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Abstract. A seismic vulnerability analysis of a multi-span simply supported bridge is often
based on the seismic response of the most critical pier. This response is influenced by different
collapse modes (flexural, shear, second order effects, lap-splice of longitudinal bars or their
buckling). Among these the flexural behaviour is important and it’s known if the equivalent
plastic hinge length and the Moment-Curvature law of the fixed end are given. This paper pro-
vides a closed-form dimensionless solution to obtain a 5 point Moment-Curvature diagram for
circular RC section. The solution is based only on three parameters: dimensionless axial force,
mechanical percentage of longitudinal reinforcement, geometrical percentage of transversal re-
inforcement. A numerical example is presented to test the solution comparing it with a FEM
analysis.
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1 Introduction

Seismic vulnerability is an actual theme in engineering and in particular great attention has
been devoted to bridge structures in order to perform vulnerability inventory at a regional scale.
In fact for example the major part of the Italian RC bridges was built around the 1960s referring
to codes with no ”anti seismic philosophy” [1] and studies based on the monitoring of bridges
[2] support the need of the above mentioned inventory. Moreover a bridge can often be a crucial
node of a transport web and thus it’s performance has to be guaranteed even in the moments next
to an earthquake [3]. Hence having an inventory of the structural performances of the bridges in
a region is a central question in order to plan mitigation actions. Considering the large amount
of the structures to analyze and the shortage of the resources to do that, it is impossible to
perform detailed analysis to obtain capacity curves (e.g. Pushover Analysis). Usually regional
scale analysis resorts to typological or semi empirical vulnerability methods but in this paper it’s
used a procedure that is based on rational mechanics with whom the ultimate displacement of a
multi span bridge can be obtained with small computational effort and with few input data. Bas-
ing on the so called ”Simplified Pushover Analysis”[4], instead of performing a full structural
analysis under pushing loads, the vulnerability of the bridge is directly expressed by the capac-
ity curve of an equivalent SDoF system. Moreover, given that the energy dissipation capacity
of a simply supported bridge is concentrated in the piers and the deck usually remains elastic,
in the simplified analysis only the piers contribute to model the SDoF system. The most critical
pier of the bridge can be defined as the one that exibits the greater seismic demand/capacity
ratio at a given limit state (fig.1). Often the capacity curve of the most critical pier is a good ap-
proximation of the capacity curve of the whole bridge. In this procedure [5] the capacity curve
of the most critical pier, expressed in terms of Moment-Displacement (M − δ), is obtained
taking into account the flexural behaviour (Moment-Curvature curve of the base section) and
all the other collapse modes (shear, second order effects, lap-splice of longitudinal bars or their
buckling) that can anticipate the flexural collapse. In this paper is proposed a procedure with
which the Moment-Curvature (M − ϕ) relationship of an RC section is calculated by defining
the position of 5 characteristic points. Each of these is defined in a closed form depending on
3 parameters: dimensionless axial force, mechanical percentage of longitudinal reinforcement,
geometrical percentage of transversal reinforcement. The basic concept is that knowing only
a few parameters like geometry and amount of reinforcement, for example through a simple
inspection, it is possible to perform a first level vulnerability analysis of a group of circular col-
umn multi span simply supported bridges. The approach herein proposed is based on realistic
stress-strain relationships for both concrete and steel and its reliability is proved analyzing a
numerical example and comparing it with a FEM non linear analysis.

2 Summary of the procedure

The Moment-Curvature relationship is obtained defining the position of 5 characteristic
points (defined later). Moment and curvature of each of these points are predicted through a
5th grade polynomial. It was created a database of Moment-Curvature analysis conducted with
the software KSU RC [6]. The results are processed in MATLAB in order to define the charac-
teristic points of each (M −ϕ) curve. Finally the polynomials are obtained with a least squares
method linear regression.

2



Domenico Raffaele, Roberto Gentile and Mauro Mezzina

Figure 1: Determination of the critical pier.

3 Selecting the problem parameters

The parameters involved in the definition of the flexural behaviour of an RC circular sec-
tion are several: radius R, clear cover c, normal force N , compression strength of concrete
in unconfined conditions fc, tension strength of concrete fct, concrete’s modulus of elasticity
Ec, yielding strength of longitudinal and transversal reinforcement fys, fyh, moduli of elastic-
ity of the steel Es, Eh, number and diameter of longitudinal reinforcement nl, dl, diameter and
spacing of transversal reinforcement dh, s. It is clear that, for the scope of this work, it’s incon-
venient to have a so large number of parameters and for this reason some hypothesis have been
made:

• concrete tension strength fct has been related to its compression strength according to a
relationship contained in the Italian code [7]:

ft = 0.3f
2
3
c . (1)

Finally the relation

fct = 1.2ft(NTC08) (2)

is used in order to consider the flexural tension strength;

• the transversal reinforcement steel has the same characteristics of the one used for longi-
tudinal reinforcement. So

fyh = fy and Esh = Es; (3)

3



Domenico Raffaele, Roberto Gentile and Mauro Mezzina

• longitudinal reinforcement is composed by nl evenly distributed bars of equal diameter
dl. So the total area of longitudinal steel is

As =
nl(πd

2
l )

4
; (4)

• the clear cover is proportional to the radius of the section according to:

c = 0.05R. (5)

The remaining parameters of the problem are grouped into 3 dimensionless parameters (di-
mensionless axial force ν, mechanical percentage of longitudinal reinforcement ω, geometrical
percentage of transversal reinforcement ρ) so that a circular RC section is completely defined
by them:

ν =
N

πfcR2
(6)

ω =
Asfy
πfcR2

(7)

ρsp =
4Asp

(2R− 2c)s
. (8)

The idea is that a variation in ν can be seen as a variation in the normal force N , the concrete
compression strength fc or the radius R and similarly for the equations 7 and 8.

4 Parameters’ ranges

In order to create the database cited in par.2 it’s been selected a plausible range for each
of the three parameters (ν, ω, ρ). Then, picked up enough discrete values in these intervals,
it’s been conducted a Moment-Curvature analysis for each combination (462 analysis) of them
using the software KSU RC.

4.1 Axial force

It’s been considerated the entire range of variation for this parameter (from 0 to 1) and the
11 chosen discrete values are:

ν = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. (9)

For the analysis in KSU RC it’s been fixed R = 1m and fc = 31.83Mpa so the value of N
corresponding to ν it’s been calculated with eq. 6.
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4.2 Longitudinal reinforcement

It’s been chosen a range between 0.05 and 0.8 and in particular the 6 values:

ω = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8}. (10)

For the numerical analysis it’s been fixed fy = 450MPa and nl = 22 so the cross sectional
area of a single rebar it’s been calculated using eqs. 7 and 4.

4.3 Transversal reinforcement

The range of this parameter goes from 0 to 0.01 and in particular the 7 values:

ρsp = {0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.010}. (11)

Fixing the spacing of the stirrups (s = 0.1m), according to the fixed values mentioned in
pars.4.1 and 4.2 and knowing the value of the clear cover (eq.5) the cross sectional area of the
stirrup has been calculated using eq.8.

5 Execution of the analysis

For each combination of the parameters mentioned in par.4 (hence 11x6x7=462) it’s been
conducted a Moment-Curvature analysis using the software KSU RC whose reliability has been
proved [6]. The cross section is divided into fibers and a stress-strain relationship is assigned to
each of them. Concrete follows the relationship proposed by Mander [8] in order to model the
different behaviour (fig.2) of concrete in the core (confined) and in the cover (unconfined). In
order to model the behaviour of steel KSU RC uses a stress-strain relationship, proposed by the
owner of the software, that brings to results in good agreement with the experiments. The curve
(fig.3) is assumed linear up to the yielding, has a constant tension until a strain of K1 times the
yielding strain and then is parabolic. The peak of the parabola corresponds to a strain of K2

times the yielding strain and the ultimate point corresponds to a strain of K3 times the yielding
strain. The peak strength is equal to K4 times the yielding strength. For this study the values
used are such that the curve best approximates the real behaviour of the most common italian
steel. In particular: K1 = 10, K2 = 30, K3 = 55, K4 = 1.3.

The output of the software is a 7-column array containing curvature, moment, neutral axis,
strain in the furthermost fiber of the concrete core, strain of the extreme tension rebar and axial
force.

6 Post processing

It’s been projected a MATLAB function that analyzes each (M − ϕ) curve in order to obtain
a 5-point curve (an example can be seen in fig.5). The function input is the 7-column array
obtained from the output of KSU RC. The characteristic points of the (M − ϕ) curve chosen
are:

Cracking If the curve presents a softening branch at cracking this point is exactly the start of
this branch. If else this branch isn’t appreciable, and this can occur for great values of
the axial force, the cracking point assumed is the one that induces a strain of εct in the
furthermost concrete fibre in the section (fig.4).In particular the function finds the value
of εc that satisfy eq:
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Figure 2: Mander stress-strain relationship for confined and unconfined concrete.

Figure 3: Stress-strain relationship for steel.

D − x
x− c

εc = εct (12)

where

εct =
fct
Ec

. (13)

First Yield This point is defined as the point on (M−ϕ) curve when the reinforcement furthest
from the neutral axis attains the first yield, or when extreme concrete compression fibre
attains a strain of 0.002, which ever occurs first [9].

Spalling The point of the (M −ϕ) response that induces a strain of 0.0045 in the extreme fiber
of the cover concrete (fig. 4) according to eq:
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x

x− c
εc = εsp. (14)

Figure 4: Strain state of the section at cracking and spalling.

Peak of confined concrete Defined as the condition that causes, in the extreme core concrete
fibre, a strain corresponding to its peak in the Mander constitutive relation.

Collapse Simply the last point of the (M − ϕ) curve. It can represent both the failure due to
reaching the ultimate strain in confined concrete or in the extreme tension rebar.

Finally the curves are tranformed in dimensionless form according to:

m =
M

πR3fc
(15)

χ = 1000ϕR. (16)

Figure 5: 5-point Moment-Curvature relationship.
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7 Curve fitting

Knowing the values of the characteristic moments and curvatures for each tern of parameters
ν, ω, ρ it’s been possible to find a 5th-grade polynomial in these three variables that best fit the
data basing on a least square method linear regression. Notice that the terns with ρ = 0 are
studied only for control purposes and so they are excluded from the fitting. The structure of the
polynomials (eq.17) is shown in appendix A. It is obvious that the manual use of these functions
is practically impossible but it will be easy to use them with a simple software.

8 Numerical application

With the aim of demonstrating that the simplified procedure to evaluate the Moment-Curvature
of an RC section herein proposed can be used as a reliable input for the assessment of a simply
supported bridge (e.g. assessing the most critical pier) a numerical validation of it is presented.
The response of the base section of the most critical pier is predicted according to the character-
istic polynomials of appendix A and compared to a numerical analysis conducted with KSU RC
(fig.6). Basing on a linearisation of the (M − ϕ) relationship, the Moment-displacement curve
of the pier has been calculated according to a simplified procedure proposed by Raffaele et al.
[5] named VulPil. According to this procedure knowing the (M−ϕ) curve of the base section of
the pier and the length of the plastic hinge it can be calculated the flexural (M − δ) relationship.
Then this curve can be ”corrected” in order to take into account the different collapse modes.
It is important to notice that in this work only the (M − ϕ) curve is to be validated and so the
benchmark case is calibrated in such a way that it is only governed by the flexural behaviour.
The (M − δ) curve is compared to the results of a FEM analysis performed using SAP2000
V17. In SAP the pier has been modeled by means of 12 ”beam” elements each one discretized
into 52 fibers. It has been conducted a pushover analysis under a single horizontal load on the
top of the pier. The constitutive laws used in SAP can be seen in figs.2 and 3. According to
the simplified procedure used the behaviour of the pier depends on the presence of seismic re-
straints and this can be taken into account by considering the effective mass pertaining to the
pier. For this reason it is necessary to consider two different models, one for the transversal
and one for the longitudinal direction (they differ only for the axial force acting on the pier). In
table 1 the geometric and mechanical parameters for the pier chosen for this example. It should
be noted that the example chosen is identical to the one chosen by [5]. The reason of doing
that is to show the improvement of the (M − δ) relationship prediction due to the more refined
(M − ϕ) curve. In fact the simplified (M − δ) analysis in this example is different from the
VulPil analysis only in the definition of the (M − ϕ) curve. The resulting capacity curve for
the transversal direction is represented in fig.7 in which the curve calculated with SAP2000 has
been transformed in a bilinear curve in order to simplify the comparison.

Looking at the comparison it can be seen that the simplified procedure is close to the refined
numerical solution. There is an important improvement in the prediction of the yielding dis-
placement and the maximum moment, with respect to the VulPil procedure, due to the better
definition of the (M−ϕ) curve. Conversely it can be seen an over prediction of the ultimate dis-
placement of the pier with respect to the SAP2000 analysis. In table 2 is presented a numerical
comparison of the results in terms of ultimate moment, ultimate displacement and displacement
ductility.
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L D c nl dl dh s
[m] [m] [m] [−] [mm] [mm] [mm]

Transversal 6 2 0.05 30 26 10 100
Longitudinal 6 2 0.05 30 26 10 100

fc fct fys N ν ω ρsp
[MPa] [MPa] [MPa] [KN ] [−] [−] [−]

Transversal 20 3 450 13870 0.678 0.107 0.009
Longitudinal 20 3 450 17847 0.678 0.107 0.009

Table 1: Geometric and mechanical properties of the pier.

Figure 6: Moment-Curvature: comparison between KSU RC and the simplified procedure, transversal direction.

∆Mu ∆δu ∆µ
[%] [%] [%]

Transversal 3,23 27,36 13,14
Longitudinal 2,63 17,43 6,82

Table 2: Simplified analysis and refined FEM analysis. Numerical comparison of the results.
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Figure 7: Comparison between capacity curves, transversal direction.

9 Conclusions

The need to develop procedure for performing the vulnerability inventory of the bridges in a
specific region is a central question in order to plan mitigation actions. Most of the simplified
procedures aimed to the assessment of a simply supported bridge are based on the knowledge
of the flexural behaviour of the base section of the most critical pier. In this paper is proposed a
polynomial closed form solution to obtain a 5-point Moment Curvature curve of an RC section
knowing only few parameters. After describing the whole procedure used to obtain the above
mentioned polynomials the procedure has been applied to a benchmark case and the solution
has been compared to a FEM analysis. The differences in the results found with the simplified
procedure and the FEM analysis are quite small, especially because they are obtained with really
few input data.
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A Characteristic points polynomials

mchar (or χchar) = a1ν
5 + a2ν

4ω + a3ν
4ρsp + a4ν

4 + a5ν
3ω2 + a6ν

3ωρsp + a7ν
3ω +

+a8ν
3ρ2sp + a9ν

3ρsp + a10ν
3 + a11ν

2ω3 + a12ν
2ω2ρsp + a13ν

2ω2 + a14ν
2ωρ2sp +

+a15ν
2ωρsp + a16ν

2ω + a17ν
2ρ3sp + a18ν

2ρ2sp + a19ν
2ρsp + a20ν

2 + a21νω
4 +

+a22νω
3ρsp + a23νω

3 + a24νω
2ρ2sp + a25νω

2ρsp + a26νω
2 + a27νωρ

3
sp + a28νωρ

2
sp +

+a29νωρsp + a30νω + a31νρ
4
sp + a32νρ

3
sp + a33νρ

2
sp + a34νρsp + a35ν +

+a36ω
5 + a37ω

4ρsp + a38ω
4 + a39ω

3ρ2sp + a40ω
3ρsp + a41ω

3 + a42ω
2ρ3sp +

+a43ω
2ρ2sp + a44ω

2ρsp + a45ω
2 + a46ωρ

4
sp + a47ωρ

3
sp + a48ωρ

2
sp + a49ωρsp +

+a50ω + a51ρ
5
sp + a52ρ

4
sp + a53ρ

3
sp + a54ρ

2
sp + a55ρsp + a56.
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