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Abstract

As efficient, voluntary bilateral trades are generally not incentive compat-

ible in an interdependent-value environment (Fieseler, Kittsteiner, Moldovanu

(2003) and Gresik (1991)), we seek for more positive results by employing

two-stage mechanisms (Mezzetti (2004)). We say that a two-stage mecha-

nism satisfies incentive compatibility if the truth-telling in both stages con-

stitutes an equilibrium strategy.

First, we show by means of a stylized example that the generalized two-

stage Groves mechanism never guarantees voluntary trade, while it satisfies

efficiency and incentive compatibility. In a general environment, we next

propose Assumption 1 under which there exists a two-stage incentive com-

patible mechanism implementing an efficient, voluntary trade. Third, within

the same example, we confirm that our Assumption 1 is very weak because

it holds as long as the buyer’s degree of interdependence of preferences is not

too high relative to the seller’s counterpart. Finally, we show by the same

example that if Assumption 1 is violated, our proposed two-stage mechanism

fails to achieve voluntary trade.
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1 Introduction

This paper investigates efficient, voluntary bilateral trades in an interdependent

values environment. By “bilateral trade” we mean a simple trading problem in

which two individuals, one of whom has a single indivisible object to sell to the

other, attempt to agree on exchange of the object for money. So, in this setup, the

seller has the full property right for the object to be sold. Efficiency adopted in

this paper is an ex post notion, which requires that (i) there be a trade of the good

if and only if the buyer’s valuation for the good is at least as high as the seller’s

valuation (decision efficiency) and (ii) whatever the buyer pays is always exactly

what the seller receives (budget balance). This paper is mainly concerned with

the following normative question: when can an efficient, voluntary trade be imple-

mentable in this bilateral trade problem? By the well-known revelation principle,

we say that efficient, voluntary trades are possible if there exists a direct revelation

mechanism that satisfies Bayesian incentive compatibility (BIC), efficiency (EFF),

interim individual rationality (IIR), and ex post budget balance (BB). In the case

of private values (i.e., each player is certain of the value of the object at the timing

of trade), the celebrated impossibility result of Myerson and Satterthwaite (1983)

shows that there are generally no mechanisms satisfying BIC, IIR, EFF, and BB

in a bilateral trade setting. On the contrary, Cramton, Gibbons, and Klemperer

(1987) show that under the equal-share ownership, there is a mechanism satisfying

BIC, IIR, EFF, and BB. Hence, the equal-share partnership is dissolved efficiently.

In many practical instances, however, the assumption of private values is vio-

lated. This motivates us to investigate when efficient, voluntary bilateral trades are

possible in interdependent values environments, which capture a class of situations

in which the payoff of an agent depends not only on his own type, but also on

the types (or informational signals) of the other agents. Such interdependence is

natural in many trading situations. For instance, we consider a situation in which

a seller has private information about the quality of the good which influences the

valuations of both the seller and a potential buyer. This type of interdependence

is the very situation this paper considers. Once we turn to interdependent values

environments, however, we are well aware of bad news. We know from Fiesler,

Kittsteiner, and Moldovanu (henceforth, FKM, 2003) and Gresik (1991) that My-

erson and Satterthwaite’s impossibility result is extended to interdependent values

environments. FKM (2003, Theorem 4) also show that the efficient partnership

dissolution of Cramton, Gibbons, and Klemperer (1987) cannot be extended to

interdependent values environments.

To overcome this negative message in interdependent values environments, we
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seek for more positive results by looking at two-stage generalized revelation mecha-

nisms (Mezzetti (2004)): in the first stage, agents are asked to report their type and

the allocation of the good is determined on the type reports; after agents observe

their allocation payoff, they are asked to report their realized allocation payoff in

the second stage; and finally, the monetary transfers are finalized on the reports

of both stages. In his Proposition 1, Mezzetti (2003) establishes the generalized

revelation principle, which says that it entails no loss of generality to focus on

two-stage generalized revelation mechanisms we briefly described above. By this

generalized revelation principle, a two-stage generalized revelation mechanism is

simply called a two-stage mechanism in this paper.

The assumption behind the use of two-stage mechanisms can be justified. For

example, in the context of a labor market, employers learn the quality of the

workers after employing them and after both the employer and the worker find out

that the the worker is qualified for the job, the worker’s contract is upgraded. We

find this type of contracts in a tenure-track contract in academic institutions and

consider this as a particular type of two-stage mechanisms. On the contrary, it is

sometimes difficult to justify that an agent who obtains the good can experience

its quality. To see this, consider a situation in which the object to be traded is

some art work and an agent’s payoff from obtaining this art work depends on

how the other people appreciate it. In this case, the agent will not be able to

experience the quality of the object by consuming it. Hence, the power of two-

stage mechanisms is sometimes dubious. In any case, we stress that our question

here is mainly theoretical. If no two-stage mechanisms implement an efficient,

voluntary trade, it is almost impossible to imagine that any mechanism used in a

more realistic setup can implement it. In this sense, we are concerned with pushing

the boundary between what is implementable and what is not by expanding our

scope into two-stage mechanisms.

Considering two-stage mechanisms, we modify the notion of incentive compat-

ibility. Following Mezzetti (2004), we say that a two-stage mechanism satisfies

BIC if there exists a perfect Bayesian equilibrium of that two-stage mechanism in

which all agents tell the truth in both stages. Here, the main question of our paper

is rephrased: “when does there exist a two-stage mechanism satisfying BIC, IIR,

EFF, and BB in a bilateral trade model with interdependent values?” In a gen-

eral mechanism design problem, Mezzetti (2004) proposes the generalized two-stage

Groves mechanism and shows that it always satisfies BIC, EFF, and BB. When we

are concerned with efficient trades, the standard one-stage Groves mechanism is

shown to be a “canonical” mechanism (See Krishna and Perry (2000) and Williams

3



(1999) for the case of private values and FKM (2003) for the case of interdependent

values). What we mean by “canonical” is that if we are to investigate the existence

of the standard one-stage mechanisms satisfying BIC and EFF, we lose nothing to

restrict our search to the family of the Groves mechanisms.

This paper considers a bilateral trade model with the following features: (i)

each agent’s type space constitutes a nonempty closed, bounded interval over the

real line; (ii) each agent’s type is chosen independently across agents; (iii) each

agent’s valuation depends on not only his own type but also the type of other

agent (i.e., interdependent values); (iv) each agent’s valuation for the object is

strictly increasing in both his own type and the opponent’s type; (v) utilities are

quasilinear and so, utilities consist of the sum of a payoff from an outcome decision

and a monetary transfer; and (vi) the single crossing property is satisfied. This

condition is imposed in FKM (2003). It means that each agent’s type must have

a greater effect on his own valuation than on that of the other agent.

In Section 3, we confine our attention to a stylized model in which each agent’s

type is chosen from the uniform distribution over [0, 1] and each agent i’s valuation

for the object is represented by a linear function, i.e., ũi(θi, θj) = θi+γiθj, where γi

denotes the degree of interdependence of preferences for agent i. In this context, the

single crossing property requires that γi < 1 for each agent i. We find it natural to

start our investigation from the generalized two-stage Groves mechanism. We show

that the generalized two-stage Groves mechanism never satisfies IIR (Proposition

1). Throughout the paper, we revisit this example multiple times to illustrate the

implications of our analysis.

In Section 4, we establish the main result of this paper in a general environ-

ment. This section consists of several subsections. In Subsection 4.1, we introduce

an additional property imposed on two-stage mechanisms. The property says that

if trade does not occur, no payments are made. We call this property the “no-

trade-then-no-payments” (henceforth, NTNP) property. In the example in Section

3, we confirm that the generalized two-stage Groves mechanism violates the NTNP

property (Claim 3). We impose another additional monotonicity property on two-

stage mechanisms. We say that a two-stage mechanism is monotone if the buyer’s

payment is nondecreasing in his own type announcement conditional upon trade

occurring. In the example of Section 3, we confirm that the generalized two-stage

Groves mechanism is indeed monotone (Claim 4). This suggests that monotonicity

is a mild condition. In Subsection 4.2, we propose a two-stage NTNP, monotone

mechanism which is used for our main result. Subsection 4.3 introduces Assump-

tion 1 which is needed for our main result. Subsection 4.4 states Theorem 1 as our
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main result. Theorem 1 of this paper says that if our Assumption 1 is satisfied,

the two-stage NTNP, monotone mechanism proposed in Subsection 4.2 satisfies

BIC, EFF, BB, and IIR. Thus, the generalized two-stage Groves mechanism turns

out to be “not” canonical because the generalized two-stage Groves mechanism

does not implement an efficient, voluntary trade, whereas our proposed two-stage

mechanism implements it. What distinguishes our proposed two-stage mechanism

from the generalized two-stage Groves one is the NTNP property.

Section 5 assesses the restrictiveness of our Assumption 1 using the example in

Section 3. We argue that our Assumption 1 is very weak because it is satisfied as

long as the buyer’s degree of interdependence of preferences (γ2) is not too high

relative to the seller’s counterpart γ1. By a set of simulation results, we conclude

that our Assumption 1 is satisfied for a large number of cases.

In Section 6, we compare our results with the results of Galavotti, Muto, and

Oyama (henceforth GMO, 2011), who consider the problem of partnership dis-

solution of Cramton, Gibbons, and Klemperer (1987) in an interdependent values

environment. GMO (2011) show in their Theorem 4 that when GMO’s Assumption

5.1 is satisfied, for any ownership structure, there exists a two-stage mechanism

satisfying BIC, IIR, EFF, and BB.1 To make our comparison meaningful, we focus

on our bilateral trade setup, i.e., there are only two agents and the seller has the full

property right over the good. We first show in our Lemma 8 that our Assumption

1 is weaker than GMO’s Assumption 5.1. Second, we show in Lemma 9 that in

the example in Section 3, GMO’s Assumption 5.1 is satisfied if and only if γ1 = γ2,

i.e., the seller’s degree of interdependence of preferences is exactly identical to the

buyer’s counterpart. This suggests that GMO’s Assumption 5.1 is generically vi-

olated in our bilateral trade setup. Of course, the advantage of GMO (2011) lies

in rather handling any ownership structure, which exhibits a contrast with this

paper’s focus on a particular ownership structure in which the seller has the full

property right over the good.

The rest of the paper is organized as follows. In Section 2, we introduce the

general notation and basic concepts for the paper and go over some key important

results in the literature to benchmark our paper. Section 3 specializes in a highly

stylized but well studied model of bilateral trade with interdependent values. In

Section 4, we introduce our Assumption 1 and discuss our main result. Section

5 assesses the restrictiveness of our Assumption 1. In Section 6, we compare the

results of our paper with those of GMO (2011). In the Appendix, we provide all

1To be precise, their result is stronger than this because GMO (2011) strengthen IIR into ex

post individual rationality (EPIR). See Section 6 for the definition of EPIR.
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the proofs of the results omitted from the main text of the paper.

2 Preliminaries

The seller (agent 1) has one indivisible object for sale and there is one potential

buyer (agent 2). Each agent i ∈ {1, 2} has his type θi about the value of the

object. The set of possible types for agent i is denoted by Θi and we assume that

Θi = [θi, θ̄i] is a closed, bounded interval over R with θi < θ̄i. We use the notation

convention that Θ = Θ1×Θ2 and Θ−i = Θj where j 6= i with a generic element θ−i.

Types are independently distributed between agents. For each agent i ∈ {1, 2},
denote by fi and Fi the probability density function and cumulative distribution

function of θi, respectively. We further assume that fi(θi) > 0 for all θi ∈ (θi, θ̄i)

and i ∈ {1, 2}.
Let q ∈ Q = [0, 1] be the probability that the good is sold to the buyer, or

trading probability for short. Preferences of each agent i ∈ {1, 2} is given by

Ui : Q×Θ× R→ R, which depends on the trading probability q, the type profile

θ and his monetary transfer pi:

U1(q, θ, p1) = u1(q, θ) + p1 = (1− q)ũ1(θ) + p1;

U2(q, θ, p2) = u2(q, θ) + p2 = qũ2(θ) + p2,

where ui(q, θ) is agent i’s allocation payoff and ũi(θ) is agent i’s valuation for

the object in state θ ∈ Θ. We assume that for each agent i ∈ {1, 2}, ũi(θi, θ−i)
is differentiable in both θi and θ−i and ũi,i ≡ ∂ũi(θi, θ−i)/∂θi > 0 and ũi,j ≡
∂ũi(θi, θ−i)/∂θ−i > 0 (i.e., strictly increasing in both agents’ types).

We further assume the following single crossing condition:

ũi,i > ũj,i, ∀i, j ∈ {1, 2} with i 6= j.

When the agents’ types are independently distributed, as we assume, Dasgupta and

Maskin (2000, footnote 13) argue that in the auction setups, the single crossing

property is necessary for the existence of mechanisms satisfying efficiency. This is

one of the reasons why we impose the single crossing property. Another reason for

this imposition is that we need to rely on Theorem 5 (shown below) of Fieseler,

Kittsteiner, and Moldovanu (FKM, 2003) who impose the single crossing condition

on their environment. We denote by Πi = {ũi(θ)| θ ∈ Θ} the range of agent i’s

allocation payoff. We assume that for any realization of the type profile θ ∈ Θ, if

agent i receives the object, he observes his realized allocation payoff ũi(θ) before

final transfers are made.
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We first introduce the notion of (one-stage) direct revelation mechanism. A

one-stage direct revelation mechanism is defined as a triple (Θ, x, t) in which each

agent announces his type and thereafter, the allocation decision is determined by

the rule x : Θ → [0, 1] and the monetary transfer is determined by t : Θ → R2

“simultaneously” based on all agents’ type announcement. By the standard reve-

lation principle, we lose nothing to focus on direct revelation mechanisms in which

truth-telling each agent’s type constitutes a Bayesian Nash equilibrium, which is

known as Bayesian incentive compatibility (BIC). In the case of private-value en-

vironments, Myerson and Satterthwaite (1983) show that efficiency and voluntary

participation are not achieved in an incentive compatible manner. Focusing on the

standard one-stage direct mechanisms, Fieseler, Kittsteiner, and Moldovanu (2003)

establish the following counterpart of the Myerson and Satterthwaite impossibility

result in an interdependent values environment.

Lemma 1 (Theorem 5 of FKM (2003)). There exists a (one-stage) mechanism

satisfying Bayesian incentive compatibility (BIC), interim individual rationality

(IIR), ex post efficiency (EFF), and ex post budget balance (BB) if and only if

there is a price p such that ũ1(θ1, θ̄2) ≥ p ≥ ũ2(θ1, θ̄2).2

Remark: This condition means that there is a price p such that all types of

the buyer and seller agree to trade at this price. It is important to note that

Gresik (1991) already derived a different condition for the existence of a one-stage

mechanism satisfying all the four properties (Theorem 3 of Gresik (1991)). What

is useful in the above lemma is that we can only focus on simple price mechanisms

to check if an efficient, voluntary trade is possible.

In the example in Section 3, we consider a simple environment in which (i) each

agent i’s type is chosen independently from the uniform distribution over [0, 1]; (ii)

each agent i’s valuation function is ui(θi, θ−i) = θi + γiθ−i; and (iii) γi ∈ (0, 1). In

this environment, the relevant condition becomes γ1 ≥ 1, which contradicts (iii)

γi ∈ (0, 1). Therefore, within this example, which is, we believe, a representative

one, we conclude that there are no “one-stage” mechanisms satisfying all the four

properties.

Taking this negative result seriously, we then follow Mezzetti (2004) to define

a two-stage mechanism as a quadruple (M1,M2, δ, τ) such that

2To be precise, FKM (2003) only requires ex ante budget surplus rather than ex post budget

balance (BB), which we assume. However, Borgers (2015) in Proposition 3.6 and Borgers and

Norman (2009) in Proposition 2 show that in the case of independent beliefs, as in our paper, ex

ante budget surplus implies ex post budget balance (BB).
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• M1
i is agent i’s message space in the first stage and M2

i is agent i’s message

space in the second stage, respectively;

• δ : M1 → [0, 1] is the decision rule specifying the trading probability; and

• τ = (τ [1], τ [2]) where τ [i] : M1 ×M2
i → R2 is the transfer rule specifying

the monetary transfer for both agents when agent i receives the good at the

beginning of the second stage.

In words, in the first stage, after observing his own type, each agent sends a message

from M1
i and then the good is allocated according to the decision rule δ; in the

second stage, after agent i who receives the good (either the seller or the buyer)

observes his realized allocation payoff, he is asked to send a message from M2
i ; and

finally, the monetary transfers are finalized based on the reports of both stages.

We denote by ri = (r1
i , r

2
i ) agent i’s strategy such that r1

i : Θi →M1
i is his strategy

in the first stage and r2
i : Q×Θi × Πi →M2

i is his strategy in the second stage.

In particular, if we set M1
i = Θi and M2

i = Πi, i.e., the agents are asked to

report their types in the first stage and realized allocation payoffs in the second

stage, then we can construct the corresponding generalized revelation mechanism

(Θ,Π, x, t) as follows: the decision rule x : Θ → [0, 1] is given by the composite

function x(θ) = δ(r1(θ)) and the transfer rule t = (t[1], t[2]) such that t[i] : Θ ×
Πi → R2 is given by the composite function t[i](θ;ui) = τ [i](r1(θ), r2(δ(r1(θ)), θ, ui)).

Since each agent i’s allocation payoff ũi(θi, θ−i) depends on the whole type pro-

file, then the second-stage reports in the generalized revelation mechanism indeed

provide extra information about the type profile, while there is a loss of general-

ity in assuming that the designer only uses the standard “one-stage” revelation

mechanisms.

Following Mezzetti (2003), we adopt perfect Bayesian equilibrium as a solution

concept and appeal to the following generalized revelation principle, the counter-

part of revelation principle in one-stage mechanisms.3

Lemma 2 (The Generalized Revelation Principle in Mezzetti (2003)). For any

perfect Bayesian equilibrium outcome of any two-stage mechanism (M1,M2, δ, τ),

there exist a generalized revelation mechanism (Θ,Π, x, t) and a perfect Bayesian

equilibrium such that, for each agent, reporting his true allocation payoff in the

second stage and reporting his true type in the first stage constitute the equilibrium

strategy.

3For perfect Bayesian equilibrium, for example, the reader is referred to Osborne and Rubin-

stein (1994, pp.232-233).
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From now on, by the generalized revelation principle, we call a generalized

revelation mechanisms simply a two-stage mechanism. We now discuss the main

properties we want our two-stage mechanisms to satisfy. We denote by (θr1, θ
r
2) the

first-stage report and (ur1, u
r
2) the second-stage report in a two-stage mechanism,

respectively.

Definition 1. A two-stage mechanism (Θ,Π, x, t) satisfies Bayesian incentive com-

patibility (BIC) if truthtelling in both stages constitutes an equilibrium strategy

of each agent in a perfect Bayesian equilibrium; that is, for each agent i and each

type profile (θi, θ−i), (θ
r
i , θ

r
−i) ∈ Θi × Θ−i, the equilibrium second-stage report is

uri = ui(x(θri , θ
r
−i), θi, θ−i) and the equilibrium first-stage report is θri = θi.

BIC implies that, given the first-stage report, each agent reports his realized

allocation payoff truthfully in the second stage. BIC further implies that, on the

equilibrium path, each agent reports his true type in the first stage and for any

type profile (θ1, θ2) ∈ Θ1×Θ2, ui(x(θ1, θ2), θ1, θ2) is agent i’s true allocation payoff.

We also assume that each agent has the option of not participating in the two-

stage mechanism (Θ,Π, x, t) and let UO
i (θi) be the expected utility of agent i with

type θi from non-participation. To be specific,

UO
1 (θ1) =

∫
Θ2

ũ1(θ1, θ2)dF2(θ2) for all θ1 ∈ Θ1

and

UO
2 (θ2) = 0 for all θ2 ∈ Θ2.

We introduce the following individual rationality constraint:

Definition 2. A two-stage mechanism (Θ,Π, x, t) satisfies interim individual ra-

tionality (IIR) if, for all θ1 ∈ Θ1,∫
Θ2

(u1(x(θ1, θ2), θ1, θ2) + t1(θ1, θ2;u1, u2)) dF (θ2) ≥ UO
1 (θ1),

and for all θ2 ∈ Θ2,∫
Θ1

(u2(x(θ1, θ2), θ1, θ2) + t2(θ1, θ2;u1, u2)) dF (θ1) ≥ UO
2 (θ2),

where u1 = u1(x(θ1, θ2), θ1, θ2) and u2 = u2(x(θ1, θ2), θ1, θ2).

Note that this paper’s formulation of IIR is the same as the one used by FKM

(2003) and Gresik (1991). Next, we require that trade occur if and only if there

are gains from trade from ex post point of view.
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Definition 3. A two-stage mechanism (Θ,Π, x, t) satisfies decision efficiency (EFF)

if, for all (θ1, θ2) ∈ Θ1 ×Θ2,

x(θ1, θ2) ∈ arg max
x∈Q

(u1(x, θ1, θ2) + u2(x, θ1, θ2)) .

In what follows, we denote by x∗ the efficient decision rule. We further require

that what the seller receives be exactly the same as what the buyer pays.

Definition 4. A two-stage mechanism (Θ,Π, x, t) satisfies ex post budget balance

(BB) if, for all (θ1, θ2) ∈ Θ1 ×Θ2,

t1(θ1, θ2;u1, u2) + t2(θ1, θ2;u1, u2) = 0,

where u1 = u1(x(θ1, θ2), θ1, θ2) and u2 = u2(x(θ1, θ2), θ1, θ2).

Mezzetti (2004) proposes the following generalized two-stage Groves mechanism

and shows that it always satisfies BIC, BB and EFF.

Definition 5. A two-stage mechanism (Θ,Π, x∗, tG) is called the generalized two-

stage Groves mechanism if, for each agent i ∈ {1, 2}, type report (θri , θ
r
−i) ∈ Θi ×

Θ−i and payoff report (uri , u
r
−i) ∈ Πi × Π−i,

tGi (θri , θ
r
−i;u

r
i , u

r
−i) = ur−i − hi(θri , θr−i)

where

2hi(θ
r
i , θ

r
−i) =

2∑
j=1

uj (x∗(θr), θr)− Eθ−i

(
2∑
j=1

uj (x∗(θri , θ−i), θ
r
i , θ−i)

)

+Eθ−(i+1)

(
2∑
j=1

uj
(
x∗(θri+1, θ−(i+1)), θ

r
i+1, θ−(i+1)

))

with Eθ−i being the expectation operator over θ−i and Eθ−3 = Eθ−1 .

Although the result below is already proved by Mezzetti (2004), we find it

instructive to go through its proof to appreciate how the generalized two-stage

Groves mechanism works in our bilateral trade setup.

Lemma 3 (Proposition 2 in Mezzetti (2004)). The generalized two-stage Groves

mechanism always satisfies BIC, EFF, and BB.

Proof. The transfer rule is constructed in such a way that the generalized two-

stage Groves mechanism always satisfies BIC and BB. Note that agent i’s transfer

is independent of his payoff report uri so that he has no incentive to deviate in the
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second stage. Suppose agent i of type θi misreports θri whereas his opponent always

reports the true type θ−i in the first stage. Assume further that both agents report

the allocation payoff truthfully in the second stage, i.e., uri = ui(x
∗(θri , θ−i), θi, θ−i)

and ur−i = u−i(x
∗(θri , θ−i), θi, θ−i). Then, agent i’s expected utility is

Eθ−i
[
ui(x

∗(θri , θ−i), θi, θ−i) + tGi (θri , θ−i;ui(x
∗(θri , θ−i), θi, θ−i), u−i(x

∗(θri , θ−i), θi, θ−i))
]

= Eθ−i [ui(x
∗(θri , θ−i), θi, θ−i) + u−i(x

∗(θri , θ−i), θi, θ−i)− hi(θri , θ−i)]

= Eθ−i

(
2∑
j=1

ui(x
∗(θri , θ−i), θi, θ−i)

)
− Eθ−i (hi(θ

r
i , θ−i))

= Eθ−i

(
2∑
j=1

ui(x
∗(θri , θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ), θ)

)

≤ Eθ−i

(
2∑
j=1

ui(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ), θ)

)
,

where E denotes the expectation over (θi, θ−i), and the last inequality follows be-

cause, by definition, x∗(θi, θ−i) ∈ arg maxx∈Q
∑2

j=1 uj(x, θi, θ−i) and the second

term is a constant. Hence, agent i achieves the highest expected utility by truth-

telling so that BIC is satisfied.

Furthermore, on the equilibrium path where each agent i reports his true type θi

and true allocation payoff ui = ui(x
∗(θi, θ−i), θi, θ−i), the total transfer is computed

as follows: for each (θ1, θ2) ∈ Θ,

tG1 (θ1, θ2;u1(x∗(θ1, θ2), θ1, θ2), u2(x∗(θ1, θ2), θ1, θ2)

+tG2 (θ1, θ2;u1(x∗(θ1, θ2), θ1, θ2), u2(x∗(θ1, θ2), θ1, θ2)

= u2(x∗(θ1, θ2), θ1, θ2)− h1(θ1, θ2) + u1(x∗(θ1, θ2), θ1, θ2)− h2(θ1, θ2)

=
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

−1

2

[
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)− Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
+ Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

−1

2

[
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)− Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)−

2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

= 0.

Hence, BB is satisfied. This completes the proof.
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However, it is not clear whether the generalized two-stage Groves mechanism

also satisfies IIR or not. We investigate this issue by means of an example in the

next section.

3 An Example

In this section, we show by means of an example that the generalized two-stage

Groves mechanism with lump-sum transfers always fails IIR.

Both agents’ types are uniformly distributed on the unit interval [0, 1] and for

each type profile (θ1, θ2) ∈ [0, 1]2, their valuation functions are ũ1(θ1, θ2) = θ1+γ1θ2

and ũ2(θ1, θ2) = θ2 + γ2θ1 where γ1, γ2 > 0. Then,

ũ2(θ1, θ2)− ũ1(θ1, θ2) = (γ2θ1 + θ2)− (θ1 + γ1θ2) = (1− γ1)θ2 − (1− γ2)θ1,

implying that the efficient decision rule depends on the values of γ1 and γ2. We

need to satisfy the single crossing condition, which implies that γ1 < 1 and γ2 < 1.

Then, we are left with two cases to consider: (i) 0 < γ2 ≤ γ1 < 1 and (ii)

0 < γ1 < γ2 < 1.

We first show that the generalized two-stage Groves mechanism violates IIR in

both cases.

Proposition 1. The generalized two-stage Groves mechanism (Θ,Π, x∗, tG) with

lump-sum transfers violates IIR in both cases.

Proof. Recall that on the equilibrium path in which both agents’ reports are truth-

ful in both stages, agent i of type θi receives the following expected utility:

UG
i (θi) = Eθ−i

[
ui(x

∗(θi, θ−i), θi, θ−i) + tGi (x∗(θi, θ−i), ui, u−i)
]

= Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
,

where ui = ui(x
∗(θi, θ−i), θi, θ−i), u−i = u−i(x

∗(θi, θ−i), θi, θ−i), Eθ−i denotes the

expectation over θ−i, and E denotes the expectation over (θi, θ−i). Then we can

derive the worst-off type θwi of each agent i from participating in the generalized

two-stage Groves mechanism:

θwi ∈ arg min
θi∈Θi

[
UG
i (θi)− UO

i (θi)
]

= arg min
θi∈Θi

[
Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

i (θi)

]
.

12



Since the second term is a constant and hence independent of θi, it is equivalent

to say

θwi ∈ arg min
θi∈Θi

[
Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− UO

i (θi)

]
.

Let Li ≡ UO
i (θwi ) − UG

i (θwi ) be the expected loss for agent i’s worst-off type. By

Proposition 3 of Mezzetti (2003), we know that the generalized two-stage Groves

mechanism with lump-sum transfers satisfies IIR without violating BIC, EFF and

BB if and only if L1 + L2 ≤ 0. So, it remains to verify whether L1 + L2 ≤ 0 is

satisfied in this example. There are two cases we consider: (i) 0 < γ2 ≤ γ1 < 1

and (ii) 0 < γ1 < γ2 < 1.

Case (i): 0 < γ2 ≤ γ1 < 1

Since ũ2(θ1, θ2)− ũ1(θ1, θ2) = (1− γ1)θ2− (1− γ2)θ1 for each (θ1, θ2) ∈ Θ, then

we have that ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1− γ2)θ1/(1− γ1). Hence,

the efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.

The following figure illustrates the decision at different type profiles in this case; in

particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1},
which exhausts all the type profiles in which trade occurs.

Figure 1: when 0 < γ2 ≤ γ1 < 1

Claim 1. L1 + L2 > 0 when 0 < γ2 ≤ γ1 < 1.

Proof. The proof is in the Appendix.

Case (ii): 0 < γ1 < γ2 < 1

13



Similar to the previous case, for each (θ1, θ2) ∈ Θ, we have that ũ2(θ1, θ2) >

ũ1(θ1, θ2) if and only if θ2 > (1− γ2)θ1/(1− γ1). Hence, the efficient decision rule

dictates that, for each (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.

Figure 2 below illustrates the decision at different type profiles in this case; in

particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1},
which describes the set of possible type profiles for which it is efficient to trade.

Figure 2: when 0 < γ1 < γ2 < 1

Claim 2. L1 + L2 > 0 when 0 < γ1 < γ2 < 1.

Proof. The proof is in the Appendix.

By Claims 1 and 2, the generalized two-stage Groves mechanism fails IIR.

This example will become important for illustrating many of our results, and

we shall revisit it in multiple times in due course.

4 The Main Result

This section is organized as follows. In Subsection 4.1, we propose two properties

on the class of two stage mechanisms. The first property is called the “no-trade-

and-then-no-payment (NTNP) property, which means that when trade does not

occur, no agents either receive subsidies or make payments. The second property

requires that a two-stage mechanism be “monotone” in the sense that, conditional

on the trade occurring, the buyer’s payment is nondecreasing in his own type an-

nouncement. Subsection 4.2 proposes a NTNP, monotone two-stage mechanism

which is used for our main result (Theorem 1). Subsection 4.3 introduces Assump-

tion 1. In the example in Section 3, Assumption 1 loosely says that the buyer’s

14



degree of interdependence of preferences is not too high relative to the seller’s

counterpart. In Subsection 4.4, we show in our Theorem 1 that when Assumption

1 holds, our proposed NTNP, monotone two-stage mechanism satisfies BIC, IIR,

EFF, and BB.

4.1 A Class of Two-Stage Mechanisms

Since the generalized two-stage Groves mechanism always fails IIR in the example

of Section 3, we propose a new class of two-stage mechanisms which satisfy all the

desired properties including IIR. To do so, we first impose the following property

on two-stage mechanisms.

Definition 6 (NTNP). A two-stage mechanism (Θ,Π, x, t) satisfies the “no-trade-

then-no-payments” (NTNP) property if, for any (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) = 0⇒ t1(θ1, θ2;u1, u2) = t2(θ1, θ2;u1, u2) = 0,

where u1 = u1(x∗(θ1, θ2), θ1, θ2) = ũ1(θ1, θ2) and u2 = u2(x∗(θ1, θ2), θ1, θ2) = 0.

This property says that if both agents’ reports are truthful in both stages and as

a result, no trade occurs, then there are no monetary transfers.4 In what follows, we

call a two-stage mechanism satisfying this property a two-stage NTNP mechanism.

We first confirm that in the example of Section 3, the generalized two-stage Groves

mechanism fails this property.

Claim 3. In the example of Section 3, the generalized two-stage Groves mechanism

(Θ,Π, x∗, tG) always violates NTNP.

Remark: In the generalized two-stage Groves mechanism, even if trade does not

occur in some state, the buyer might receive some positive subsidy from the seller.

This is the reason why NTNP is violated.

Proof. The proof is in the Appendix.

This result suggests that the NTNP property is a defining one that is distin-

guished from the generalized two-stage Groves mechanism. To propose another

property we impose on two-stage mechanisms, we first establish the following use-

ful lemma:

4Off the equilibrium path, on the contrary, we impose no restrictions on monetary transfers

under no trade so that penalties can be imposed once a deviation is detected.
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Lemma 4. Suppose the single crossing condition holds. Then, there exists θ∗2 ∈
(θ2, θ̄2] such that for all θ2 ∈ Θ2,∫

Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2

where θ∗2 denotes the unique cutoff point.

Proof. There are two cases we need to consider. The first case is that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) <

1 for all θ2 < θ̄2. The second case is that there exists θ∗2 ∈ (θ2, θ̄2) such that∫
Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ∗2 and

∫
Θ1
x∗(θ1, θ2)dF1(θ1) = 1 for any

θ2 ≥ θ∗2. When θ∗2 = θ̄2, the event {(θ1, θ2) ∈ Θ| θ2 ≥ θ∗2} is of measure zero in Θ.

Therefore, if θ∗2 = θ̄2, the expression
∫

Θ1
x∗(θ1, θ̄2)dF1(θ1) = 1 does not affect the

calculation of interim expected payoffs of any agent at all so that this requirement

is inconsequential. Therefore, the first case can be handled as a special case of the

second case by setting θ∗2 = θ̄2.

Thus, we assume that θ∗2 ∈ (θ2, θ̄2). Suppose on the contrary that there exists

some θ̃2 < θ̂2 such that ∫
Θ1

x∗(θ1, θ̃2)dF1(θ1) = 1,

and ∫
Θ1

x∗(θ1, θ̂2)dF1(θ1) < 1.

Note that
∫

Θ1
x∗(θ1, θ̃2)dF1(θ1) = 1 implies ũ2(θ1, θ̃2) > ũ1(θ1, θ̃2) for all θ1 ∈ Θ1.

By the single crossing condition, for any θ1 ∈ Θ1, ũ2(θ1, θ2) must grow faster than

ũ1(θ1, θ2) as θ2 increases; since θ̂2 > θ̃2 and ũ2(θ1, θ̃2) > ũ1(θ1, θ̃2) for all θ1 ∈ Θ1, it

follows that

ũ2(θ1, θ̂2) > ũ1(θ1, θ̂2)

for all θ1 ∈ Θ1, or equivalently,∫
Θ1

x∗(θ1, θ̂2)dF1(θ1) = 1,

contradicting our hypothesis. This completes the proof.

To have a better understanding of Lemma 4, we also provide two figures for

illustration. The following figures illustrate the allocation decision at different

type profiles in general. The shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1 × Θ2 :

x∗(θ1, θ2) = 1}, which describes the set of possible type profiles for which it is

efficient to trade. In the left figure, we have
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all
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Figure 3 Figure 4

θ2 < θ̄2. In the right figure, it is always efficient to trade when θ2 is greater than

the cutoff type θ∗2.

We introduce the following monotonicity property on the class of two-stage

mechanisms.

Definition 7. Let θ∗2 ∈ (θ2, θ̄2] be the unique cutoff point identified in Lemma

4. A two-stage mechanism (Θ,Π, x∗, tM) is monotone if, for any θr1 ∈ Θ1, any

θr2, θ̂
r
2 ∈ Θ2, and any (ur1, u

r
2), (ûr1, û

r
2) ∈ Π1×Π2, whenever θ̂r2 > θr2 and x∗(θr1, θ̂

r
2) =

x∗(θr1, θ
r
2) = 1, then{

tM2 (θr1, θ̂
r
2, û

r
1, û

r
2) < tM2 (θr1, θ

r
2, u

r
1, u

r
2) if θ̂r2 < θ∗2

tM2 (θr1, θ̂
r
2, û

r
1, û

r
2) = tM2 (θr1, θ

r
2, u

r
1, u

r
2) if θr2 ≥ θ∗2

In words, a monotone two-stage mechanism has the property that, conditional

on the trade occurring, the buyer’s payment is strictly increasing in his own type

if his type is smaller than θ∗2 and it is constant if his type is at least as high as θ∗2.

We will show that in the example in Section 3, the generalized two-stage Groves

mechanism is monotone.

Claim 4. In the example in Section 3, the generalized two-stage Groves mechanism

(Θ,Π, x∗, tG) is monotone.

Proof. The proof is in the Appendix.

This suggests that monotonicity is a mild requirement imposed on two-stage

mechanisms. On the contrary, as we already argued, the NTNP is rather a stringent

requirement.

4.2 The Proposed Two-Stage Mechanism

In this subsection, we propose a two-stage NTNP, monotone mechanism we use for

our main result in the next subsection.
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Recall that the efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ1 ×Θ2,

x∗(θ1, θ2) =

1 if ũ2(θ1, θ2) > ũ1(θ1, θ2)

0 otherwise.

We propose the following two-stage mechanism (Θ,Π, x∗, tM) which satisfies BIC,

IIR, EFF, and BB.5 By construction, the proposed two-stage mechanism satisfies

EFF. For each type report (θr1, θ
r
2) ∈ Θ1 × Θ2 and each payoff report (ur1, u

r
2) ∈

Π1 × Π2,

t1(θr1, θ
r
2;ur1, u

r
2) =


ũ2(θr1, θ

r
2) if θr2 < θ∗2, x

∗(θr1, θ
r
2) = 1, and ur2 = u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

−g(θr1) if θr2 ≥ θ∗2, x
∗(θr1, θ

r
2) = 1, and ur2 = u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

−ψ if x∗(θr1, θ
r
2) = 1 and ur2 6= u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

0 if x∗(θr1, θ
r
2) = 0,

and

t2(θr1, θ
r
2;ur1, u

r
2) =


−ũ2(θr1, θ

r
2) if θr2 < θ∗2 and x∗(θr1, θ

r
2) = 1

g(θr1) if θr2 ≥ θ∗2 and x∗(θr1, θ
r
2) = 1

0 if x∗(θr1, θ
r
2) = 0 and ur1 = u1(x∗(θr1, θ

r
2), θr1, θ

r
2)

−ψ if x∗(θr1, θ
r
2) = 0 and ur1 6= u1(x∗(θr1, θ

r
2), θr1, θ

r
2),

where ψ is a strictly positive constant (which is determined later), θ∗2 ∈ (θ2, θ̄2] is

the cutoff point identified in Lemma 4, and

g(θr1) =

−ũ2(θr1, θ
∗
2) if θ∗2 = θ̄2

G(θr1)/ (1− F2(θ∗2)) if θ∗2 ∈ (θ2, θ̄2)

with

G(θr1) =

∫
Θ∗

2(θr1)\Θ∗∗
2

ũ2(θr1, θ2)dF2(θ2)−
∫

Θ∗
2(θr1)

ũ1(θr1, θ2)dF2(θ2)

−
∫

Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1), (1)

5There are two senses in which the proposed two-stage mechanism is considered a generalized

version of the “shoot-the-liar” mechanism in Mezzetti (2007). First, the seller is asked to make a

monetary transfer based on the reports. Second, the payment rule below the cutoff θ∗2 shares the

same spirit as the “shoot-the-liar” mechanism but the payment above the cutoff θ∗2 is independent

of the buyer’s type report.
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where

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

and Θ∗∗2 = [θ∗2, θ̄2].

In this mechanism, if each agent i reports his true type θi and true allocation

payoff ui = ui(x
∗(θi, θ−i), θi, θ−i), then the following three properties are confirmed.

1. when x∗(θ1, θ2) = 0, t1(θ1, θ2;u1, u2) = t2(θ1, θ2;u1, u2) = 0, i.e., when no

trade occurs, there are no monetary transfers. Hence, NTNP is satisfied;

2. when x∗(θ1, θ2) = 1 and θ2 < θ∗2, t1(θ1, θ2;u1, u2) = −t2(θ1, θ2;u1, u2) =

ũ2(θ1, θ2), implying that the buyer’s payment is strictly increasing in his

type; and

3. when x∗(θ1, θ2) = 1 and θ2 ≥ θ∗2, t1(θ1, θ2;u1, u2) = −t2(θ1, θ2;u1, u2) =

−g(θ1) which is independent of the buyer’s type.

By construction, the proposed two-stage mechanism is monotone. It also satisfies

BB by construction. By contrast, we need break the budget off the equilibrium.

If it is efficient not to trade and the seller’s payoff report in the second stage is

inconsistent with the type reports in the first stage, then the buyer is punished

with a penalty ψ. Similarly, if it is efficient to trade and the buyer’s payoff report

in the second stage is inconsistent with the type reports in the first stage, then the

seller is punished with a penalty ψ.

4.3 An Assumption

To state our main result, we introduce the following assumption.

Assumption 1. ∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1) ≥ 0, (2)

where for each θ1 ∈ Θ1,

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

Θ∗∗2 = [θ∗2, θ̄2], and θ∗2 ∈ (θ2, θ̄2] is the cutoff point identified in Lemma 4.
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Remark: If Θ∗2(θ1) = {θ̄2} for some θ1 ∈ Θ1, then Θ∗2(θ1)\Θ∗∗2 is an empty set. In

this case, any integration over Θ∗2(θ1)\Θ∗∗2 is always zero. Since the first term in

the left-hand-side of inequality (2) corresponds to the ex ante gains from trade over

[θ1, θ̄1]× [θ2, θ
∗
2], it is always nonnegative. If θ∗2 = θ̄2, the second term in inequality

(2) is zero by definition. Therefore, Assumption 1 is automatically satisfied when

θ∗2 = θ̄2.

To further illustrate this assumption, we first consider Case (i) 0 < γ2 ≤ γ1 < 1

in the example of Section 3. In this case, we have θ∗2 = θ̄2 = 1. Then, we obtain

Θ∗2(θ1) =

{ [
1−γ2
1−γ1 θ1, 1

]
if 0 < θ1 < (1− γ1)/(1− γ2)

{1} if (1− γ1)/(1− γ2) ≤ θ1 < 1.

We next consider Case (ii) 0 < γ1 < γ2 < 1. In this case, we obtain θ∗2 =

(1− γ1)/(1− γ2) < 1 = θ̄2 and Θ2(θ1) = [(1− γ2)θ1/(1− γ1), 1] for any θ1 ∈ [0, 1].

We describe the logic behind why Assumption 1 is needed for the proposed

two-stage mechanism to satisfy all the desired properties. First, we let the buyer

pay an amount equal to his “reported” valuation when his type report is below

the cutoff θ∗2. Next, we solve the appropriate payment function above the cutoff

which satisfies BIC and IIR. It turns out that we can find an upper bound and

lower bound on the buyer’s payment function above the cutoff θ∗2. Specifically, the

upper bound comes from the seller’s IIR constraints and the lower bound comes

from the buyer’s IIR constraints. Assumption 1 plays a role of ensuring that the

upper and lower bound are compatible with each other in the two-stage mechanism

constructed in Subsection 4.2.

As we mentioned in the above remark, Assumption 1 is automatically satisfied

in Case (i) 0 < γ2 ≤ γ1 < 1 in the example of Section 3. To check when Assumption

1 is satisfied even in Case (ii) of the example of Section 3, we are going to use the

following result.

Lemma 5. In the example of Section 3, our Assumption 1 is reduced to

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0.

Proof. The proof is in the Appendix.

The lemma below shows that Assumption 1 sometimes holds in Case (ii) of the

example in Section 3.

Lemma 6. Suppose that in the example in Section 3, both agents’ valuation

functions are ũ1(θ1, θ2) = θ1 + θ2/3 and ũ2(θ1, θ2) = θ2 + θ1/2. That is, 0 < 1/3 =

γ1 < 1/2 = γ2 < 1. Then, Assumption 1 holds.
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Proof. Plugging γ1 = 1/3 and γ2 = 1/2 into the inequality in Lemma 5, we obtain

1

6

(1/2)2

2/3
+

1/2

2/3
− 1

2

(
1/2

2/3

)2

+
1

2
(1/2− 1/3− 1) =

11

96
> 0.

Thus, Assumption 1 is satisfied.

We can also show in the lemma below that Assumption 1 is sometimes violated

in Case (ii) of the example of Section 3.

Lemma 7. Suppose that in the example in Section 3, both agents’ valuation

functions are ũ1(θ1, θ2) = θ1 + θ1/2 and ũ2(θ1, θ2) = θ2 + 4θ1/5. That is, 0 < 1/2 =

γ1 < 4/5 = γ2 < 1. Then, Assumption 1 fails.

Proof. Plugging γ1 = 1/2 and γ2 = 4/5 into the inequality in Lemma 5 so that we

obtain

1

6

0.22

0.5
+

0.2

0.5
− 1

2

(
0.2

0.5

)2

+
1

2
(0.8− 0.5− 1) = − 1

60
< 0.

Thus, Assumption 1 is violated.

4.4 The Theorem

Using the two-stage NTNP, monotone mechanism proposed in Subsection 4.2, we

are able to establish the main result of the paper.

Theorem 1. Suppose that Assumption 1 holds. Then, there exists a two-stage

NTNP, monotone mechanism (Θ,Π, x∗, tM) satisfying BIC, IIR, EFF, and BB.

Proof. We make use of the two-stage mechanism constructed in Subsection 4.2.

Since the seller’s transfer tM1 is independent of his payoff report ur1 and the

buyer’s transfer tM2 is independent of ur2, then each agent has no incentive to deviate

from the truth-telling in their payoff report in the second stage. Given this, it

remains to verify that the truth-telling in the first stage constitutes part of a

perfect Bayesian equilibrium (Steps 1 and 2) and that IIR is satisfied for both

agents (Step 3). The proof is completed by the following three steps.

Step 1: If the buyer always reports the truth in the first stage, the seller has no

incentive to tell a lie in the first stage.

Proof. The proof is in the Appendix.
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Step 2: If the seller always reports the truth in the first stage, the buyer has no

incentive to tell a lie in the first stage.

Proof. The proof is in the Appendix.

In Steps 1 and 2, we show that the constructed two-stage mechanism (Θ,Π, x∗, tM)

satisfies BIC.

Step 3: The two-stage mechanism (Θ,Π, x∗, tM) also satisfies IIR.

Proof. The proof is in the Appendix.

Taking into account that both EFF and BB are already built in the mechanism,

we complete the proof of Theorem 1.

We record the implications of Theorem 1 as well as the properties of the pro-

posed two-stage mechanism in the context of the example in Section 3.

1. When 0 < γ2 ≤ γ1 < 1, we have θ∗2 = 1 = θ̄2. In this case, we get

g(θr1) = −ũ2(θr1, θ̄2). Recall t2(θr1, θ
r
2;ur1, u

r
2) = −ũ2(θr1, θ

r
2) when θr2 < θ∗2

and x∗(θr1, θ
r
2) = 1. If both agents report truthfully in both stages, the buyer

always pays an amount equal to his true valuation to the seller. In other

words, the seller extracts the full surplus in this case.

2. When 0 < 1/3 = γ1 < 1/2 = γ2 < 1, we have θ∗2 = 3/4. In this case, we set

g(θr1) = 3(θr1)2/4− 5θr1/2. If both agents report truthfully in both stages and

the buyer’s true type is θ2 > θ∗2, the buyer’s ex post utility becomes

ũ2(θ1, θ2) + g(θ1) = θ2 +
1

2
θ1 +

3

4
(θ1)2 − 5

2
θ1 = θ2 −

4

3
+

3

4

(
θ1 −

4

3

)2

.

To further illustrate the properties of the proposed two-stage mechanism

when γ1 = 1/3 and γ2 = 1/2, we consider the following subcases:

(a) when θ1 = 0, we have g(θ1) = 0. This means that the buyer receives

the good without making any payment. Hence, the buyer receives the

full surplus.

(b) when θ1 = 1, we have that ũ2(θ1, θ2) + g(θ1) = θ2 − 5/4 < 0, implying

that the buyer’s ex post utility is always negative because θ2 ≤ 1. Thus,

the ex post individual rationality (EPIR) is violated. Nonetheless, since

our Assumption 1 holds, the proposed two-stage mechanism satisfies IIR

(as opposed to EPIR) together with BIC, EFF, and BB. This exhibits
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a contrast with the analysis of GMO (2011) which maintains EPIR

throughout.

Moreover, from Step 3 in the proof of Theorem 1 (see the Appendix (Section

8.8) for the details), we know that if θ2 ≥ θ∗2, the expected utility of the buyer

of type θ2 after participation is∫
Θ1

ũ2(θ1, θ2)dF1(θ1)+

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1) ≥ 0,

where the weak inequality follows because ũ2(·) is strictly increasing in θ2.

Therefore, if θ2 ≤ θ∗2, the buyer of type θ2 is always left with zero expected

surplus; if θ2 > θ∗2, the buyer receives a positive expected surplus.

These features we described above distinguishes our proposed two-stage mech-

anism from the “shoot-the-liar” mechanism proposed by Mezzetti (2007). By

contrast, GMO (2011, Section 5) apply the “shoot-the-liar mechanism” without

modifications to their partnership dissolution problem.

5 Simulation

To assess the permissiveness and restrictiveness of Assumption 1, we provide a set

of simulation results based on the example in Section 3. Both agents’ types are

uniformly distributed on the unit interval [0, 1] and for each type profile (θ1, θ2) ∈
[0, 1]2, their valuation functions are ũ1(θ1, θ2) = θ1 +γ1θ2 and ũ2(θ1, θ2) = θ2 +γ2θ1

where γ1 ∈ {0.01, 0.02, · · · , 0.98} and γ2 ∈ {γ1 + 0.01, γ1 + 0.02, · · · , 0.99} for each

γ1. As we discuss in the previous section, Assumption 1 is always satisfied when

0 < γ2 ≤ γ1 < 1, which is called Case (i) in the example of Section 3. Then, by our

Theorem 1, we know that there exists a two-stage NTNP, monotone mechanism

satisfying BIC, EFF, BB, and IIR. Thus, what remains to investigate is the extent

to which there exists a two-stage NTNP, monotone mechanism satisfying all the

desired properties in Case (ii) 0 < γ1 < γ2 < 1. In the simulation, we select finitely

many values of γ1 and γ2 satisfying this inequality.

We note that ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1−γ2)θ1/(1−γ1). Since

we assume γ2 > γ1, the slope of the efficient frontier is (1− γ2)/(1− γ1) < 1. The

efficient decision rule dictates that, for each (θ1, θ2) ∈ [0, 1]2,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.
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The shaded region in Figure 2 (which is reproduced below) represents Θ∗ =

{(θ1, θ2) ∈ Θ1 × Θ2 : x∗(θ1, θ2) = 1}, which describes the set of possible type

profiles for which it is efficient to trade.

Figure 2: when 0 < γ1 < γ2 < 1

Recall that Lemma 5 allows us to translate our Assumption 1 into the following

inequality:

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0. (3)

Observe that Assumption 1 becomes an inequality about γ1 and γ2. Then, for

each pair (γ1, γ2) satisfying 1 > γ2 > γ1 > 0, we check whether or not inequality

(3) is satisfied. Here is a summary of the simulation results. There are two possible

scenarios:

1. If γ2 ≤ 0.77, inequality (3) is always satisfied for all γ1, γ2 ∈ (0, 1) satisfying

γ1 < γ2;

2. For each γ2 > 0.77, there exist γL1 (γ2), γH1 (γ2) ∈ (0, 1) such that γL1 (γ2) <

γH1 (γ2) and inequality (3) is violated whenever γL1 (γ2) < γ1 < γH1 (γ2) and it

is satisfied otherwise.

We illustrate the second scenario in Figure 5 below. For each γ2 > 0.77, there

are a corresponding point on the upper curve indicating γH1 (γ2) and another cor-

responding point on the lower curve indicating γL1 (γ2). Then, if γL1 (γ2) < γ1 <

γH1 (γ2), inequality (3) is violated. The region where inequality (3) is violated is

represented by the dotted region in Figure 5. The region outside the dotted region

dictates the case in which inequality (3) is satisfied.

In Figure 6, we track all possible pairs of (γ1, γ2) ∈ (0, 1)2 satisfying inequality

(3). In particular, the upper triangle in [0, 1]2, i.e., the region where γ2 > γ1

corresponds to Case (ii) of the example in Section 3. The lightly shaded region

describes all pairs of (γ1, γ2) within this upper triangle for which our Assumption

1 is satisfied.
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Figure 5: When γ2 > 0.77

On the other hand, the lower triangle in the unit square, i.e., the region where

γ2 < γ1 corresponds to Case (i) of the example in Section 3. Then, by our Theorem

1, we can always find a two-stage NTNP, monotone mechanism satisfying BIC, IIR,

EFF, and BB within this region. Hence, the heavily shaded region describes all

pairs of (γ1, γ2) within the lower triangle for which our Assumption 1 is satisfied.

Therefore, the lightly and heavily shaded regions together indicate the set of

(γ1, γ2) for which our Assumption 1 is satisfied. Since the whole shaded (regardless

of whether lightly or heavily) region spans quite a large part of the unit square, we

conclude that our Assumption 1 can be satisfied in many cases in the example of

Section 3.

Figure 6: Summary of Simulation

We can also verify that if Assumption 1 is violated, then the two-stage mecha-
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nism we propose in Section 4.2 violates the seller’s IIR constraint.6 We make this

point by the following claim:

Claim 5. If γ1 = 1/2 and γ2 = 4/5 in the example of Section 3, the seller’s IIR

constraint is violated in our two-stage NTNP, monotone mechanism constructed

in Subsection 4.2.

Proof. The proof is in the Appendix.

By this claim, we loosely say that our Assumption 1 is violated when the degree

of interdependence of preferences of the buyer is too high relative to that of the

seller.

6 The Relation with Galavotti, Muto, and Oyama

(2011)

In this section, we will discuss the relation between this paper and Galavotti,

Muto, and Oyama (2011) (hereafter, GMO). GMO (2011) consider the problem

of partnership dissolution in a model with interdependent values where there are

one asset, and n risk-neutral agents indexed by i ∈ {1, . . . , n} where n ≥ 2. Each

agent i owns a share αi of the asset such that 0 ≤ αi ≤ 1 and
∑n

i=1 αi = 1. In

private values environments, Cramton, Gibbons, and Klemperer (1987) show that

the equal-share ownership (α1, . . . , αn) = (1/n, . . . , 1/n) allows us to construct a

mechanism satisfying BIC, EFF, IIR, and BB, which exhibits a contrast with this

paper’s extreme ownership structure where the seller has the full property right

over the good. However, FKM (2003) show that this positive result of Cramton,

Gibbons, and Klemperer (1987) cannot be extended to a model with interdepen-

dent values. This explains why GMO (2011, Section 5) also resort to the use of

two-stage mechanisms in order to obtain more positive results.

To make the comparison between GMO (2011) and our paper, we assume that

there are only two agents, i.e., n = 2. By an ownership structure (α1, α2) where

each αi ∈ [0, 1] and α1 +α2 = 1, we mean that agent 1 (the seller) has the property

right over α1 fraction of the asset and agent 2 (the buyer) has the property right

over α2 fraction of the asset. To discuss the contribution of GMO (2001), we first

strengthen our IIR constraint into its ex post counterpart.

6By the very proof of Theorem 1, Assumption 1 has a bite exactly when the seller’s IIR

constraint has a bite. In other words, if inequality (2) is violated, it is the seller’s IIR constraint

that is violated.
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Definition 8. Let (α1, α2) be an ownership structure. A two-stage mechanism

(Θ,Π, x, t) satisfies ex post individual rationality (EPIR) if, for all (θ1, θ2) ∈ Θ and

(u1, u2) ∈ Π,

u1(x(θ1, θ2), θ1, θ2) + t1(θ1, θ2;u1, u2) ≥ α1ũ1(θ1, θ2),

and

u2(x(θ1, θ2), θ1, θ2) + t2(θ1, θ2;u1, u2) ≥ α2ũ2(θ1, θ2).

GMO (2011) provide the following sufficient condition (called Assumption 5.1

on p.14) under which the “shoot-the-liar” mechanism satisfies BIC, EPIR, EFF,

and BB for any ownership structure. We formally state GMO’s Assumption 5.1.

GMO’s Assumption 5.1: There existM1,M2 ≥ 0 such that for all i ∈ {1, . . . , n},
all θi, θ̂i ∈ Θi with θ̂i 6= θi,

Eθ−i
[
1{θ−i|i=m(θ̂i,θ−i)}(θ−i)

(
ũi(θ̄i, θ−i)− ũi(θ̂i, θ−i)

)]
≤ M1

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)6=ũj(θ̂i,θ−i)}(θ−i)

]
, (4)

and ∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)=ũj(θ̂i,θ−i)}(θ−i)

]
≤ M2

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)6=ũj(θ̂i,θ−i)}(θ−i)

]
, (5)

where 1X(x) is the index function such that 1X(x) = 1 if x ∈ X and 0 if x /∈ X,

and m(θ) = max(arg maxj ũj(θ)).

In our bilateral trade setup, we always have (α1, α2) = (1, 0), i.e., the seller has

the property right over the good, while the buyer has no property right over it. We

know from our Lemma 4 that there are generally two cases: (i) θ∗2 = θ̄2 and (ii)

θ∗2 ∈ (θ2, θ̄2) where θ∗2 is the cutoff point identified in Lemma 4. In Case (i) θ∗2 = θ̄2,

which corresponds to the case that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2, we can

use our proposed two-stage mechanism and show that it satisfies BIC, IIR, EFF,

and BB. As in GMO (2011), we can strengthen IIR into EPIR for this result.

In what follows, we will focus on the bilateral trade model and then compare

GMO’s Assumption 5.1 with our Assumption 1. We obtain the following claim:

Lemma 8. The relation between Assumption 5.1 in GMO (2011) and our As-

sumption 1 is summarized as follows:
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1. Inequality (4) in GMO’s Assumption 5.1 implies our Assumption 1;

2. Inequality (5) in GMO’s Assumption 5.1 is automatically satisfied under the

bilateral trade model in our paper.

Proof. The proof is in the Appendix.

Intuitively, inequality (4) requires that each agent’s deviation be detected by the

other agent with strictly positive probability, Case (i) θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1)

for all θ2 < θ̄2 requires that only the buyer’s deviation be detected by the seller with

strictly positive probability. Therefore, the condition that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) for

all θ2 < θ̄2 is weaker than inequality (4).7

To further illustrate the stringent nature of inequality (4) relative to our As-

sumption 1, we revisit the example in Section 3. We obtain the following claim:

Lemma 9. In the example in Section 3, GMO’s Assumption 5.1 is satisfied if and

only if γ1 = γ2.

Proof. The proof is in the Appendix.

This suggests that GMO’s Assumption 5.1 is generically violated in the bilateral

trade model.

7 Conclusion

This paper characterizes when efficient, voluntary bilateral trades are incentive

compatible in an environment with interdependent values. Acknowledging some

existing impossibility results by Gresik (1991) and FKM (2003), we obtain more

positive results by looking at two-stage mechanisms proposed by Mezzetti (2004).

We show by means of an example that the generalized two-stage Groves mechanism

never satisfies IIR. If our Assumption 1 is satisfied in a general environment, we

next show that there exists a two-stage mechanism satisfying BIC, IIR, EFF, and

BB. In the context of the example in Section 3, our Assumption 1 roughly says

that the buyer’s degree of interdependence of preferences is not too high relative

to the seller’s counterpart. In Section 5, we also argue by the same example that

our Assumption 1 can be satisfied for a large number of cases. The property that

distinguishes our proposed two-stage mechanism from the generalized two-stage

7The logic behind our first general case is that even if the seller’s deviation is not detected by

the buyer, this is not a profitable deviation because in this case, the seller keeps the good without

receiving any monetary transfer.
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Groves mechanism is the “no-trade-then-no-payments” (NTNP) property, which

means that if trade does not occur, no payments are made. Indeed, the generalized

two-stage Groves mechanism does not satisfy the NTNP property. By expanding

our scope into two-stage mechanisms, we consider our paper as the first attempt

to further pushing the boundary between when efficient, voluntary bilateral trades

are implementable and when they are not.

8 Appendix

In the Appendix, we provide all the proofs omitted from the main text of the paper.

8.1 Proof of Claim 1

Proof. We first identify the worst-off type for each agent by checking the following

cases.

Case 1: 0 ≤ θ1 ≤ (1− γ1)/(1− γ2)

We compute the following.

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=

∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2

=

∫ 1−γ2
1−γ1

θ1

0

(θ1 + γ1θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

(γ2θ1 + θ2)dθ2

=
1− γ2

1− γ1

(θ1)2 +
1

2

γ1(1− γ2)2

(1− γ1)2
(θ1)2 + γ2θ1

(
1− 1− γ2

1− γ1

θ1

)
+

1

2

[
1−

(
1− γ2

1− γ1

)2

(θ1)2

]

=
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2. (6)

Hence, the objective function becomes

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

1 (θ1) =
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

=
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 − θ1 −
1

2
γ1

=
1

2

(1− γ2)2

1− γ1

(
θ1 −

1− γ1

1− γ2

)2

.
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So, when θ1 = (1−γ1)/(1−γ2), the objective function attains its minimum, which

is zero. So, in this case, the seller’s worst-off type is θw1 = (1− γ1)/(1− γ2).

Case 2: (1− γ1)/(1− γ2) < θ1 ≤ 1

We compute the following:

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
−UO

1 (θ1) =

∫ 1

0

ũ1(θ1, θ2)dθ2−
∫ 1

0

ũ1(θ1, θ2)dθ2 = 0.

Therefore, in this case, the seller’s worst-off type is θw1 = 1.

We compute the expected loss for his worst-off type θw1 below:

L1 ≡ UO
1 (θw1 )− UG

1 (θw1 )

= −

[
Eθ2

(
2∑
j=1

uj(x
∗(θw1 , θ2), θw1 , θ2)

)
− UO

1 (θw1 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= 0 +
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=
1

2
Eθ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]
,

where Eθ1 denotes the expectation operator over Θ1. Note that for each θ2 ∈ Θ2,

Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=

∫ 1−γ1
1−γ2

θ2

0

ũ2(θ1, θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

ũ1(θ1, θ2)dθ1

=

∫ 1−γ1
1−γ2

θ2

0

(γ2θ1 + θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

(θ1 + γ1θ2)dθ1

=
1

2
γ2

(
1− γ1

1− γ2

θ2

)2

+
1− γ1

1− γ2

(θ2)2 +
1

2

(
1−

(
1− γ1

1− γ2

θ2

)2
)

+ γ1θ2

(
1− 1− γ1

1− γ2

θ2

)
=

1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2. (7)

30



Therefore, we compute the expected loss for the seller’s worst-off type θw1 :

L1 =
1

2
Eθ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
1

2

∫ 1

0

[
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2

]
dθ2

=
1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

. (8)

Since γ1 > 0 and γ2 < 1, we obtain L1 > 0, which implies that the seller is

worse off after participating in the mechanism. On the other hand, we obtain the

buyer’s worst-off type θw2 from participating in the generalized two-stage Groves

mechanism:

θw2 ∈ arg min
θ2∈Θ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

2 (θ2)

]

= arg min
θ2∈Θ2

[
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2 − 0

]
,

where the equality follows from (7). It is easy to see that the buyer’s worst-off

type is θw2 = 0. So, we compute the expected loss for his worst-off type θw2 = 0 as

follows:

L2 ≡ UO
2 (θw2 )− UG

2 (θw2 )

= −

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ

w
2 ), θ1, θ

w
2 )

)
− UO

2 (θw2 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

( recall (8))

So, the total expected loss is

L1 + L2 =
1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

− 1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

=
1

2
γ1 +

1

6

(1− γ1)2

1− γ2

> 0,

where the last inequality follows because γ1 > 0 and 0 < γ2 < 1. This completes

the proof of Claim 1.
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8.2 Proof of Claim 2

Proof. We compute the seller’s worst-off type from participating in the generalized

two-stage Groves mechanism.

θw1 ∈ arg min
θ1∈Θ1

[
Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

1 (θ1)

]

= arg min
θ1∈Θ1

[∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

]

= arg min
θ1∈Θ1

[
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 − θ1 −
1

2
γ1

]
( recall (6) )

= arg min
θ1∈Θ1

[
1

2

(1− γ2)2

1− γ1

(
θ1 −

1− γ1

1− γ2

)2
]
.

Note that 0 < γ1 < γ2 < 1 implies (1 − γ1)/(1 − γ2) > 1. Hence, the seller’s

worst-off type is θw1 = 1. We compute the expected loss for his worst-off type as

follows:

L1 ≡ UO
1 (θw1 )− UG

1 (θw1 )

= −

[
Eθ2

(
2∑
j=1

uj(x
∗(θw1 , θ2), θw1 , θ2)

)
− UO

1 (θw1 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2

(1− γ2)2

1− γ1

(
1− 1− γ1

1− γ2

)2

+
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
.

We further compute the following:

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
=

1

2
Eθ1

[
Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
1

2

∫ 1

0

[∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2

]
dθ1

=
1

2

∫ 1

0

[
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1 ( recall (6))

=
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

. (9)

Therefore, the expected loss for the seller’s worst-off type is

L1 = −1

2

(1− γ2)2

1− γ1

(
1− 1− γ1

1− γ2

)2

+
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2

(γ2 − γ1)2

1− γ1

+
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

.
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On the other hand, the buyer’s worst-off type from participating in the gener-

alized two-stage Groves mechanism is given as follows:

θw2 ∈ arg min
θ2∈Θ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

2 (θ2)

]
= arg min

θ2∈Θ2

Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
.

We identify the worst-off type for each agent by the following cases.

Case 1: 0 < θ2 < (1− γ2)/(1− γ1)

then

Eθ1

[
2∑
j=1

uj(x
∗(θ2, θ1), θ2, θ1)

]
=

∫ 1−γ1
1−γ2

θ2

0

ũ2(θ1, θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

ũ1(θ1, θ2)dθ1

=
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2 ( recall (7)).

It is easy to see that θ2 = 0 achieves its minimum, which is 1/2.

Case 2: (1− γ2)/(1− γ1) ≤ θ2 ≤ 1

then

Eθ1

[
2∑
j=1

uj(x
∗(θ2, θ1), θ2, θ1)

]
=

∫ 1

0

ũ2(θ1, θ2)dθ1 =

∫ 1

0

(γ2θ1 + θ2)dθ1 =
1

2
γ2 + θ2.

Clearly, θ2 = (1−γ2)/(1−γ1) achieves its minimum, which is γ2/2+(1−γ2)/(1−γ1).

Since
1

2
−
[

1

2
γ2 +

1− γ2

1− γ1

]
= −(1− γ2)(1 + γ1)

2(1− γ1)
< 0,

the buyer’s worst-off type is θw2 = 0. We compute the expected loss for his worst-off

type.

L2 ≡ UO
2 (θw2 )− UG

2 (θw2 )

= −

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ

w
2 ), θ1, θ

w
2 )

)
− UO

2 (θw2 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

( recall (9)).

Therefore, the total expected loss is

L1 + L2 = −1

2

(γ2 − γ1)2

1− γ1

+
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

− 1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

=
1

2(1− γ1)

[
γ2(1− γ1)− (γ2 − γ1)2

]
+

1

6

(1− γ2)2

1− γ1

.
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Since γ2 > γ2 − γ1 and 1 − γ1 > γ2 − γ1, we obtain L1 + L2 > 0. This completes

the proof of Claim 2.

8.3 Proof of Claim 3

Proof. We divide our argument into the following two cases.

Case (i): 0 < γ2 ≤ γ1 < 1

From Figure 1 (p.13), we know that if θ1 = 1 and θ2 = 0, it is efficient not to

trade and the buyer’s transfer in the generalized two-stage Groves mechanism is

given as follows:

tG2 (1, 0;u1, u2)

= u1 −
1

2
h2(1, 0)

= u1 −
1

2

[
2∑
j=1

uj (x∗(1, 0), 1, 0)− Eθ1

(
2∑
j=1

uj (x∗(θ1, 0), θ1, 0)

)
+ Eθ2

(
2∑
j=1

uj (x∗(1, θ2), 1, θ2)

)]

= ũ1(1, 0)− 1

2

(
ũ1(1, 0)−

∫ 1

0

ũ1(θ1, 0)dθ1 +

∫ 1

0

ũ1(1, θ2)dθ2

)
,

where the third equality follows because u1 = u1(x∗(1, 0), 1, 0) = ũ1(1, 0), u2 =

u2(x∗(1, 0), 1, 0) = 0 and x∗(θ1, 0) = x∗(1, θ2) = 0 for any θ1, θ2 ∈ [0, 1]. Plugging

the linear valuations in tG2 (1, 0;u1, u2) above, we obtain

tG2 (1, 0;u1, u2) = 1− 1

2

(
1−

∫ 1

0

θ1dθ1 +

∫ 1

0

(1 + γ1θ2)dθ2

)
=

1

4
(1− γ1) > 0,

where the last strict inequality follows because 1 > γ1 in Case (i). Hence, in the

type profile (θ1, θ2) = (1, 0), the buyer receives positive subsidy under no trade,

contradicting NTNP.

Case (ii): 0 < γ1 < γ2 < 1

From Figure 2 (p.14), we know that if θ1 = 1 and θ2 = 0, it is efficient not to

trade. We then compute the buyer’s transfer in the generalized two-stage Groves

mechanism:

tG2 (1, 0;u1, u2)

= u1 −
1

2

[
2∑
j=1

uj (x∗(1, 0), 1, 0)− Eθ1

(
2∑
j=1

uj (x∗(θ1, 0), θ1, 0)

)
+ Eθ2

(
2∑
j=1

uj (x∗(1, θ2), 1, θ2)

)]

= ũ1(1, 0)− 1

2

(
ũ1(1, 0)−

∫ 1

0

ũ1(θ1, 0)dθ1 +

∫ 1−γ2
1−γ1

0

ũ1(1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

ũ2(1, θ2)dθ2

)
,
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where the last equality follows because u1 = u1(x∗(1, 0), 1, 0) = ũ1(1, 0), u2 =

u2(x∗(1, 0), 1, 0) = 0, x∗(θ1, 0) = 0 for any θ1 ∈ [0, 1], x∗(1, θ2) = 0 if θ2 <

(1 − γ2)/(1 − γ1) and x∗(1, θ2) = 1 otherwise. Plugging the linear valuations

in tG2 (1, 0;u1, u2), we obtain

tG2 (1, 0;u1, u2) = 1− 1

2

(
1−

∫ 1

0

θ1dθ1 +

∫ 1−γ2
1−γ1

0

(1 + γ1θ2)dθ2 +

∫ 1

1−γ2
1−γ1

(θ2 + γ2)dθ2

)

= 1− 1

2

[
1− 1

2
+

1− γ2

1− γ1

+
γ1

2

(
1− γ2

1− γ1

)2

+
1

2
− 1

2

(
1− γ2

1− γ1

)2

+ γ2 − γ2
1− γ2

1− γ1

]
.

After rearranging the terms above, we simplify its expression:

tG2 (1, 0;u1, u2) = 1− 1

2

(
1 + γ2 +

1

2

(1− γ2)2

1− γ1

)
,

which is strictly decreasing in γ1. Since γ1 < γ2, then for any γ2 ∈ (0, 1),

tG2 (1, 0;u1, u2) reaches its greatest lower bound when γ1 = γ2, i.e.,

tG2 (1, 0;u1, u2) > 1− 1

2

(
1 + γ2 +

1

2

(1− γ2)2

1− γ2

)
=

1

4
(1− γ2) > 0,

where the last strict inequality holds because 1 > γ2 in Case (ii). Therefore, we

conclude tG2 (1, 0;u1, u2) > 0, implying that, in the type profile (θ1, θ2) = (1, 0), the

buyer receives positive subsidies under no trade. Hence, NTNP is violated. This

completes the proof.

8.4 Proof of Claim 4

Proof. We divide our argument into two cases.

Case (i): 0 < γ2 ≤ γ1 < 1

Fix θ̂1 ∈ [0, 1] and let α, β ∈ [0, 1] be two distinct types of the buyer such that

α > β and x∗(θ̂1, α) = x∗(θ̂1, β) = 1. Then, the difference between the buyer’s

transfer under (θ̂1, α) and that under (θ̂1, β) is computed below:

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 )

= uα1 −
1

2

[
ũ2(θ̂1, α)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

−uβ1 +
1

2

[
ũ2(θ̂1, β)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

= −1

2

[
α− β − Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)]
, (10)
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where the second equality follows because x∗(θ̂1, α) = x∗(θ̂1, β) = 1 implies uα1 =

uβ1 = 0 and ũ2(θ̂1, α)− ũ2(θ̂1, β) = α + γ2θ̂1 − β − γ2θ̂1 = α− β.

Moreover, we compute the following term in the above expression:

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −

(∫ 1−γ1
1−γ2

α

0

ũ2(θ1, α)dθ1 +

∫ 1

1−γ1
1−γ2

α

ũ1(θ1, α)dθ1

)
+

(∫ 1−γ1
1−γ2

β

0

ũ2(θ1, β)dθ1 +

∫ 1

1−γ1
1−γ2

β

ũ1(θ1, β)dθ1

)

= −
∫ 1−γ1

1−γ2
α

0

(α + γ2θ1)dθ1 −
∫ 1

1−γ1
1−γ2

α

(θ1 + γ1α)dθ1 +

∫ 1−γ1
1−γ2

β

0

(β + γ2θ1)dθ1 +

∫ 1

1−γ1
1−γ2

β

(θ1 + γ1β)dθ1

= −1− γ1

1− γ2

α2 − 1

2
γ2

(
1− γ1

1− γ2

α

)2

− 1

2

(
1−

(
1− γ1

1− γ2

α

)2
)
− γ1α

(
1− 1− γ1

1− γ2

α

)

+
1− γ1

1− γ2

β2 +
1

2
γ2

(
1− γ1

1− γ2

β

)2

+
1

2

(
1−

(
1− γ1

1− γ2

β

)2
)

+ γ1β

(
1− 1− γ1

1− γ2

β

)
.

After making a further rearrangement of the above expression, we obtain

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −γ1(α− β)− 1

2

(1− γ1)2

1− γ2

(
α2 − β2

)
.

Plugging this back into (10), we obtain

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 ) = −1

2

[
α− β − γ1(α− β)− 1

2

(1− γ1)2

1− γ2

(
α2 − β2

)]
= −1

4

1− γ1

1− γ2

(α− β) [2(1− γ2)− (1− γ1)(α + β)]

< 0,

where the last strict inequality above follows because α > β and 2(1 − γ2) −
(1 − γ1)(α + β) > 0, which is followed by the assumption that 2 > α + β and

1 − γ2 ≥ 1 − γ1 > 0. Therefore, we show that the generalized two-stage Groves

mechanism is monotone in this case.

Case (ii): 0 < γ1 < γ2 < 1

Fix θ̂1 ∈ [0, 1] and let α, β ∈ [0, 1] be two distinct types of the buyer such that

α > β and x∗(θ̂1, α) = x∗(θ̂1, β) = 1. Let θ∗2 ∈ (θ1, θ̄2] be the unique cutoff point

identified in Lemma 4. There are two subcases:
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Case 1: α ≤ θ∗2

In this subcase, we can apply here the same argument in Case (i) and the

buyer’s payment is strictly increasing in his type report.

Case 2: β ≥ θ∗2

The difference between the buyer’s transfer under (θ̂1, α) and (θ̂1, β) is computed

below:

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 )

= uα1 −
1

2

[
ũ2(θ̂1, α)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

−uβ1 +
1

2

[
ũ2(θ̂1, β)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

= −1

2

[
α− β − Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)]
, (11)

where the second equality follows because x∗(θ̂1, α) = x∗(θ̂1, β) = 1 implies uα1 =

uβ1 = 0 and ũ2(θ̂1, α)− ũ2(θ̂1, β) = α + γ2θ̂1 − β − γ2θ̂1 = α− β.

Moreover, we compute the following term in the above expression:

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −
∫ 1

0

ũ2(θ1, α)dθ1 +

∫ 1

0

ũ2(θ1, β)dθ1

= −
∫ 1

0

(α + γ2θ1)dθ1 +

∫ 1

0

(β + γ2θ1)dθ1

= −α− 1

2
γ2 + β +

1

2
γ2 = −α + β.

Plugging this back into (11), we obtain

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 ) = −1

2
[α− β − α + β] = 0.

Therefore, the generalized two-stage Groves mechanism is monotone in this sub-

case. This completes the proof of the claim.
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8.5 Proof of Lemma 5

Proof. Recall our Assumption 1 says that∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

≥ 0,

where θ∗2 ∈ (θ2, θ̄2] is the cutoff point identified in Lemma 4, Θ∗∗2 = [θ∗2, θ̄2], and for

each θ1 ∈ Θ1,

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

Here, the cutoff point θ∗2 is equal to min{(1 − γ2)/(1 − γ1), 1} above which it

is always efficient to trade and below which it is efficient not to trade for some

θ1 ∈ Θ1. Moreover, we have Θ∗2(θ1) = [min{(1 − γ2)θ1/(1 − γ1), 1}, 1] and Θ∗∗2 =

[min{(1−γ2)/(1−γ1), 1}, 1]. So, Θ∗2(θ1)\Θ∗∗2 = [min{(1−γ2)θ1/(1−γ1), 1},min{(1−
γ2)/(1− γ1), 1}].

We divide our argument into the following two cases:

Case (i): 0 < γ2 ≤ γ1 < 1

From Figure 1 (p.13), we know that if θ1 > (1−γ1)/(1−γ2), then (1−γ2)θ1/(1−
γ1) > 1; hence,

Θ∗2(θ1) =

[
min

{
1− γ2

1− γ1

θ1, 1

}
, 1

]
=

{
{1} if θ1 > (1− γ1)/(1− γ2)[

1−γ2
1−γ1 θ1, 1

]
otherwise.

Moreover, in Case (i), we know (1− γ2)/(1− γ1) > 1; hence,

Θ∗∗2 =

[
min

{
1− γ2

1− γ1

, 1

}
, 1

]
= {1}.

As a result,

Θ∗2(θ1)\Θ∗∗2 =

[
min

{
1− γ2

1− γ1

θ1, 1

}
, 1

]
=

{
∅ if θ1 > (1− γ1)/(1− γ2)[

1−γ2
1−γ1 θ1, 1

)
otherwise.

Reflecting the type space Θ = [0, 1]2 and each agent i’s valuation function

ũi(θi, θ−i) = θi + γiθ−i in Assumption 1, we obtain∫ 1−γ1
1−γ2

0

∫ 1

1−γ2
1−γ1

θ1

((1− γ1)θ2 − (1− γ2)θ1) dθ2dθ1 ≥ 0.

38



We compute the left-hand side of the above inequality:∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)

(
1−

(
1− γ2

1− γ1

θ1

)2
)
− (1− γ2)θ1

(
1− 1− γ2

1− γ1

θ1

)]
dθ1

=

∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)− (1− γ2)θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1.

We continue our computation below:∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)− (1− γ2)θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1 =

1

2

(1− γ1)2

1− γ2

− 1

2

(1− γ1)2

1− γ2

+
1

6

(1− γ1)2

1− γ2

=
1

6

(1− γ1)2

1− γ2

,

which is strictly positive. Therefore, Assumtpion 1 is satisfied in Case (i).

Case (ii): 0 < γ1 < γ2 < 1

From Figure 2 (p.14), we know that (1 − γ2)θ1/(1 − γ1) < 1 for all θ1 ∈ [0, 1];

hence,

Θ∗2(θ1) =

[
min

{
1− γ2

1− γ1

θ1, 1

}
, 1

]
=

[
1− γ2

1− γ1

θ1, 1

]
for all θ1 ∈ [0, 1]. Moreover, in Case (ii), we know (1− γ2)/(1− γ1) < 1; hence,

Θ∗∗2 =

[
min

{
1− γ2

1− γ1

, 1

}
, 1

]
=

[
1− γ2

1− γ1

, 1

]
.

As a result, we have that for all θ1 ∈ Θ1,

Θ∗2(θ1)\Θ∗∗2 =

[
1− γ2

1− γ1

θ1,
1− γ2

1− γ1

)
.

Reflecting the type space Θ = [0, 1]2 and each agent i’s valuation function

ũi(θi, θ−i) = θi + γiθ−i in Assumption 1, we obtain∫ 1

0

∫ 1−γ2
1−γ1

1−γ2
1−γ1

θ1

((1− γ1)θ2 − (1− γ2)θ1) dθ2dθ1+

∫ 1

0

∫ 1

1−γ2
1−γ1

(
1− γ2

1− γ1

− (1− γ2)θ1 − γ1θ2

)
dθ2dθ1 ≥ 0.

We compute the left-hand side of the above inequality:∫ 1

0

[
1

2

(1− γ2)2

1− γ1

(
1− (θ1)2

)
− (1− γ2)2

1− γ1

θ1(1− θ1)

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

(
1− 1− γ2

1− γ1

)
− (1− γ2)

(
1− 1− γ2

1− γ1

)
θ1 −

1

2
γ1

(
1−

(
1− γ2

1− γ1

)2
)]

dθ1

=

∫ 1

0

[
1

2

(1− γ2)2

1− γ1

− 1

2

(1− γ2)2

1− γ1

(θ1)2 − (1− γ2)2

1− γ1

θ1 +
(1− γ2)2

1− γ1

(θ1)2

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− (1− γ2)θ1 +
(1− γ2)2

1− γ1

θ1 −
1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2
]
dθ1.
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We continue our computation below:

∫ 1

0

[
1

2

(1− γ2)2

1− γ1

− (1− γ2)2

1− γ1

θ1 +
1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− (1− γ2)θ1 +
(1− γ2)2

1− γ1

θ1 −
1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2
]
dθ1

=
1

2

(1− γ2)2

1− γ1

− 1

2

(1− γ2)2

1− γ1

+
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− 1

2
(1− γ2) +

1

2

(1− γ2)2

1− γ1

− 1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2

.

Rearranging the terms above, we obtain

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

[
1

2

(1− γ2)2

1− γ1

+
1

2
γ1

(
1− γ2

1− γ1

)2
]

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

[
1

2

(
1− γ2

1− γ1

)2

(1− γ1 + γ1)

]

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

1

2

(
1− γ2

1− γ1

)2

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1).

Therefore, our Assumption 1 is reduced to

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0.

8.6 Proof of Step 1 in the Proof of Theorem 1

Step 1: If the buyer always reports the truth in the first stage, the seller has no

incentive to tell a lie in the first stage.

Proof. Consider the seller of type θ1. Then, the expected utility of the seller of

type θ1 under truth-telling is∫
Θ2\Θ∗

2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2)+

∫
Θ∗

2(θ1)\Θ∗∗
2

(0 + ũ2(θ1, θ2)) dF2(θ2)+

∫
Θ∗∗

2

(0− g(θ1)) dF2(θ2).

On the other hand, if the seller deviates to θr1 6= θ1 and trade occurs, the second-

stage report by the buyer of type θ2 becomes ur2 = ur2(x∗(θr1, θ2), θ1, θ2) = ũ2(θ1, θ2).
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Since ũ2(·) is strictly increasing in θ1, then ur2 = ũ2(θ1, θ2) 6= ũ2(θr1, θ2) and the seller

must pay a penalty ψ according to the transfer rule tM1 . Therefore, the expected

utility of the seller of type θ1 becomes∫
Θ2\Θ∗

2(θr1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗

2(θr1)

(0− ψ)dF2(θ2).

By Lemma 4, we divide our argument into the following two cases:

Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Then, the expected utility of the seller of type θ1 becomes∫
Θ2\Θ∗

2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗

2(θ1)

(0 + ũ2(θ1, θ2)) dF2(θ2),

where

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise.

Since ψ > 0, the best possible deviation the seller of type θ1 can achieve is to

announce θr1 such that Θ∗2(θr1) = ∅. This implies that the seller keeps the good

so that the seller’s expected payoff becomes
∫

Θ2
ũ1(θ1, θ2)dF2(θ2). However, we

claim that this expected utility is at most the same as that under truth-telling.

To see this, we compute the difference between the seller’s expected utility under

truth-telling and that under the best deviation:∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

=

∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ2(θ1, θ2)dF2(θ2)

−

[∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)

]
=

∫
Θ∗

2(θ1)

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)

≥ 0,

where the weak inequality follows because whenever θ2 ∈ Θ∗2(θ1), it is efficient to

trade, implying that ũ2(θ1, θ2) − ũ1(θ1, θ2) > 0. So, the seller will never be better

off after such a deviation so that he has no incentive to deviate from truth-telling.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2
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To stop the seller of type θ1 from deviating to θr1, the penalty ψ must be large

enough so that the seller always receives at most the same expected utility as that

under truth-telling whenever he deviates. That is, what we want is that for any

θr1 ∈ Θ1,∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗
2

g(θ1)dF2(θ2)

≥
∫

Θ2\Θ∗
2(θr1)

ũ1(θ1, θ2)dF2(θ2)− ψ
∫

Θ∗
2(θr1)

dF2(θ2),

where

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

and Θ∗∗2 = [θ∗2, θ̄2]. After rearranging the terms for ψ, we obtain

ψ ≥ 1∫
Θ∗

2(θr1)
dF2(θ2)

(∫
Θ2\Θ∗

2(θr1)

ũ1(θ1, θ2)dF2(θ2)−
∫

Θ2\Θ∗
2(θ1)

ũ1(θ1, θ2)dF2(θ2)

)

+
1∫

Θ∗
2(θr1)

dF2(θ2)

(
−
∫

Θ∗
2(θ1)\Θ∗∗

2

ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗∗

2

g(θ1)dF2(θ2)

)
.

Then, it remains to find an upper bound of the right-hand side of the above in-

equality. We obtain this upper bound as follows:

ψ ≥ sup
θ1∈Θ1
θr1∈Θ1

[
1∫

Θ∗
2(θr1)

dF2(θ2)

(∫
Θ2\Θ∗

2(θr1)

ũ1(θ1, θ2)dF2(θ2)−
∫

Θ2\Θ∗
2(θ1)

ũ1(θ1, θ2)dF2(θ2)

)

+
1∫

Θ∗
2(θr1)

dF2(θ2)

(
−
∫

Θ∗
2(θ1)\Θ∗∗

2

ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗∗

2

g(θ1)dF2(θ2)

)]
.

In this case, we know [θ∗2, θ̄2] ⊆ Θ∗2(θr1) for all θr1 ∈ Θ1.8 Therefore, Θ∗2(θr1)

is nonempty and carries positive measure under F2(·) so that the denominator∫
Θ∗

2(θr1)
dF2(θ2) is strictly positive. Moreover, since the type space Θ is bounded

and each valuation function ũi(·, θ) is bounded, the right-hand side of the above

inequality is bounded and we denote it by A1. So, if

ψ ≥ A1,

the seller will never be better off after such a deviation so that he has no incentive

to deviate from truth-telling. This completes the proof of Step 1.

8In the first general case, the denominator may be zero because Θ∗2(θ1) may be a singleton

for some θ1 ∈ Θ1.
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8.7 Proof of Step 2 in the Proof of Theorem 1

Step 2: If the seller always reports the truth in the first stage, the buyer has no

incentive to tell a lie in the first stage.

Proof. Consider the buyer of type θ2 < θ∗2. Then, the buyer’s expected utility

under truth-telling, denoted by U2(θ2), is

U2(θ2) =

∫
Θ∗

1(θ2)

(ũ2(θ1, θ2)− ũ2(θ1, θ2)) dF1(θ1) = 0,

where Θ∗1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}. On the other hand, if the buyer of type

θ2 deviates to θr2 6= θ2 such that θr2 < θ∗2 and no trade occurs, the second-stage

report of the seller of type θ1 becomes ur1 = ur1(x∗(θ1, θ
r
2), θ1, θ2) = ũ1(θ1, θ2). Since

the seller’s utility function ũ1(·) is strictly increasing in θ2, then ur1 = ũ1(θ1, θ2) 6=
ũ1(θ1, θ

r
2) and the buyer must pay a penalty ψ according to the transfer rule tM2 .

Therefore, the expected utility of the buyer of type θ2 when announcing θr2 becomes∫
Θ∗

1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1) +

∫
Θ1\Θ∗

1(θr2)

(0− ψ)dF1(θ1).

To stop the buyer from deviating, the penalty ψ must be large enough so that the

buyer always receives at most the same expected utility as that under truth-telling

whenever he deviates. That is, for any θ2 < θ∗2 and θr2 < θ∗2,

0 ≥
∫

Θ∗
1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)− ψ

∫
Θ1\Θ∗

1(θr2)

dF1(θ1).

After rearranging the terms for ψ in the above inequality, we obtain

ψ ≥

∫
Θ∗

1(θr2)
(ũ2(θ1, θ2)− ũ2(θ1, θ

r
2)) dF1(θ1)∫

Θ1\Θ∗
1(θr2)

dF1(θ1)
,

where Θ1\Θ∗1(θr2) = {θ1 ∈ Θ1 : x∗(θ1, θ
r
2) = 0}. We know that for any θr2 < θ∗2,

there must exist some θ1 ∈ Θ1 such that x∗(θ1, θ
r
2) = 0. Therefore, Θ1\Θ∗1(θr2)

is nonempty and carries positive measure under F1(·) so that the denominator is

strictly positive. Then, it remains to find an upper bound of the right-hand side

of the above inequality. Such an upper bound can be found as follows:

ψ ≥ sup
θ2∈[θ2,θ

∗
2)

θr2∈[θ2,θ
∗
2)

∫
Θ∗

1(θr2)
(ũ2(θ1, θ2)− ũ2(θ1, θ

r
2)) dF1(θ1)∫

Θ1\Θ∗
1(θr2)

dF1(θ1)
.

since [θ2, θ
∗
2) is bounded and each ũ2(·, θ) is bounded, the numerator is also bounded.

Therefore, the right-hand side of the above inequality is bounded and we denote

its upper bound by A2. So, if

ψ ≥ A2,
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the buyer of type θ2 < θ∗2 will never be better off after such a deviation so that he

has no incentive to deviate to θr2 < θ∗2 from truth-telling.

Moreover, if the buyer deviates to θr2 ≥ θ∗2, it is always efficient to trade and the

expected utility of the buyer of type θ2 when announcing θr2, denoted by U2(θ2, θ
r
2),

becomes

U2(θ2, θ
r
2) =

∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1).

Then, the difference between the expected utility of the buyer of type θ2 under

truth-telling and that under deviation to θr2 is

U2(θ2)− U2(θ2, θ
r
2) = 0−

∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1)

= −
∫

Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

g(θ1)dF1(θ1).

By Lemma 4, we divide our argument into the following two cases:

Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Recall that in this case, g(θ1) = −ũ2(θ1, θ̄2). Then, we evaluate the utility

difference.

U2(θ2)− U2(θ2, θ
r
2) = −

∫
Θ1

ũ2(θ1, θ2)dF1(θ1 +

∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1)

=

∫
Θ1

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ2)

)
dF1(θ1)

≥ 0,

where the last inequality follows because θ2 ≤ θ̄2 and ũ2(·) is strictly increasing in

θ2. Therefore, the buyer is never better off after a deviation to θr2 ≥ θ∗2 so that he

has no incentive to deviate from truth-telling to θr2 ≥ θ∗2 in this case.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2

Recalling the definition of g(θ1), we obtain
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(1− F2(θ∗2))

∫
Θ1

g(θ1)dF1(θ1)

=

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1)−
∫

Θ1

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

=

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1)−
∫

Θ1

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1) +

∫
Θ1

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗

2

ũ2(θ1, θ
∗
2)dF2(θ2)dF1(θ1).

Noticing that the first four terms are cancelled out, we obtain

(1− F2(θ∗2))

∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

∫
Θ∗∗

2

ũ2(θ1, θ
∗
2)dF2(θ2)dF1(θ1)

= − (1− F2(θ∗2))

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

Therefore, we obtain∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1).

Plugging this back into the utility difference, we obtain

U2(θ2)− U2(θ2, θ
r
2) = −

∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

=

∫
Θ1

(ũ2(θ1, θ
∗
2)− ũ2(θ1, θ2)) dF1(θ1)

> 0,

where the last strict inequality follows because θ2 < θ∗2 and ũ2(·) is strictly increas-

ing in θ2. Therefore, the buyer is never better off after a deviation to θr2 ≥ θ∗2 so

that he has no incentive to deviate from truth-telling to θr2 ≥ θ∗2.

Consider the buyer of type θ2 ≥ θ∗2. In this case, it is always efficient to trade

the good regardless of the seller’s type. Therefore, the expected utility of the buyer

of type θ2 under truth-telling is∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1).
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On the other hand, if the buyer deviates to θr2 6= θ2 such that θr2 ≥ θ∗2, then it

is still always efficient to trade regardless of the seller’s type. Thus, the expected

utility of the buyer of type θ2 under the deviation to θr2 is∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1),

which is the same as the expected utility under truth-telling. Therefore, the buyer

of type θ2 ≥ θ∗2 has no incentive to deviate to θr2 ≥ θ∗2.

Moreover, if the buyer of type θ2 deviates to θr2 < θ∗2 and trade does not occur,

the second-stage report of the seller of type θ1 becomes ur1 = ur1(x∗(θ1, θ
r
2), θ1, θ2) =

ũ1(θ1, θ2). Since ũ1(·) is strictly increasing in θ2, we have that ur1 = ũ1(θ1, θ2) 6=
ũ1(θ1, θ

r
2) so that the buyer must pay a penalty ψ according to the transfer rule

tM2 . Therefore, the expected utility of the buyer of type θ2 when announcing θr2
becomes∫

Θ∗
1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1) +

∫
Θ1\Θ∗

1(θr2)

(0− ψ)dF1(θ1).

To stop the buyer from deviating, the penality ψ must be large enough so that the

buyer always receives at most the same expected utility as that under truth-telling

whenever he deviates. That is, what we want to have is that for any θ2 ≥ θ∗2 and

θr2 < θ∗2,∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1) ≥
∫

Θ∗
1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)− ψ

∫
Θ1\Θ∗

1(θr2)

dF1(θ1).

After rearranging the terms above for ψ in the above inequality, we obtain

ψ ≥ 1∫
Θ1\Θ∗

1(θr2)
dF1(θ1)

[
−
∫

Θ1\Θ∗
1(θr2)

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ∗
1(θr2)

ũ2(θ1, θ
r
2)dF1(θ1)−

∫
Θ1

g(θ1)dF1(θ1)

]
.

Then, it remains to find an upper bound of the right-hand side of the above in-

equality. Therefore, we want to satisfy the following inequality:

ψ ≥ sup
θ2∈[θ∗2 ,θ̄2]
θr2∈[θ2,θ

∗
2)

[
1∫

Θ1\Θ∗
1(θr2)

dF1(θ1)

(
−
∫

Θ1\Θ∗
1(θr2)

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ∗
1(θr2)

ũ2(θ1, θ
r
2)dF1(θ1)

)

− 1∫
Θ1\Θ∗

1(θr2)
dF1(θ1)

∫
Θ1

g(θ1)dF1(θ1)

]
.

Previously, we have argued that if θr2 < θ∗2, then Θ1\Θ∗1(θr2) carries positive measure

under F1(·), that is,
∫

Θ1\Θ∗
1(θr2)

dF1(θ1) > 0. Moreover, since [θ∗2, θ̄2] and [θ2, θ
∗
2)
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are bounded and ũ2(·) is bounded, the right-hand side of the above inequality is

bounded. We denote this upper bound by A3. So, if

ψ ≥ A3,

the buyer will never be better off after such a deviation so that he has no incentive

to deviate to θr2 < θ∗2. This completes the proof of Step 2.

8.8 Proof of Step 3 in the Proof of Theorem 1

Step 3: The two-stage mechanism (Θ,Π, x∗, t) also satisfies IIR.

Proof. By Steps 1 and 2, we set ψ = max{A1, A2, A3}. We first show that IIR is

satisfied for the seller. Consider the seller of type θ1. Recall that if both agents

report truthfully in both stages, the expected utility of the seller of type θ1 after

participating in the mechanism, denoted by U1(θ1), is

U1(θ1) =

∫
Θ2\Θ∗

2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

(0 + ũ2(θ1, θ2)) dF2(θ2)

+

∫
Θ∗∗

2

(0− g(θ1)) dF2(θ2).

By Lemma 4, we continue our discussion by considering the following two cases:

Case 1: θ∗2 = θ̄2. That is,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Then, the expected utility of the seller of type θ1 after participating in the

mechanism becomes

U1(θ1) =

∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ2(θ1, θ2)dF2(θ2).

Then, we compute the difference between the expected utility of the seller of type

θ1 after participating in the mechanism and θ1’s outside option utility:

U1(θ1)− UO
1 (θ1)

=

∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

=

∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ2(θ1, θ2)dF2(θ2)

−

[∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)

]
=

∫
Θ∗

2(θ1)

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)

≥ 0,

47



where the weak inequality follows because whenever θ2 ∈ Θ∗2(θ1), it is efficient to

trade, implying ũ2(θ1, θ2)− ũ1(θ1, θ2) > 0.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

We compute the difference between the expected utility of the seller of type θ1

after participating in the mechanism and θ1’s outside option utility:

U1(θ1)− UO
1 (θ1)

=

∫
Θ2\Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗
2

g(θ1)dF2(θ2)

−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

= −
∫

Θ∗
2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗
2

g(θ1)dF2(θ2)

= −
∫

Θ∗
2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)− g(θ1) (1− F2(θ∗2)) .

Plugging the formula of g(θ1) (1− F2(θ∗2)) in the above expression, we obtain

U1(θ1)− UO
1 (θ1) = −

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)\Θ∗∗
2

ũ2(θ1, θ2)dF2(θ2)

−
∫

Θ∗
2(θ1)\Θ∗∗

2

ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗

2(θ1)

ũ1(θ1, θ2)dF2(θ2)

+

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1).

Further rearranging the terms above, we obtain

U1(θ1)− UO
1 (θ1) =

∫
Θ1

∫
Θ∗

2(θ1)\Θ∗∗
2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗

2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1).

Then, by our Assumption 1, we conclude

U1(θ1)− UO
1 (θ1) ≥ 0.

Therefore, in both cases, the seller’s expected utility by participating in the mech-

anism is at least as high as that from the outside option. This implies that IIR is

satisfied for the seller.
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Consider the buyer of type θ2. If θ2 < θ∗2 and both agents report truthfully in

both stages, the expected utility of the buyer of type θ2 after participating in the

mechanism is ∫
Θ∗

1(θ2)

(ũ2(θ1, θ2)− ũ2(θ1, θ2)) dF1(θ1) = 0 = UO
2 (θ2).

Hence, if θ2 < θ∗2, by participating in the mechanism, the buyer receives exactly

the same expected utility as his outside option utility.

If θ2 ≥ θ∗2, the expected utility of the buyer of type θ2 after participating in the

mechanism is∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1).

By Lemma 4, we divide our argument into the following two cases:

Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Recall that in this case, g(θ1) = −ũ2(θ1, θ̄2). Then, the expected utility of the

buyer of type θ2 = θ̄2 after participation is∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ̄2)dF1(θ1) = 0.

Therefore, if θ2 ≥ θ∗2, by participating in the mechanism, the buyer of type θ2

receives exactly the same expected utility as his outside option utility.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

As we argued previously, we know that∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1).

Hence, if θ2 ≥ θ∗2, the expected utility of the buyer of type θ2 after participating in

the mechanism is∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

=

∫
Θ1

(ũ2(θ1, θ2)− ũ2(θ1, θ
∗
2)) dF1(θ1)

≥ 0 = UO
2 (θ2),

where the weak inequality follows because θ2 ≥ θ∗2 and ũ2(·) is strictly increasing

in θ2. Therefore, if θ2 ≥ θ∗2, by participating in the mechanism, the buyer of type

θ2 receives at least the same expected utility as his outside option utility. We thus

conclude that IIR is satisfied for the buyer. This completes the proof.
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8.9 Proof of Claim 5

Proof. We show that the two-stage mechanism we propose in Subsection 4.2 vio-

lates the seller’s IIR constraint.

In this case, ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1−γ2)θ1/(1−γ1) = 0.4θ1.

Hence, the efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ1 ×Θ2,

x∗(θ1, θ2) =

1 if θ2 > 0.4θ1

0 otherwise.

Figure 7 below illustrates the decision at different type profiles in this case. In

particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1},
which describes the set of possible type profiles for which it is efficient to trade.

Note that if θ2 ≥ 0.4, it is always efficient to trade regardless of the seller’s type.

Figure 7

Observe that in this case, θ∗2 = 0.4 and Θ∗∗2 = [0.4, 1]. Moreover, the sum of

the last two terms in expression (1) in the definition of G(θr1) (See Subsection 4.2)

is exactly the negative of the left-hand side of inequality (2) in our Assumption 1,

which is equal to 1/60. Then, expression (1) can be rewritten as the following: for

each θr1 ∈ [0, 1],

G(θr1) =

∫ 0.4

0.4θr1

(θ2 + 0.8θr1)dθ2 −
∫ 1

0.4θr1

(θr1 + 0.5θ2)dθ2 +
1

60

= 0.08
(
1− (θr1)2

)
+ 0.32θr1(1− θr1)− θr1(1− 0.4θr1)− 0.25

(
1− (0.4θr1)2

)
+

1

60
.

Rearranging the terms, we obtain: for each θr1 ∈ [0, 1],

G(θr1) = −0.68θr1 − 0.17 +
1

60
+ 0.04(θr1)2.
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Then, we have

g(θr1) =

(
−0.68θr1 − 0.17 +

1

60
+ 0.04(θr1)2

)
/(1− 0.4)

= −17

15
θr1 −

23

90
+

1

15
(θr1)2.

Consider the IIR constraint for the seller of type θ1. If both agents report

truthfully in both stages, the seller’s expected utility after participation in the

mechanism, denoted by U1(θ1), is

U1(θ1) =

∫ 0.4θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2.

Then, the difference between the seller’s expected utility after participation in the

mechanism and his outside option utility is computed as follows: for any θ1 ∈ [0, 1],

U1(θ1)− UO
1 (θ1) =

∫ 0.4θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

=

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2 −
∫ 1

0.4θ1

ũ1(θ1, θ2)dθ2.

Plugging the specific valuation functions and g(·) function into the above equation,

we obtain

U1(θ1)− UO
1 (θ1) =

∫ 0.4

0.4θ1

(θ2 + 0.8θ1)dθ2 −
∫ 1

0.4

(
−17

15
θ1 −

23

90
+

1

15
(θ1)2

)
dθ2 −

∫ 1

0.4θ1

(θ1 + 0.5θ2)dθ2

= 0.08
(
1− (θ1)2

)
+ 0.32θ1(1− θ1)− 0.6

(
−17

15
θ1 −

23

90
+

1

15
(θ1)2

)
−θ1(1− 0.4θ1)− 0.25

(
1− (0.4θ1)2

)
.

Rearranging the terms above further, we obtain

U1(θ1)− UO
1 (θ1) = − 1

60
< 0,

implying that the seller’s IIR constraint is violated.

8.10 Proof of Lemma 8

Proof. We will first show that if inequality (4) is satisfied, our Assumption 1 is sat-

isfied. In our bilateral trade model, inequality (4) becomes the following condition:

for all θ̂1 6= θ1, there exists M1 > 0 such that

Eθ2
[
1{θ2|x∗(θ̂1,θ2)=0}(θ2)

(
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

)]
≤M1Eθ2

[
1{θ2|x∗(θ̂1,θ2)=1,ũ2(θ1,θ2)6=ũ2(θ̂1,θ2)}(θ2)

]
,

(12)
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and for all θ̂2 6= θ2, there exists M̃1 > 0 such that

Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
≤ M̃1Eθ1

[
1{θ1|x∗(θ1,θ̂2)=0,ũ1(θ1,θ2)6=ũ1(θ1,θ̂2)}(θ1)

]
.

(13)

Since ũ1(·) is assumed to be strictly increasing in θ2 in our paper, we have that

ũ1(θ1, θ2) 6= ũ1(θ1, θ̂2) for all θ1 ∈ Θ1 and all θ̂2 6= θ2. Then, inequality (13) can

slightly be simplified as follows: for all θ̂2 6= θ2, there exists M̃1 > 0 such that

Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
≤ M̃1Eθ1

[
1{θ1|x∗(θ1,θ̂2)=0}(θ1)

]
.

Suppose on the contrary that our Assumption 1 is violated. Then, there exists

θ̂2 < θ̄2 such that
∫

Θ1
x∗(θ1, θ̂2)dF1(θ1) = 1, or equivalently, x∗(θ1, θ̂2) = 1 for all

θ1 ∈ Θ1. As a result, the above inequality becomes

Eθ1
[
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

]
≤ M̃1Eθ1 [0] = 0.

Since θ̄2 > θ̂2, by the strict increasingness of ũ2(·) in θ2, we have ũ2(θ1, θ̄2) −
ũ2(θ1, θ̂2) > 0 for all θ1 ∈ Θ1. Thus, the left-hand side of the above inequality is

strictly positive, leading to a contradiction. So, if inequality (4) is satisfied, then

our Assumption 1 is also satisfied.

Second, we will show that inequality (5) is automatically satisfied in our bilat-

eral trade model. First we reproduce inequality (5): there exists M2 ≥ 0 such that

for all i ∈ {1, 2}, all θi, θ̂i ∈ Θi with θ̂i 6= θi,∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)=ũj(θ̂i,θ−i)}(θ−i)

]
≤M2

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i) 6=ũj(θ̂i,θ−i)}(θ−i)

]
,

where m(θ) = max{arg maxj ũj(θ)}. We assume throughout that each agent’s

valuation is strictly increasing in the other agent’s type. Thus, for all j 6= i and all

θ̂i 6= θi, it is impossible to have ũj(θi, θ−i) = ũj(θ̂i, θ−i) so that the left-hand side of

the above inequality is zero. On the other hand, the right-hand side of the above

inequality is always nonnegative. Therefore, the above inequality is automatically

satisfied in our bilateral trade model. This completes the proof.

8.11 Proof of Lemma 9

Proof. We revisit the example in Section 3. We divide our argument into the

following three cases.

Case 1: 0 < γ2 < γ1 < 1

Recall that Figure 8 illustrates the decision at different type profiles when

γ2 < γ1. In particular, the shaded region in the figure represents Θ∗ = {(θ1, θ2) ∈
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Θ1 × Θ2 : x∗(θ1, θ2) = 1}, which describes the set of possible type profiles under

which it is efficient to trade. We will show that inequality (4) in GMO’s Assumption

5.1 is violated in this case.

Figure 8: 0 < γ2 < γ1 < 1

If the seller’s true type is θ1 = 1 and he deviates to report θ̂1 = (1−γ1)/(1−γ2),

then it is always efficient not to trade under θ̂1, i.e., x∗(θ̂1, θ2) = 0 for any θ2 ∈ Θ2.

As a result, inequality (4) becomes

Eθ2
[
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

]
≤ 0.

However, the left-hand side of the above inequality is strictly positive because

θ̄1 > θ̂1 implies ũ1(θ̄1, θ2) − ũ1(θ̂1, θ2) > 0 by strict increasingness of ũ1(·) in θ1.

This is a contradiction. Therefore, inequality (4) in GMO’s Assumption 5.1 is

violated in this case.

Case 2: 0 < γ2 = γ1 < 1

Figure 9 illustrates the decision at different type profiles when γ1 = γ2. In

particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1},
which describes the set of possible type profiles under which it is efficient to trade.

We will show that inequality (4) in GMO’s Assumption 5.1 is satisfied in this case.

Figure 9: 0 < γ1 = γ2 < 1
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We first consider the seller. In this case, we know that for any θ̂1 < θ̄1, there

exists θ2 ∈ Θ2 such that x∗(θ̂1, θ2) = 1. Thus, inequality (4) can be rewritten as

M1 ≥
Eθ2
[
1{θ2|x∗(θ̂1,θ2)=0}(θ2)

(
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

)]
Eθ2
[
1{θ2|x∗(θ̂1,θ2)=1}(θ2)

] .

Since its denominator is positive and its numerator is bounded, the right-hand

side of the above inequality is well defined so that we can choose M1 appropriately.

Moreover, if θ̂1 = θ̄1, then ũ1(θ̄1, θ2) − ũ1(θ̂1, θ2) = 0 so that the left-hand side

of inequality (4) is zero. Since the right-hand side of inequality (4) is always

nonnegative, there exists M1 > 0 such that inequality (4) is satisfied.

Next consider the buyer. In this case, we know that for any θ̂2 < θ̄2, there

exists some θ1 ∈ Θ1 such that x∗(θ̂1, θ2) = 0. Thus, inequality (4) can be rewritten

as

M̃1 ≥
Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
Eθ1
[
1{θ1|x∗(θ1,θ̂2)=0}(θ1)

] .

Since its denominator is positive and its numerator is bounded, the right-hand side

is well defined so that we can choose M̃1 appropriately. Moreover, if θ̂2 = θ̄2, then

ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2) = 0 so that the left-hand side of inequality (4) is zero. Since

the right-hand side of the above inequality is always nonnegative, there always

exists M̃1 > 0 such that inequality (4) is satisfied in this case.

Case 3: 0 < γ1 < γ2 < 1

Figure 10 illustrates the decision at different type profiles when γ1 < γ2. In

particular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1},
which describes the set of possible type profiles for which it is efficient to trade.

We will show that inequality (4) is violated in this case.

Figure 10: 0 < γ1 < γ2 < 1

If the buyer’s true type is θ2 = 1 and he deviates to report θ̂2 = (1−γ2)/(1−γ1),

then it is always efficient to trade under θ̂2, i.e., x∗(θ1, θ̂2) = 1 for any θ1 ∈ Θ1. As
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a result, inequality (4) becomes

Eθ1
[
1{x∗(θ1,θ̂2)=1}

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
≤ 0.

However, the left-hand side of the above inequality is strictly positive because

θ̄2 > θ̂2 implies ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2) > 0 by the strict increasingness of ũ2(·) in θ2.

This is a contradiction. Therefore, inequality (4) is violated in this case.

In the example in Section 3, we conclude that inequality (4) is satisfied if and

only if γ1 = γ2. This completes the proof.
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