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ABSTRACT Thus, it will be very interesting to compare sweep

In this paper the dynamic behaviour of a multi degree of responses with different sweep rates and steady-state responses.
freedom beam model of a solar array structure is investigatedinsight in the response of nonlinear dynamic systems on sweep
both experimentally and numerically. The beam is supported by excitation still is limited.
one nonlinear element, a so-called snubber. This snubber can  Fokker Space BV is a manufacturer of solar arrays, which
only take compressive forces. Two types of excitation are are a part of satellites. These solar arrays take care of the energy
applied and compared: sine sweep excitation (with different supply for the satellite. During launch the solar arrays are
sweep rates and directions) and steady-state excitation.mounted onto the satellite in folded position and suffer from
Emphasis lies on the investigation of the dynamic behaviour of intensive vibrations. The panel ends may strike each other if the
the system under prestress, which implies softening behaviourexcitation is too severe. This may cause damage to the structure.
at the time when snubber and beam loose contact. The systenTo prevent this, rubber snubbers are mounted at well chosen
displays rich nonlinear dynamic behaviour: multiple solutions points of the structure. They act as elastic stops. The major
(hysteresis loop), superharmonic resonances and subharmonicadvantage of this solution is that no special adjustments are
quasi-periodic and chaotic solutions. Good correspondenceneeded for the unfolding after launch, whereas the practical
between experimental and numerical results has been found.  implementation is simple. In order to justify linear analyses to

predict the dynamic behaviour of the structure, the snubbers are

1 INTRODUCTION brought under pres_tress. As a negative consequence of this
approach, the residual strength of the structure is low.
Therefore, it is interesting to investigate how the dynamic
behaviour will change if the amount of prestress in the system is

Recently, numerical methods have become available in
module STRDYN of the finite element package DIANA (1997),
which make it possible to analyse the steady-state behaviour . . : |
(e Toquency) f suen sysams in an ofiden. mamer. 2SS, (TS B eodig o nuoskenen o bk,
Examples of applications of these methods can be found in vanNOW the snubbers may come loose during vibration and thgs '
de Vorst (1996) and Fey et al. (1996). ' y 9

Sine sweeps (the excitation frequency changes as a functionbecome local nonlinear springs. This complicates the dynamic

. - analyses, which become nonlinear now, considerably, because
of time) are also very common in the test programmes of y y

mechanical components in many laboratories. Therefore, nextFhey have to be carried out in the time domain. Also the

to steady-state analyses it is important to be able to carry Outmterpretat_mn of the results .W'". be much more comphcated..
numerical sweep analyses. Important aspects in these Sweeg_)we.ver, .'f stresses and strains in the.structure become Iower_ N
analyses are the sweep rate (the lower the sweep rate, the mor IS situation and_ displacements remam_ac_c_eptable., a reduction
the steady-state behaviour is approached) and the sweepOf the prestress in the snubbers may significantly improve the
design of the solar array structure as a whole.

direction (from low to high frequencies or vice versa).
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In this paper, we take a first step in the direction of a leaves the fixing structure. Figure 2-Figure 3 show photos of the
possible new nonlinear design of a solar array panel. The mainexperimental set-up.
objectives in this paper are:

1. To investigate the influence of one nonline;ar snubper (with Length | [m] 0.485
backlash or under prestress) on the dynamic behaviour of a idth
simple beam model representing a solar array structure. The Width w [m] 0.05
model will be designed such that the lowest eigenmode of the Heighth [m] 0.015
two linear limit cases (no snubber, linear snubber) will lie in the Young's modulusE [N/m? 7 10°
frequency range of mte.rest: 5-200 Hz. . Density 0 [kg/m’] 2700
2. To compare experimental and numerical sweep analyses. 7 3
Investigation of the influence of the sweep direction and the Second moment of arela[m’] 1.41 10
sweep-rate on the dynamic behaviour. Cross sectional areA[m?] 7.5 10"
3. To compare numerical steady-state responses and numericallable 1 Physical and geometrical properties of the aluminium
sweep responses. beam

In section 3 the experiments which have been carried out ) N
are described. Section 4 deals with the mathematical finite !N Figure 1 also the measurement positions are shown. We

element model. A reduced linear model is derived by applying a Meéasured accelerations of the base (1X, 1Y, reference 17, 62),
component mode synthesis technique based on free-interfacédccelerations of the aluminium beam (22, 37, 42, 5X, 5Y, 52),
eigenmodes and residual flexibility modes. Subsequently, the 10ads in the steel fixing structure (FZ1, MX1, FZ6) and strains
nonlinear model is derived by adding the nonlinear snubber N€ar the clamping of the aluminium beam (7TOP, 7BOTT). In
element to the reduced linear model. Finally, the two different this paper, we mainly analyse acceleration 5Z.

excitation signals (sweep and steady-state) are described2.2 Description of test runs

Section 5 gives a brief overview of the numerical techniques Table 2 gives an overview of the sine sweep test runs. Each
which are applied in the numerical analyses of the mathematicaltest consists of a sweep-up from 5 Hz to 200 Hz followed by a
model. In section 6 comparisons are made between 1) numericabweep-down from 200 Hz to 5 Hz. During testing time domain
responses on steady-state excitation, 2) numerical responses odata have been recorded using the measurement equipment of
sweep excitations and 3) experimental responses on sweef.MS. The sample time in all experiments was 2.441 40The
excitations. Section 7 gives the conclusions and base (the steel fixing structure) is excited in Z-direction.
recommendations for future research.

Test no* Sweep- | Ampl. base| Measured Start

rate s accel. (Z- | eigenfrequency time
2 EXPERIMENTS [oct/min] | dir.) [m/] | [HZ] t, [s]
2.1 Description of the test set-up 980174 2 9.8 1373 46.8

Figure 1 shows a drawing of the experimental set-up. Ar] nonlinear,
aluminium beam (a 1-D simplification of a solar array panel) is| prestress
clamped at its left side by a steel fixing structure, by which it ig 980175 8 9.8 139.4° 56.6
connected to the head expander of the shaker. The physical ahdonlinear,
geometrical properties of the aluminium beam are given ir] prestress
Table 1. Underneath the right end of the aluminium beam 4 980176 2 4.9 47 32.3
small M55 carbon beam is visible (a representation of a snubbgrnonlinear,
element). This carbon beam is clamped at its right end by backlash
another steel fixing structure, by which it also is connected to Table 2 Overview of sine sweep test runs.” Sometimes will be
the head expander of the shaker. The height of the carbon beameferred to the test number by using onlg/ the last three digits.
can be adjusted, which makes it possible to consider a systenfbtained from self check, linear. ~ In principle, these
with backlash (as depicted in Figure 2), with prestress or with ggn?gfrlfnqeuaimszliste?oxil?h bsenjgl;j:rl' gi%itzee t\t‘viyvaﬁlogg t%&'gﬁ
TIUSh gbacklash - prestregs. = 0). In the text below‘the tern’1 attention on e>)</periment 174, we will take 137 Hz as tpheylowest
panel’ refers to the aluminium beam and the term ‘snubber’ . o-c reqd eigenfrequency.
refers to the carbon beam.

The Z-axis is positive in the direction of gravity. The
positive Y-axis lies in the direction of the aluminium beam axis
and points from the free end of the aluminium beam towards the
fixed end. The positive X-axis follows from the definition of the
Z-axis and the Y-axis via the right-hand rule. The origin of the
co-ordinate system lies at the point where the aluminium beam

2.3 Time-frequency relationship

In each experiment, we started with a sweep-up from 5 Hz
(at t=t) to 200 Hz (at t3), which was immediately followed by
a sweep-down from 200 Hz (at frto 5 Hz (at t=2kt,):
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f (t) = R W/e0 for t,<t<t, (1) 3 MATHEMATICAL MODEL
f(t) = 20QI2 (/8 for t,<t<2t,-t, (2) The finit(_a element package DIANA (1997) is us_eq to make
a mathematical model of the system. The aluminium beam
. . . ; . (effective length 0.485 m, see Figure 1 and Figure 5) is
where s '_S the sweep—_rate in oct/min ants tihe start t|m§> modelled with 49 beam elements of type L6BEN (two-node,
.Of the sweep; bqth quantities car.1 be found for each experimenty, »_dimensional straight beam, Bernoulli). The geometrical and
in Table 2. The time,tfollows from: physical properties of the beam elements are given in Table 1.
The theoretical mass of the aluminium beam is 0.982 kg.

t, =t + 60in 40 (3) At the positions where accelerometers were placed, nodes
sin2 have been defined too. The masses of six accelerometers (0.005
_ kg each) are included in the model.

In practice we located the time poiatdf the acceleration The stiffness of the clamping at the left end of the
signal of the base (1Z) where the frequency was 200 Hz andaluminium beam (Y=0) is modelled by a torsional spring of
calculated t using equation (3). 48000 Nm.

2.4 Postprocessing The system is excited by a prescribed translational motion

Experimental results which will be presented below and in in Z-direction of the rigid frame. The left end (Y=0) of the
section 5 were derived from unfiltered time domain data. aluminium beam and the bottom of the snubber are connected to

We will present the time domain results in different forms. this rigid frame. Two types of excitation will be discussed:
In standard form in the time domain as time history plots, but sweep excitation (section 3.3) and steady-state excitation
also in the frequency domain. The presentation in the latter (section 3.4).
form asks for some explanation. In this context, it is important At Y=-0.475 the aluminium beam is supported in Z-
to keep in mind the time-frequency relationship in the sweep direction by a snubber element.
experiments, which is given in section 2.3. In the linear case without snubber the first two bending

For the sweep-up mode we proceed as follows. Atwet eigenfrequencies of the FE-model (47 Hz and 298 Hz) are in
determine the momentaneous frequency (=5 Hz) and its good agreement with the experimental ones (47 Hz and 293
associated period time (=0.2 sec). For the time interyal [t Hz). In the linear case with snubber (modelled as a massless
,t1+0.2] we determine the maximum and the minimum value of linear spring with stiffness of 238000 N/m), the first bending
the quantity under consideration. For =02 we determine eigenfrequency of the FE-model (137 Hz) is equal to the
again the momentaneous frequency using equation (1) and itsexperimental one.
associated period time. Again we determine for the new time The number of degrees of freedom (dof) of the linear
interval the maximum and the minimum value of the quantity model without snubber is reduced and explained in section 3.1
under consideration. This procedure is continued until the time in order to save cpu-time in the coming nonlinear dynamic
t, is reached. Then we have two ‘frequency’ domain plots for analyses, which are time consuming. In section 3.2 this reduced
the sweep-up mode: one with the maximum value and one withlinear model will be coupled with the nonlinear snubber
the minimum value of the quantity under consideration as a element.
‘function’ of the frequency. 3.1 Reduced linear model, modal _damping

For the sweep-down mode we proceed exactly the same, . officients

but T;vgov;/;;r:“th © ;J"seFc)nll;fsqui?]tlotrtl]éZ)];requency domain were The reduction must be cgrr_ied out in such a manner, that
constructed és explained above. Moreover, in all frequency the accuracy of the model S.'U" 1S gugranteed_ n _the fre_que_ncy
lots th simum of th ntit .'Ilb ' ted range of interest. The reduction technique, which is applied, is a
piots themaximum ot the quantity will be presented. component mode synthesis method based on free-interface
2.5 Results for test 174 eigenmodes and residual flexibility modes, see Fey (1992). The
Figure 4 shows the maximum acceleration at the right end |atter modes are defined for interface dof. A dof is an interface
of the panel as a function of the frequency. Overload (989 m/s dof if it is prescribed or loaded or if it is coupled to other
occurs near 76 Hz and 101 Hz in the sweep-down mode.components. There are two interface dof in this model: the
Nonlinear behaviour occurs in the range 120 Hz (sudden jump) transversal displacement at Y=0 (prescribed) and the transversal
to 143 Hz for the sweep-up mode and in the range 143 Hz to 76displacement at Y=-0.475 (coupling to nonlinear snubber
Hz (sudden jump) for the sweep-down mode. There is a large element.) This explains the presence of one of the translational
amount of hysteresis due to softening behaviour. Outside theseigid body modes in Z-direction in Table 3. The other rigid
ranges the beam and snubber remain in contact and the systerBody mode is the translation in Z-direction of the free mass
is linear. In section 5 we will discuss these and more results intowhich will be coupled to the bottom of the nonlinear snubber
more detail and compare them with numerical results. element. This mass will get the same prescribed motion as the
transversal displacement of the aluminium beam at Y=0 (these
two dof belong to the rigid frame)

3 Copyright © 1999 by ASME



We decided to keep four free-interface eigenmodes: the two nonlinear element with stiffnesk, and viscous dampindy,,
rigid body modes and the first two bending modes. For the two gsee Figure 5 (only spring is visible).
interface dof two residual flexibility modes are defined. The The transversal stiffness of the aluminium beam at position
eigenfrequencies of the reduced linear model (free interface) arey_ 475 s k,=24410N/m. The ratio o=k /k, (k.

given in Table 3. _ . .
snubber stiffnessk, : beam stiffness) is often used to express

Mode eigenfrequencies| modal damping the amount of nonlinearity in the system. In our ¢&s@.7.

of reduced freet coefficients The used value ob, = 2.5 Ns/m is a very small amount of

interface model damping and is obtained by tuning numerical results on
rigid body 0 0.01 experimental results of test 175 in the sweep-down at the jump
rigid body 0 0.01 near 78 Hz, see section 5. In principle, one-sided damping will
1*' bending 77.1 0.01 cause a discontinuity in the force. However, for the accuracy we
2" bending 423 0.004 required no special measures were needed for the numerical
3“ bending 1100 (1046) 0.01 analyses to overcome this problem, because the damping is so
4" bending 2130 (1943) 0.01 low.

Table 3 Eigenfrequencies [Hz] and modal damping coefficients Th_e displa(_:eme_nt of the bottom of the snubber iS_
[-] of reduced free-interface model prescribed and is written as the sum of a static and a dynamic

part: u, = Uy + Uy, We consider two start situations: the system
The two highest eigenfrequencies in Table 3 are inaccurateynder prestress (tests 174 and 175) and the system with
and can be ascribed to the residual flexibility modes (between packlash (tests 176 and 177).
braces the accurate yalues of t'he original model are.g|ven). N3 57 The system under prestress
DIANA modal damping coefficients have to be defined for
these six modes. The choice in Table 3 results in a good - . .
; : . frame is in rest there is contact between and prestress in the
correspondence in the peak levels in the experimental and i _
numerical frequency response for the linear case without snubber and the bearm, <u,, uy >0. If u; =0 the snubber
snubber. and beam will just be in contact, but the prestress in the snubber
Table 4 shows the eigenfrequencies of the FE-model, if the and beam will be zero. When the frame starts to vibrate the
dof which will be prescribed are suppressed. The number of dofsnubber will not load the beam i, >u,. If u,<u, the
of the reduced model becomes four. The first two modes aresnubber will load the beam by a transversal force
very accurate (compare with the eigenfrequencies of the k (u,-u)+ b(u,— u).
original linear model without snubber). Apparently, thé 3
bending mode still is described reasonably well; thé@ending
mode is inaccurate.

The backlashb is not relevant for this situation. If the

In the start situation of experiment 174 we measured a
snubber compression of 7n and a static displacement of the
bottom side of the snubber af20.67 mm.

3.2.2 The system with backlash

The static part of the displacement of the bottom of the

snubber is zerouy, = 0. If the frame is in rest there is backlash

=

Mode eigenfrequencies  (
FE-model, prescribe
dof suppressed

==

T bending 47.0 b>0 between the snupber and the beam and the stress in the

2@ hending 298 s_nubber and the beam is equal to zero. When_the frame starts to

3% bending 855 vibrate the snubber will not load the beamuf+b=y,. If

4" bending 1735 u, +b<u, the snubber will load the beam by a transversal
Table 4 Eigenfrequencies [Hz] of FE-model 5 with prescribed force k,(u,—b—u)+ b(u- 1) .

dof suppressed (compare with Table 2 for experimental values) Before test 176 the backlash was measured: b=0.15 mm.

3.3 Frequency sweep excitation
- . . . The excitation signal (the motion of the rigid frame) is a
The nonlinear FE-model is derived by coupling the reduced harmonic frequency sweep in the form of a prescribed base

bearE mo?e:jtof thfe r;]onlmeelx_r snubggr elzmlent at Y:'of'475'v-\r/heacceleration with a constant amplitude. The frequency f changes
number of dof of the nonlinear FE-model remains four. We .. - finction of the time t according to:

assume that the place where contact occurs between the carbon
and the aluminium beam coincides with measurement position 5 £(t) = f, (000 @)
(Y=-0.475). In the experiment, the position of contact between 0

the aluminium beam and the carbon beam (snubber) may vary a _ _ ) )

tiny bit because there will occur some sliding between the two Where s is the sweep rate in octaves/min ani fthe start
beams during contact. The snubber is modelled as a masslesiequency of the sweep.

3.2 Nonlinear model
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3.4 Steady-state excitation (lower branch) and 154-200 Hz are solutions of the linear
In this case the excitation frequency is constant. For the system where the snubber and the aluminium beam remain in

prescribed motion of the rigid frame we now get: contact. In all other solutions there are periods of contact and
periods without contact. In the frequency range 78-119 Hz we

-a calculated three periodic solutions for each frequency. The

U(t):Us:JfWCOSQm)y (5) middle branch is unstable. The boundaries of this frequency
range are marked by cyclic fold bifurcations (turning points). In

u(t) :isin(ant), (6) the frequency ranges 145-154 Hz and 98.5-103.9 Hz we found
2rf unstable periodic solutions, which were introduced at their

U(t) = acos@rift), (7 boundaries by secondary Hopf bifurcations (we are not sure,

however, about the bifurcation near 103.9 Hz because we were

where a is the acceleration amplitude in’néee Table 2), and  not able to close the gap between the stable and the unstable

where the constantys larger than zero for the bottom of the ~Solutions on the upper branch). At 88.3 Hz we found one
snubber in the case of prestress. unstable periodic solution (upper branch); one Floquet

multiplier was larger than +1 indicating a cyclic fold, but no
turning points are visible in Figure 6.

4 NUMERICAL METHODS FOR NONLINEAR DYNAMIC Figure 7 shows as an example the calculated displacements
SYSTEMS of three periodic solutions at 110 Hz. At times where

All calculations in this report were carried out with module displacements cross the displacement of the bottom of the
STRDYN (STRuctural DYNamics) of the Finite Element shubber, the snubber and aluminium beam come into contact or

Package DIANA (1997). loose contact. At these points we see a kink in the accelerations
A periodic solution is calculated by solving a two-point signa!s, see Figure 8.
boundary value problem. Periodicity is enforced by boundary Figure 9-Figure 11 show the calculated and measured

conditions. In this paper we use a finite difference method acceleration on the upper branch for respectively 78 Hz, 104.1
(central difference scheme of second order) to solve the Hz and 122.5 Hz over one period. The lower time scale is the
problem with 400 equidistant grid points. Stable as well as time in the experiments. The upper time scale is the time in the
unstable solutions can be found. The local stability of the calculations. At 78 Hz we find thé"4uperharmonic resonance
solutions is investigated by applying Floquet theory. Path of the second ‘eigenmode’ (4*78=312, 298<312<331, where
following is applied to follow branches of periodic solutions for 298 Hz and 331 Hz are respectively théedlgenfrequencies of
varying excitation frequency. In this way also bifurcation points the linear system without and with snubber), which explains the
can be detected. four local maximums. Note the overload in the measured signal.
Quasi-periodic and chaotic solutions are determined by At 104.1 Hz we see the™3superharmonic resonance (three
solving initial value problem (standard numerical integration). local maximums) of the second ‘eigenmode’ (3*104.1=312,
Now it will take some time before the transient has damped out 298<312<331). At 1225 Hz we see th& Fuperharmonic
and the solution settles to the steady-state. Only stable solutiongesonance (seven local maximums) of the third ‘eigenmode’
can be calculated. In this paper we use the Adams integration(7*122.5=858~855, see Table 4). The resemblance between
method and a relative accuracy of®1(ransient (frequency  measurements and calculations is good, afiho the
sweep) solutions were also determined by solving initial value measurement signals were taken from a sweep (down)

problems. excitation.
More theoretical background can be found in Fey (1992). In the frequency interval 98.5-103.9 Hz we find a quasi-
periodic>locked—->chaotic sequence (Newhouse et al., 1978).
5 COMPARISON BETWEEN EXPERIMENTAL AND Figure 12 'and Figure 13 .shovy the P'oincaré sections, which
were obtained by numerical integrations over about 7400
NUMERICAL RESULTS excitation periods, for 5 different excitation frequencies: 99 Hz,
In this section we focus on the transversal acceleration and100 Hz, 102 Hz, 102.7 Hz and 103.8 Hz. In about the first 14
displacement at Y=-0.475 m (position beam5minz). seconds of the integration process the excitation frequency
5.1 Experiment 174 versus nonlinear model with u ¢ = decreases with 8 oct/min from 350 Hz to one of the five
0.67 mm mentioned frequencies. This is done to ensure that the steady-
- . state is on the upper branch. Only the points of about the last
5.1.1 Numerical steady-state analyses 5000 periods are depicted in the Poincaré sections. At 99 Hz we

~ The value 4 = 0.67 mm was measured (section 3.2.1). gee 5 closed curve in the Poincaré section indicating quasi-
Figure 6 shows the maximum acceleration of calculated herigdic behaviour. At 100 Hz and 102 Hz we see respectively
harmonic periodic solutions in the frequency range 20-200 Hz. 15 and 20 points indicating a 1/1@nd a 1/28 subharmonic

The green dots represent stable solutions; the red dots represenj acior (frequency locking). At 102.7 Hz the Poincaré section
unstable solutions. The stable solutions in the range 20-119 Hzagain shows a closed curved indicating quasi-periodic
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behaviour, but now with wrinkles (onset of chaos). Finally, at bifurcation. On the way from 200 Hz to 78 Hz several
103.8 Hz a fractal structure appears; here, the steady-staténteresting phenomena take place. To start with and also
behaviour is chaotic. encountered in the sweep-up, the occurrence of "& 2
Additional experiments were carried out to verify the superharmonic resonance of the second ‘eigenmode’ near
steady-state behaviour near 100 Hz. To be sure that the highrespectively 163 Hz (experiment) and 152 Hz (numerical
amplitude solutions were obtained, each experiment was startedanalysis). This is followed by the occurrence of & 7
at 150 Hz. Subsequently a sine sweep (sweep-down) wassuperharmonic resonance at respectively 122.5 Hz (numerical
carried out until the target frequency was reached. Then theanalysis) and 115 Hz (experiment). Near 104 Hz (numerical
target frequency was kept constant over at least 10000 cyclesanalysis) and 101 Hz (experiment, overload) we meet the 3
The Poincaré sections in Figure 14 show that harmonic superharmonic resonance of the second ‘eigenmode’, which
solutions (a single ‘point’) are found at 70.13 Hz and 102.31 Hz seems to end in a cyclic fold bifurcation, because there is a
and that quasi-periodic solutions (a ‘closed curve’) are found at sudden jump to lower amplitudes from about 100¢ w/'ssay,
98.72 Hz, 99.96 Hz and 101.06 Hz. The quantities in these 400 m/$. In a small region near 100 Hz the amplitude changes
figures were made dimensionless and were scaled between -Very rapidly up and down in the experiment as well as in the
and 1. numerical analysis. This can be explained by the occurrence of
Figure 15 and Figure 16 show experimental and numerical subharmonic, quasi-periodic and chaotic behaviour which was
time histories (20 excitation periods) of the accelerations for detected in the steady-state analyses of section 5.1.1. Finally,
excitation frequencies of 99 Hz (quasi-periodic) and 105 Hz near 78 Hz we see thé"4superharmonic resonance of the
(harmonic solution, "8 superharmonic resonance of™ 2 second ‘eigenmode’ (overload in experiment).
‘eigenmode’). Again the experimental time history is not really In general a good correspondence can be observed between
a steady-state, because it is the result of a sweep-downthe experiment and numerical analyses. There is also a good
Nevertheless, good correspondence can be seen between theorrespondence between the numerical steady-state analyses
experimental and numerical time histories. Again, in about the and the numerical sweep analyses; apparently, a sweep-rate of 2
first 14 seconds of the integration process the excitation oct/min is so slow, that the sweep response comes very close to
frequency decreases with 8 oct/min from 350 Hz to one of the the steady-state response.

four mentioned frequencies. Then the frequency was kepts o Experiment 175 versus nonlinear model withu ¢ =
constant over about 1000 excitation periods; the last 20 0.67 mm (8 oct/min)

excitation pe.rlods are plotted. ) Only one parameter has changed with respect to section
5.1.2 Numerical sweep-analyses (2 oct/min) 5.1.2: the sweep rate is increased from 2 oct/min (Figure 17 and

Figure 17 and Figure 18 show the calculated and the pjgre 18) to 8 oct/min (Figure 19 and Figure 20). Although 8
measured maximum accelerations as a function of the excitationy /min is a high sweep-rate which is hardly ever used in sine

frequency respectively for sweep-up and sweep-down (SweePgyeen testing at Fokker Space, the differences between the
rate 2 oct/min). i numerical and experimental results in Figure 19 and Figure 20
In the sweep-up the system follows the stable, linear lower 5o ma|. The influence of a higher sweep rate is mainly visible

branch of Figure 17 until 119 Hz. Then, a sudden increase inpea requencies where transient behaviour can be expected: for
amplitude occurs (jump to the upper branch because of theexample in the sweep-down near 78 Hz, where the system

cyclic fold bifurcation), after which the system needs some time jumps from the high amplitude to the low amplitude solution.
to settle down to the steady-state again. The numerical respons he angle of the slope is less steep in case of a higher sweep
shows a resonance near 152 Hz. In the numerical steady-state ;o Also in the frequency ranges where the steady-state
analyses we saw that the periodic solutions were unstable neagonaviour changes from irregular motion to regular motion
this frequency. The _stablt_a steady-state behaviour near this(near 100 Hz and 150 Hz; for the latter frequency only in the
frequency was not investigated, but at least quasi-periodic ,nerical analysis) the irregular motion seems to last longer for

behaviour may be expected here, because the instability was, pigher sweep rate, but in reality this is a transient effect.
introduced by secondary Hopf bifurcations. The resonance can

probably be identified as d%superharmonic resonance of the
second ‘eigenmode’ (2*152=304). The measured responseQ.15 mm (2 oct/min)
shows a 2 superharmonic resonance near 163 Hz In the sweep-up there is a good correspondence between
(2*163=326). The dynamic behaviour becomes linear at a lower the numerical and experimental results (Figure 21). Near 32 Hz
frequency in the numerical analyses (158 Hz) compared to thethe system becomes nonlinear: the aluminium beam and the
experiment (170 Hz). snubber start to make contact for periods of time. This
In the sweep-down (Figure 18) the system follows the continues until 70 Hz, where the amplitude of the response
upper branch until 78 Hz (hysteresis loop of 119-78 = 41 Hz). suddenly drops. Very probably this is caused by a cyclic fold
Then, a sudden, large decrease in amplitude occurs. This jumpbifurcation. For higher frequencies, the system becomes linear
to the linear, lower branch again is caused by a cyclic fold again (clamped-free beam).

5.3 Experiment 176 versus nonlinear model with b =
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In the sweep-down (Figure 22), the systems behaves7 REFERENCES
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numerical results, in the frequency response plots as well asVibration and Acoustics, \ol. 118, No. 2, pp. 147-153.

in the time history plots. DIANA Us_er’s Manual, Version 6.2, 1997, TNO Building
2. On corresponding stable solution branches, responses foi@nd Construction Research, Delft, The Netherlands.

sweep rates of 2 and 8 oct/min still show great resemblance

with the steady-state responses. The steady-state analyse8 FIGURES

show where non-periodic behaviour may be expected.

3. There is a great difference between the sweep-up and the — From, —
sweep-down behaviour, especially for the system with %fj A !
prestress: in a range of 41 Hz the system has coexisting h{f—j_f} - 4_i,,; —
stable harmonic solutions and shows hysteresis. Sudden tj ‘ L —*—‘h}— -
jumps in response amplitude were observed at the T =~ eo
boundaries of this frequency range. o

4. In addition to the hysteresis other nonlinear phenomena suck ... ; e | e
as superharmonic resonances, subharmonic motion, quasi- “ . ‘ oz

periodic motion and chaotic motion were found.

5. Module STRDYN of the FE-package DIANA (1997)
appears to be a trustworthy and very useful tool for the
analysis of the nonlinear dynamic behaviour of mechanical

#ler) ; \ !

Yr toavcaLl 41 REAFT 4 £

f . :
systems with local nonlinearities such as the system under e e 2 | e
+Y . E)(m:::eq

consideration. «j
A logical step forward for future research would be to I,
analyse the nonlinear dynamics of a more complex model of arjgure 1 Drawing of the experimental set-up
solar array. The complexity of the analysis could be extended in

two ways: |

1. The interaction of eigenmodes of the linear part of the |
structure. In the 1 dimensional beam structure only the
lowest eigenmode was in the frequency range of interest. It
is expected that the number of eigenmodes in this frequency
range will increase in a 2 dimensional solar array panel. The
interaction between these eigenmodes due to nonlinear
coupling may be much more intensive than the interaction
observed in this paper.

2. In the beam structure we had one snubber element. T
solar array panel will be supported byore than one
snubber. This also will complicate the dynamic behaviour of =
the structure. In case of pretension for example some

snubbers will be in contact with the array whereas others are e 7S S o S : : .

not at a certain moment in time. In aqeneral. the several Figure 2 Side view of the free end of the aluminium beam with
- . L 9 ! .. accelerometers 5X, 5Y and 5Z and contact sensor; the short

snubbers will come in contact with the solar array and will ¢jamped-free carbon beam (snubber) is visible below the

come loose at different times. aluminium beam
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Figure 3 View of the structure mounted on the shaker Figure 5 The beam-snubber system.

beam5minz
exp 174, 2 oct/min
I I \

\ “ sweep-up B
| sweep-down
| -

[ ]
| B
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acceleration [m/s’] Maximum acceleration [m/s’]

10°

10"
L L L L L 1 L L L L L L
50 100 150 200 10 50 100 150 200
frequency [HZz] Frequency [Hz]
Figure 4 Maximum of acceleration against frequency, test 174, Figure 6 Maximum of acceleration against frequency, nonlinear
position beam5minz, 2 oct/min, nonlinear system with prestress FE-model, position beam5minz, steady-state, nonlinear system

with prestress (0.67 mm), red circles indicate unstable periodic
solutions, green circles indicate stable periodic solutions
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Figure 7 Displacements of 3 periodic solutions at 110 Hz, Figure 9 4" superharmonic resonance of 2" eigenmode at 78
nonlinear FE-model, position beam5minz. Hz, position beam5minz.
. . ; 2
Acceleration [m/s?] 3 solutions at 110 Hz acceleration [m/s?] 104.1 Hz
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Figure 8 Accelerations of 3 periodic solutions at 110 Hz, Figure 10 3 superharmonic resonance of 2 eigenmode at
nonlinear FE-model, position beam5minz. 104.1 Hz, position beam5minz.
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Figure 11 7" superharmonic resonance of 3" eigenmode at

122.5 Hz, position beam5minz.
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Figure 13 Poincaré sections at 102.7 and 103.8 Hz, position

beam5minz.
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Figure 12 Poincaré sections at 99, 100 and 102 Hz, position

beam5minz.
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Figure 14 Experimental Poincaré sections near 100 Hz
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Figure 15 Time history of acceleration at 99 Hz, position

beam5minz.
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Figure 16 Time history of acceleration at 105 Hz, position

beam5minz.

Sweep-up, 2 oct/min
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Figure 17 Maximum acceleration against frequency, sweep-up,

sweep rate 2 oct/min, position beam5minz.
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Figure 18 Maximum acceleration against freq

uency, sweep-

down, sweep rate 2 oct/min, position beam5minz.
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Sweep-up, 8 oct/min Sweep-up, 2 oct/min
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Figure 19 Maximum acceleration against frequency, sweep-up, Figure 21 Maximum acceleration against frequency, sweep-up,
sweep rate 8 oct/min, position beam5minz. sweep rate 2 oct/min, position beam5minz.
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Figure 20 Maximum acceleration against frequency, sweep- Figure 22 Maximum acceleration against frequency, sweep-
down, sweep rate 8 oct/min, position beam5minz. down, sweep rate 2 oct/min, position beam5minz
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