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Synopsis
Estimating axonal permeability reliably is extremely important, however not yet achieved because mathematical models that express its
relationship to the MR signal accurately are intractable. Recently introduced machine learning based computational model showed to
outperforms previous approximate mathematical models. Here we apply and validate this novel method experimentally on a highly
controlled in-vivo mouse model of axonal demyelination, and demonstrate for the first time in practice the power of machine learning as a
mechanism to construct complex biophysical models for quantitative MRI.

Introduction
Quantitative MRI relies on biophysical models to relate MR signals to tissue properties, but mathematical models rapidly become intractable beyond
very simple descriptions of tissue, and parameters such as permeability remain elusive. A recent study  demonstrated that using machine learning we
can construct a computational model that outperforms approximate mathematical models in estimating permeability via the residence time τ  of water
inside axons. τ  is a potentially important biomarker for white matter pathologies, as myelin damage is hypothesized to affect axonal permeability, and
thus τ .

Here we for the first time apply and validate this novel idea on a highly controlled in-vivo mouse model of axonal demyelination. We use Monte Carlo
simulations and random forest (RF) regression  to build a mapping between diffusion-weighted MR signals and ground-truth microstructure
parameters. We then estimate differences in τ  between in-vivo healthy and cuprizone-treated (CPZ) mice brain, a well-known model of white matter
(WM) demyelination.

Methods
In-vivo data. We used a diffusion-weighted Pulsed-Gradients-Spin-Echo (DW-PGSE) protocol (Tab.1). We scanned sixteen C57BL6J mice on
BrukerBioSpec 11.7T: eight CPZ mice at 6 weeks post intoxication (0.2% cuprizone) and eight healthy age-matched wild-type (WT) mice of the same
background (data available on https://zenodo.org/record/996889#.WgH5E9vMx24). Images are corrected for eddy-currents using FSL-eddy. DTI and
NODDI  maps are computed for comparison.

Simulation data. We used MC simulations in CAMINO . To mimic the in-vivo mouse brain, WM was modelled as a collection of non-abutting parallel
cylinders with gamma-distributed radii with parameters randomly selected for 11000 substrates in the ranges: mean and standard deviation of axonal
radius μ ∈[0.1,1.0]μm and σ ∈[min(0.1,μ /5),μ /2]μm, intra-axonal volume fraction f ∈[0.40,0.75], τ ∈[0.02,1.00]s, intrinsic diffusivity
d∈[0.8,2.2]μm /ms. Signal-to-noise ratio 30.

Data quality test. We assessed the sensitivity of our imaging protocol to τ  using synthetic data as in , and the quality of the synthetic data by direct
comparison with the in-vivo data.

Machine Learning. We adapted the well-known RF regressor in the scikit-learn toolkit  to learn the mapping between the microstructure parameters
defining our simulation substrates and the normalized DW-MRI signal (Fig.1). The RF had decision trees/maximum depth=100/20. We trained the RF
on simulated data using 11000 feature vectors (synthetic diffusion-weighted signals) through a greedy splitting process that constructs a linear
mapping from the features to the corresponding ground truth parameters. The trained RF estimates f , τ  and d, which we tested on simulated data
using 1500 previously unseen feature vectors and then applied on in-vivo data. We manually segmented the corpus callosum (CC) and Fornix and
compared WT and CPZ mice estimates using 2-tailed t-test with equal variance.

Results
Data quality test. Fig.2A shows that our imaging protocol has good sensitivity to τ , with sufficient change in DW-MRI signal to provide reliable τ
estimates for τ ≤500 ms. Fig.2B shows an excellent match between the simulated and in-vivo diffusion-weighted signals, demonstrating that our
training data set is a good representation of the in-vivo data.

Simulation data estimates. Testing shows strong correlations between RF estimates and the ground truth parameters (R =0.86/0.94/0.88 for f /τ /d
respectively). A comprehensive sensitivity/accuracy analysis of the proposed method is the subject of another abstract that we submitted to this
symposium.
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Machine Learning. Fig.3 shows parametric maps from the in-vivo data (WT versus CPZ) of conventional DTI, NODDI orientation-dispersion index
(ODI) and using RF approach. RF estimates in CPZ mice show a statistical significant reduction in f , and τ  compared to WT (Fig.4). DTI shows
reduction in FA and increase in RD, in agreement with . ODI is not statistical different between the two groups (Fig.4). An electron microscopy image
of CC is also reported to show the underpinning microstructural changes in the tissue: demyelination and partial axonal loss.

Discussion and Conclusion
Our analysis of DW-MRI from a well-known mouse model of WM demyelination (Fig.3,4) shows that machine learning approach allows an accurate
and robust estimation of the expected changes in tissue-microstructure. While DTI gave only indirect information, our model found: 1) a decrease in f
as direct measure of partial axonal loss; 2) a decrease in τ  as direct measure of axonal membrane permeability increase due to demyelination.
Furthermore, our estimates show no bias due to fiber orientation dispersion, as shown by the negligible changes in ODI. Finally, our results match the
expected tissue-microstructure changes (electron microscopy in Fig.3).

Standard methods for estimating permeability so far have been using the Karger model , however in  has been shown that machine learning
approach works much better. Here we provide a clear validation of the machine learning approach introduced in  affirming a wider potential of the
approach as a mechanism to construct complex biophysical models for quantitative MRI.
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Fig.1 A schematic overview of how testing, training and estimation is done with random forest regression.
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Tab.1 Summary of the PGSE EPI sequence parameters used to simulate and acquire data.

Fig.2 A) DW-MR signal sensitivity to changes in τ , for different tissue substrates simulated (f  = 0.4,0.7; μ =0.1,1.0 μm). Sensitivity is defined as Δ
S(τ ) = |S(τ )-S(τ+h)| / h, where h was set equal to 0.05 s. Red planes denote the noise level. B) Comparison between experimental and simulated
signal intensity as a function of the angle between the diffusion gradients and the cylindrical fibres axis θ (in degrees), for different diffusion gradient
strength, G  = 50-500 mT/m, and diffusion gradient separation Δ=10.8 ms (blue lines) and 20.0 ms (green lines). Dashed black line in experimental
data represent the noise level.

Fig.3 Parametric maps obtained from conventional DTI at b=1500 s/mm  (axial and radial diffusivity, AD and RD, and fractional anisotropy FA), RF
approach (f , τ , d) and NODDI ODI. Diffusivities are in µm /ms and τ  in seconds. The mask of the CC (and Fornix) is obtained by applying the

i i R h
i i i

1-7

2

i i 2 i
(3)

https://submissions.mirasmart.com/ISMRM2018/ViewSubmissionFile.aspx?sbmID=7098&fileID=2
https://submissions.mirasmart.com/ISMRM2018/ViewSubmissionFile.aspx?sbmID=7098&fileID=3
https://submissions.mirasmart.com/ISMRM2018/ViewSubmissionFile.aspx?sbmID=7098&fileID=4


08/11/2017, 09*32

Page 4 of 4https://submissions.mirasmart.com/ISMRM2018/ViewSubmission.aspx?sbmID=7098

following constraints: C =(λ -λ )/λ >0.5, C =(λ -λ )/λ <0.3, third component of the main DTI eigenvector, |e |>0.8. Some partial volume effects are
visible at the border of the masked regions. For this reason, only the central portions of the masked CC and Fornix were considered for the statistical
analysis in Fig.4.

Fig.4 Box-and-whisker plots of region-specific comparison between WT (N=8) and CPZ (N=8). DTI metrics (AD, RD, FA), RF metrics (f , τ , d) and
NODDI ODI were evaluated within the splenium (S-CC), body (B-CC) and genu (G-CC) of the Corpus Callosum (CC) and Fornix. Statistical
significance was assessed by using 2-tailed t-test with equal variance and significance level *=0.01,**=0.005,***=0.001. N.s. stands for non-
significant.
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