
A new approach to engineering design

Christophe Prud’homme, Dimitrios Rovas, and A. T. Patera

Department of Mechanical Engineering, Room 3-243, Massachusetts Institute of Technology, Cambridge, MA,
02139-4307

Abstract. In the following paper, we present two components which have been used together to solve
engineering design problems. Firstly, we recall some results on Reduced-Basis Output Bound methods
which provide real-time outputs and their associated error estimators for a parametrized mathematical
model. Then, we propose an original architecture – called SimRes– for scientific computing which itself
comprises several components. Put together, these two components provide a complete solution for
certain classes of engineering design problems in terms of numerical methods and software.
keyworks: Blackbox Reduced-Basis output bound methods, engineering design, distributed computing,
software design and interfaces, CORBA.

Introduction

We present two components which have been used together to provide a complete solution for some engineer-
ing design problems. While these components can vary independently, they fit together quite well. The first
one is an ongoing research work on reduced-basis methods; more particularly we will examine in this paper
the two stage o↵-line/on-line blackbox reduced-basis output bound method1 for the prediction of outputs of
coercive partial di↵erential equations with a�ne parameter dependence. One essential feature of the on-line
stage, which allows both components to work well together, is that the computational complexity of this
procedure scales only with the dimension of the reduced-basis space and the parametric complexity of the
partial di↵erential operator. While the method is e�cient, it is also certain thanks to rigorous a posteriori
error bounds which allow us to retain only the minimal number of modes necessary to achieve the prescribed
accuracy in the output of interest. The technique is therefore particularly appropriate for applications such
as design and optimization, in which repeated and rapid evaluation of the output is required. In order to
illustrate the previous statement, we also developed a software architecture, called SimRes, which takes ad-
vantage of the numerical method’s features while providing an original interface using the LATEX typesetting
system and PDF 2 as its output. SimRes can be viewed as a client/server architecture whose client side can
be somewhat very simple to implement while the server side enjoys a distributed objects architecture over an
heterogeneous networked environment using the Common Object Request Broker Architecture (CORBA) [2].

In the first part of this article, we will review briefly certain aspects of the blackbox reduced-basis output
bound method, in particular we consider here equilibrium solutions of coercive problems within the context
of shape optimization; see also [4] for treatment of noncoercive equilibrium problems and [3] for symmetric
eigenvalue problems. Then we will present the architecture of SimRes and its di↵erent components. Finally,
we will illustrate both the numerical methods and the SimRes technology by a practical example, a 3D fin.

1 Numerical Method

Preliminaries

Let Y be a Hilbert space with an associated inner product (·, ·)Y and an induced norm k · kY . We define our
parameter space to be D ⇢ R; a point in that space is denoted µ. Our problem is then to find u 2 Y such
that

a(u, v;µ) = `(v), 8v 2 Y, (1)
1 For Reduced Basis methods see [1,5,6].
2 The Portable Document Format from Adobe.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/323193683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:prudhomm@mit.edu
mailto:rovas@mit.edu
mailto:patera@mit.edu

2 Christophe Prud’homme et al.

and subsequently the output of interest s(u) = `
0(u); `(·) and `0(·) are both in Y

0, the dual space of Y. The
bilinear form a is assumed to be continuous; symmetric, a(w, v;µ) = a(v, w;µ), 8w, v 2 Y ; and coercive,
a(v, v;µ) � ckvk

2
Y

> 0, 8v 2 Y,8µ 2 D, where c is a strictly positive real constant. Associated with the
above primal problem we define the dual problem for 2 Y : a(v, ;µ) = �`

0(v), 8v 2 Y . The need for
this problem will become clear in the error estimation discussion.

We next introduce a symmetric positive-definite form â(w, v), and define �
1
â
(µ) to be the minimum

eigenvalue of a(', v;µ) = �(µ)â(', v), 8v 2 Y . A lower bound for this eigenvalue is required by the output
bound procedure: we assume that a g(µ) is known such that

a(v, v;µ) � g(µ)â(v, v) > 0, 8v 2 Y and 8µ 2 D. (2)

It is also possible to include approximation of �1
â
(µ) as part of the reduced basis approximation [4].

Finally, for the blackbox method, we shall assume that, for some finite integer Q, there exists a decom-
position of a(w, v;µ) of the form

a(w, v;µ) =
QX

q=1

�
q(µ)aq(w, v),8w, v 2 Y and 8µ 2 D, (3)

where we make no assumptions on the a
q other than continuity and bilinearity.

Reduced-Basis Approximation

We choose N/2 points in our parameter space D, and form the sample set SN = {µ1, . . . , µN/2}. The reduced-
basis spaces associated with the primal and dual problems are then given by W

pr

N
= span{u(µ1), . . . , u(µN/2)}

and W
du

N
= span{ (µ1), . . . , (µN/2)} respectively; we can now form

WN = span{u(µ1), (µ1), . . . , u(µN/2), (µN/2)} ⌘ span{⇣1, . . . , ⇣N}. (4)

The space WN defined this way has good approximation properties both for the primal and the dual problems.
For each new desired µ 2 D, we now apply a standard Galerkin procedure over WN to obtain uN (µ) and

 N (µ) according to a(uN (µ), v;µ) = `(v), 8v 2 WN , and a(v, N (µ);µ) = �`
0(v), 8v 2 WN . The output

can then be calculated as sN (µ) = `
0(uN (µ)).

Bounds Evaluation

We start by defining the residuals associated with the primal and dual reduced-basis approximations,
R

pr(v;µ) = `(v) � a(uN (µ), v;µ), 8v 2 Y , and R
du(v;µ) = �`

0(v) � a(v, N (µ);µ), 8v 2 Y , respec-
tively. The Riesz representations ê

pr(µ) and ê
du(µ) of the primal and dual residuals can then be defined as

â(êpr(µ), v) = R
pr(v;µ), 8v 2 Y, â(êdu(µ), v) = R

du(v;µ),8v 2 Y .
We then define, as in [3,4],

s̄N (µ) = sN (µ)�
1

2g(µ)
â(êpr(µ), êdu(µ)),

�N (µ) =
1

2g(µ)
â
1/2(êpr(µ), êpr(µ)) â

1/2(êdu(µ), êdu(µ)),
(5)

and compute lower and upper estimators s
±
N

= s̄N ±�N .
It can be shown [3,4] that s

+
N

(respectively s
�
N

) will be an upper (respectively lower) bound for s

provided that g(µ) is a lower bound for the eigenvalue �
1
â
(µ) (or equivalently satisfies ((2))). Note that

in the general case, where an â and g(µ) which satisfy ((2)) may not be readily available, the reduced-
basis space must be augmented with eigenmodes corresponding to the minimum eigenvalue of the problem
a(', v;µ) = �(µ)â(', v), 8v 2 Y [4].

Also of interest is the quality of the bounds — how well they approximate the actual error. We measure
the quality of the bounds by the e↵ectivity ⌘N (µ), defined as the ratio of the bound gap �N to |s�sN |. From
the bound result we know that ⌘N (µ) � 1. We can further prove [4] that ⌘N (µ) is bounded independent of
N ; in practice, ⌘N (µ) is typically O(1), as desired.

Reduced-Basis Output Bounds 3

Blackbox Method

The parametric dependence assumed in ((3)) permits us to decouple the computation into two stages:
the o↵-line stage, in which (i) the reduced basis is constructed and, (ii) the necessary error-estimation
preprocessing is performed; and the on-line stage, in which for each new desired value of µ, µd, we compute
sN (µd) and the associated bounds. The essential “enabler” is the absence of µ dependence in â, which allows
us to precompute (and later assemble) all the “pieces” of ê

pr(µd), and ê
du(µd) by linear superposition. The

details of the blackbox technique follow. For convenience we define N as the set {1, . . . , N}, and Q as the
set {1, . . . , Q}.

O↵-line Stage 1. Calculate u(µi) and (µi), i = 1, . . . , N/2, to form WN as in ((4)).
2. Compute A

q
2 RN⇥N as A

q

i,j
= a

q(⇣i, ⇣j),8i, j 2 N 2 and 8q 2 Q.
3. Solve for ẑ

0,pr
2 Y and ẑ

0,du
2 Y from â(ẑ0,pr

, v) = `(v), 8v 2 Y , and â(ẑ0,du
, v) = �`

0(v), 8v 2 Y ,
respectively. Also, compute ẑ

q

j
2 Y from â(ẑq

j
, v) = �a

q(⇣j , v), 8v 2 Y , 8j 2 N and 8q 2 Q.
4. Calculate and store c

pr

0 = â(ẑ0,pr
, ẑ

0,pr); c
du
0 = â(ẑ0,du

, ẑ
0,du); c

pr,du

0 = â(ẑ0,pr
, ẑ

0,du); F
pr

N,j
=

`(⇣j) and F
du

N,j
= `

0(⇣j), 8j 2 N ; ⇤q,pr

j
= â(ẑ0,pr

, ẑ
q

j
) and ⇤

q,du

j
= â(ẑ0,du

, ẑ
q

j
), 8j 2 N and 8q 2 Q;

�
pq

ij
= â(ẑp

i
, ẑ

q

j
), 8i, j 2 N 2 and 8p, q 2 Q

2.
This stage requires (NQ + N + 2) Y -linear system solves; (N2

Q
2 + 2NQ + 3) â-inner products; and 2N

evaluations of linear functionals.

On-line Stage For each new desired design point µd we then compute the reduced-basis prediction and
error bound based on the quantities computed in the o↵-line stage.
1. Form A

N
=

P
Q

q=1 �
q(µd)Aq and solve for u

N
⌘ u

N
(µd) 2 RN and

N
⌘

N
(µd) 2 RN from A

N
u

N
=

F
pr

N
and A

N

N
= �F

du

N
, respectively.

2. Evaluate the bound average and bound gap as

s̄N = (F du

N
)T

u
N
�

1
2g(µd)

(
NX

i=1

NX

j=1

QX

p=1

QX

q=1

uN,i N,j�
p(µd)�q(µd)� pq

ij
+

NX

j=1

QX

q=1

 N,j�
q(µd)⇤q,pr

j
+

NX

j=1

QX

q=1

uN,j�
q(µd)⇤q,du

j
+ c

pr,du

0),

and
�N (µd) =

1
2 g(µd)

⇥

(
NX

i=1

NX

j=1

QX

p=1

QX

q=1

uN,iuN,j�
p(µd)�q(µd)� pq

ij
+ 2

NX

j=1

QX

q=1

uN,j�
q(µd)⇤q,pr

j
+ c

pr

0)
1
2⇥

(
NX

i=1

NX

j=1

QX

p=1

QX

q=1

 N,i N,j�
p(µd)�q(µd)� pq

ij
+ 2

NX

j=1

QX

q=1

 N,j�
q(µd)⇤q,du

j
+ c

du

0)
1
2 .

respectively.
For each µd, O(N2

Q
2 + N

3) operations are required to obtain the reduced-basis solution and the bounds.
Since dim(WN) ⌧ dim(Y), the cost to compute sN (µd), sN (µd), and �N (µd) in the on-line stage will
typically be much less than the cost to directly evaluate u(µd) and s(µd) = `

0(u(µd)) from ((1)).

2 The architecture of SimRes

The purpose of SimRes is two-fold : first, we want to build an online code repository which can be accessed
transparently by any client; that is the client doesn’t have to know the physical location of the online code;
second, we want to provide a simple while powerful interface to the online code repository. This interface

4 Christophe Prud’homme et al.

should have very few requirements on the user side and should be available on almost all platforms. The
figure 1 provides a very basic view of the architecture of SimRes, however it gives its main ingredients and
removes the technologies dependencies. In the forthcoming sections we will describe the di↵erent part of
SimRes. These parts are mostly independent : any dependencies are dealt through interfaces, no data is
shared. This is very important because it allows us to develop a system which is scalable and extensible at
will.

Other

CLIENT
INTERFACE

REPOSITORY

ONLINE CODES

SERVER
SIDE

CLIENT
SIDE

Request

PDF

Request
Handler

Si
m

Te
X

Fig. 1. The architecture of SimRes

Online code repository

In modern programming languages the object paradigm is employed to structure computation. This paradigm
is very powerful to capture the concepts and abstractions of a wide range of application domains. Scientific
computing is one of them. However object orientation might not be the wisest choice in terms of performances
or design. In our experience, a successful design is often achieved by considering a variety of paradigms like
the meta-computing, the object or generic ones. The C++ language provides them and has been our language
of choice for our codes.

Now, classical scientific computing is often done within a single process or uses a parallel computing
paradigm like SPMD using a message passing library. Since object orientation has proven to be adequate
for the design, implementation and maintenance of large scale applications, it is just one step forward to use
this paradigm for distributed computing, that is the objects are distributed over a networked environment
and can communicate with each other. That’s where stands the Common Object Request Broker Archi-
tecture (CORBA) which is a specification of middleware software that allows to ensure the link between
the software and the hardware in an heterogeneous networked environment. The figure 2 on the next page
illustrates this.

Coming back to our scientific computing concerns, we have seen that the blackbox method split the
resolution of the design problem into two steps : an o↵-line step computes various data which are stored
into a database, and an on-line step which computes the corresponding output and its associated error for
a given parameter µ. Putting everything together, it is now clear that a component wise architecture over a
networked environment is a very good choice for SimRes.

Reduced-Basis Output Bounds 5

Object A

NETWORK

OS 1 OS 2 OS 3

Node 1 Node 2 Node 3

Object B Object C

Object Request Broker

Fig. 2. A middleware : CORBA

The online codes are objects which are distributed over a network. But more than a bunch of classes,
a complete framework must be designed and created in order to ensure the scalability and extensibility of
the design. By framework, we mean a facilitating backbone which combines sets of related components for a
specific purpose or domain. A distinguishing feature of a framework is that it defines a generic design that
supports a bi-directional flow of control between the application and itself. At first glance extracting the
genericity doesn’t seem that easy : a given problem is tightly bound to its associated parameter set and the
numerical type is also a concern. It is crucial to get rid of these dependencies or at least to weaken them.

BlackBox classes and parameter dependency First, let’s have a look at a sketch of the BlackBox
classes hierarchy, see figure 3 on the following page. The BlackBox classes are templates which are depending
on the numerical type used. The base class sctkBlackBox defines an abstract interface for the inherited
classes. There is a branch which is not seen here, it is the o↵-line part of the design since we concentrate
only on the on-line side. Then sctkBlackBoxOnline provides the abstract interface, mostly inherited from
sctkBlackBox, for all online code subclasses.

The specialization operated by introducing

sctkBlackBoxOutputType
+getAlphaQ(__i:int): void
+initializeParameterSet(): void
+setParameterSet(__p:ParameterTypeRef): void

NumericalType:typename

sctkBlackBoxOnline
+setOutputType(__o:sctkBlackBoxOutputType*): void

NumericalType:typename

 needs a

sctkBlackBox
#__is_compliant: bool = false
+isCompliant(): bool
+setBlackBoxMode(__m:bool): void
+runBlackBox(): void
+readFromStream(__stream:istream&): void

NumericalType:typename

Fig. 4. UML collaboration diagram: parameter set
dependency weakening.

sctkBlackBoxOnline is needed to weaken as much as
possible the parameter set dependency, the figure 4 il-
lustrates this. Here ParameterTypeRef is a reference
to a class representing the parameter set. The idea is
to delegate the computation of the �q(µ) within the
subclasses of sctkBlackBoxOutputType. At the in-
stantiation of any subclasses sctkBlackBoxOnline,
the user has to provide a subclass which will
give the �

q(µ) to the online code for the de-
sired parameter set µ. As one can see the abstract
classes sctkBlackBox, sctkBlackBoxOnline and
sctkBlackBoxOutputType define a general frame-
work where it is possible to plug a very wide range
of blackbox methods. So far four methods have been
implemented using this framework :

1. sctkBlackBoxOnlineSimple is used for simple output computations that don’t require the solution of
a partial di↵erential equation ;

2. sctkBlackBoxOnlineStandard and sctkBlackBoxOnlineStandardEigen are two incarnations of the
standard blackbox Reduced-Basis output bounds method ;

3. sctkBlackBoxOnlineOQ uses a blackbox Reduced-Basis output bounds method of complexity O(Q) while
the previous two had a complexity of O(Q2).

6 Christophe Prud’homme et al.

sctkBlackBox
#__is_compliant: bool = false
+isCompliant(): bool
+setBlackBoxMode(__m:bool): void
+runBlackBox(): void
+readFromStream(__stream:istream&): void

NumericalType:typename

sctkBlackBoxOnlineSimple
NumericalType:typename

sctkBlackBoxOnlineStandard
NumericalType:typename

sctkBlackBoxOnlineStandardEigen
NumericalType:typename

sctkBlackBoxOnline
+setOutputType(__o:sctkBlackBoxOutputType*): void

NumericalType:typename

sctkBlackBoxOnlineOQ
NumericalType:typename

Fig. 3. A UML diagram of BlackBox classes hierarchy.

Note that the design is generic enough to solve a wide range of problems using these four methods
provided that the online codes developer writes the necessary subclass of sctkBlackBoxOutputType that
defines the �q(µ) for his problem.

Now that we have briefly shown the design of the online codes, it is time to attach them to a CORBA
object – coBlackBox – whose interface is described using the Interface Definition Language (IDL) and
shown in the next section. Once done, we register the newly created CORBA object in the Implementation
Repository (IMR) which will keep track of the location of all the available online codes and will permit a
transparent access between a client and an online code object.

A simple client code for SimRes We present a small code client for SimRes. First here is the IDL file
providing the interface for the CORBA objects. The object interface shown is the one which makes an online
code a CORBA object. Note that it is the same for all online codes. It is also important to understand
that the current design works well from the performance point of view because there is little communication
between the client code and a given CORBA object : while a CORBA object and a C++ object are similar
in terms of member functions calls, sending a remote message over a network is orders of magnitude larger
than the cost of a C++ method invocation. So the following IDL interface fits really well in a CORBA based
environment since there are only the parameter set sent from the client to the object and the output and
the associated bound gap sent back from the object to the client.

1 typedef sequence<any> coParameterList;

2
3 interface coBlackBox

4 {

5 void setNewParameterSet(in coParameterList __pset);

6 coParameterList getOutput();

7 coParameterList getBoundGap();

8 void compute();

9 };

Note that the getOutput() and getBoundGap() member functions return an array of outputs and bound
gaps. This is done to ensure good performances when lots of evaluations are required, see the section on
SimTEX for an illustration.

Reduced-Basis Output Bounds 7

Now we can write a small client program. It is not a working example but rather a excerpt of a client
which computes the temperature at the root of the 3D fin using SimRes. The extra work to get this example
working is minimal and needs a few extra lines of code. The line 1 includes the header file generated by the
IDL compiler providing the skeleton of the coBlackBox class on the client side. The line 5-6 look up the
object fin3d_Troot in the implementation repository and instantiate it on the server side if found. The line
8-9 set a new parameter set and execute the blackbox method. Then the line 11-12 retrieve the output and
bound gap which are still sitting on the server side.

1 #include <coBlackBox.hpp>

2
3 int

4 main(int argc, char **argv) {

5 CORBA::Object_var __obj = __orb->bind ("IDL:fin3d_Troot:1.0");

6 coBlackBox_var __bb = coBlackBox::_narrow(__obj);

7
8 __bb->setNewParameterSet(__pset);

9 __bb->compute();

10
11 coParameterList* __output_pl = __bb->getOutput();

12 coParameterList* __bound_gap_pl = __bb->getBoundGap();

13 }

One can see that the amount of code is very small and that the CORBA objects are indeed objects in
the C++ sense, that is they are used, in our case __bb, like common C++ objects.

Now we present a more complete client for SimRes.

An interface for SimRes : SimTEX

SimTEX provides an easy while powerful interface to the online code repository. As mentioned earlier, we
want also an interface which is portable and which provides a somewhat standard way of presenting scientific
results. To achieve this, we chose to use LATEX with PDF as its output. LATEX is a standard in scientific
typesetting while PDF provides a minimal set of features to create a user interface. If you want to get a first
feeling of the interface have a look at the equation 6. Since there are little data manipulated – the parameter
set, the output and its associated bound gap – the interface can be quite simple and even reduced to the
form of an actionable equation. We wrote a special environment for LATEX called acteq for this purpose.
It is mainly based on the hyperref package. It uses the CGI-like3 capabilities of PDF, that is there is a
button in the interface which, once clicked, will send the form to a web server CGI script that will parse
it, instantiate and execute the CORBA online codes using SimRes, and eventually generate PDF graphics
if interval values are given for one or two parameters. The figure 5 on the following page shows the UML
sequence diagram which describes the data flow when the user click on the = sign.

The acteq environment The example’s code of the actionable equation shown in the section 3 on the
next page is the following :

\begin{acteq}{augustine.mit.edu}{Troot:Ttip:Volume}{fin3d}{7}{3}{10}

\begin{equation*}\left(\begin{array}{r}

\defoutputchecked{Troot}{T_\mathrm{root}}\vspace{3mm}\\

\defoutput{Ttip}{T_\mathrm{tip}} \vspace{3mm}\\

\defoutput{Volume}{\mbox{Volume}}

\end{array} \right) = \mathcal{F} \left(\begin{array}{r}

\param{k^1=}{0.4} \\

\param{k^2=}{0.6} \\

\param{k^3=}{0.8} \\

3 CGI stands for Common Gateway Interface

8 Christophe Prud’homme et al.

PDF
Document

CORBA

Object
C++

Online code
Object

CGI
Script

Repository
Implementation

Interface
PDF

using FDF
new parameter set
new problem set
new output set

generate graphics if needed
Feed the PDF

using FDF

For each needed
problem/output

look up in IMR
for corresponding
online code/object

New parameter set and execute

Get new output and bound gap

New

WWW Request

Fig. 5. Sequence disgram of SimTEX

\param{k^4=}{1.2} \\

\param{\mbox{Bi}=}{0.1} \\

\param{t=}{0.3} \\

\param{L=}{2.8}

\end{array} \right) \,

\equalsign \, \predoutput \pm \prederror

\end{equation*} \end{acteq}

As you can see the macro system is very simple and requires a minimal knowledge from the writer point
of view. The information required is the following :

1. the implementation repository (IMR) of online code, in our case it is augustine.mit.edu. This server
contains the information about the location of the di↵erent available online codes and how to execute
them.

2. the available outputs for a given problem. In our case only three outputs are available, the mean tem-
perature at the root of the fin, Troot, the mean temperature at the top of the fin, Ttip, and the volume
of the fin, Volume.

3. the name of the problem, in our case fin3d.
4. the number of parameters for this problem, in our case 7.
5. the number of outputs, in our case 3.
6. the last parameter of the acteq environment is just the number of points which are generated if a interval

value is given for a parameter.

This system, while simple on the user side, has proven to be quite helpful and powerful. It has been used
successfully as a research tool, as an educational tool and also as a presentation tool. Now let’s see the whole
system is action.

3 An example : the 3D fin

In this example we consider a three-dimensional thermal fin designed to e↵ectively remove heat from a
surface. The three-dimensional fin, shown in Figure 6 on the facing page, consists of a vertical central “post”

Reduced-Basis Output Bounds 9

and four horizontal “subfins”; the fin conducts heat from a prescribed uniform flux “source” at the root,
�root, through the large-surface-area subfins to surrounding flowing air.

The fin is characterized by a seven–

Fig. 6. 3D Thermal Fin

component parameter vector, or “input,”
µ = (µ1

, µ
2
, . . . , µ

7), where µ
i = k

i
, i =

1, . . . , 4, µ
5 = Bi, µ

6 = L, and µ
7 = t; µ may

take on any value in a specified design space
D ⇢ IR7. Here k

i is the thermal conductivity of
the i

th subfin (normalized relative to the post
conductivity k

0
⌘ 1); Bi is the Biot number, a

nondimensional heat transfer coe�cient reflecting
convective transport to the air at the fin surfaces;
and L and t are the length and thickness of the
subfins (normalized relative to the post width).
The fin is one unit deep(the root is square) and
four units tall.

We consider several outputs of interest. The
first output is the performance metric, Troot 2 IR,
is taken to be the average temperature of the fin
root normalized by the prescribed heat flux into
the fin root. This output relates directly to the
cooling e�ciency of the fin — lower values of Troot

imply better performance. The second output is the average temperature at the tip of the fin, Ttip 2 IR.
Low values of Ttip indicate that the cooling is e↵ected primarily by the lowest subfins — hence the upper
subfins are wasted material. The last output is the volume of the fin which represents weight and material
cost — thus lower values are preferred. In order to optimize the design, we must be able to rapidly evaluate
Troot(µ), Ttip(µ) and the volume of the fin for a large number of parameter values µ 2 D.

The steady–state temperature distribution within the fin, u(x), is governed by the elliptic partial di↵er-
ential equation

�k
i
r

2
u

i = 0 in ⌦i
, i = 0, . . . , 4,

where r2 is the Laplacian operator, and u
i refers to the restriction of u to ⌦i. Here ⌦i is the region of the

fin with conductivity k
i
, i = 0, . . . , 4: ⌦0 is thus the central post, and ⌦

i
, i = 1, . . . , 4, corresponds to the

four subfins. We must also ensure continuity of temperature and heat flux at the conductivity–discontinuity
interfaces � i

⌘ @⌦
0
\ @⌦

i
, i = 1, . . . , 4, where @⌦i denotes the boundary of ⌦i:

u
0 = u

i

�(ru
0
· n̂

i) = �k
i(ru

i
· n̂

i)

�
on � i

, i = 1, . . . , 4;

here n̂
i is the outward normal on @⌦i. Finally, we introduce a Neumann flux boundary condition on the fin

root
�(ru

0
· n̂

0) = �1 on �root,

which models the heat source; and a Robin boundary condition

�k
i(ru

i
· n̂

i) = Bi u
i on � i

ext, i = 0, . . . , 4,

which models the convective heat losses. Here � i

ext is that part of the boundary of ⌦i exposed to the fluid
that is @⌦ \ �root.

For every choice of the design parameter-vector µ — which determines the k
i, Bi, and also the fin geometry

through L and t — solution of the above system of equations yields the temperature distribution u(x;µ) in
the fin. The outputs of interest — the average temperature at the root, the average temperature at the tip
— can be expressed respectively as Troot(µ) = `

O
root(u(x;µ)), Ttip(µ) = `

O

tip(u(x;µ)), where

`
O

root(v) =
Z

�root

v, `
O

tip(v) =
Z

�tip

v,

10 Christophe Prud’homme et al.

(recall �root and �tip are of area unity). As for the volume, it is given by the following formula

Volume = 4 + 8 L t.

These functional dependencies can, in turn, be summarized by the input-output relationship

0

BBB@

Troot

Ttip

Volume

1

CCCA
= F

0

BBBBBBBBBBBBBB@

k
1 =

k
2 =

k
3 =

k
4 =

Bi =

t =

L =

1

CCCCCCCCCCCCCCA

= ± (6)

FIGURE

For our parameter space we choose D = [0.1, 10.0]4 ⇥ [0.01, 1.0] ⇥ [0.1, 0.5] ⇥ [2.0 ⇥ 3.0], that is, 0.1  k
i


10.0, i = 1, . . . , 4 for the conductivities, 0.01  Bi  1.0 for the Biot number, and 0.1  t  0.5, 2.0  L  3.0
for the geometric parameters. 4 In general, better performance — lower temperature — requires larger fin
volume (e.g., larger t) or materials with higher conductivity; in both cases the production cost of the fin
would increase accordingly. Hence there are design trade-o↵s that must be investigated.

4 Conclusion

This framework is likely to be extended in the next few months, and will certainly enjoy many im-
provements. It has already been tested on a few problems already available online on our web site
http://augustine.mit.edu through the SimTEX interface. The component-wise design of the overall sys-
tem is very flexible, scales well as the number of online codes increases and is an elegant solution as a platform
for engineering design, research and education.

Acknowledgements This work was supported by the Singapore-MIT Alliance, by AFOSR Grant F49620-
97-1-0052, and by NASA Grant NAG1-1978.

References

1. B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape functions in structural analysis.
AIAA Journal, 16:525–528, May 1978.

2. Michi Henning and Steve Vinoski. Advanced CORBA Programming with C++. Addison-Wesley professional
computing series. Addison Wesley, 1999.

3. L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas. Output bounds for reduced-basis approxi-
mations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris, Série I, 2000.

4. Y. Maday, A. T. Patera, and D. V. Rovas. A blackbox reduced-basis output bound method for noncoercive linear
problems. College de France Series; also MIT-FML Report 00-2-1, 2000.

5. D. A. Nagy. Modal representation of geometrically nonlinear behaviour by the finite element method. Computers

and Structures, 10:683–688, 1979.
6. A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of structures. AIAA Journal,

18(4):455–462, April 1980.

4 At present the system does not verify ranges; for meaningful results, make sure that each parameter component
is within the values indicated. Values outside the specified ranges (but still honoring ki > 0, i = 1, . . . , 4, Bi >
0, t > 0, L > 0) will continue to give correct results, but in most cases the error bars will be unacceptably large.

http://augustine.mit.edu

	A new approach to engineering design

	Ttip: Yes

