate this assertion by measuring 

deviance-evoked EEG responses in naïve, distracted listeners (Experiment 1) and 

when listeners actively monitored the sequences for outlier tones (Experiment 2).  

5.4 Stimuli 

Stimuli consisted of 50-ms tone pips of varying frequency, arranged in regular (REG) 

or random (RAND) frequency patterns over a total duration of 3000ms (60 tones). 
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Frequencies were drawn from a pool of 26 logarithmically-spaced values between 

198 and 3563Hz (12% increase in frequency at each step; equivalent to two musical 

semitones). To generate each sequence, 13 adjacent frequencies were chosen at 

random from the larger pool (see Figure 5.1a) and then a random subset of 10 of 

these frequencies were retained, so that all sequences had a similar bandwidth and 

contained exactly 10 unique frequencies (‘alphabet size’ = 10). REG sequences were 

generated by permuting the 10 chosen frequencies and then repeating that order 

six times (Figure 5.1b; top). Matched RAND sequences were generated by shuffling 

each REG sequence, with the constraint that no two adjacent tones were the same 

frequency (Figure 5.1b; bottom). Overall, the stimulus generation procedure 

ensures that REG and RAND sequences are matched exactly in terms of the first-

order distribution of tones; the only difference being whether they are arranged in 

a predictable (REG) or unpredictable (RAND) order.  

Half of the sequences (henceforth denoted as REGO and RANDO) contained a single 

frequency ‘outlier’ tone between 1500 and 2750ms post-onset (latency chosen at 

random for each stimulus), which is equivalent to a minimum of 3 REG cycles. Our 

previous work (Barascud et al. 2016; Southwell et al. 2017) determined that the 

detection of regularity and the associated brain responses take place between 1-2 

cycles. A latency of 3 cycles therefore assures that the processing of the regular 

pattern has stabilized (see also Figure 5.2a). The outlier tones replaced the 

corresponding standard tone. The outlier frequency was either higher or lower than 

the range spanned by the 10 standard frequencies in the sequence, with a 

minimum distance of two frequency steps. Throughout the entire set of trials, all 26 

frequencies could be outliers or standards. Furthermore, to ensure all ten standard 

frequencies were approximately equally probable before the outlier, RANDO were 

generated by shuffling separately before and after the chosen outlier position. 

Stimuli were generated in matched sets of four (Two containing an outlier: REGO, 

RANDO; and two matched ‘controls’ with no outlier: REGNO, RANDNO), using the 

same ‘alphabet’ for standards (and the same frequency for the outliers, if 

applicable). Sequences were unique on each trial and generated anew for each 

subject.  
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Figure 5.1  Stimulus generation 
a: Procedure for selecting frequencies used for each stimulus. From the pool of 
26; 13 adjacent values were chosen at random as candidate sequence 
frequencies (purple); 10 were selected for the sequence. Of the remaining 
tones; all except the frequencies closest to the sequence could potentially be 
outliers (orange); and from these a single value was chosen at random to be 
the outlier on that trial. b: Example set of stimuli for the four conditions; these 
were generated together from the same frequencies in order to match 
acoustic properties.  

5.5 Experiment 1: EEG responses to frequency-outliers 

5.5.1 Methods 

5.5.1.1 Stimuli & procedure 

The stimulus set comprised four sequence types: REGO, RANDO, REGNO, and RANDNO 

as described above. These were presented to naïve, distracted listeners whilst their 

brain activity was recorded with EEG. Each trial was unique and sequences were 

generated anew for each subject. A total of 600 sequences were presented; 150 of 

each condition. The session was split into 6 blocks to provide breaks, each with 25 

trials per condition presented in a random order. The inter-trial interval (ISI) was 

jittered between 1100 and 1500 ms. Stimuli were presented with the Psychophysics 

Toolbox extension in Matlab (Kleiner et al. 2007), using insert earphones with the 
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volume set at a comfortable listening level. In order to capture automatic, stimulus-

driven deviance detection processes, subjects watched a subtitled film of their 

choice during the experiment, with the audio muted. They were informed that 

there would be some sounds played during the session, and were presented with a 

single example of RANDNO as a demonstration; but were instructed to ignore all 

sounds.  

Following the session, subjects were asked the following questions about the 

sounds they heard: 

1. During the EEG experiment, you heard some sounds. How distracting did 

you find them (1 = not at all, 5 = very distracting all the time) 

2. Please describe the sounds briefly – what did you notice? 

3. Did you hear any patterns in the sounds? 

4. Did you hear any beeps that broke the pattern? 

5.5.1.2 EEG recording and analysis 

EEG was recorded using a 128-electrode Biosemi system (Biosemi Active Two AD-

box ADC-17, Biosemi, Netherlands) at a sampling rate of 2048 Hz. Data were pre-

processed and analysed using Fieldtrip (Oostenveld et al. 2010) toolbox for Matlab 

(2015a, MathWorks). Separate analysis pipelines were used to analyse the whole 

sequence response (time-locked to sequence onset) and the deviance response 

(time-locked to the onset of the outlier tone). All filtering was performed with a 

zero phase-shift Butterworth filter.  

5.5.1.3 EEG preprocessing 

After epoching (see below), epochs containing artefacts were removed on the basis 

of summary statistics (variance, range, maximum absolute value, z-score, maximum 

z-score, kurtosis) using Fieldtrip’s visual artefact rejection tool. On average 5% of 

epochs were removed for each subject (range 0-10%). Artefacts related to eye 

movements, blinks and heartbeat were identified using independent component 

analysis (ICA). Any channels previously identified as noisy were not included in the 

ICA procedure. 

To analyse the sequence-evoked response, data were high-pass filtered at 0.1Hz 

(third-order) and divided into 5000-ms epochs (with 1000 ms pre-stimulus-onset 

and 1000 ms post-offset). After artefact rejection, all data were resampled at 200 

Hz with an anti-aliasing lowpass FIR filter, and baseline-corrected relative to the 

pre-onset interval. Missing bad channels were reconstructed as the average of their 

immediate neighbours. Subsequently the data were re-referenced to the mean of 

all channels, averaged over epochs of the same condition, baseline-corrected (200 
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ms preceding stimulus onset) and low-pass filtered at 30Hz (fifth-order) for plotting 

and analysis.  

For quantifying the outlier response, data were high-pass filtered at 2Hz (third-

order) and divided into 700-ms epochs, with 200 ms baseline and 500 ms following 

the onset of the outlier tone. The cutoff frequency of 2Hz was chosen to ensure 

that any differences in sustained activity between REG and RAND have been 

eliminated. Conditions without a violation (REGNO and RANDNO) were epoched 

relative to the average outlier timing; rounded down to the nearest tone onset, i.e. 

2100ms. These were used as a baseline against which the responses the outlier 

tones were evaluated. Note that after high pass filtering there was no difference 

between the REGNO and RANDNO sequences (see Figure 2a for illustration and below 

for statistical analysis). Subsequent analysis steps were identical to the one 

described for the whole sequence analysis (above).  

For the offset response analysis, the sequence-evoked data were high-pass filtered 

at 2Hz, re-aligned into epochs (2800-3500 ms) and baseline-corrected based on the 

interval 2800-3000 ms. Subsequent analysis steps were identical to the one 

described for the whole sequence analysis (above).  

5.5.1.4 Statistical analysis 

To assess the response to the outlier tones (‘main effect of deviance’), we collapsed 

across context and computed the difference between trials which contained and did 

not contain an outlier. Formally this is expressed as the contrast: (REGO – REGNO) +  

(RANDO – RANDNO). Fieldtrip’s cluster-based permutation test, which takes spatial 

and temporal adjacency into account, was used to correct for multiple comparisons 

(Maris and Oostenveld 2007; Oostenveld et al. 2010). The significance threshold 

was chosen to control family-wise error-rate (FWER) at 5%. This defined three 

regions of interest (ROI) in time-channel space showing a deviance response. To 

determine how the deviance response is affected by regularity (‘effect of 

regularity’), we calculated an orthogonal contrast of the deviance response 

magnitude by sequence type, (REGO – REGNO) – (RANDO – RANDNO), for each of the 

ROIs defined above. Statistical analysis was performed across channels using the 

same cluster-based permutation test described previously. The same statistical 

procedure was performed to verify that there was no residual difference in the 

responses to REGNO and RANDNO, ensuring that any effect on the deviance response 

reflects processing of the outlier tone rather than differential processing of the 

control condition. 

The offset response was compared between REG and RAND (collapsed across 

outlier and no-outlier trials), across the whole scalp and offset epoch, using the 

same clustering approach as described above for the deviance response. 
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 To characterize the overall sequence-evoked response to REG and RAND, the root 

mean square (RMS) of the evoked potential over all channels was calculated for 

each time point to give a time-series which reflects the instantaneous power of the 

evoked response. In the current data, as well as previous studies with similar 

stimuli, the sustained response is characterised by a large DC-like shift without zero-

crossings, and with similar response dynamics in all channels; thus the RMS is a 

faithful representation of the dynamics in individual channels (Barascud et al. 2016; 

Southwell et al. 2017). The distribution of RMS across subjects (mean, standard 

error, confidence interval) was then estimated for each condition using bootstrap 

resampling across subjects (Efron and Tibshirani 1993) with 1000 iterations, for 

plotting of the group average response in Figure 5.2a. The significance of the 

difference in RMS between REG and RAND was assessed using the same cluster-

based permutation statistics as for the deviance response, at each time sample, 

from sequence onset to 500ms following offset. T-tests (2-tail) were performed 

using t-statistics computed on clusters in time, and controlled for a family-wise 

error rate of 0.05 (Maris and Oostenveld 2007). 

5.5.1.5 Source analysis 

In the absence of individual structural scans, a head model derived from a template 

MNI brain was used (colin27; as included in the Fieldtrip toolbox) for which the 

volume conductance model was computed from MRI images using the Boundary 

Element Method (Fuchs et al. 2002). A triangulated cortical sheet with 5124 vertices 

was derived from this scan and used as the source model. Source inversion was 

performed on individual subjects and separately for each condition, using Minimum 

Norm Estimation (MNE; Dale et al. 2000), as implemented in Fieldtrip. This method 

simultaneously fits multiple dipole strengths over the whole brain, allowing any 

combination to be simultaneously active. The solution is constrained by selecting 

the combination of dipoles with the lowest total energy which adequately explain 

the sensor-level data. The distributed nature of the solution is particularly ideal for 

locating the differences between REG and RAND; as from previous work (Barascud 

et al. 2016) it is expected that the response to these sequences involves multiple 

sources.  

Source activity was reconstructed over a time-window spanning 0-300ms relative to 

the onset of the outlier. Source data were then averaged within the time intervals 

80-145 ms and 165-245 ms which correspond to the two ROI time windows in 

which significant effects were found in time/sensor space. Subsequently, t-statistic 

maps were computed, within each time window, for the main effect of deviance: 

(REGO + RANDO) > (REGNO + RANDNO), and the orthogonal effect of regularity: (REGO 

– REGNO) > (RANDO – RANDNO). Data were interpolated onto an inflated cortical 

surface for visualisation (Figure 5.2e&f) and are presented using a threshold of t = 2. 

Because the contrasts are motivated by significant effects in the time domain, 
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further statistical inference was not performed to avoid circularity (per Gross et al. 

2013). Due to the limited precision afforded by the template-based source 

modelling used here, we discuss activation patterns in terms of general areas as 

opposed to specific MNI coordinates. 

5.5.1.6 Participants 

Data from 20 paid subjects are reported (age 19-32, mean 22.8 years. 9 female). 

None participated in the behavioural study (Experiment 2). One additional subject 

was excluded from analysis due to excessively noisy data.  

5.5.2 Results 

EEG responses were recorded to REG and RAND sequences (Figure 5.1) which 

occasionally contained a frequency outlier. Overall frequency occurrence statistics, 

taken over the sequence duration or over the entire experimental session, are 

identical between REG and RAND. The resulting effect is that the context offered by 

each sequence differs in predictability but not in frequency span. In order to 

capture automatic, stimulus-driven deviance detection processes, participants were 

kept naïve and distracted, watching a silent, subtitled movie of their choice. 

5.5.2.1 Post-session reports 

Following the EEG experiment, participants were questioned about the sounds 

presented. Nine out of twenty described hearing some kind of pattern in the sound, 

for instance ‘repetition’ and ‘alternating high and low sounds’, although these 

descriptions were usually quite vague, and when pressed to elaborate, none had 

noticed the distinction between REG and RAND trials. Thirteen subjects reported 

hearing occasional sounds which broke the pattern, or were otherwise distinctive; 

and when asked to elaborate, several specified that the pitch of the tones stood out 

as higher or lower than the rest. This shows that the outliers entered subjects’ 

awareness at least in some cases, although accurate description of the patterning of 

the sequences was much rarer. The mean rating given for how distracting the sound 

sequences were overall was 2.2 out of 5, range 1-4; indicating that subjects were 

moderately distracted by the sound sequences on average, but with considerable 

variability.  

5.5.2.2 Sequence-evoked EEG responses 

Sequence-evoked responses (Figure 5.2a) were analysed by pooling across 

conditions which contained or did not contain an outlier. The standard sequence of 

auditory onset responses is seen, followed by a rise to a sustained response that 

persists until stimulus offset. The topography of this response for both REG and 

RAND is similar to the N1 onset response, namely a fronto-central negativity (see 

inset topographies; Figure 5.2c). The response to REG was significantly greater than 
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that to RAND, from 705 ms after onset until 440 ms after offset (p < 0.001, FWER-

corrected). The response to REG diverged from RAND after just 4 tone-pips (200 ms) 

of the first repeated cycle, demonstrating that the brains of naïve distracted 

listeners are sensitive to sequence structure, discovering the regularity very rapidly 

(in fact, as early as expected from an ideal observer see Barascud et al, 2016). 

Overall this pattern of results entirely replicates previous work (Barascud et al. 

2016; Southwell et al. 2017). However, the present stimuli are better controlled for 

effects of frequency-specific adaptation, by ensuring that REG and RAND have 

exactly the same frequency content; and by disallowing repetitions of the same 

frequency on two adjacent tone-pips. 

The bulk of the analysis (below) is focused on understanding whether, in addition to 

these global effects of regularity on the responses to the sequence, responses to 

the outlier tones are also affected.  

 

Figure 5.2  Sequence-evoked response 
a: Sequence-evoked response. Shown in the main plot is the root-mean-square 
(RMS) of the signal over all channels, representing global field power; shading 
shows the standard error of the mean over subjects. Time period showing 
significant difference between REG and RAND conditions is indicated by a grey 
bar. Polarity-resolved topographies (across all channels) are shown for the 
onset response from 50-80 ms (inset; left) and the sustained response (700-
3000 ms) to REG (inset; top) and RAND (inset; bottom). b: Offset response. 
Evoked response averaged over 58 central channels showing an effect of 
regularity on the offset response. Grey bar shows windows where there is a 
significant effect of regularity. c: Topography of the response during the two 
time-windows covering significant clusters for the contrast (REG–RAND); 
channels showing an effect of regularity on the offset response are highlighted 
in white. 
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5.5.2.3 Offset-evoked EEG responses 

Interestingly, an effect of regularity is also present during the offset response, 

which is seen from about 50 ms after the cessation of the sequence (Figure 5.2b). 

The offset peak was compared between REG and RAND (pooling across trials which 

contained and did not contain a violation; high pass filtered to remove differences 

associated with the sustained response) using the same clustering approach as 

above. REG showed a significantly larger offset response than RAND (Figure 5.2c), 

from 85-175 ms (p < 0.001) in most channels (more negative in a fronto-central 

cluster of 58 channels, p < 0.001; and more positive in a temporal-occipital cluster 

of 50 channels, p < 0.001). There was also a significantly more positive response 

from 215-300 ms (p = 0.008) post-offset in a fronto-central cluster of 41 channels 

(Figure 5.2b; lower right). Statistical comparison was performed at each time-point 

and channel, but for illustrative purposes the time-domain response averaged over 

the 58 channels in the first negative cluster, is shown in Figure 5.2b. 

5.5.2.4 Deviance-evoked EEG responses 

For quantifying the deviance response (response to the outlier relative to the no-

outlier conditions), data were high-pass filtered at 2Hz so as to remove the 

sustained response difference between REG and RAND sequences and focus on 

brain activity specifically evoked by the frequency outliers. A comparison between 

REGNO and RANDNO confirmed no difference between these conditions after 

filtering.  

The outlier-evoked responses (Figure 5.3a) were comprised of a series of peaks 

closely resembling the standard N1-P2-N2 sequence commonly observed at 

stimulus onset, or for changes within ongoing sounds (Martin and Boothroyd 2000). 

To quantify the effect of context on the response to the outlier, we first identified 

the channels and time intervals that show a response to the outlier (main effect of 

deviance ROI), we then investigated how this ROI is affected by context regularity 

(effect of regularity) by comparing outlier responses in REG vs RAND contexts. 

To identify the main effect of deviance ROI; channels and time-intervals showing a 

response to the outlier, collapsed across REG or RAND context, were identified (see 

‘Methods’). This allowed separation of neural activity associated with the ongoing 

context of the sequence from those strictly evoked by the outlier tone. The 

resulting three ROIs, shown in Figure 5.3b, correspond to the peaks observed in the 

time domain (Figure 5.3a). ROI1 comprised thirty-nine fronto-central channels 

which show a significant negativity between 80 and 145 ms (p = 0.001), 

corresponding most closely in time and topography to the N1. ROI2, a cluster of 33 

channels at 165-245 ms (p = 0.001), had a similar topography but with a positive 

polarity, ROI3, from 290 to 320 ms (p = 0.016), had a smaller spatial extent (10 

channels) and negative polarity (Figure 5.3c).  



 119 

To quantify the effect of regularity on the outlier response, a comparison between 

deviance responses in REG relative to RAND was then calculated for each of the 3 

ROIs identified above (see methods). In ROI1, a subset (21 channels) showed an 

effect of regularity on the outlier response (p = 0.005), which was 71% larger 

(calculated over mean activity within the significant channels), in REG sequences. In 

ROI2, responses were also larger (by 41%) in REG (p = 0.002) in a subset of 17 

channels (Figure 5.3d). There was no effect of regularity in ROI3. Importantly, since 

the analysis above is performed on high pass filtered, and baselined, data, the effect 

of regularity on the deviance response occurs over and above the sustained 

response difference between the two sequence types. 

 

Figure 5.3  Deviance-evoked responses 
a: Time-domain response averaged over the 39 central channels which showed 
a significant deviance response. Shading shows the standard error of the mean 
over subjects. The three deflections in the response correspond to the three 
clusters shown in (b). b: three time-channel clusters showing a main effect of 
deviance; i.e. (REGO – REGNO) + (RANDO – RANDNO). These channels and time-
windows were used to derive ROIs 1-3. c: Topography of the three main-effect 
ROIs; averaged over the temporal extent of each cluster ROI. d: Topography of 
the effect of regularity: expressed by the contrast (REGO – REGNO) – (RANDO – 
RANDNO). Channels included in the statistical analysis are shown in black; these 
are the significant channels in (c). Channels showing an effect of deviance at 
any point during the cluster are highlighted in white. The average magnitude 
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of the response to REGO and RANDO, within each ROI, is shown in the bar plots 
below. 

Overall, the EEG results demonstrate that the brain rapidly detects the structure 

within REG and RAND sequences and is sensitive to the uncertainty induced by the 

sensory context, such that (frequency or offset) violations within a volatile (less 

predictable) RAND context are considered less surprising than identical events 

within a stable, predictable, background. 

5.5.2.5 Source Analysis 

Contrasts were also computed in source space (see methods), both for the main 

effect of deviance, and for the effect of regularity. The main effect of deviance in 

ROI1 was localised to bilateral temporal cortex (Figure 5.4a, top), maximal in right 

superior/middle frontal gyrus (S/MFG) with a peak t-statistic of 3.05. In ROI2, the 

main effect of deviance was associated with temporal lobe activation, but this time 

more prominently left-lateralised as well as situated more frontally around the 

temporal pole (TP), with a peak of t = 3.55 in the left middle temporal gyrus. Right-

hemisphere activation is seen around the intraparietal sulcus (IPS) and the central 

sulcus (CS; Figure 5.4a, bottom). 

For the effect of regularity (Figure 5.4b, top), in ROI1 we observed increased 

deviance response in REG at right TP and right orbital gyrus (OG), where the 

maximal t-statistic of 2.86 was observed. In ROI2, REGO elicited a greater deviance 

response than RANDO in left temporal cortex, with a peak t-statistic of 3.05 in left 

middle temporal gyrus (MTG) and superior temporal sulcus (STS). Increased activity 

was also seen in right S/MFG. 

 

Figure 5.4  Source analysis 
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Source-level activity shown on a template cortical sheet. t-statistic maps 
thresholded at t = 2. All show average source activity taken over a time-
window defined by ROI1 (80–145 ms) and ROI2 (165–245 ms) a: Main effect of 
deviance in ROI1 (top) and ROI2 (bottom). b: Effect of regularity on the 
deviance response in ROI1 (top) and ROI2 ms (bottom). Peaks of the t-statistic 
are indicated. Abbreviations: STG - superior temporal gyrus, IPL - inferior 
parietal lobule, FG - fusiform gyrus, S/MFG - superior/middle frontal gyrus, TP - 
temporal pole, IPS - intraparietal sulcus, CS - central sulcus, OG - orbital gyrus, 
STS - superior temporal sulcus, MTG - middle temporal gyrus. 

5.6 Experiment 2: Behavioural detection of frequency-

outliers  

5.6.1 Methods 

5.6.1.1 Stimuli & procedure 

Subjects heard 96 trials each of REGNO, RANDNO, REGO and RANDO (in random 

order), and were instructed to respond by button press when they heard an outlier 

tone. Forty-eight additional control trials were also included, with the same number 

and timing of tone pips, but consisting of a single, repeating standard frequency 

(CTRL). Twenty-four of these contained an outlier tone at least 2 whole tones away 

from the standard (CTRLO); outlier and standard frequencies were chosen at 

random for each stimulus. Subjects were instructed to respond by button press as 

quickly as possible when an outlier tone was detected. Trials were presented in a 

random order, but the proportion of each condition across each block of 72 trials 

was kept the same. The testing session was preceded by a practice session of 28 

trials; conditions were the same as the main experiment and in the same 

proportions. 

5.6.1.2 Analysis 

Dependent measures are d’ scores (Tanner and Swets 1954) and response times 

(RT; measured between the onset time of the outlier and the subject’s key press). 

Trials deviating from the condition-wise mean reaction time by more than 2 

standard deviations were excluded; this resulted in exclusion of no more than 6% of 

trials for each condition. Sensitivity scores (d’) to outlier tones in each condition 

were calculated using the hit and false alarm rates. In cases where either rate was 0 

or 1, a half trial was (respectively) added or subtracted to the numerator and 

denominator of the rate calculation; to avoid infinite d’ values. 

5.6.1.3 Participants 

10 paid participants took part (age 18-34, mean 24.4 years; 5 female). None 

participated in the EEG study (Experiment 1).  
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5.6.2 Results 

We measured listeners’ ability to detect frequency outliers in matched REG and 

RAND sequences (Figure 5.5). The mean reaction time to outlier tones in the control 

condition was 329 ms, giving an estimate of participants’ basic response time and 

hardware/software latency. The average reaction times to REG and RAND were 347 

± 15 ms and 387 ± 25 ms; or 18 and 58 ms respectively when corrected for the basic 

reaction time. Reaction times to outliers in the control condition were significantly 

faster than both REG (p = 0.012) and RAND (p = 0.0013). When these reaction times 

are corrected for the basic response time, it is evident that detecting outliers takes 

only a few tens of milliseconds longer in complex sequences than it does in simple 

repetitive sequences. Paired-sample t-tests were carried out on the subject-wise 

averages of both RT and d’ for REG versus RAND. Reaction times were significantly 

faster (p = 0.01) and sensitivity (d’) significantly higher (p < 0.001) to outliers in REG, 

versus in RAND sequences.  

To summarise, despite carefully matched properties of the regular and random 

stimuli used, we observe robustly greater behavioural sensitivity, as well as faster 

reaction times, to outlier tones which violate a regular sequence. 

 

Figure 5.5  Behavioural results 
Results from Experiment 2. a: Reaction times to outlier tones. b: Sensitivity (d’) 
to outlier tones. **p < .01, ***p < .001. Individual subjects are shown with 
grey lines. Boxplots show distribution over subjects: median with lower and 
upper quartiles, whiskers show range. Extreme observations, falling outside of 
1.5 times the interquartile range from the start of the whisker, are shown by a 
red cross. 

5.7 Discussion 

We investigated whether and how the predictability of successive events within 

rapid tone-pip sequences influences responses to outlier tones. Whilst it is 

commonly observed that regularity shapes responses to standards, even in complex 

sequences (Khouri and Nelken 2015; Heilbron and Chait 2017), effects on the 
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response to the deviant outlier tone itself have been more elusive. For example, 

Yaron et al. (2012) report remarkable sensitivity to the temporal patterning of long 

sound sequences, but these effects are revealed via changes to the response to the 

standard, but not deviant sounds. Similarly, Costa-Faidella et al. (2011) showed 

robust effects of regularity on the standard, such that more repetition suppression 

is seen in a temporally regular than a jittered context - but the response to the 

deviant itself did not differ (see also Christianson et al. 2014).   

5.7.1.1 Summary 

Here, replicating our previous work (Barascud et al, 2016; Southwell et al. 2017) we 

observed substantial effects of context (REG vs. RAND) on the brain response to the 

sequence. Following the discovery of the regularity, REG elicited a higher sustained 

response. Importantly, we further demonstrate sizeable effects of sequence context 

specifically on the response to the deviant. Our results reveal two main findings: 

Firstly, robust effects of context were observed despite the fact that patterns were 

never repeated and had to be discovered anew on each trial. Though the outlier is 

set apart in frequency from the range defined by the sequence, and can in principle 

be detected based on this information alone, its detection was facilitated by 

sequence context. This was revealed in behaviour (Experiment 2) and in EEG 

responses from naïve distracted listeners (Experiment 1) where frequency outliers 

within regular sequences evoked a larger response (from 80ms after outlier onset) 

than matched outliers in random sequences. Secondly, the neural sources which 

underlie the effect of regularity, are, at least in part, distinct from those activated 

by the main effect of deviance (collapsed across REG vs RAND context). Whilst the 

latter was associated with the standard temporo-frontal network commonly 

implicated in frequency-based deviance detection, the effect of regularity was 

underpinned by sources in right temporal pole and orbitofrontal cortex.  

The implications of these findings to our understanding of how the brain tracks and 

represents unfolding structure in rapid sensory signals are discussed, in turn below.  

5.7.2 Automatic tracking of sensory sequence structure 

Previous reports in the MMN (Paavilainen 2013, Bendixen et al, 2012), statistical 

learning (Koelsch et al. 2000) and music processing literature (Maess et al. 2001) 

have demonstrated increased responses to deviants within structured contexts, 

relative to random contexts. For example, in a study of musical expectation, Pearce 

et al. (2010) showed that low probability notes, compared to high probability notes, 

elicited a larger negative component at around 400 ms. Using non-musical, abstract 

tone sequences arranged in a random or ascending frequency pattern, Vaz Pato et 

al. (2002) demonstrated increased MMN responses to frequency deviants within 

the structured sequences. Koelsch et al. (2016) further showed increased negativity 
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(from 130-220 ms post onset) to less probable items within sequences of tones with 

specifically controlled transition probabilities. Furl et al. (2011) trained participants 

to discriminate Markov sequences of pure tones from random ones and 

demonstrated a difference between low and high probability tones from 200 ms 

post-onset (during the P2 peak) originating in the right temporo-parietal junction.   

However, a limiting factor in generalizing those results to listening in natural 

environments is the use of regularities established over an extended period. For 

example, a fixed pattern or transition probability matrix throughout the 

experiment; or even, for music, over a lifetime. As a consequence, these paradigms 

might be tapping long-term memory mechanisms; fundamentally different from 

those implicated in processing rapidly evolving and novel sensory sequences. 

Furthermore, brain activity was often recorded while participants were required to 

make decisions about the predictability of the pattern (Pearce et al. 2010; Furl et al. 

2011) possibly implicating mechanisms related to active, overt tracking of sequence 

structure.  

5.7.2.1 Sequence context is rapidly learnt and influences deviance 

responses 

To probe rapid, automatic and pre-attentive processes associated with tracking 

evolving sensory statistics in the environment, we used rapid tone patterns (20Hz); 

beyond the rate which human listeners can actively track (Warren et al., 1991; 

Warren and Obusek, 1972). Unique sequences, whether REG or RAND, were used 

on each trial and (in Experiment 1) participants were kept naïve about the stimuli. 

We show that even when the regularity must be detected and represented afresh 

each trial, the response to a deviant is immediately modulated. 

The deviant responses seen here - a standard succession of P1-N1-P2 deflections - 

are similar to those commonly observed in human literature (Briley and Krumbholz 

2013; Herrmann et al. 2013) and which have previously been shown to be affected 

by both simple adaptation (repetition suppression) as well as more complex 

statistical context (relative probability of the deviant; Herrmann et al. 2013). Here 

we demonstrate a substantially larger response (71% increase in the first window) 

in REG relative to RAND sequences, confirming that these early deviant-evoked 

responses are also subject to automatic modulation by the degree of predictability 

in the ongoing sequence context.  

In a separate experiment (Experiment 2), the effect of regularity was also revealed 

behaviourally: listeners are faster and substantially more accurate at detecting 

outlier tones within regularly repeating (REG), relative to random (RAND) tone-pip 

sequences, despite matched frequency content. 
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These findings are consistent with the notion that the brain continually tracks and 

maintains a detailed representation of the structure of the unfolding sensory input 

and that this representation shapes the processing of incoming information: 

deviants within high-precision sequences evoke higher prediction errors than 

identical events embedded in matched sequences of lower precision. A 

conceptually similar explanation may be framed in the context of perceptual 

binding: the tones in REG sequences are bound together by virtue of the underlying 

regularity model (Winkler et al, 2009; Andreou et al, 2011), such that deviants, not 

confirming to the rule, are perceptually represented as distinct ‘objects’ and 

therefore evoke a larger neural response. Alternatively, it could be the case that 

REG is easier to suppress and ignore, leaving more residual processing resources 

available to the detection of deviants. By ‘subtracting away’ the signals arising from 

the predictable sensory input, the deviant is relatively more prominent than in 

RAND. This hypothesis is supported by the behavioural findings in Chapter 3, where 

RAND was harder to ignore than REG. However, the present behavioural results 

cannot disambiguate these two accounts, and both may contribute. 

Another alternative explanation for the observed findings might have been that 

regular patterns automatically attract attention (Zhao et al. 2013), and that this 

facilitates the detection of deviants in REG sequences. Chapter 3 directly 

investigated the question of whether attention is biased towards REG sequences 

(essentially identical to those used here), and found no attentional bias towards 

either REG or RAND. The fact that when interrogated, participants in the present 

study did not report noticing a distinction between REG and RAND trials also 

supports the conclusion that attention is not a likely explanation for the observed 

pattern of effects. Furthermore, the effects of attention on deviance detection are 

commonly associated with the presence of a P300 response (Chennu and 

Bekinschtein 2012; Molloy et al. 2015) reflecting the fact that the deviant was 

consciously perceived. The P300 was absent here. Instead our results point to an 

early and time-limited (between 80-250ms) effect of context on the deviant 

response.  

5.7.2.2 Regularity increases the offset response 

We also observed a remarkably strong effect of regularity on the offset response to 

the sequences. In the present paradigm, sequence offset is an instance of deviance, 

reflecting the violation of the expectation that a tone will be presented. This effect 

has been studied extensively in the context of the auditory omission (Chennu et al. 

2016; Phillips et al. 2016) or offset (Andreou et al. 2015) paradigms, where an 

evoked response occurs to unexpected omissions of sounds, at a similar latency to 

the early responses to actual sounds, but only when the preceding sequence 

allowed a prediction to be formed about the omitted tone’s properties. That both 

frequency and offset deviants are affected by regularity is consistent with the 
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notion that the overall predictability of the pattern (the precision of the prediction 

the observer can make about an upcoming event) affects error responses regardless 

of the dimension in which the deviance occurs.  

5.7.3 Source reconstruction 

The main effect of deviance, computed by collapsing over sequence context and 

hence assumed to reflect the mismatch in frequency, was significant across a 

central subset of channels commonly associated with auditory responses (Figure 

5.3c). In line with the standard network of bilateral auditory and right-hemisphere 

frontal sources often implicated in pre-attentive deviance detection (Opitz et al. 

2002; Doeller et al. 2003; Garrido, Kilner, Stephan, et al. 2009; Halgren et al. 2010), 

source analysis suggested that activity within ROI1 (80-145 ms) originated in 

temporal cortex and right prefrontal cortex. later, in ROI2 (165-245 ms), the 

anterior portion of the left temporal cortex showed the strongest deviant-evoked 

response, with some additional activation in right intraparietal sulcus (IPS). The IPS 

is commonly implicated in auditory perceptual organisation (Cusack 2005) and 

specifically figure-ground segregation (Teki et al. 2016) and its involvement here 

may be linked to processes which stream the deviant tone away from the ongoing 

sequence.  

The increased deviance response in REG sequences (effect of regularity) was 

associated with regions that are, at least in part, distinct from those involved in 

coding for the main effect of deviance. This was observed both in source space and 

in channel space, where the effect of regularity was only significantly present in a 

frontal subset of the channels identified as sensitive to the outlier.  

In source space, the effect of regularity in ROI1 is underpinned by activity in the 

right temporal pole and right orbitofrontal cortex. This is in contrast to the main 

effect of deviance which is dominated by extensive activation of temporal areas. 

The right temporal pole and right orbitofrontal cortex have previously been 

implicated in sensitivity to context: the right anterior temporal cortex has been 

shown to be sensitive to the level of disorder in auditory and visual sequences, 

demonstrating higher activity the more ordered the sequence (Nastase et al. 2014). 

Orbitofrontal cortex has been proposed to be a source of top-down modulation on 

auditory cortex according to context (Frey et al. 2004) and is more generally 

implicated in integrating top-down priors with current information (Kepecs et al, 

2008; Payzan-LeNestour et al. 2013; Wilson et al, 2014; Nogueira et al, 2017). The 

present results provide converging evidence for the role of these areas, outside of 

the standard deviance-detection network, in monitoring sequence structure.  
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Overall, source results replicate the ubiquitous network of bilateral auditory cortex 

and right pre-frontal sources as underpinning frequency-based deviance detection 

and additionally implicate the temporal pole as well as right orbitofrontal and pre-

frontal cortex in nuancing these responses according to the preceding sequence 

context. This suggests that simple deviance responses are underpinned by activity 

in auditory cortex whereas more complex sequence structure related information is 

maintained outside of auditory cortex within frontal areas.  

Source reconstruction based on EEG, particularly in the absence of individualised 

head-models, must be interpreted with caution. Future work, using more sensitive 

source-imaging, is required to understand and elaborate on these processes.  

5.7.4 Implications for theories of predictive coding 

All the deviant effects observed here were superimposed on an overall higher 

sustained response to REG relative to RAND patterns. A specific mechanistic 

account for the increased sustained response remains elusive, but previous work 

has demonstrated that the amplitude of the sustained response is related to the 

predictability or precision of the ongoing acoustic pattern (Barascud et al. 2016; 

Sohoglu and Chait 2016a; Auksztulewicz et al. 2017; Southwell et al. 2017), such 

that increased predictability is systematically associated with higher sustained 

responses. This effect, underpinned by increased activity in a network of temporal, 

frontal and hippocampal sources (Barascud et al. 2016; Auksztulewicz et al. 2017), 

may reflect a mechanism which tracks the context-dependent reliability of sensory 

streams.  

Over and above this context effect, we demonstrated modulation of deviant specific 

responses. Though the present experiments do not provide evidence for a concrete 

link between the sustained response and the deviant response, they may be 

interpreted as reflecting two aspects of predictive coding. According to predictive 

coding theory, surprise is determined by two processes: prediction error evoked by 

a stimulus that differs from expectations, and also the precision associated with the 

input; i.e. the reliability attributed to the sensory stream (Kanai et al. 2015; Heilbron 

and Chait 2017). It is hypothesized that brain responses to predictable (highly 

precise) stimuli are up-weighted (e.g. through gain modulation) to focus perception 

on stable features of the environment (Feldman and Friston 2010). It is tempting to 

interpret the increased amplitude of the sustained response to regular sequences 

as a manifestation of precision-weighting (Barascud et al. 2016; Sohoglu and Chait 

2016a; Auksztulewicz et al. 2017; Southwell et al. 2017), though it remains unclear 

whether the sustained effects seen here are indeed excitatory (as the gain 

modulation postulated by predictive coding; see further discussion in Southwell et 

al; 2017).  
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Importantly, the pattern of results we observe is not fully consistent with the 

standard predictive coding account of ‘prediction error’. Source analysis suggests 

the response to deviants in regular sequences was not merely enhanced relative to 

matched deviants in random sequences but rather arose in part via the involvement 

of distinct underlying sources. Therefore, an account in terms of differential 

precision weighing over the same prediction error units, as proposed by predictive 

coding (Feldman and Friston 2010; Kanai et al. 2015), may not fully account for the 

observed effects. Instead, the results point to a model where increasingly complex 

aspects of the same violating event are encoded in progressively higher stages of 

the processing hierarchy. In the deviance responses studied here this was revealed 

by predominantly auditory cortical sources coding for frequency deviance and 

frontal sources encoding more complex properties of pattern violation. 
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Chapter 6. Deviance Responses Beyond 

Outlier Tones 

6.1 Summary 

This chapter presents an EEG experiment and two behavioural experiments, 

measuring brain and behavioural responses to deviance from REG and RAND 

sequences. The previous chapter used tone pips at an unexpected frequency as the 

deviant event. The context provided by the predictability of the sequence was 

found to influence both behavioural and neural responses to deviant tones, which 

replaced the expected frequency of a tone with one at a higher or lower frequency 

than exists elsewhere in the sequence. This indicated that the precisely predictable 

context in REG led to up-weighting of the brain response to the unexpected tone, as 

compared to the equivalent outlier tone in RAND. This chapter uses silent intervals 

and noise bursts as deviant events instead, in order to further delineate the realm 

of influence that sequence regularity has on responses to transient events in the 

auditory scene. First, brief omissions were embedded in the sequence, to ask 

whether interruptions to the pattern per se are prioritised in a regular context, 

measured with EEG and behavioural studies. Second, I used a target detection task, 

with a noise burst superimposed on the sequence rather than replacing the tones, 

which was chosen to represent an acoustic event with maximally different physical 

properties to the REG and RAND tonal sequence. Whilst context regularity 

facilitated behavioural responses to omissions and noise bursts, there was no 

evidence that regularity affects the brain response to interruptions in the sequence.  

6.2 Statement of Contribution 

The work in this chapter was undertaken with a Masters student (Nicolas Abichacra; 

NA) under my supervision. Maria Chait (MC) and I designed the experiment. I 

collected the EEG data, apart from four subjects in Experiment 1 collected by NA. 

NA collected the behavioural data for Experiment 2. I wrote the code for stimulus 

presentation and analysed the data. MC and I interpreted the data. I wrote this 

chapter. 

6.3 Introduction 

The previous chapter asked whether the predictability of an ongoing sequence 

influences responses to outlier tones which replace the expected tone. Behavioural 

and EEG responses to the outlier tone, termed the deviance response, were both 
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found to be enhanced by sequence regularity. In this chapter, the effect of 

sequence context on the deviance response is studied further, using different forms 

of sequence violation.  

6.3.1 The brain responds to nothing 

Another form of deviance from an established tone sequence is simply to omit a 

tone, violating the expectation that a particular tone, or simply any tone, would 

occur. Unexpected omission of an auditory stimulus has been shown to evoke 

activity closely resembling that of a veridical stimulus, originating from auditory 

cortex (Mustovic et al. 2003). For instance, Yabe et al. (1997) used isochronous 

sequences of identical tone pips presented at different rates, then occasionally 

omitted a tone. At sufficiently rapid ISI, below 150 ms, omissions were found to 

evoke a significantly larger response than to the ‘standard’ tone pips, peaking at a 

latency of around 120 ms; and this difference was described as the omission MMN. 

This effect was generalised to MEG by Raij et al. (1997), using similar but slower 

tone-pip trains with unpredictable omissions; the resulting omission-evoked field 

power peaked between 145 and 195 ms. More recent studies have shown omission-

evoked responses as early as the P1 (Tervaniemi et al. 1994; Bendixen et al. 2009). 

An omission within the context of the regular and random sequences in this thesis 

may be expected to produce such an omission response. This would violate the 

expectation of a tone occurrence, as well as the more specific expectation of a 

particular tone frequency which constitutes the expectation manipulation in the 

experiments in Chapter 5.  

Omission responses have also been reported to occur in vision (Simson et al. 1977; 

Bullock et al. 1994) and somatosensation (Andersen and Lundqvist 2019). That 

there can be a response to an absence of incoming sensory information can be 

explained in terms of hierarchical predictive coding. By this account, evoked 

responses from a cortical region reflect prediction error, which is the discrepancy 

between actual afferent activity and the predicted afferent activity. Thus, the 

omission response magnitude, where the difference is between the prediction and 

zero afferent activity, is thought to mirror the strength of purely top-down sensory 

activity resulting from the expected sound (Wacongne et al. 2011).  

6.3.1.1 Context effects on the omission response 

The omission response is sensitive to the context in which the omission occurs. 

Several studies have shown that expected omissions evoke a smaller response than 

unexpected omissions (Todorovic et al. 2011; Wacongne et al. 2011; Chennu et al. 

2016). In all these experiments, the expectation is manipulated block-wise whilst 

controlling for low-level stimulus features. This suggests the existence of a neural 
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predictive model tracking what is more or less likely to occur, and weighting brain 

responses accordingly. 

6.3.1.2 Omission response reflects prediction 

In the omission response literature, as for the field more widely, evidence is thin on 

the ground for the deviance response as revealing a prospective prediction signal, 

as opposed to the possibility it results from a retrospective comparison. Bendixen et 

al. (2009) found omission-evoked responses to be modulated by predictability of 

the omitted tone within the first 50 milliseconds, specifically that the response 

resembled that to a real tone only if the tone was predictable from the preceding 

context. Chouiter et al. (2015) decoded, at greater than chance level, the expected 

direction of pitch change from the omission-evoked response, based on a classifier 

trained on the responses to real tones. It is also unclear whether the omission 

response, viewed through the lens of predictive coding, is directly measuring the 

activity carrying the prediction (e.g. as suggested by the modelling results of 

Chennu et al. 2016), or whether it is rather the prediction error resulting from its 

subtraction from zero afferent activity (as presented by Wacongne et al. 2012). 

However, in either case, predictive coding would hypothesise a differential 

weighting of omission responses in REG and RAND; either resulting from a stronger 

(top-down) prediction, or from a stronger (precision-weighted) prediction error 

arising from lower processing levels. 

Alternatively, explanations of the existence of an evoked response to omission 

appeal to adaptation or rebound neural activity (May and Tiitinen 2001; 2010). In 

this model, neural subpopulations selective for regular temporal structure entrain 

to the stimulus presentation rate. At offset, these circuits continue to oscillate for a 

few cycles, producing a ‘rebound response’ which resembles the response to 

veridical stimuli. As discussed in more detail in Chapter 4 (§4.6.4), this model would 

also predict a larger omission or offset response in the case of REG than in RAND; 

because of the additional periodic structure present in REG at the cycle rate. 

However, such an adaptation model would not account for omissions evoking a 

larger response than the tone they replace: if anything, the effect would be 

opposite. 

This co-existence of prediction-based and adaptation-based accounts of the 

omission response mirrors the debate on the cause of the MMN to oddball stimuli. 

However, it has been demonstrated that adaptation alone cannot explain the 

properties of the omission response in some cases. Wacongne et al. (2011) also 

manipulated the most likely identity of the tone, positioned at the end of 

quintuplets of tones, which was occasionally omitted: this could be either at the 

same frequency as preceding tones, or a particular ‘deviant’ frequency. Omission 

responses were larger in the latter case, whereas the adaptation model would 
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predict equal omission response in both instances. Regardless of whether the 

process is retrospective or anticipatory, in the following EEG study, care is taken to 

equate the adaptive potential of the preceding sequences whether they are regular 

or randomly patterned. Therefore, the key novel comparison of the present EEG 

work – namely whether regularity modulates the omission-evoked response – 

should not be influenced by differential adaptation.  

In EEG experiments in the preceding chapters, it was found that sequence offset is 

accompanied by a pronounced response peak, with a similar latency and 

topography to sequence onset and deviance responses. In fact, the offset response 

is modulated by sequence predictability in the same manner as the deviance 

response to outlier tones. Sequence offset is an extreme instance of tone omission; 

thus it may be that the offset response is itself a deviance response, showing 

precision-weighting according to the sequence context, of a prediction error 

resulting from the unexpected absence of sensory input. It is anticipated that an 

omission response, using the present REG and RAND sequences as context, will 

show a similar effect. 

6.3.2 Outline 

Experiments 1 and 2 below use the same stimuli as in Chapter 5 (see §5.4), however 

for REGO and RANDO, outlier tones are replaced by silent gaps. It is expected that 

such tone omissions will evoke responses similar to the onset, deviance and offset 

responses; namely a frontocentral negativity at around 100 ms, followed by a 

polarity reversal around 200 ms. Furthermore, this response is expected to be 

larger in the context of a REG sequence, which forms a more reliable (precise) 

context than RAND. Likewise, the behavioural sensitivity and reaction times to tone 

omissions is expected to be greater for omissions in REG than in RAND.  

One further question which arises from the preceding experiments is that of the 

specificity of the mechanism prioritising deviant-evoked responses in REG. Is the 

contextual effect specific to similar tones which can conceivably be grouped with 

the ongoing sequence, or is it a more general effect, perhaps transferring to all 

auditory stimuli encountered in the same acoustic scene as a predictable sequence? 

Experiment 3 addresses this question, by measuring behavioural detection of a 

highly salient, nontonal target added to an uninterrupted REG or RAND sequence. 

Although target detection performance is expected to be at ceiling, it may be the 

case that REG still confers a reaction speed advantage, if the regularity of the 

context induces prioritisation of auditory inputs more generally.  
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6.4 Experiment 1: EEG Responses to Tone Omissions 

6.4.1 Methods 

6.4.1.1 Stimuli & procedure 

The methods are as for Experiment 1 in Chapter 5 (see §5.5.1), except REGO and 

RANDO contain an omission of a single tone from the sequence, instead of a 

frequency outlier. Omissions occur with equivalent timing as in Chapter 5, i.e. 

locked to a tone onset between 1500 and 2750 ms, and consist of a 50-ms gap, 

which is the same duration as the missing tone (Figure 6.1).  

Following the EEG recording, participants were asked the following questions about 

their perception of the stimuli:  

1. During the EEG experiment, you heard some sounds. How distracting did you 

find them on a scale of 1 to 5 (1 = not at all, 5 = very distracting all the time)?  

2. Please describe the sounds briefly – what did you notice?  

3. Did you hear any patterns in the sounds?  

4. Did you hear any breaks in the pattern?  

 

 

Figure 6.1  Stimuli 
Schematic representation of sequences used in Experiments 1 and 2; with 
frequency represented vertically and time horizontally. In the latter half of the 
stimulus, an omission occurs in 50% of sequences (REGO and RANDO). This 
omission lasts for 50ms, the duration of one tone, as indicated by the dotted 
lines. 

6.4.1.2 Data analysis 

Analysis of the EEG data was identical to that for Chapter 5, Experiment 1 (see 

§5.5.1), except no source analysis was performed due to the data being too noisy; 
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as determined by a lack of localisation of the auditory onset response to temporal 

cortex. 

6.4.1.3 Participants 

23 paid participants took part in the experiment. One subject was excluded from 

further analysis due to noisy EEG data. The final group comprised 22 subjects, age 

19-27, mean 22.4; 8 males. None of the participants took part in Experiment 2 (§6.6 

below).  

6.4.2 Results 

6.4.2.1 Post-session reports 

Nine out of twenty-two described hearing patterns, although this recollection was 

usually vague, as was the case in the previous chapter. Only three subjects reported 

hearing the gaps. The mean rating given for how distracting the sound sequences 

were overall was 2.2 out of 5, ranging from 1 to 3; which is very similar to the 

ratings from Chapter 5 (§5.5.2).  

6.4.2.2 Sequence-evoked response 

The sequence-evoked response is shown in Figure 6.2. The REG sustained response 

diverged from RAND at 765 ms, but was only significantly higher from 1100 ms (p < 

0.001 during the first cluster). The difference is significant at p < 0.05 throughout 

the sequence, apart from three brief gaps, until after offset.  

6.4.2.3 Offset-evoked response 

The offset response, analysed on high-pass filtered and baseline-corrected data to 

remove the preceding sustained response differences, is shown in Figure 6.2b-c. 

The offset response was larger for REG than for RAND. This effect was significant 

over most of the scalp, reflecting both the frontocentral-negative and 

corresponding positive temporal areas (see Figure 6.2c). There was a significant 

positive effect of regularity in 37 occipital and temporal channels from 105-150 ms 

(p = 0.006). There was a significant negative effect of regularity in 44 frontocentral 

channels from 100-155 ms (p = 0.001). This replicates the results from Chapter 5 

(see Figure 5.3), but here was only significantly so during the offset N1, and for a 

briefer period than the 85-170 ms seen in the previous chapter, and here was also 

was not significant during the P2. 
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Figure 6.2  Sequence-evoked responses 
a: Sequence-evoked response. Shown in the main plot is the root-mean-square 
(RMS) of the signal over all channels, representing global field power; shading 
shows the standard error of the mean over subjects. Time period showing 
significant difference between REG and RAND conditions is indicated by a grey 
bar. Polarity-resolved topographies (across all channels) are shown for the 
onset response from 50-80 ms (inset; left) and the sustained response (1100-
3000 ms) to REG (inset; top) and RAND (inset; bottom). b: Offset response. 
Evoked response averaged over 44 central channels showing a negative effect 
of regularity on the offset response magnitude. Time period showing 
significant difference between REG and RAND offset is indicated by a grey bar 
c: Topography of the response during the time-window showing significant 
effects for the contrast (REG – RAND); channels showing an effect of regularity 
on the offset response are highlighted in white. 

6.4.2.4 Omission-evoked response 

The omission-evoked response is shown in Figure 6.3. There is an omission-evoked 

response which resembles the N1-P2 complex (Figure 6.3a), although this is smaller 
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in magnitude than the outlier-evoked response in Chapter 5 (Figure 6.3a; plotted 

with the same y-axis scaling as in Figure 5.3 for comparison). The statistical analysis 

of the omission effect was carried out over all channels and time-points, with 

family-wise error rate controlled cluster-wise, revealing two significant clusters 

(Figure 6.3b). The time-averaged topographies within the time windows defined by 

the two clusters are shown in Figure 6.3c. Twenty-four fronto-central channels 

show a significant effect of omission from 90-100 ms (ROI1; p = 0.008) expressed as 

a more negative response. Fifteen central channels, mostly comprising a subset of 

those in ROI1, show a significant effect during the positive deflection of the 

omission response at 185-230 ms (ROI2; p < 0.001). The effect of regularity on the 

omission response was analysed using the contrast (REGO – REGNO) – (RANDO – 

RANDNO). The statistical test was initially conducted within the two ROIs defined as 

a subset of time and of channels, but no significant clusters were found. Inspection 

of the topography of this contrast suggested that the difference between REG and 

RAND omission responses is maximal outside of the channel selection derived from 

the main-effect ROIs. Therefore the analysis was repeated over the whole scalp, 

within the same two time-ROIs, again showing no effect of regularity on the 

omission response (Figure 6.3d).  
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Figure 6.3  Omission-evoked responses 
a: Time-domain response averaged over the 24 central channels which showed 
a significant omission response. Shading shows the standard error of the mean 
over subjects. The two deflections in the response correspond to the two 
clusters shown in (b). b: two time-channel clusters showing a main effect of 
deviance; i.e. (REGO – REGNO) + (RANDO – RANDNO). c: Topography of the main-
effect ROIs; averaged over the temporal extent of each cluster ROI. Channels 
showing an effect of deviance at any point during the cluster are highlighted in 
white. d: Topography showing contrast (REGO – REGNO) – (RANDO – RANDNO). 
No channels show an effect of regularity on the omission response. 

6.5 Comparison of Omission and Outlier-Evoked Responses 

The EEG results from Chapter 5 (§5.5.2.4) were compared with those from 

Experiment 1 of the present chapter, in order to compare the omission-evoked and 

outlier-evoked deviance responses. The studies were performed with independent 

subject groups. However, the experimental design was kept virtually identical, aside 

from the nature of the sequence violation, in order to facilitate comparison.   
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6.5.1 Methods 

The size of the deviance response in each experiment was summarised as follows. 

First, the mean of the evoked response for each subject was taken over a frontal 

subset of channels to obtain a timeseries for each subject. In order to minimise 

cancelling out electrodes with reversed polarity across the scalp, the minimum set 

of channels showing a deviance response in both experiments (main effect of 

deviance) was used; i.e. the intersection of the main effects of deviance across the 

two experiments. This was a frontocentral-negative selection of 24 channels for 

ROI1, and a frontocentral-positive selection of 15 channels for ROI2. These roughly 

correspond to a deviance N1 and deviance P2. There was no significant omission 

response corresponding to ROI3 from the previous chapter. 

The deviance response was calculated as the difference waveform REGO minus REG; 

or RANDO minus RAND. To account for differences in latency & size of significant 

clusters, the peak magnitude of each subject’s deviance response was calculated 

within two time windows chosen to correspond to the N1 and P2. The time range 

within which to search for peaks is taken as the union of the time-windows showing 

a main effect of deviance in the two experiments, i.e. 80-145 ms for ROI1 and 165-

245 ms for ROI2. 

The values were entered into a mixed-design ANOVA with a within-subjects factor 

of regularity and a between-subjects factor of experiment. A multivariate mixed-

effects ANOVA was carried out with two separate dependent variables - N1 and P2 

peak magnitude. Each dependent variable was modelled with a within-subjects 

factor (REG versus RAND). The experimental group formed the between-subjects 

factor (N = 20 for Experiment 1, N = 23 for Experiment 2). To clarify, whilst the 

multivariate ANOVA was run in one go, the magnitude of the peaks in the N1 and P2 

time ranges were independently assessed and were not contrasted with one 

another. 

From inspection of the omission-evoked response, it was expected that there would 

be an overall effect of group on the size of the deviance response, with smaller 

responses occurring in the omission experiment. As there was no effect of regularity 

on the omission response, but significant effects were found for the outlier 

response in both time-windows, it was expected that there would be an interaction 

between experimental group and regularity, indicating the regularity effect is 

significantly larger for the outlier tones than for omissions. 

6.5.2 Results 

Overall, there was a significant effect of regularity on the N1 peak magnitude (F1,41 = 

7.03, p = 0.011), where regularity overall served to increase the deviance response. 
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However, as reported in §6.4.2, there was not a significant effect of regularity on 

the outlier response just within the omission experiment. There was also a main 

effect of group (F1,41 = 10.5, p = 0.002), with a larger deviance response to outlier 

tones than to omissions. However, there was no interaction between group and 

regularity (F1,41 = .074, p = 0.79), so the size of the regularity effect was not 

significantly larger for outlier tones than for omissions.  

For the P2, there was no overall effect of regularity (F1,41  = 2.89, p = 0.097), 

however there was a significant effect of group (F1,41 = 4.18, p = .045), with the 

outlier tones again evoking larger responses than the omissions. There was no 

interaction between group and regularity on the size of the deviance P2 (F1,41  = 

0.161, p = 0.69).  

  



 140 

 

Figure 6.4  Comparison of outlier and omission experiments 
Peak magnitudes of the deviance response, i.e. the difference between deviant 
and no-deviant waveforms averaged over the channels shown in the inset 
topographies. a: the peak magnitude of the deviance response in the N1 time 
window (80-145 ms). b: the peak magnitude of the deviance response in the 
P2 time window (165-245 ms). Figures a&b are shown with the same y-axis 
scale for comparison. Inset topographies show the channel selection over 
which each response was averaged before the peak magnitude was 
determined. Individual subjects are shown with grey lines. Boxplots show 
distribution over subjects: median with lower and upper quartiles, whiskers 
show range. Extreme observations, falling outside of 1.5 times the interquartile 
range from the start of the whisker, are shown by a red cross. * p < .05; ** p 
<.01 

6.6 Experiment 2: Behavioural Sensitivity to Tone Omissions 

6.6.1 Methods 

6.6.1.1 Stimuli & procedure 

The procedure was identical to Experiment 2 in Chapter 5 (§5.6.1), except 50% of 

sequence trials contained an omission in place of an outlier tone, as for Experiment 
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1 in the present chapter. Subjects were instructed to respond by button press when 

they heard an omission of a tone. Forty-eight additional control trials were also 

included, with the same number and timing of tone pips, but consisting of a single, 

repeating standard frequency (CTRL), 24 of which contained a tone omission at a 

time chosen from the same range as the omissions in REGO and RANDO.  

6.6.1.2 Analysis 

Analysis was identical to that for Experiment 2 in Chapter 5 (§5.6.1). 

6.6.1.3 Participants 

15 paid participants took part (age 20-32, mean 24.2; 8 female). None participated 

in the EEG study (§6.4). Three participants were excluded due to high false positive 

rates, indicative of misunderstanding the task and/or not concentrating.  

6.6.2 Results 

Experiment 3 measured the ability of subjects to detect tone omissions in matched 

REG and RAND sequences. The results, presented as mean reaction times and d’ 

scores, are shown in Figure 6.5. The mean reaction time to omissions in the control 

condition was 378 ms, giving an estimate of participants’ basic response time. 

Reaction times to omissions for the CTRL condition were significantly faster than in 

both REG (p < 0.001) and RAND (p < 0.001). The mean reaction times to omissions 

within REG and RAND were 463 ms and 545 ms, respectively. Reaction times were 

significantly faster (p = 0.0019), and sensitivity (d’) significantly higher (p = 0.004) to 

outliers in REG, versus RAND sequences. As for outlier tones, the structure of the 

preceding sequence influences the detection of gaps within the sequence.  

 

Figure 6.5  Omission detection 
Results from Experiment 4. a: Reaction times to tone omissions. b: Sensitivity 
(d’) to tone omissions. **p < .01, ***p < .001. 
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6.7 Experiment 3: Detection of Noise Bursts Within REG And 

RAND 

The following experiment is similar to Experiment 2, but instead used a salient, non-

tonal sound superimposed on the tone-pip sequence, rather than replacing the 

expected tone with an outlier tone. If regularity confers a general advantage to 

auditory target detection, then even detecting the appearance of a separate 

auditory object may be facilitated. The results of the following behavioural 

experiment using noise bursts instead of deviant tones, superimposed on REG and 

RAND signals, suggests the latter may be occurring, at least to some extent.  

6.7.1 Methods 

6.7.1.1 Stimuli 

Stimuli consisted of three-second long tone-pip sequences with alph = 5, denoted 

REG5 and RAND5. The sequences were generated from a frequency pool of 20 

logarithmically-spaced values (222 to 2000 Hz; increasing by 12% at each step). 

Noise bursts were superimposed on 50% of sequences, with random timing, not 

constrained to coincide with tone-pip onsets, in the latter half of the stimulus; 

yielding a further two conditions indicated as REG5n and RAND5n. The noise bursts 

were band-passed (3-12 kHz) in a frequency range higher than the tone pip pool of 

222-2000 Hz. Therefore, no predictions about tone frequencies were violated in 

terms of either a deviant frequency tone or an omission of an expected tone.  

6.7.1.2 Procedure 

The main experiment was preceded by a brief training block with six trials each of 

REG5, RAND5, REG5n and RAND5n. Subjects were asked to press the spacebar as 

soon as they heard the noise burst. The main block comprised 100 trials, with 25 

trials of each condition. Subjects were given feedback on the screen in the form of a 

green tick or a red cross following each trial. To encourage rapid responses in the 

main task, the mean correct reaction time was taken from the training block, and 

feedback in the form of a yellow clock icon was given for any correct trials in the 

main task where the reaction time exceeded 200ms after this mean latency 

benchmark from the training.  

6.7.1.3 Participants 

10 paid participants took part (age 20-35, mean 25.8; 7 female).  

6.7.2 Results 

There was a small but statistically significant quickening of reaction times when the 

burst was superimposed on REG (Figure 6.6b). Hit rates for detection of the noise 
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burst was very close to perfect performance for all participants (range 98-100%), 

and there was no significant difference in sensitivity to the noise burst as measured 

by d’, between REG and RAND (Figure 6.6c). However, as the hit rates were so high 

overall, it is possible that the lack of effect is attributable to a ceiling effect. That 

there was some behavioural benefit of REG, or cost of RAND, even in such a simple, 

orthogonal task with performance at ceiling, suggests that the up-weighting of 

sensory signals in a regular auditory context may be non-specific, as opposed to 

only affecting stimuli sharing many perceptual characteristics.  

 

Figure 6.6  Noise-burst detection performance 
a: Depiction of stimuli used in Experiment 3; shown is REGn, which is REG5 
with a noise burst in the latter half of the stimulus. b: Noise burst detection as 
a function of sequence regularity. Reaction times were significantly faster to 
noise bursts in REG sequences. c: sensitivity (d’) was not significantly different 
between REG and RAND contexts. **p < .01. 
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6.8 Discussion 

6.8.1 Summary of results 

The three experiments in this chapter add to the work in Chapter 5 in finessing the 

influence of sequence regularity on responses to transient, surprising events 

occurring during the sequence. From predictive coding accounts, and strengthened 

by the results in Chapter 5 which fit this account, it was hypothesised that 

responses to such ‘deviant’ stimuli would be heightened when they occur in a 

regular context. Experiment 1 used an omitted tone instead of a violating tone, and, 

whilst there was an EEG response evoked by the omission, this was not modulated 

by regularity. However, sequence offset was accompanied by a regularity-weighted 

offset response as for previous studies. Experiment 2 showed that regularity 

facilitates behavioural detection of omissions, using the same stimuli as the EEG 

experiment. Finally, Experiment 3 used a surprising noise burst superimposed on 

REG and RAND sequences, to help delineate the specificity of the influence 

sequence regularity can have on behavioural detection. Even though the acoustic 

properties of the noise burst distinguished it clearly from the tone-pip sequence, 

and it was superimposed on the sequence rather than interrupting it, there was a 

reaction-time advantage for REG versus RAND.   

6.8.2 Omission response 

Offset and omissions in RAND and REG sequences all produced a response in the 

N1-latency range, starting around 100 ms, as a symmetrical, fronto-central 

negativity in the EEG response. This timing and topography closely matches the 

properties of many omission responses found in MEG and EEG (Todorovic et al. 

2011; Wacongne et al. 2011) and from intracranial recordings (Hughes et al. 2001). 

However the present omission effects were slightly earlier than the 150-200 ms 

found in other auditory EEG studies (Raij et al. 1997; Chennu et al. 2016), and 

considerably later than the 10-50 ms found by Bendixen et al. (2009). Variability in 

the properties of these omission responses may stem from the exact contrasts 

chosen to represent the omission response. Here, the main effect of omission is 

computed as epochs with an omission minus epochs without an omission; but 

which contain otherwise identical physical stimulus properties and statistical 

context. Therefore, the present omission response represents the prediction error, 

but any ongoing predictions are identical for the two conditions comprising the 

contrast. For several other studies, statistical analysis is focused on expected 

omissions minus unexpected omissions (Hughes et al. 2001; Todorovic et al. 2011; 

Wacongne et al. 2011; Chennu et al. 2016); thus the resulting evoked response also 

contains contributions from differing predictions, and therefore differing prediction 

errors; even though in this case the physical property of omission is identical for 
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both terms. This may explain why the effects reported by such studies are 

sometimes later than the peak of the raw omission-evoked response: the measured 

prediction error may arise from a hierarchically later stage of processing, where 

expectations are formed that a violation (the omission) is to be expected. 

There was no effect of regularity on the omission response in the present 

experiment. This is at odds with findings from similar experiments which 

manipulate the predictability of the tone-pip which is to be omitted, rather than the 

predictability of the omission itself. Ono et al. (2015) found omission responses to 

omissions of a note embedded in a predictable sequence to be larger than to 

omissions in randomly rearranged sequences, between 100 and 300 ms post-

omission. This study differed from the present Experiment 1 in several respects, 

which may explain the difference in findings. Firstly, the predictable sequences 

were identical on every trial, allowing formation of an even stronger prediction of 

tone frequency than for REG. Secondly, their paradigm was active detection of 

omissions during the EEG recording; which is known to enhance contextual effects 

on the omission-evoked response (Chennu et al. 2016). Other experimental 

paradigms also showed modulation of the omission-evoked response according to 

the predictability of the tone which the omission replaces. 

Bendixen et al. (2009) found that the omission response was significantly greater 

when the omitted tone identity was predictable from the preceding context, than 

when the omission occurred in place of an unknown tone. This effect was found as 

early as 10 ms post-omission, and when controlling for physical properties of the 

preceding stimulus. However a seemingly opposite effect was found by Wacongne 

et al. (2011), whereby omission of the final tone in a quintuplet is greater when the 

block-wise context leads to the expectation that the final tone will be different 

(‘XXXXY’ block) from the others, as opposed to blocks where the final tone was at 

the same frequency as the previous (‘XXXXX’ block). However, this is explicable as a 

larger evoked response is expected to the final tone in an XXXXY sequence than in 

an XXXXX sequence; as shown by countless studies using the oddball paradigm (see 

Chapter 1 for a more in-depth review). 

6.8.3 Comparison to the outlier-evoked deviance response 

The effect of regularity on the EEG omission response was not significant, but the 

results from chapter 5 showed regularity does significantly increase the response to 

outlier tones. However an ANOVA modelling both experiments together showed an 

effect of regularity on deviance responses overall, in the N1 range. Moreover, the 

interaction of group and regularity was not significant. These seemingly 

contradictory statistical results are however entirely possible within frequentist 

statistics. It is not necessarily the case that a difference in significance between two 
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effects, when assessed separately, is accompanied by a significant difference 

between the two effects when they are directly compared (Gelman and Stern 

2006). Nevertheless, it is difficult to interpret the results of this chapter holistically.  

One possibility is simply that the data in the omission EEG experiment are of lower 

quality than in the previous experiments. Compared to the near-identical 

experiment in Chapter 5, the timing of the REG vs RAND sustained effect is much 

later in the EEG data for the present chapter, reaching significance only at 1100 ms 

versus 690 in the outlier tone experiment. In both cases, this arises before any 

omissions or outlier tones, therefore both experiments used identical stimuli up to 

this point. A lower signal-to-noise ratio in EEG data from this chapter could obscure 

the presence of small effects. Indeed, in the P2 window, the difference in the grand 

average between the omission response in REG does seem higher than its 

equivalent in RAND (see Figure 6.3a). Also, it has recently been shown in MEG that 

the omission-evoked response does not occur in all subjects, whereas other 

deviance responses are more ubiquitous in the population (Recasens and Uhlhaas 

2017). Nevertheless, when attended, outlier tones were detected above chance 

level by all subjects. 

6.8.4 Offset-evoked response 

The offset-evoked response could be categorised as a special case of an omission-

evoked response. Whilst it would be trivial for the listener to form an expectation 

that sounds ended after a duration of approximately three seconds, it is unlikely 

that the precise moment of offset would be expected, as temporal judgement 

accuracy begins to drop off by this duration (Drake and Botte 1993; Mates et al. 

1994). Furthermore, even regularly-occurring deviants elicit an error response, as 

evidenced by the local-global paradigm, where predictable deviants or omissions 

nevertheless elicit an MMN (Wacongne et al. 2011; Chennu et al. 2016). This is 

explained in the context of predictive coding by appeal to predictions generated at 

different levels of the cortical hierarchy. In this case, the regularly-occurring deviant 

violates the expectation at a lower level, whilst being predicted by a higher level 

tracking non-adjacent dependencies in the sound. Therefore it is possible that 

sequence offset is surprising enough to elicit a deviance response, at least at a 

relatively low level of the auditory-perceptual processing hierarchy. 

However, the mean offset response is much larger than the omission response: 

around -0.8 µV as compared to -0.3µV. Also unlike the response to omissions 

embedded in an ongoing sequence, the EEG offset-evoked response was modulated 

by sequence regularity in both Chapter 5 and the present Experiment 1. One 

potential explanation for these discrepancies is that sequence offset, effectively an 

omission lasting over one second, is a stronger violation than the brief 50-ms 
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omission during the sequence. A stronger violation will lead to a larger evoked 

response, consequently with a greater signal-to-noise ratio with which to detect 

differences between conditions. This explanation would require that the evoked 

deviance response is in part computed retroactively, with the response 

compounding rapidly as the silence extends beyond 50 ms, in order to generate a 

larger response but still at the same 100-ms latency as the within-sequence 

omission condition. A consequence of the stimulus design is that omission-related 

responses may be contaminated by responses to the resuming of the sequence 

following the brief omission. Anything occurring much beyond 50 ms after the 

omission could in fact be due to the first tone post-omission. However the timing 

and topography of the omission response is similar to the outlier response, rather 

than 50 ms later. This would suggest that the deviance effect in the present EEG 

experiment does reflect the processing of the omission. 

6.8.5 Regularity improves behavioural performance 

Behaviourally, although EEG omission responses were not significantly affected, 

context regularity still conferred a relative advantage to detecting omissions, as 

shown by Experiment 2. Experiment 3 also showed that stimulus regularity 

decreases the response time to a reaction time task. 

Improved target detection in REG could be explained as the result of the increased 

precision serving to up-weight prediction errors arising from the deviant sensory 

input. This up-weighting would increase the influence of the deviance on higher-

order processes, including those related to forming the decision to respond. This 

account is supported by the fact the brain response to REG is consistently higher 

than to RAND, which lends more credibility to the hypothesis that behavioural 

detection is advantaged in REG contexts due instead to a prioritisation of neural 

processing which influences the processing of even unrelated deviants from the 

regularity.  



 148 

Chapter 7. Changing Regularity 

7.1 Summary 

In previous chapters, the sustained response magnitude has been associated with 

sequence predictability. If the sustained response indeed reflects the inferred 

precision of ongoing structure in the auditory environment, then one can expect 

that response power will change in close step with any changes in the statistical 

properties within the sequence on a given trial. In this chapter, I use a statistical 

change-detection paradigm, in conjunction with passive EEG, to test this 

hypothesis. Each trial begins with a regular pattern, unique on each trial, which 

diverges into one of three possible fates: half of trials keep the same regular 

pattern, whilst the other half transition to either another regular pattern, or a 

matched random sequence. It is predicted that the transition will be associated with 

a drop in response power. On trials where the transition is to a new regular pattern, 

we expect the response to rise back up to the same level as the no-transition trials 

once the new pattern is learnt. When the transition is to a random pattern, the 

response power is expected to remain lower than on no-transition trials, reflecting 

the lower precision of the sequence. This effect was indeed seen in EEG, further 

corroborating that the sustained response is a correlate of the neuronal tracking of 

stimulus precision in the very recent stimulus past. 

7.2 Introduction 

Sustained responses to REG and RAND stimuli have previously been shown to track 

the level of predictability during stimulus sequences governed by a particular rule. 

However, so far, all the underlying rules have remained static throughout a single 

trial. If the sustained response truly signals ongoing predictability, then changes 

mid-sequence to the regularity rule should be signalled by a concomitant change in 

response power, reflecting the process of learning and then representing the new 

rule.  

7.2.1 Statistical object boundaries in auditory perception 

As discussed in §1.2, auditory objects are not necessarily delineated by clear 

frequency separation, but instead spectro-temporal statistical boundaries form an 

important cue in realistic auditory scenarios (reviewed by Schröger et al. 2013). For 

instance, the emergence of regularity is perceptually and neurally detectable as a 

separate auditory object from a random background (Teki et al. 2013). Even when 

the spectral content, and overall temporal envelope, remains constant, the 
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temporal regularity of individual stream elements is perceptually salient and 

reflected in automatic brain responses (Sohoglu and Chait 2016a). 

Barascud et al. (2016) measured MEG responses to transitions from RAND20 to 

REG10, and in the reverse direction. In both instances, the sustained response field 

power tracked the degree of predictability. For RAND-REG, the response increased, 

rising above that to matched RAND without a transition from a cycle plus six tones 

of the new regularity; a latency similar to the divergence seen in both MEG 

(Barascud et al. 2016) and this thesis for the divergence of REG10 and RAND10. 

When the data were high-pass filtered with a 2Hz cut-off, the effect was no longer 

present, suggesting the detection of the new regularity is associated with the 

steady-state response shift. In contrast, the REG-RAND transition was accompanied 

by an initial increase in power, at around 150 ms, which then showed a steep 

decline to a lower plateau; this peak remained in the high-pass filtered dataset. This 

initial peak was interpreted as a mismatch response, related to the detection of the 

violation of the existing pattern, which represents a prediction error signal that may 

trigger subsequent updating of the listener’s internal model to learn the new RAND 

pattern. The lower predictability of the post-transition RAND was encoded in the 

decreased sustained response. 

7.2.2 Expected and unexpected uncertainty 

Two pattern-tracking processes are introduced by the transition manipulation. First, 

the pattern change represents a violation of an ongoing pattern (be it 

deterministically regular, or statistically defined). Second, the pattern change 

introduces a new pattern which can be extracted. The former process requires only 

the detection of a single violating event, whereas the second requires some 

integration over time, as demonstrated by ideal observer models (Pearce et al. 

2010; Skerritt-Davis and Elhilali 2019). This explains why the REG-RAND transition 

evokes a sharp mismatch response within the first couple of hundred milliseconds, 

whereas RAND-REG evoked no such response, but rather was accompanied by a 

gradual rise becoming significant after 6 repeated tones.  

A recent Bayesian modelling framework, which infers Bayesian surprisal over 

(auditory) sequences, replicates this dynamical asymmetry for REG-RAND and 

RAND-REG (Skerritt-Davis and Elhilali 2019). The difference in sustained response 

reflects the detection of expected uncertainty in the RAND signal as compared to 

the REG. The encoding of this expected uncertainty allows the brain to down-weight 

the influence of the noisy signal on learning and inference. However, the transition 

from REG to RAND represents a sudden increase in unexpected uncertainty. 

Unexpected uncertainty may explain the rapid mismatch response, and signalling of 
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the newly-acquired expected uncertainty is encoded in the relatively sluggish drop 

in sustained response.  

Note that in Barascud et al.’s (2016) MEG study, the sustained response drop from 

REG to RAND was only significant from around 250 ms; or 5 tones after the violation 

of regularity, which is a similar latency to the sustained response rise from RAND to 

REG. The authors interpreted this as indicating an inherent delay in the mechanism 

of downshifting precision weighting: an ideal observer model can detect the change 

from the first tone, yet this information did not appear to be used to inform the 

signalling of expected uncertainty. This would seem to indicate an opposite 

asymmetry in neural processing of changes in predictability, i.e. that within the 

expected-uncertainty-tracking mechanism, increases in expected uncertainty are 

delayed relative to an ideal observer, whereas transitions to a more regular scheme 

are represented at a latency comparable to the theoretical limit. This asymmetry 

would be in addition to the already-discussed asymmetry between initial rapid 

detection of violation (i.e. unexpected uncertainty, or prediction error), versus 

gradual detection of changes in predictability (i.e. expected uncertainty, or 

precision). Nevertheless, it is difficult to draw this conclusion when the MMN-like 

error response, which increases the RMS power, temporally overlaps with the 

change in expected uncertainty which would cause a decrease in RMS power. 

Further work from this lab has investigated behavioural and neural responses to 

transitions between different statistically-defined auditory objects. The theoretical 

asymmetry of order-to-disorder versus disorder-to-order detection has been borne 

out in these results. Chait et al. (2005; 2007) found that changes in interaural 

correlation statistics of acoustic noise are detected faster for transitions from 

correlated to uncorrelated than from uncorrelated to correlated, and this was the 

case in both behavioural and neural responses. Furthermore, the neural sources 

underlying these responses were distinct for the two change directions. Similar 

results was found for transitions between random tone pip sequences and constant 

repetition sequences (Chait, Poeppel, de Cheveigné, et al. 2007) equivalent to REG1 

in Chapter 4, and for alternating repetition sequences, i.e. REG2 (Chait et al. 2008). 

Different neuro-modulatory mechanisms are proposed to account for the signalling 

of expected uncertainty and unexpected uncertainty (Yu and Dayan 2003). Recent 

evidence from pupillometry, which indirectly measures phasic noradrenaline 

release, provides compelling evidence that the change from REG to RAND is 

interpreted as unexpected uncertainty and is signalled by noradrenaline, whereas 

the reverse change has no discernible effect on noradrenergic activity (Zhao et al. 

2018).  
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7.2.3 Aims & hypotheses 

This experiment uses REG stimuli, which are assumed to evoke a high sustained 

response as in previous chapters, which contain a transition midway to a different 

sequence. Unlike previous work, a transition from REG to a different REG forms one 

of the conditions, alongside transitions from REG to RAND. This manipulation subtly 

changes the contextual information available to an (ideal) observer: even if a 

transition is detected, there remains uncertainty about what will follow: it could be 

a new regular pattern or it could be random. Only tracking the frequencies past the 

first (potential) cycle of the new rule will allow this inference. In contrast, one 

cynical interpretation of the REG-RAND transition effects seen by Barascud et al. 

(2016) is that the drop in response power was due to a disengagement of pattern-

tracking mechanisms given it was known from context that any transition from REG 

was necessarily to a RAND.  

The stimuli in this chapter are generated such that the alphabet of ten tones used 

on each trial remains constant, even if there is a transition. This allows us to test 

whether the REG-RAND transition-evoked mismatch response seen in MEG truly 

tracks the violation of the spectro-temporal sequence rule, or just the introduction 

of a new note, evoking a relatively disinhibited ‘oddball’ response. Indeed the same 

argument would apply to the existence of the deviant-evoked response in Chapter 

5. Under attention, it is possible to distinguish between regular cycles of 10 tones 

with only a single adjacent pair swapped, even down to a duration of 40ms (Warren 

et al. 1991). Therefore it is plausible that the transition from REG to a different REG 

or RAND will be perceptually detectable.  

7.2.3.1 Predicted results 

The predicted pattern of results is as follows. (i) Transitions will evoke an MMN-like 

mismatch response, riding on the ongoing sustained response to REG. (ii) This 

response will be followed by a drop in sustained response power at around 250 ms. 

(iii) For transitions to another REG, the sustained response will increase to the same 

level as no-transition REG, and this will occur during the first repeated cycle. (iv) For 

transitions to RAND, the sustained response will remain at the lower level. (v) The 

offset peak will be larger for reg-REG than for reg-RAND. 

7.3 Methods 

7.3.1 Stimuli 

The stimuli are based on REG and RAND with alph = 10. Stimuli were 4.5 seconds in 

duration, with a fifty percent chance of a transition occurring at 2 seconds, to a new 

pattern (Figure 7.1a). reg-REG transitioned to a new REG10 pattern and reg-RAND 
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transitioned to a new RAND10 pattern. The remaining fifty percent of trials 

contained no transition (REG). As in Chapters 3 and 4, sequences consisted of 

contiguous 50-ms tone-pips with frequencies chosen from a pool of 20 values 

logarithmically-spaced between 222 and 2000 Hz. To ensure that the transition 

represented a change in the pattern properties, without also consisting a change in 

simple acoustic features, the alphabet of 10 frequencies chosen on a given trial 

remained the same post-transition. However the selection of 10 frequency values 

was refreshed on each new trial. A further constraint was placed on transition trials 

such that the first tone-pip post-transition violated the established regular pattern. 

This ensured that the effective violation of the existing regularity indeed occurred at 

exactly two seconds.  

7.3.2 Ideal observer model 

As for Chapters 3 and 4, the stimulus set was modelled using IDyOM to ascertain 

the information content of each tone (Figure 7.1b). Differences in information 

content between conditions were assessed for significance using the same cluster-

wise corrected procedure as used for the IDyOM results in §3.4.1 and §4.4.3. In 

particular, it was expected that the transition would be associated with a sharp 

increase in information content, representing ‘surprise’ as a result of the violation 

of the regularity. Indeed, reg-REG and reg-RAND both diverge from REG at the first 

tone following the transition, and this difference remains until the end of the 

sequence. Secondly, the model appears to re-learn the regularity after the 

transition in reg-REG with the same promptness as the initial recognition of 

regularity at sequence onset (see Figure 3.2). The information content in reg-REG 

diverges from that of reg-RAND at 13 tones post-transition, i.e. at a cycle plus three 

tones. 
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Figure 7.1  Stimuli 
a: Stimulus schematics showing an example each of REG, reg-REG and reg-
RAND. Squares represent individual tone-pips of duration 50 ms. The transition 
occurs at 2 seconds and is shown by a vertical dashed line. b: Information 
content per tone, estimated from a model of expectation computed over an 
entire experiment session. Mean information content computed over 128 
trials of each condition. Shaded area shows standard deviation over trials. 
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7.3.3 Procedure  

Each participant heard 128 trials each of reg-REG and reg-RAND, and 256 trials of 

REG, presented in a randomised order across eight blocks of 64 trials. Each block 

contained exactly 16 reg-REG, 16 reg-RAND and 32 REG trials. These proportions 

were chosen to render transitions and non-transitions equally likely, and that given 

a transition occurs, it could be to another regular pattern or a random one with 

equal probability. The inter-stimulus interval was randomised between 2 and 3 

seconds. Stimuli were presented binaurally using the Psychophysics Toolbox 

(Kleiner et al. 2007) for Matlab, using insert earphones. Participants were instructed 

to ignore the sounds, and complete an incidental visual task, which was the same as 

that used in Chapter 3. The visual task was displayed on a separate computer using 

Cogent 2000 in MATLAB (www.vislab.ucl.ac.uk/cogent.php). The timing was not 

correlated with that of the auditory stimuli. For each trial, 3 colour photographs of 

landscapes were shown for 5 s each, and images faded gradually from one image to 

the next to minimise visual transients. Subjects were instructed to press a keyboard 

button if the first and third image within a trial were identical (10% of trials), and to 

withhold a response otherwise. The inter-trial interval was jittered between 2 and 5 

s. Feedback (number of hits, misses and false alarms) for the visual task was 

provided at the end of each block.  

Following the EEG session, subjects were asked the following questions, to ascertain 

what they noticed about the unattended sounds.  

1. How distracting were the sounds? (1 = not at all, 5 = very distracting all the 

time) 

2. What did you notice about the sounds? 

3. Did you hear any patterns in the sounds? 

4. Did you notice any sudden changes in the pattern? 

7.3.4 Participants 

Twenty four subjects took part in the experiment. Data from four subjects were 

rejected due to excessively noisy data. The final dataset of twenty subjects 

comprised 13 female, mean age 24.5, range 21-29 years.  

7.3.5 Recording & data preprocessing 

EEG signals were recorded using a 64-electrode Biosemi system at a sampling rate 

of 2048 Hz. Data were analysed using the Fieldtrip toolbox 

(www.fieldtriptoolbox.org/) (Oostenveld et al. 2010) for Matlab (2015a, 

http://www.fieldtriptoolbox.org/)
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MathWorks). Data were split into 8.5-s epochs, with 2 s before stimulus onset and 

after offset. An anti-aliasing 100 Hz low pass filter was applied before down-

sampling at 200 Hz.  

Detrending was applied to the data, to remove slow drifts in the EEG signal. A linear 

trend was fitted over each epoch; weighted such that only the signal before sound 

onset and 500ms after offset contributed to ascertaining the best fit (de Cheveigné 

and Arzounian 2018 see also Chapter 2). This minimised removing any slow trend in 

the data due to the auditory evoked response itself. This linear function was then 

subtracted from the data. Epochs were subsequently trimmed to contain only 500 

ms before onset and after offset, then baseline-corrected by subtracting the mean 

signal in each channel over the 200 ms period before onset. Outlier channels and 

trials were then removed using Fieldtrip’s visual artefact rejection tool, retaining on 

average 92.5% of trials for each subject. At most three channels per subject were 

rejected, out of a total of 64. ICA was used to detect and remove eye-movement 

artefacts (§2.3.4.4). DSS was employed to further remove noise by maximising 

repeatability across trials, retaining the top three components (de Cheveigné and 

Parra 2014; for more details see §2.3.5). Only the first 500 ms post-onset was used 

to determine the components maximising repeatability; this is because DSS will only 

detect repeatable activity which is exactly time-locked; and the temporal properties 

of responses on individual trials are likely to diverge later in the epoch. Finally, 

missing channels were reconstructed from the average signal in neighbouring 

channels, and baseline correction was re-applied.  

7.3.5.1 Sequence-evoked response 

For each subject, the evoked response was computed as the average over trials of 

each condition. For REG trials, as these were twice as prevalent as each of reg-REG 

and reg-RAND trials, half of the trials were randomly selected before averaging. The 

sequence-evoked response was summarised as the root-mean-square (RMS) power 

over all channels. 

7.3.5.2 Transition-evoked response 

An alternative analysis was carried out to measure if the first deviant tone after the 

transition triggered a transient deviance response such as those seen in Chapters 5 

and 6. Full epochs were high-pass filtered at 2Hz before trimming to focus on the 

transition region, i.e. from 1.8 to 2.5 seconds. Baseline correction was reapplied, 

over the 200-ms period pre-transition. Then, transition (reg-REG, reg-RAND) and no-

transition (REG) trials were separately averaged. Pooled transition conditions are 

denoted as reg-TRANS. As the regularity of the second portion of the sequence 

cannot be ascertained during the first ten tones post-transition, reg-REG and reg-

RAND were not considered separately. The transition response was summarised for 

statistical analysis by averaging over a subset of ten channels, selected as follows. 
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The grand average response over all conditions in each channel was computed, 

then averaged over time for the time range 100-200 ms after to the transition. The 

ten channels with the lowest (most negative) value in this average were chosen to 

represent the entire transition evoked response, in the range 1.8-2.5 seconds, for 

each subject. This procedure ensured the resulting evoked response would be 

polarity-resolved, and thus the peaks comparable to deviance-evoked responses 

and the MMN.  

7.3.5.3 Offset-evoked response 

For the offset-evoked response, the same approach was used as in previous 

chapters. Full epochs were high-pass filtered at 2Hz, then cut to the duration 4.3-5 

seconds (offset occurred at 4.5 seconds). Baseline correction was reapplied, over 

the 200-ms period pre-offset. The offset response was summarised for statistical 

analysis by averaging over a subset of ten channels, selected on the basis of all trials 

as for the transition-evoked response, except the time range for selecting the most 

negative channels was 50-150 ms post-offset. As for the sequence-evoked 

response, the number of trials in the REG condition was halved by selecting at 

random, before averaging over each of the three conditions. 

7.3.6 Statistical analysis 

The statistical approach was the same as in previous chapters. Statistical analysis 

compared the channel-averaged timeseries between conditions at each time point 

using a two-tail t-test. This was family-wise corrected for multiple comparisons at α 

= 0.05 using a cluster-based permutation procedure (Maris and Oostenveld 2007).  

7.4 Results 

7.4.1 Post-session reports 

The mean distraction rating was 2.5 out of 5. Fourteen of the 20 participants 

reported hearing cycling patterns in the sounds, of whom four noticed changes in 

the patterns.  

7.4.2 Sequence-evoked response 

Figure 7.2a shows the sustained response to all three conditions. All show the usual 

onset peak and rise to a sustained response. No conditions showed any difference 

prior to the transition, as should be expected. Around the transition, a small peak is 

seen in the transition conditions, but this was not significant. The sustained 

response power for both transition types drops below that of REG from around 500 

ms post-transition. 
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Following the transition, both transition conditions show a drop in response power. 

For reg-REG, this occurred from 515 to 800 ms post-transition (p = 0.0019). 

Following the significant effect, reg-REG rises in response power toward that of no-

transition REG. For reg-RAN, the response drops at 555 ms after the transition and 

remains lower than REG, though this is significant discontinuously (2.56-2.86 s, 

3.31-3.47 s, 3.89-4.04 s, 4.43-4.67 s; all p < 0.04). Although reg-REG shows a higher 

response in the grand-average than reg-RAND from 2.80 s until offset, there is no 

significant difference between reg-REG and reg-RAND until almost offset (4.42-4.67 

s; p = 0.019). 

As predicted, there is a detectable decrease in the evoked response following 

transition to a new rule, as compared to a pattern that remains highly predictable. 

This is the case even though there are no changes in the constituent frequencies of 

the sequence.  

However, the results only partly meet the hypotheses. Following the transition, it 

was expected that reg-REG and reg-RAND would diverge with much the same 

dynamics as REG10 and RAND10 in previous chapters. From the ideal observer 

model, reg-REG and reg-RAND diverge at a cycle plus three tones, corresponding to 

2.65 s in the present stimulus. Whilst reg-REG diverges from reg-RAND in the mean 

at 2.8 s, which is a cycle plus six tones, the lack of a significant effect limits the 

conclusions that can be drawn from this. From onset, REG10 and RAND10 

significantly diverged at around 0.9, 0.7 and 1.1 s in chapters 3, 5 and 6 respectively. 

In the present study, this corresponds to finding a significant difference from 

around 3 seconds from onset. There is no significant difference between reg-REG 

and reg-RAND until offset, so it is not possible to claim that the data truly show the 

processing of the re-emergence of regularity at the same latency as initial 

recognition of regularity. Nevertheless, each of the transition conditions separately 

shows the expected pattern of results in comparison to the no-transition control. 
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Figure 7.2  Evoked responses 
a: Sequence-evoked response, RMS response power computed over all 64 
channels. b: Transition-evoked response. Inset: topography showing response 
power at 0.1-0.2 s post-transition. c: Offset-evoked response. Inset: 
topography showing response power at 0.05-0.15 s post-transition. White 
circles denote the ten channels over which the average was computed. Shaded 
regions around time-series show the standard error of the mean over subjects. 
Grey or bi-colour bars under the evoked responses denote significant 
differences between pairs of conditions.  
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7.4.3 Transition-evoked response 

The transition-evoked response is shown in Figure 7.2b. The topography shows the 

grand-average activity from 100-200 ms post-transition, alongside the ten channels 

over which the average was computed. This topography shows a frontocentral 

negativity, which is typical for auditory-evoked responses and the MMN. There is a 

transition evoked response resembling a P1-N1-P2 complex. There is a significant 

positive transition-evoked deflection from 5-50 ms, negativity from 110-210 ms, 

and positivity from 225 to 340 ms relative to the transition (all p < 0.0064).  

7.4.4 Offset response 

The offset-evoked response (Figure 7.2c) shows a typical negative peak around 100 

ms and a positive deflection around 200 ms. The topography shows the grand-

average activity from 50-150 ms post-transition, alongside the ten channels over 

which the average was computed. The offset response was larger for reg-REG than 

for reg-RAND, both in the negative deflection (110-160 ms; p = 0.002) and in the 

positive deflection (245-280 ms; p = 0.025). 

7.5 Discussion 

Brain responses were measured whilst the pattern underlying a regular sequence 

was changed, either to another regular sequence or to a random one, whilst 

maintaining the same spectral statistics. EEG responses showed an MMN-like peak 

immediately following the transition. This is thought to be a deviance response 

indicating the detection of a violation of the preceding regular rule. Unlike in 

Chapter 5, this violation consisted of a rearrangement of tones already existing in 

the sequence, rather than a new, extreme tone. This provides further evidence that 

the brain tracks ongoing pattern in sounds, signalling a prediction error when the 

pattern is broken. That the EEG evoked response differentiated between transition 

and no-transition trials from a mere 5 milliseconds is, however, surprising. 

Comparing this latency to other deviance responses in this thesis (and what we 

know about auditory evoked responses in general), it seems likely that the evoked 

response does not actually begin to differentiate between the conditions as early as 

this, potentially attributable to the use of zero-phase-shift filtering (see §2.3.4.1). 

The deviance response in Chapter 5, for instance, was significant only in the N1-like 

negative peak, from 80 ms.  

After the transition to a random sequence, the sustained response power remained 

significantly lower than that of no-transition REG; this replicates previous findings in 

MEG (Barascud et al. 2016), but using a more pure manipulation of sequence 

statistics independent of frequency content. The novel transition type was from one 
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regular pattern to another. This shows evidence of deviance detection, followed by 

a phase of learning the new pattern where the steady-state response is significantly 

below that of the unviolated sequence, before some tentative evidence that the 

response rises back to a similar magnitude as for the no-transition REG. The offset 

response is larger for REG and reg-REG than for RAND, replicating previous 

chapters. There is an additional hint that the ‘new’ regularity is represented as the 

same predictable ‘state’ as the unviolated REG control condition; because their 

respective offset responses do not differ; whereas the offset response for 

transitions to REG is larger than for transitions to RAND, even controlling for 

ongoing differences in the sequence-evoked response. In Chapter 4, the offset 

response also revealed sensitivity to patterning, in the absence of sustained 

response differences immediately preceding offset. 

The data quality in this experiment may suffer from the increased influence that the 

EEG slow drift has on the longer trial lengths. Notably, more signal-to-noise 

reduction techniques were applied here than in previous chapters, yet there is still 

evidence of a higher noise level. Inspecting the sequence-evoked response, after 

offset, the power in the average response remains almost as high as the sustained 

response itself. In previous chapters, the sustained power decreased notably after 

offset. Reverting to using the same active visual task as in Chapter 3, rather than 

watching a subtitled movie, was motivated by aiming to reduce EEG noise from the 

stronger eye and face movements of the subjects. This appears not to have been 

effective. 

According to the post-session reports, the number of subjects who reported 

noticing patterns, and changes in the patterns, was higher than in Chapters 5 and 6; 

indeed a majority described the cyclical nature of the patterns when pressed. This 

difference may be a result of the different decoy task used here: the visual task is 

potentially less engaging than watching a film, leaving more processing capacity 

available for consciously registering properties of the auditory stimuli.  

The overall aim, and claim, of this experiment, was to demonstrate that the evoked 

brain response tracks predictability in sequences and updates this response as the 

predictability changes. Future work may go further, and manipulate expectations of 

the listener as to the possible statistical rules following the transition, through for 

example the use of a blocked design. This would allow delineation of the possible 

sources of top-down knowledge on representations of environmental predictability. 

Can, for example, explicit knowledge override automatic regularity-tracking 

responses? However, the current passive-listening EEG paradigm may not be 

sensitive enough to detect such effects within a reasonable experimental session. 

Instead, MEG might be preferable, as it does not suffer from the same slow-drift in 
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the signal at a time-scale which interferes with the detection of the sustained 

response. 
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Chapter 8. General Discussion 

8.1 Summary  

8.1.1 Thesis in a nutshell 

This thesis aimed to investigate the automatic tracking of predictable structure in 

the auditory scene. The model used for predictability was spectrotemporal 

patterning in continuous, rapid sequences of tone pips. The main measures of 

regularity-tracking processes were derived from EEG responses, but complementary 

behavioural paradigms were used throughout. Overall, the results provide further 

evidence that the brain automatically tracks the statistics of sequential events in 

sound, and that this also influences responses to change.  

8.1.2 Experimental results 

8.1.2.1 REG versus RAND shows increased brain response power 

Throughout this thesis, the EEG results in every chapter provide further 

corroborating evidence that abstract regularity is encoded by a general, sustained 

increase in brain response, upon which the responses to individual tone pips ride. 

Cycle lengths of 3, 5, 10 and 15 tones all produce this effect: an increase in response 

power for REG as compared to matched RAND, distributed over the scalp similarly 

to auditory onset responses. For all comparisons except REG3 versus RAND3 in 

Chapter 4, the sustained response increase remained stable throughout the 

sequence until offset. Furthermore, the latency of the divergence between matched 

regular and random sequences reveals successively later pattern discovery for 

longer cycles. The mean latency of divergence between matched REG and RAND 

was around the middle of the first repeating cycle, which is close to the ideal 

observer-derived lower bound on discovering regularity of a cycle plus four tones. 

The significance of this effect was generally found to be later, suggesting that some 

subjects are slower to detect the regularity than others. The responses to pattern 

changes in Chapter 7 tell a similar tale. Changes to the regular pattern, whilst 

retaining the same frequency distribution, were signalled with an initial drop in 

sustained response power, which then increased only for transitions to a new 

regularity. This suggests that the brain constantly monitors the auditory 

environment for predictable structure, and encodes this in an automatic and 

obligatory manner in the magnitude of the sustained response. 
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8.1.2.2 Sequence complexity increased brain response power 

Varying the alphabet size of random sequences affected the sustained response 

power in a systematic manner. Generally, the smaller the alphabet size, the larger 

the sustained response, as shown in Chapter 4 (with alph = 3, 5 and 20). This was 

less clear-cut in Chapter 3 (which used alph = 5, 10, 15 and 20). There was a main 

effect of alphabet size on mean sustained response power when all conditions were 

compared in an ANOVA, however the time-resolved analyses showed no such 

effect. From Chapter 4, it appears that larger alphabet size per se does not cause 

the reduced response, but that this effect is only seen for random sequences. 

There, REG3 and REG5 were not significantly different except for the initial portion 

of the sequence where the regularity begins earlier in REG3 than in REG5.   

8.1.2.3 Increased responses not attributable to attention 

Chapter 3 used several behavioural paradigms to indicate that the regularity effect, 

where regular sequences evoke a larger response than random ones, was not 

attributable to increased exogenous attentional capture by regular patterns. 

Instead, Experiment 2 in Chapter 3 showed that random distractor sequences were 

harder to ignore than regular ones.  

8.1.2.4 Offset responses index predictability independently from sustained 

responses 

The EEG responses to sequence offset were computed in the latter four chapters. 

All consistently showed an increased response at offset for regular compared to 

matched random sequences. One interpretation of this is that the sustained 

response tracks predictability continuously and this informs the response to 

unexpected events occurring in that context; sequence offset being one such 

unexpected event. However, there is evidence from Chapter 4 that the offset 

response is not accessing exactly the same regularity-tracking mechanisms as the 

sustained response. The offset response for REG3 was much greater than for 

RAND3, despite the preceding sustained responses showing no differences.  

8.1.2.5 Deviance detection 

Behavioural responses to deviant events occurring within a regular sequence are 

faster than equivalent events in random sequences, and these deviant events are 

associated with stronger brain responses in a passive listening condition. This is true 

for deviant tones, deviant noise bursts and sequence offset. This provides evidence 

that error-signalling is modulated by context, such that deviance from a more 

reliable rule is afforded more weight in perception and processing than the same 

physical event occurring against an uncertain backdrop. Source analysis tentatively 

suggests that the increased deviance response in regular sequences is at least in 

part due to the activation of additional sources, rather than just increased gain on 

responses within the same deviance-detecting sources. No such interaction 
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between context and deviance response was found for EEG response to brief 

omissions within the sequence, despite the presence of a behavioural effect. 

Whether this reflects the elusiveness of the EEG omission response or a true 

qualitative difference in how deviance is signalled, is not conclusively revealed by 

the present results.  

8.2 Implications 

8.2.1 The brain automatically tracks rapid spectrotemporal structure 

The sum total of the experimental results presented here converge on a view of the 

brain as possessing a powerful capacity for pattern recognition. The overall level of 

pattern is encoded, as well as individual elements of the pattern (20Hz response, 

deviance response, omission response, transition response) and furthermore, the 

sequence structure feeds back onto the responses to individual, transient events in 

the sequence (offset responses, deviance*regularity interaction in Chapter 5.)  

This is consistent with a view of auditory scene analysis in terms of regularity 

extraction (§1.1.2, Winkler et al. 2009; Bendixen et al. 2010), and more generally 

with the brain as a predictive engine (Hohwy 2013; Denham and Winkler 2018). The 

REG/RAND paradigm allows the compression of a lot of spectrotemporal structure 

into just a few seconds, whilst being deterministic enough that changes and 

violating events are well-defined and well-controlled.  

8.2.2 Evidence for Predictive Coding 

One of the more specific motivations of this thesis was to test predictions derived 

from generalised predictive coding about the effect of uncertainty on brain 

responses. This is rendered problematic by the fact that subtly different 

interpretations of how the experimental manipulations map onto cognitive 

variables can yield sometimes opposing effects.  

For instance, the main manipulation used throughout, that of deterministic 

sequential regularity, implies both increased precision and decreased prediction 

error. Precision is thought to be implemented by increased gain on the very same 

units that report the decreased prediction error; therefore an explanation exists for 

both increases and decreases in activity. Most previous auditory studies have 

shown repetition (or expectation) suppression, when interpreted through the 

predictive coding lens, this is portrayed as due to suppression by top down 

predictions (Garrido, Kilner, Kiebel, et al. 2009; Bendixen, SanMiguel, et al. 2012; 

Auksztulewicz and Friston 2016). The present results, however, show an increase in 

brain responses concomitant with predictability. This effect has two possible 
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explanations consistent with predictive coding: increased gain, and increased top-

down (possibly inhibitory) prediction activity (such as shown in Auksztulewicz et al. 

2017).  

The EEG experiment in Chapter 5 can potentially disambiguate these two 

possibilities. It was hypothesised that context regularity would lead to increased 

precision-weighting on bottom-up prediction errors arising from a deviant 

frequency. The results were consistent with regularity-induced gain, as equivalent 

deviants elicited a greater response when presented in REG, even when subtracting 

the ongoing sustained response differences. It is unclear how to account for this in a 

model where the regularity effect on the deviant is simply increased prediction. 

However, this does not conclusively demonstrate that the sustained response itself 

is due to precision weighting, as it remains possible that the regularity-induced 

deviant and sustained response increases are due to two different mechanisms. The 

picture is complicated by the source results, which show the regularity effect on the 

deviance response to be explained best by the involvement of distinct sources from 

those signalling the prediction error (main effect of deviance).  

Neither does an appeal to predictive coding answer the question of why the 

sustained response increase is seen here, but not in other auditory experiments 

which manipulate sequence predictability. Why would precision-weighting or 

prediction dominate the EEG evoked response here, but expectation suppression be 

the dominant effect measured using the same technique but for different auditory 

stimuli? It is possible that both repetition suppression and repetition enhancement 

are present in both flavours of auditory paradigm, but the complexity of the current 

patterns favours a net response enhancement due to the involvement of a wider 

network of areas generating the predictions, for instance.  

8.2.2.1 An attempt at synthesis 

The following presents an attempt to unify the EEG results from the previous five 

chapters in terms of hierarchical predictive coding network. Although it is beyond 

the scope of this thesis to argue for this explanation to the exclusion of all others, it 

simply intended to provide motivation for further work to test the hypotheses 

arising from it.  

At sequence onset, within the first 200 ms or so, the dominant effect on evoked 

responses is repetition suppression due to adaptation in primary auditory cortex 

(and lower-level areas, though these are likely to contribute less to the scalp EEG), 

causing decreased responses to subsequent tones occurring at the same frequency 

in quick succession. Repetition at a given frequency is most likely (and most 

frequent) in REG1, then RAND3, and as alph increases, the expected interval 

between identical frequencies becomes longer. Therefore, stronger frequency-
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specific adaptation would be expected the smaller the alphabet size (Ulanovsky et 

al. 2004; Yarden and Nelken 2017). This explains the reduced response at sequence 

onset to REG1 and RAND3 relative to RAND20, as seen in Chapter 4. This adaptation 

leads to reduced efferent activity reaching non-primary auditory areas, which 

influences recurrent message-passing between auditory cortex and higher-order 

areas. The higher-order areas attempt to explain away the reduced ascending 

prediction error, which favours a generative model engendering the expectation of 

recurrence of the same tone-pip frequency in REG1 and to a lesser extent RAND3, 

as compared to larger RAND alphabet sizes where repetitions occur less frequently 

and with a greater temporal interval. Over time, expectations of precision are also 

optimised; leading to an expectation of high precision associated with the 

ascending prediction errors the smaller the value of alph. This expected precision is 

implemented as an increased gain on the units reporting prediction error from 

tonotopic regions, the smaller the alphabet size. 

A similar effect, operating over a slower timescale, would account for the REG 

versus RAND effect. Regularly-cycling temporal patterns are detected in prefrontal 

areas which are sensitive to more abstract, sequential relationships in the sequence 

of incoming prediction errors (Zatorre et al. 1994; Doeller et al. 2003; Overath et al. 

2007). These areas send descending predictions, which have a net inhibitory effect, 

to the auditory cortex. This allows further reduction of ascending prediction errors 

from auditory cortex; in other words, expectation suppression. An expectation of 

high precision would be inferred from the consistent lack of prediction errors arising 

in REG sequences. This expectation of high precision would be fed back to lower 

areas as a modulatory influence, serving to increase the gain on the prediction-error 

reporting neurons in primary auditory areas. Sequence prediction-related activity, 

unique to REG, and increased precision weighting both lead to increased evoked 

response power to REG when measured over the whole scalp. An explanation of the 

REG versus RAND effect consistent with predictive coding would require that 

enhancement from precision-weighting, and from activation of additional neural 

populations participating in prediction signalling, outweighs suppression from 

reduced prediction errors as a result of the successful predictions in REG. 

The increased gain on ascending prediction errors from tonotopic regions would 

explain how deviants and indeed offsets in REG elicit higher precision-weighted 

prediction errors. Adaptation caused by neuronal refractoriness is ongoing 

throughout the sustained response, but is mostly offset by other processes, except 

in the case of REG1, and later REG3, where this adaptation serves to reduce the 

effect of increased precision and the formation of a model of stimulus regularity 

outside of auditory cortex. At offset, the evoked response is a precision-weighted 

prediction error, where the error in question refers to the violated expectation that 
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a sound will occur. The precision-weighting is largest for REG, followed by RAND in 

increasing order of alph.  

Changes in the sequence of frequencies leads to greater ascending prediction 

errors; as seen as the main effects of deviance- and omission- evoked responses in 

Chapters 5 and 6, and the transition-evoked response in Chapter 7.  

8.2.3 Entrainment: an alternative explanation? 

Entrainment to structure in auditory signals, particularly at the sub-10Hz rate of 

syllables in speech, has been intimately linked to facilitated perception (Ding et al. 

2017), memory (Wang et al. 2018), attention (Calderone et al. 2014), and auditory 

scene analysis (Riecke et al. 2015). This is the same range of rates at which cycles 

repeat in the present work, from 1.3 Hz in REG15, to 6.7 Hz in REG3. The strength of 

delta-phase consistency (1-4Hz) was recently shown to be correlated with spectral 

regularity in direct recordings from multiple cortical regions (Gifford et al. 2018). 

Oscillatory entrainment to REG cycles could explain the behavioural detection of 

regularity (Barascud et al. 2016) and potentially the facilitated detection of deviants 

in REG.  

However this explanation is not entirely able to account for the EEG effects. For 

instance, entrainment models would not predict the increased deviant-evoked 

responses in REG as compared to RAND, and specifically do not account for the 

offset latency being similar for different cycle lengths (see Chapter 4 for further 

discussion). Also, entrainment during the sustained response was measured in 

Chapter 4 as indexed by the cycle-rate induced response. There was indeed an 

effect of regularity, but the effect size was substantially smaller than the sustained 

response RMS increase. The sustained response and oscillatory entrainment to 

similar stimuli has recently been shown to be dissociable under attentional 

manipulation (Herrmann and Johnsrude 2018). Barczak (2018) measured the local 

field potential (LFP) in monkey A1, in response to a continuous stream of 

alternating REG and RAND segments. They found increased delta-phase 

entrainment during pattern segments at multiple stages of the auditory pathway, 

with a top-down directionality of influence suggesting the entrainment represented 

pattern-recognition rather than a passive process. Although they set out to 

replicate the sustained response effect, they found the opposite: a reduction in the 

local field potential during regular segments. 
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8.3 Methodological Considerations 

8.3.1 The REG/RAND paradigm 

The REG/RAND paradigm still offers a viable alternative to oddball and related 

simpler repetition-based designs in the study of auditory scene analysis. It provides 

the benefit of manipulating predictability, both in the deterministic and entropic 

sense, independently of adaptation. However the EEG results in chapter 4 offer a 

warning: the two manipulations of predictability (repetition versus REG) show 

somewhat contradictory effects on brain responses. This implies that the repetition-

based regularity paradigm is not generalisable, and is therefore not a good 

reductionist model of predictability to stand in for more naturalistic patterns. This 

has implications for the use of results from repetition paradigms to inform 

generalised predictive processing accounts (Garrido, Kilner, Kiebel, et al. 2009; 

Wacongne et al. 2012; Auksztulewicz and Friston 2016). 

However, much more experimental work is required to delineate the realm of 

validity of the present regularity effects, before concluding that the regularity 

sustained response has a future beyond being a curious phenomenon.  

For instance, if the sustained response increase truly represents the ‘state’ of 

predictability (or precision) the findings need to generalise to different physical 

properties, such as patterning expressed in timbre or loudness. The effect should 

also generalise to different presentation rates, to rule out the possibility that it is a 

rate-specific phenomenon such as the auditory steady-state response (Pantev et al. 

1996). At least for the behavioural effects, the paradigm has already been applied 

to vision (Barascud 2015). It has also recently been deployed in animal models 

(Barczak et al. 2018), which are a powerful means of testing hypotheses regarding 

the activity of single neurons, inaccessible to scalp EEG.  

8.3.1.1 An adequate model of predictability? 

In some ways, the REG/RAND paradigm falls short of modelling predictable 

structure in a manner sufficiently resolved to map theoretical perceptual variables 

onto the brain response. For instance, predicted and predictive are 

indistinguishable in REG and RAND. These two factors are, however, subtly 

different. The distinction can be described as follows (Agres et al. 2017; see also 

Braem and Trapp 2017). Each tone represents the fulfilment (or violation) of a 

prediction based on the previous tone; i.e. it is more or less correctly predicted. In 

contrast, predictive refers to how informative each tone frequency is about the 

identity of the upcoming tone. In the present work (apart from the deviance 

paradigms) the predictive information and predicted information changed in 

perfect step. Each tone in REG, assuming perfect learning of the sequence, was both 
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completely predictive and completely predicted. In RAND, each tone was equally 

unpredicted and unpredictive.  

More specifically, in terms of the ramifications of the present paradigm for 

generalised predictive coding, this duality of predictive and predicted quantities lies 

at the core of failure to disambiguate between prediction activity and precision-

weighting accounts of the increased responses observed throughout the EEG 

experiments. This represents a missed opportunity in studying how the brain tracks 

regularity, makes use of predicable structure and updates its beliefs in the face of 

new evidence during auditory scene analysis. 

8.3.1.2 Extremes of predictability miss the point: the case of complexity 

The most important comparison used for this thesis was that of REG versus RAND. 

This represents the extremes of predictability and unpredictability, respectively. The 

benefit of this manipulation was that the binary contrast allows for greater 

statistical power than, say, a parametric modulation, which was particularly crucial 

given the level of noise in the data (Lipsey 1990).  

However (as argued by Bach and Dolan 2012; Hasson 2016), contrasting regular 

with random in a binary contrast may not be the most effective design to detect 

uncertainty-tracking mechanisms in the brain. The shape of the relationship 

between sequential predictability and other quantities of interest is not necessarily 

monotonic (Shiner et al. 1999). According to one view, complexity represents the 

opposite of compressibility, and as such a randomly-generated sequence represents 

high complexity as it requires many bits of information to perfectly encode the 

sequence (Shannon 1948). However, to model the generative process giving rise to 

the stimulus, complexity follows a non-monotonic, inverted-U relationship as a 

function of the degree of entropy in the stimulus (Crutchfield 2012). REG and RAND 

are both minimally complex by such a measure, as the underlying generative 

processes are simple to describe in each case.  

The relationship between stimulus disorder and neural or behavioural responses is 

not necessarily monotonic. Such U-shaped responses to uncertainty have been 

observed in the brain and behaviour (Tobia et al. 2012; Nastase et al. 2015; Hasson 

2016). Braem et al. (2017) show that participants’ subjective preferences correlate 

with how predictive, not how predicted, a visual stimulus was in an implicit learning 

paradigm. Infants preferentially attend to auditory information which is of 

intermediate predictability relative to both more and less predictable stimuli (Kidd 

et al. 2014). In music, melodies also represent this intermediate level of 

predictability (Patel 2003), and it is this which makes music rewarding (Gebauer et 

al. 2012; Zatorre and Salimpoor 2013). 
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An alternative definition of salience, as distinguished from the tendency to draw 

exogenous attention (see Chapter 3), is related to the ability to resolve uncertainty 

(Friston et al. 2012). The epistemic value of a stimulus is low for both high and low 

predictability. Salient stimuli are those which are expected to minimise uncertainty 

(Parr and Friston 2017). In REG, uncertainty is rapidly resolved on formation of the 

auditory object. In RAND, no uncertainty is resolved by continuing to listen to the 

sequence. Therefore, both are in some way ‘uninteresting’ to the brain, 

notwithstanding the fact that regularity was mostly manipulated outside the 

context of any behavioural goals in the experiments presented in this thesis. 

Therefore, future work may explore sequences incorporating intermediate points in 

complexity-entropy space, which can implicitly vary the predictive information and 

uncertainty-resolving properties associated with the individual tones. 

8.3.2 EEG data quality 

Tracking the system of regularity extraction with the types of EEG paradigms used 

here may have a limit. A recurring problem throughout this thesis was that of 

relatively noisy EEG data. The slow drift was particularly problematic as this was 

hard to distinguish from the slow sustained response changes, and as discussed in 

Chapter 7, there is evidence that the denoising techniques did not fully remove this 

effect.  

The group-level results obtained are in some cases marginally or intermittently 

significant, for instance compare the REG10 versus RAND10 effects in Chapters 3, 5, 

and 6. The conclusions are also drawn on the basis of trial-averaged data for each 

subject. The very approach used to help de-noise the data, namely averaging over 

trials, means that a huge amount of information in the EEG recording pertaining to 

the subject’s internal state is lost. Studying the effect of predictability in a more 

nuanced manner, such as manipulations of complexity on a fine-grained continuum, 

would benefit from single-trial data modelled using regressors for information-

theoretic quantities (for instance Crosse et al. 2016; e.g. as used by Sedley et al. 

2016; Broderick et al. 2017).  

MEG may be a preferable imaging modality for further research on slow potentials, 

as well as further work using intracranial recordings and fMRI. Single-cell and multi-

unit recordings in animal models are needed to establish responses to individual 

tones, and how this is influenced by contextual regularity manipulations, rather 

than inferring this from ensemble-level responses. Better spatial resolution of 

source activity would allow testing hypotheses of how representations of stimuli in 

different areas interact, using for example dynamic causal modelling (e.g. Phillips et 

al. 2015). This could be achieved using individual anatomical MRI scans in 

conjunction with EEG or MEG.  
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8.4 Future Work 

Several possible continuations of the experiments in this thesis are suggested 

below.  

8.4.1 Complexity and predictability 

To address the potential criticism highlighted in §8.3.1, future work could use 

sequences representing intermediate states of predictability. An alternative view of 

the sequences used in this thesis is that they are Markov chains generated from a 

transition matrix instantiating the rules for determining the next note based on the 

previous (note the ideal observer model was based on representing the transition 

probabilities in the sequence). In the proposed experiment, sequences would be 

generated tone-by-tone from four types of transition matrix: deterministic 

(equivalent to REG); random (uniform transition matrix, equivalent to RAND); an 

interpolation between the transition matrices for REG and RAND; and finally a 

'biased' condition where some rows of the transition matrix represent a flatter 

probability distribution (akin to RAND) and others more peaked, so that some notes 

are rendered more informative in terms of reducing uncertainty about the next 

note, and others are uninformative. Measures of overall sequence entropy and 

complexity could be derived from statistical models. Tone-wise measures of 

surprisal and predictive information could also be estimated (Abdallah and 

Plumbley 2010; Agres et al. 2017). Both these measures could be used as regressors 

to disentangle prediction, precision and surprise-related responses. The sequence-

level measures could be used to test for monotonic parametric relationships 

between sequence-level entropy (interpreted as precision) and the magnitude of 

the sustained and offset responses, consistent with the hypothesis that these brain 

responses track precision. Furthermore, as discussed by Hasson (2016), it is 

suspected that an inverted-U relationship between sequence entropy and neural 

responses will be detectible, suggesting sensitivity to the complexity of the inferred 

generative source of the sequence. At the level of individual tones, the degree of 

surprise, and the strength of predictive information available regarding the next 

tone, could be quantified and related to prediction error and prediction 

respectively. It is likely that such sequences would have to be slower than the 

current 50-ms rate in order to disentangle these effects. A behavioural study could 

also be used, where subjects must respond to each tone in the sequence with a 

different button representing each tone frequency, and the reaction time could be 

used as a measure of surprise (Agres et al. 2017).  
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8.4.2 Layer-specific evoked responses 

In order to more precisely test the proposed neural implementation for generalised 

predictive coding (Bastos et al. 2012), layer-specific responses to REG and RAND 

stimuli could be measured with high-precision MEG (Troebinger et al. 2014; 

Bonaiuto et al. 2017; Meyer et al. 2017). Signal originating from superficial layers 

should correspond to precision-weighted prediction error. Conversely, signal in 

deep layers should correlate with predictions themselves. Using tone-pip sequences 

with an altered experimental design such as discussed in the previous section, 

predictability of the sequence could be manipulated dissociably from prediction 

errors. Precision, prediction and prediction error could be quantitatively specified 

from a perceptual model, (Pearce et al. 2010; e.g. Mathys 2014) and used as a 

regressor to quantify the contribution of each to the evoked response localised to 

deep and superficial layers. 

8.4.3 Top-down attentional set 

The present results reveal that spectrotemporal patterns are learnt and encoded 

automatically, and generally outside of conscious awareness, which is consistent 

with findings from the auditory evoked response and statistical learning literature 

that even pre-attentive auditory scene analysis permits sophisticated recognition of 

regularities. So far, the EEG response to REG and RAND has always been measured 

in naïve, distracted listeners; whether the sustained evoked response difference 

would endure when sequences are attended remains to be seen. Attention has 

previously been shown to enhance or even reverse the difference in response 

magnitude between predicted and unpredicted stimuli (Rahnev, et al. 2012; Chennu 

et al. 2013; Auksztulewicz and Friston 2015; Hsu et al. 2018), though most studies 

compare show attentional manipulations alter unattended expectation 

suppression, rather than starting from a baseline of unattended expectation 

enhancement as seen here.  

Attention could be focussed on the stimuli in two ways. First, attentional set could 

be manipulated to focus on the auditory modality as a whole, but without 

specifically targeting the predictable structure of the sequence, such that regularity 

is task-irrelevant. For example, a possible task could be counting noise bursts which 

are equally easily detected in REG and RAND, then reporting the count at the end of 

the block, thus maintaining attention on sound without confounding with task 

difficulty (see §6.7). Alternatively, the experimental design could render the 

detection of predictability explicitly relevant for the task, such as producing a likely 

continuation of the sequence or detecting a deviant (see §5.6, §6.6). 
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8.4.4 Generalisability 

The paradigm could be tested using a wider variety of stimuli beyond sinusoidal 

tone pip streams. This could be wider-band complex sounds or sequences with 

slower dynamics. Is the increased sustained response to REG specific to the 

particular stimuli used here or is it a robust marker of sequence predictability? If the 

latter, the REG/RAND paradigm could provide a powerful tool for manipulating 

sensory precision, and investigating its effects on widespread brain and behavioural 

processes.  
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