
SYNASC 2014 (post proceedings), Franz Winkler et al., Eds., p14–19, Timisoara, 22-25 September, IEEE.

Genetic Improvement of Programs

William B. Langdon
CREST, Department of Computer Science, University College London

Gower Street, London WC1E 6BT, UK
W.Langdon@cs.ucl.ac.uk

Abstract— Genetic programming can optimise software, in-
cluding: evolving test benchmarks, generating hyper-heuristics
by searching meta-heuristics, generating communication pro-
tocols, composing telephony systems and web services, gener-
ating improved hashing and C++ heap managers, redundant
programming and even automatic bug fixing. Particularly in
embedded real-time or mobile systems, there may be many
ways to trade off expenses (such as time, memory, energy, power
consumption) vs. functionality. Human programmers cannot try
them all. Also the best multi-objective Pareto trade off may
change with time, underlying hardware and network connection
or user behaviour. It may be GP can automatically suggest
different trade offs for each new market. Recent results include
substantial speed up by evolving a new version of a program
customised for a special case.

Index Terms— GI, genetic programming (GP), Automatic
software re-engineering, Bowtie2GP , multiple objective explo-
ration, search based software engineering (SBSE), GPGPU.

I. INTRODUCTION

Genetic programing [Koza, 1992; Poli et al., 2008] has been
very widely applied1. For example in

• modelling [Kordon, 2010],
• prediction [Langdon and Barrett, 2004; Podgornik et al.,

2011; Kovacic and Sarler, 2014],
• classification [Freitas, 1997],
• design [Lohn and Hornby, 2006],
• creating art [Reynolds, 2011; Jacob, 2001; Langdon,

2004; Romero et al., 2013],
• the generation of hyper-heuristics [Burke et al., 2013],
• configuring intelligent telephony networks [Martin,

2000] and
• Web mashups [Rodriguez-Mier et al., 2010],
• Hashing [Hussain and Malliaris, 2000],
• Heap managers [Risco-Martin et al., 2014],
• multiplicity computing [Feldt, 1998; Cadar et al., 2010]
• and even to create benchmarks which demonstrate the

relative strengths and weaknesses of optimisers [Lang-
don and Poli, 2005].

Recently genetic programming has been applied to the
production of programs itself, however so far relatively small
programs have been evolved. Nonetheless GP has had some
great successes when applied to existing programs. Perhaps
the best known work is that on automatic bug fixing [Arcuri

To accompany keynote at the 16th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC 2014)

1Genetic programming bibliography http://www.cs.bham.ac.uk/˜wbl/biblio/
gives details of more than nine thousand articles, papers, books, etc.

Instrumented gzip
(PC)

Evolved moduleModule to be replaced

Record data flows

graphics card
CUDA kernel on

Fig. 1. The original code is instrumented to record the inputs and
outputs (blue arrows) of the target function (red) every time it is called.
These become the fitness function and test suite for the automatically
evolved replacement module running on novel hardware (actually GPUs).
The CUDA code generated by GP is functionally identical to the C code
inside gzip [Langdon and Harman, 2010].

and Yao, 2008]. Particularly the Humie award winning work
of Westley Weimer and Stephanie Forrest [Forrest et al.,
2009]. This has received multiple awards and best paper
prizes [Weimer et al., 2009; Weimer et al., 2010]. GP has
been used repeatedly to automatically correct most (but not
all) real bugs in real programs [Le Goues et al., 2012].
Weimer and Le Goues have now shown GP based automatic
software correction to be effective on several millions of lines
of C++ programs. Their GenProg [Le Goues et al., 2012b]
approach is based on re-using existing human written code
to patch the source code defect. A recent study [Barr et al.,
2014] showed many updates to Java code made by people
are not totally novel but could have been made by re-using
existing code. Indeed, baring layout and identifier names,
most human written code of up to five lines has already been
written somewhere by someone else [Gabel and Su, 2010].

Once GP has been used to do the impossible (i.e. automatic
bug fixing) it was improved [Kessentini et al., 2011] and peo-
ple felt brave enough to try other techniques, e.g. [Nguyen
et al., 2013].

Andrea Arcuri was again in at the start of inspirational
work on showing GP can create real code from scratch. Al-
though the programs remain small, David White, he and John
Clark [White et al., 2011] evolved programs to accomplish
real tasks such as creating pseudo random numbers for ultra
tiny computers where they showed a trade off between “ran-
domness” and energy consumption. Such tradeoffs are vital if
RFID based nano-computing devices are to be programmed.

14

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/323193837?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://crest.cs.ucl.ac.uk/
http://www.cs.bham.ac.uk/~wbl/biblio/
http://www.genetic-programming.org/combined.php

II. AUTO PORTING FUNCTIONALITY

The Unix compression utility gzip was written in C in
the days of Digital Equipment Corp.’s mini-computers. It
is largely unchanged. It contains a procedure (of about
two pages of code) which is so computationally intensive
that it has been re-written in assembler for the Intel 86X
architecture (i.e. Linux). The original C version of gzip has
been retained and is distributed as part of Software-artifact
Infrastructure Repository sir.unl.edu [Hutchins et al., 1994].
SIR also contains a test suite for gzip. In Genetic Improve-
ment, as with Le Goues’ bug-fixing work, we start with an
existing program and a small number of test cases. In the
case of the gzip function, we showed genetic programming
could evolve a parallel implementation for an architecture
not even dreamt of when the original program was written
[Langdon and Harman, 2010]. Whereas Le Goues uses the
original program’s AST (Abstract Syntax Tree) to ensure that
many of the mutated programs produced by GP compile, we
have used a BNF grammar. In the case of [Langdon and
Harman, 2010] the grammar was derived from generic code
written by the manufacture of the parallel hardware. Note
that it had nothing special to do with gzip. The original
function in gzip was instrumented to record its inputs and
its outputs each time it was called (see Figure 1). When gzip
was run on the SIR test suite, this generated more than a
million test cases, however only a few thousand were used
by the GP2. Essentially GP was told to create parallel code
from the BNF grammar which when given a small number
of example inputs returned the same answers. The resulting
parallel code is functionally the same as the old gzip code.

III. BOWTIE2GP IMPROVING 50 000 LINES OF C++

As Figure 2 shows, genetic programming produces popu-
lations of programs which may have different abilities on
different scales. While Figure 2 shows speed versus quality,
other tradeoffs have been investigated. For example it may
be impossible to simultaneously minimise execution time,
memory foot print and energy consumption. Yet, convention-
ally human written programs choose one trade-off between
multiple objectives and it becomes infeasible to operate
the program with another trade-off. For example, consider
approximate string matching.

Finding the best match between (noisy) strings is the
life blood of Bioinformatics. Huge amounts of people’s
time and computing resources are devoted every day to
matching protein amino acid sequences against databases
of known proteins from all forms of life. The acknowledge
gold standard is the BLAST program [Altschul et al., 1997]
which incorporate heuristics of known evolutionary rates
of change. It is available via the web and can lookup a
protein in every species which has been sequences in a few
minutes. Even before the sequencing of the human genome,
the volume of DNA sequences was exploding exploding at a
rate like Moore’s Law [Moore, 1965]. With modern NextGen
sequencing machines throwing out 100s of millions (even

2Later work used even fewer tests.

billions) of (albeit very noisy) DNA base-pair sequences,
there is no way that BLAST can be used to process this
volume of data. This has lead to human written look up tools
for matching NextGen sequences against the human genome.
Wikipedia lists more than 140 programs (written by some of
the brightest people on the planet) which do some form of
Bioinformatics string matching.

The authors of all this software are in a quandary. For their
code to be useful the authors have to chose a point in the
space of tradeoffs between speed, machine resources, quality
of solution and functionality, which will: 1) be important to
the Bioinformatics community and 2) not be immediately
dominated by other programs. In practise they have to choose
a target point when they start as once basic design choices
(e.g. target data sources and computer resources) have been
made, few people or even research teams have the resources
to discard what they have written and start totally from
scratch. Potentially genetic programming offers them a way
of exploring this space of tradeoffs [Harman et al., 2012].
GP can produce many programs across the trade-off space
and so can potentially say “look here is a trade-off which
you had not considered”. This could be very useful to the
human, even if they refuse to accept machine generated code
and insist on coding the solution themselves.

We have made a start by showing GP can transform human
written DNA sequence matching code, moving it from one
tradeoff point to another. The overall frame work is shown
in Figure 3. In our example, the new program is specialised
to a particular data source and sequence problem for which
it is on average more than 70 times faster. Indeed on this
particular problem, we were fortunate that not only is the
variant faster but indeed it gives a slight quality improvement
on average [Langdon and Harman,].

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5

S
pe

ed
 u

p
on

 G
P

U

Error per pixel

Fig. 2. Example of automatically generated Pareto tradeoff front. Genetic
programming used to improve 2D Stereo Camera code [Stam, 2008] for
modern nVidia GPU [Langdon and Harman, 2014]. Left (above 0) many
programs are faster than the original code written by nVidia’s image
processing expert (human) and give exactly the same answers. Many other
automatically generated programs are also faster but give different answers.
Some (cf. dotted blue line) are faster than the best zero error program.

15

http://sir.unl.edu

Fitness

Improved system

Test
cases

Population of modifications

Select

Mutation and Crossover

BNF
Grammar

Population of modifications

Original
code

Modified
kernel

Fig. 3. Genetic Improvement cycle extends traditional GA/GP evolutionary
cycle. GI starts with human written code (left, colour). It is automatically
converting into a BNF grammar, which is used to create the initial genera-
tion. The GP evolves small patches, which are converted back into C++ code
by effectively reversing the grammar. Finally the fitness of the mutated code
is found by compiling and running it and then comparing its answers with
those given by the original code on the same test cases. A small number of
test cases (e.g. 5) are randomly chosen each generation from a much large
stock, which may have been supplied with original code as its regression
test suite.

IV. IMPROVING PARALLEL PROCESSING CUDA CODE
WRITTEN BY EXPERTS

In other examples we returned to computer graphics hard-
ware. In the first GP was able to automatically update for
today’s GPUs software written specifically by nVidia’s image
processing expert to show off the early generations of their
graphics cards [Stam, 2008]. Genetic improvement lead (on
the most powerful modern Tesla GPU, see Figure 4) to
almost a seven fold speed up relative to the original code
on the same GPU [Langdon and Harman, 2014]. In another
example a combination of manual and automated changes to
production 3D medical image processing code lead to the
creation of a version of a performance critical kernel which
(on a Tesla K20c) is more than 2000 times faster than the
production code running on an 2.67GHz CPU [Langdon et
al., 2014].

V. MINISAT: IMPROVING BOOLEAN SATISFIABILITY
CODE WRITTEN BY EXPERTS

The basic GI technique has also been used to create an
improved version of C++ code from multiple versions of
a program written by different authors. Boolean Satisfia-
bility (SAT) is a problem which appears often. MiniSAT
is a popular SAT solver. The satisfiability community has
advanced rapidly since the turn of the century. This has
been due in part to a series of competitions. These include
the “MiniSAT hack track”, which is specifically designed to
encourage humans to make small changes to the MiniSAT
code. The new code is available after each competition.
MiniSAT and a number of human variants were given to
GI and it was asked to evolve a new variant specifically
designed to work better on a software engineering problem
(interaction testing) [Petke et al., 2014b]. At GECCO 2014
it received a Human Competitive award (HUMIE) [Petke et
al., 2014a].

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

SP

SP

SP

SP

L1 (16, 32 or 48KB)

PCI Express

PC

Input Assembler

Thread Execution Manager

L1

shared 48, 32 or 16KB

Textures

"constant" Read Only

T
hr

ea
d

Pr
oc

es
so

r

Off chip memory

L2 CACHE L2 CACHE

Fig. 4. Tesla K20c contains 13 SMX multiprocessors, a PCI interface to
the host PC, thread handling logic and 4800 MBytes of on board memory.
Each SMX contains 192 stream processors (only one SMX shown).

16

-36
-30

-24
-18

-12
-6

 0
 6

-102
-104

-106
-108

0
102

104

106

108

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 Better
Worse

Slower

Faster

Change in Quality

Change in Instructions

Fig. 5. Histogram of impact on speed and solution quality made by
single mutations to Bowtie2 when running a random test case (Section III).
Although many mutations cause Bowtie2 to fail (not plotted) and others
cause it to produced very poor solutions (e.g. reducing by 36, left) others
have less dramatic impact. Some slow Bowtie2 and others make it faster.
However many changes have no impact on quality (although they may
charge Bowtie2’s speed, plotted along x=0). Indeed a large number do not
change its speed either (note spike at the origin). There are even a few
mutations which give better quality solutions. It is from these GP evolves
a seventy fold speed up. Note non-linear scales.

VI. BABEL PIDGIN: CREATING AND INCORPORATING
NEW FUNCTIONALITY

Another prize winning genetic programing based technique
has recently been demonstrated to be able to extend the
functionality of existing code [Harman et al., 2014]. GP,
including human hints, was able to evolved new functionality
externally and then search based techniques [Harman, 2011]
were used to graft the new code into an existing program
(pidgin) of more than 200 000 lines of C++.

VII. CONCLUSION: SOFTWARE IS NOT FRAGILE

There has been a tremendous fear of making random changes
to programs. It was felt that any unthinking change must
damage the software. Indeed a single random change may do
so. However software engineers have long been familiar with
mutation testing [DeMillo and Offutt, 1991; Langdon et al.,
2010], in which bugs are deliberately seeded into programs
in order to gauge the effectiveness of test methods at finding
bugs. One of the lessons of mutation testing has been that
there are some “stubborn” mutants which are very hard to
detect by testing [Yao et al., 2014]. In other words some
mechanically introduced changes to the code have little effect
on its operation. That is, not all changes damage the code.
Figure 5 shows an experiment (from Section III) in which the
random changes made by genetic programming in the initial
generation (i.e. before selection) were done thousands of
times. For each mutation the program (Bowtie2) was run and
the difference made by the mutation was recorded. Figure 5
plots both the change in solution quality and speed for each
run. Notice (left hand side) some changes do indeed cause
Bowtie2 to fail or generate junk results. However Figure 5
is dominated by a large spike at the origin corresponding to
mutations which changes neither speed nor solution quality.
There are even some mutants which produce slightly better
answers.

[Schulte et al., 2014] recently investigated the software
mutational robustness of twenty two diverse programs and
found consistently about a third of mutations do not cause the
program to fail under testing. Whilst most investigations have
mutated source code, similar robustness has been reported at
assembler code end even binaries [Schulte et al., 2013]. So
yes, a single random change may break code, but if you
are prepared to create a population of mutated programs,
some programs in it may be broken but others may run ok.
Evolutionary techniques select the better ones, the fitter ones,
and create further changes to them. Using survival of the
fitness [Darwin, 1859] over time the population can evolve
to contain highly fit programs.

Genetic programming aims to tackle, what John Koza
called the “S word” in AI, the Scaling problem. Recently
there has been considerable progress not so much by evolving
complete system from scratch but either by evolving modest
code to glue large systems together from existing components
or by evolving small changes to existing programs which
make large improvements to them.

REFERENCES

[Altschul et al., 1997] Stephen F. Altschul, Thomas L. Madden, Alejan-
dro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J.
Lipman. Gapped BLAST and PSI-BLAST a new generation of protein
database search programs. Nucleic Acids Research, 25(17):3389–3402,
1997.

[Arcuri and Yao, 2008] Andrea Arcuri and Xin Yao. A novel co-
evolutionary approach to automatic software bug fixing. In Jun Wang,
editor, 2008 IEEE World Congress on Computational Intelligence, pages
162–168, Hong Kong, 1-6 June 2008. IEEE Computational Intelligence
Society, IEEE Press.

[Barr et al., 2014] Earl T. Barr, Yuriy Brun, Premkumar Devanbu, Mark
Harman, and Federica Sarro. The plastic surgery hypothesis. In
Alessandro Orso, Margaret-Anne Storey, and Shing-Chi Cheung, editors,
22nd ACM SIGSOFT International Symposium on the Foundations of
Software Engineering (FSE 2014), Hong Kong, 16 2014.

[Burke et al., 2013] Edmund K Burke, Michel Gendreau, Matthew Hyde,
Graham Kendall, Gabriela Ochoa, Ender Ozcan, and Rong Qu. Hyper-
heuristics: a survey of the state of the art. Journal of the Operational
Research Society, 64(12):1695–1724, December 2013.

[Cadar et al., 2010] Cristian Cadar, Peter Pietzuch, and Alexander L. Wolf.
Multiplicity computing: a vision of software engineering for next-
generation computing platform applications. In Kevin Sullivan, editor,
Proceedings of the FSE/SDP workshop on Future of software engineering
research, FoSER ’10, pages 81–86, Santa Fe, New Mexico, USA, 7-11
November 2010. ACM.

[Darwin, 1859] Charles Darwin. The Origin of Species. John Murray,
penguin classics, 1985 edition, 1859.

[DeMillo and Offutt, 1991] Richard A. DeMillo and A. Jefferson Offutt.
Constraint-based automatic test data generation. IEEE Transactions on
Software Engineering, 17(9):900–910, 1991.

[Feldt, 1998] Robert Feldt. Generating diverse software versions with
genetic programming: an experimental study. IEE Proceedings - Soft-
ware Engineering, 145(6):228–236, December 1998. Special issue on
Dependable Computing Systems.

[Forrest et al., 2009] Stephanie Forrest, ThanhVu Nguyen, Westley
Weimer, and Claire Le Goues. A genetic programming approach to
automated software repair. In Guenther Raidl, Franz Rothlauf, Giovanni
Squillero, Rolf Drechsler, Thomas Stuetzle, Mauro Birattari, Clare Bates
Congdon, Martin Middendorf, Christian Blum, Carlos Cotta, Peter
Bosman, Joern Grahl, Joshua Knowles, David Corne, Hans-Georg
Beyer, Ken Stanley, Julian F. Miller, Jano van Hemert, Tom Lenaerts,
Marc Ebner, Jaume Bacardit, Michael O’Neill, Massimiliano Di Penta,
Benjamin Doerr, Thomas Jansen, Riccardo Poli, and Enrique Alba,
editors, GECCO ’09: Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, pages 947–954, Montreal, 8-12
July 2009. ACM. Best paper.

17

http://dx.doi.org/10.1093/nar/25.17.3389
http://dx.doi.org/10.1093/nar/25.17.3389
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://earlbarr.com/publications/psh.pdf
http://earlbarr.com/publications/psh.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burke2013.html
http://dx.doi.org/10.1145/1882362.1882380
http://dx.doi.org/10.1109/32.92910
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/feldt_1998_gdsvGPes.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html

[Freitas, 1997] Alex A. Freitas. A genetic programming framework for
two data mining tasks: Classification and generalized rule induction. In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max
Garzon, Hitoshi Iba, and Rick L. Riolo, editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 96–101,
Stanford University, CA, USA, 13-16 July 1997. Morgan Kaufmann.

[Gabel and Su, 2010] Mark Gabel and Zhendong Su. A study of the
uniqueness of source code. In Proceedings of the eighteenth ACM SIG-
SOFT international symposium on Foundations of software engineering,
FSE ’10, pages 147–156, New York, NY, USA, 2010. ACM.

[Harman et al., 2012] Mark Harman, William B. Langdon, Yue Jia,
David R. White, Andrea Arcuri, and John A. Clark. The GISMOE
challenge: Constructing the Pareto program surface using genetic pro-
gramming to find better programs. In The 27th IEEE/ACM International
Conference on Automated Software Engineering (ASE 12), pages 1–14,
Essen, Germany, September 3-7 2012. ACM.

[Harman et al., 2014] Mark Harman, Yue Jia, and William B. Langdon.
Babel pidgin: SBSE can grow and graft entirely new functionality into a
real world system. In Claire Le Goues and Shin Yoo, editors, Proceedings
of the 6th International Symposium, on Search-Based Software Engi-
neering, SSBSE 2014, volume 8636 of LNCS, pages 247–252, Fortaleza,
Brazil, 26-29 August 2014. Springer. Winner SSBSE 2014 Challange
Track.

[Harman, 2011] Mark Harman. Software engineering meets evolutionary
computation. Computer, 44(10):31–39, October 2011. Cover feature.

[Hussain and Malliaris, 2000] Daniar Hussain and Steven Malliaris. Evolu-
tionary techniques applied to hashing: An efficient data retrieval method.
In Darrell Whitley, David Goldberg, Erick Cantu-Paz, Lee Spector, Ian
Parmee, and Hans-Georg Beyer, editors, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), page 760, Las
Vegas, Nevada, USA, 10-12 July 2000. Morgan Kaufmann.

[Hutchins et al., 1994] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and control-flow-based test
adequacy criteria. In Proceedings of 16th International Conference on
Software Engineering, ICSE-16, pages 191–200, May 1994.

[Jacob, 2001] Christian Jacob. Illustrating Evolutionary Computation with
Mathematica. Morgan Kaufmann, 2001.

[Kessentini et al., 2011] Marouane Kessentini, Wael Kessentini, Houari
Sahraoui, Mounir Boukadoum, and Ali Ouni. Design defects detection
and correction by example. In 19th IEEE International Conference on
Program Comprehension (ICPC 2011), pages 81–90, Kingston, Canada,
22-24 June 2011.

[Kordon, 2010] Arthur K. Kordon. Applying Computational Intelligence
How to Create Value. Springer, 2010.

[Kovacic and Sarler, 2014] Miha Kovacic and Bozidar Sarler. Genetic
programming prediction of the natural gas consumption in a steel plant.
Energy, 66(1):273–284, 1 March 2014.

[Koza, 1992] John R. Koza. Genetic Programming: On the Programming
of Computers by Natural Selection. MIT press, 1992.

[Langdon and Barrett, 2004] W. B. Langdon and S. J. Barrett. Genetic
programming in data mining for drug discovery. In Ashish Ghosh
and Lakhmi C. Jain, editors, Evolutionary Computing in Data Mining,
volume 163 of Studies in Fuzziness and Soft Computing, chapter 10,
pages 211–235. Springer, 2004.

[Langdon and Harman,] William B. Langdon and Mark Harman. Opti-
mising existing software with genetic programming. IEEE Transactions
on Evolutionary Computation. Accepted.

[Langdon and Harman, 2010] W. B. Langdon and M. Harman. Evolving a
CUDA kernel from an nVidia template. In Pilar Sobrevilla, editor, 2010
IEEE World Congress on Computational Intelligence, pages 2376–2383,
Barcelona, 18-23 July 2010. IEEE.

[Langdon et al., 2014] William B. Langdon, Marc Modat, Justyna Petke,
and Mark Harman. Improving 3D medical image registration CUDA
software with genetic programming. In Christian Igel, Dirk V. Arnold,
Christian Gagne, Elena Popovici, Anne Auger, Jaume Bacardit, Dimo
Brockhoff, Stefano Cagnoni, Kalyanmoy Deb, Benjamin Doerr, James
Foster, Tobias Glasmachers, Emma Hart, Malcolm I. Heywood, Hitoshi
Iba, Christian Jacob, Thomas Jansen, Yaochu Jin, Marouane Kessentini,
Joshua D. Knowles, William B. Langdon, Pedro Larranaga, Sean Luke,
Gabriel Luque, John A. W. McCall, Marco A. Montes de Oca, Alison
Motsinger-Reif, Yew Soon Ong, Michael Palmer, Konstantinos E. Par-
sopoulos, Guenther Raidl, Sebastian Risi, Guenther Ruhe, Tom Schaul,
Thomas Schmickl, Bernhard Sendhoff, Kenneth O. Stanley, Thomas
Stuetzle, Dirk Thierens, Julian Togelius, Carsten Witt, and Christine
Zarges, editors, GECCO ’14: Proceeding of the sixteenth annual confer-

ence on genetic and evolutionary computation conference, pages 951–
958, Vancouver, BC, Canada, 12-15 July 2014. ACM.

[Langdon and Harman, 2014] William B. Langdon and Mark Harman.
Genetically improved CUDA C++ software. In M. Nicolau, K. Krawiec,
M. I. Heywood, M. Castelli, P. Garci-Sanchez, J. J. Merelo, V. M. R.
Santos, and K. Sim, editors, 17th European Conference on Genetic
Programming, volume 8599 of LNCS, pages 87–99, Granada, Spain, 23-
25 April 2014. Springer.

[Langdon and Poli, 2005] William B. Langdon and Riccardo Poli. Evolv-
ing problems to learn about particle swarm and other optimisers. In David
Corne, Zbigniew Michalewicz, Marco Dorigo, Gusz Eiben, David Fogel,
Carlos Fonseca, Garrison Greenwood, Tan Kay Chen, Guenther Raidl,
Ali Zalzala, Simon Lucas, Ben Paechter, Jennifier Willies, Juan J. Merelo
Guervos, Eugene Eberbach, Bob McKay, Alastair Channon, Ashutosh
Tiwari, L. Gwenn Volkert, Dan Ashlock, and Marc Schoenauer, editors,
Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
volume 1, pages 81–88, Edinburgh, UK, 2-5 September 2005. IEEE
Press.

[Langdon et al., 2010] William B. Langdon, Mark Harman, and Yue Jia.
Efficient multi-objective higher order mutation testing with genetic
programming. Journal of Systems and Software, 83(12):2416–2430,
December 2010.

[Langdon, 2004] W. B. Langdon. Global distributed evolution of L-
systems fractals. In Maarten Keijzer, Una-May O’Reilly, Simon M.
Lucas, Ernesto Costa, and Terence Soule, editors, Genetic Programming,
Proceedings of EuroGP’2004, volume 3003 of LNCS, pages 349–358,
Coimbra, Portugal, 5-7 April 2004. Springer-Verlag.

[Le Goues et al., 2012] Claire Le Goues, Michael Dewey-Vogt, Stephanie
Forrest, and Westley Weimer. A systematic study of automated program
repair: Fixing 55 out of 105 bugs for $8 each. In Martin Glinz, editor,
34th International Conference on Software Engineering (ICSE 2012),
pages 3–13, Zurich, June 2-9 2012.

[Le Goues et al., 2012b] Claire Le Goues, ThanhVu Nguyen, Stephanie
Forrest, and Westley Weimer. GenProg: A generic method for automatic
software repair. IEEE Transactions on Software Engineering, 38(1):54–
72, January-February 2012.

[Lohn and Hornby, 2006] Jason D. Lohn and Gregory S. Hornby. Evolv-
able hardware using evolutionary computation to design and optimize
hardware systems. IEEE Computational Intelligence Magazine, 1(1):19–
27, February 2006.

[Martin, 2000] Peter Martin. Genetic programming for service creation in
intelligent networks. In Riccardo Poli, Wolfgang Banzhaf, William B.
Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty, editors,
Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of
LNCS, pages 106–120, Edinburgh, 15-16 April 2000. Springer-Verlag.

[Moore, 1965] Gordon E. Moore. Cramming more components onto
integrated circuits. Electronics, 38(8):114–117, April 19 1965.

[Nguyen et al., 2013] Hoang Duong Thien Nguyen, Dawei Qi, Abhik
Roychoudhury, and Satish Chandra. SemFix: program repair via semantic
analysis. In Betty H. C. Cheng and Klaus Pohl, editors, 35th International
Conference on Software Engineering (ICSE 2013), pages 772–781, San
Francisco, USA, May 18-26 2013. IEEE.

[Petke et al., 2014a] Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer. Using genetic improvement & code transplants
to specialise a C++ program to a problem class. 11th Annual Humies
Awards 2014, 14 July 2014. Winner Silver.

[Petke et al., 2014b] Justyna Petke, Mark Harman, William B. Langdon,
and Westley Weimer. Using genetic improvement and code transplants to
specialise a C++ program to a problem class. In M. Nicolau, K. Krawiec,
M. I. Heywood, M. Castelli, P. Garci-Sanchez, J. J. Merelo, V. M. R.
Santos, and K. Sim, editors, 17th European Conference on Genetic
Programming, volume 8599 of LNCS, pages 137–149, Granada, Spain,
23-25 April 2014. Springer.

[Podgornik et al., 2011] Bojan Podgornik, Vojteh Leskovsek, Miha Ko-
vacic, and Josef Vizintin. Analysis and prediction of residual stresses
in nitrided tool steel. Materials Science Forum, 681, Residual Stresses
VIII:352–357, March 2011.

[Poli et al., 2008] Riccardo Poli, William B. Langdon, and
Nicholas Freitag McPhee. A field guide to genetic programming.
Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008. (With
contributions by J. R. Koza).

[Reynolds, 2011] Craig Reynolds. Interactive evolution of camouflage.
Artificial Life, 17(2):123–136, Spring 2011.

18

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Freitas_1997_GPf2dm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Gabel_2010_FSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2012_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2011_ieeeC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Hussain_2000_GECCO.html
http://dx.doi.org/10.1109/ICSE.1994.296778
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jacob_2001_iecm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kessentini_2011_ICPC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kordon_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kovacic_2014_energy.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_ECDM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2014_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2005_CECb.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2004_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tse_GouesNFW12.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tse_GouesNFW12.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lohn_2006_iCIm.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/martin_2000_GPscin.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Nguyen_2013_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_humie.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Podgornik_2011_MSF.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Podgornik_2011_MSF.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.lulu.com/shop/riccardo-poli-and-william-b-langdon-and-nicholas-freitag-mcphee/a-field-guide-to-genetic-programming/ebook/product-17447670.html
http://www.gp-field-guide.org.uk
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Reynolds_2011_ALife.html

[Risco-Martin et al., 2014] Jose L. Risco-Martin, J. Manuel Colmenar,
J. Ignacio Hidalgo, Juan Lanchares, and Josefa Diaz. A methodology to
automatically optimize dynamic memory managers applying grammatical
evolution. Journal of Systems and Software, 91:109–123, 2014.

[Rodriguez-Mier et al., 2010] Pablo Rodriguez-Mier, Manuel Mucientes,
Manuel Lama, and Miguel I. Couto. Composition of web services
through genetic programming. Evolutionary Intelligence, 3(3-4):171–
186, 2010.

[Romero et al., 2013] Juan Romero, Penousal Machado, and Adrian Car-
ballal. Guest editorial: special issue on biologically inspired music,
sound, art and design. Genetic Programming and Evolvable Machines,
14(3):281–286, September 2013. Special issue on biologically inspired
music, sound, art and design.

[Schulte et al., 2013] Eric Schulte, Jonathan DiLorenzo, Westley Weimer,
and Stephanie Forrest. Automated repair of binary and assembly
programs for cooperating embedded devices. In Proceedings of the
eighteenth international conference on Architectural support for pro-
gramming languages and operating systems, ASPLOS 2013, pages 317–
328, Houston, Texas, USA, March 16-20 2013. ACM.

[Schulte et al., 2014] Eric Schulte, Zachary P. Fry, Ethan Fast, Westley
Weimer, and Stephanie Forrest. Software mutational robustness. Genetic
Programming and Evolvable Machines, 15(3):281–312, September 2014.

[Stam, 2008] Joe Stam. Stereo imaging with CUDA. Technical report,
nVidia, V 0.2 3 Jan 2008.

[Weimer et al., 2009] Westley Weimer, ThanhVu Nguyen, Claire Le
Goues, and Stephanie Forrest. Automatically finding patches using ge-
netic programming. In Stephen Fickas, editor, International Conference
on Software Engineering (ICSE) 2009, pages 364–374, Vancouver, May
16-24 2009.

[Weimer et al., 2010] Westley Weimer, Stephanie Forrest, Claire Le Goues,
and ThanhVu Nguyen. Automatic program repair with evolutionary
computation. Communications of the ACM, 53(5):109–116, June 2010.

[White et al., 2011] David R. White, Andrea Arcuri, and John A. Clark.
Evolutionary improvement of programs. IEEE Transactions on Evolu-
tionary Computation, 15(4):515–538, August 2011.

[Yao et al., 2014] Xiangjuan Yao, Mark Harman, and Yue Jia. A study
of equivalent and stubborn mutation operators using human analysis of
equivalence. In Lionel Briand, Andre van der Hoek, and Pankaj Jalote,
editors, ICSE, pages 919–930, Hyderbad, 31 May-7 June 2014. ACM.

19

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin_2014_JSS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/RiscoMartin_2014_JSS.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Rodriguez-Mier_2010_EI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Romero_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Romero_2013_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2013_ARB_2451116_2451151.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://dx.doi.org/10.1145/2568225.2568265

	Introduction
	Auto Porting Functionality
	Bowtie2GP Improving 50000 lines of C++
	Improving Parallel Processing CUDA Code Written by Experts
	MiniSAT: Improving Boolean Satisfiability Code Written by Experts
	Babel Pidgin: Creating and Incorporating New Functionality
	Conclusion: Software is Not Fragile
	References

