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Abstract. The aim of this study was to investigate the role
of the seagrassPosidonia oceanicaon the cycling of a wide
set of trace elements (Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu,
Fe, Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn). We measured
the concentration of these trace elements in different com-
partments ofP. oceanica(leaves, rhizomes, roots and epi-
phytes) in a non-polluted seagrass meadow representative of
the Mediterranean and calculated the annual budget from a
mass balance. We provide novel data on accumulation dy-
namics of many trace elements inP. oceanicacompartments
and demonstrate that trace element accumulation patterns
are mainly determined by plant compartment rather than by
temporal variability. Epiphytes were the compartment, which
showed the greatest concentrations for most trace elements.
Thus, they constitute a key compartment when estimating
trace element transfer to higher trophic levels byP. ocean-
ica. Trace element translocation inP. oceanicaseemed to be
low and acropetal in most cases. Zn, Cd, Sr and Rb were the
trace elements that showed the highest release rate through
decomposition of plant detritus, while Cs, Tl and Bi showed
the lowest.P. oceanicaacts as a sink of potentially toxic trace
elements (Ni, Cr, As and Ag), which can be sequestered, de-
creasing their bioavailability.P. oceanicamay have a relevant
role in the cycling of trace elements in the Mediterranean.

1 Introduction

Seagrass meadows are considered one of the most valuable
habitats in coastal areas (Orth et al., 2006) and rank among
the most productive habitats (Pergent et al., 1997; Duarte and
Chiscano, 1999).Posidonia oceanicais the most abundant
seagrass in the Mediterranean playing a key role in the cy-
cling of matter in Mediterranean coasts (Pergent et al., 1994).

P. oceanicabiomass can have very different fate according
to the part of the plant. While around 29 % of its produced
biomass, mainly rhizomes and roots, is buried in the sedi-
ment, the rest of it, mainly leaves, is mineralized, either in
situ or in adjacent ecosystems (Pergent et al., 1994). Together
with leaves, the epiphytes that grow onP. oceanicaleaves
account for a substantial part of the primary production of the
seagrass meadows (Lepoint et al., 1999). Epiphytes consti-
tute a considerable and preferential food resource for herbi-
vores (Tomas et al., 2005), and along with leaves, rhizomes,
and roots is a main compartment of the plant in matter fluxes
of this ecosystem.

Marine coastal systems are areas under pressure of many
anthropogenic activities (Turner et al., 1996) and represent a
sink for potential pollutants (Sanz-Lázaro and Marin, 2009),
such as trace elements (Islam and Tanaka, 2004). Trace el-
ements are elements that occur naturally in very low con-
centrations in the environment and can be either essen-
tial (e.g. Co, Cu, Fe, Mn, Ni, Rb and V) or non essential
(e.g. Li, Cd, Sr, Ba, Tl, Ag, Ga, Pb, Bi and Cs) to living
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organisms (Alloway, 1995). Trace elements are not necessar-
ily toxic but many anthropogenic activities increase their nat-
ural concentrations causing pollution.

Seagrasses take up trace elements through leaves and roots
(Schroeder and Thorhaug, 1980), which can be translocated
among the parts of the plant. Since, seagrasses show dif-
ferent element accumulation patterns among their compart-
ments (Lewis and Devereux, 2009), they may act as storage
compartments and biological filters, favouring the decrease
of toxic substances (Kaldy, 2006). They also can be intro-
duced into higher trophic levels of the ecosystem, through
grazing and decomposition of leaves and epiphytes (Lewis
and Devereux, 2009).

To understand trace element cycling in seagrasses, it is im-
portant to study the accumulation trends in all plant com-
partments. Most of the studies dealing with uptake and accu-
mulation of trace elements inP. oceanicaand in other sea-
grasses focused on using these plants as bioindicators of the
water column (Pergent-Martini and Pergent, 2000). Hence,
these studies have mainly analyzed element concentration in
leaves and rhizomes (Pergent-Martini and Pergent, 2000). To
the best of our knowledge, only Sanchiz et al. (2000) and
Schlacher-Hoenlinger and Schlacher (1998) analyzed trace
element concentration in roots, and roots and epiphytes, re-
spectively. Furthermore, most of these studies have focused
on few trace elements, mainly Cd, Cr, Cu, Fe, Ni, Pb and Zn.
Nevertheless, other trace elements that are essential and/or
may be also toxic have been barely studied (Ag, As, Ba, Bi,
Co, Cs, Li, Mn and Tl) (Pergent-Martini and Pergent, 2000
and references therein; Tovar-Sanchez et al., 2010) or not at
all (Ga, Rb, Sr and V).

P. oceanicais expected to play a major role in the cycling
of trace elements in the coastal areas of the Mediterranean,
due to its wide abundance, high productivity and capacity to
accumulate trace elements.

The aim of this study was to investigate the role of
P. oceanicain the cycling of a wide set of trace elements
(Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe, Ga, Li, Mn, Ni, Pb,
Rb, Sr, Tl, V and Zn). Trace element concentrations were
quantified in different compartments ofP. oceanica(leaves,
rhizomes, roots and epiphytes) in six bimonthly samplings in
a non-polluted meadow representative of the Mediterranean.
An annual budget was calculated from a mass balance anal-
ysis.

2 Materials and methods

2.1 Study area

The study was conducted in aP. oceanica meadow
in Sounion (37◦ 39.617′ N, 23◦ 58.276′ E), Aegean
Sea (Greece), which served as a reference area in other
studies dealing with anthropogenic impact (Apostolaki
et al., 2009a, b, 2011a). The meadow was situated in a

shallow strait (14.5 m depth) with 5.5 cm s−1 bottom current
speed. The site was characterized by coarse sand (0.90 mm
diameter pore size), low percentage of silt/clay (4.83 %), and
oxic conditions (353 mV redox potential). Concentration of
dissolved inorganic nitrogen and phosphorus in the water
column was 1.43 and 0.21 µM, respectively. Shoot density
was 312 shoots m−2, shoot biomass was 518 g dry wt m−2,
and shoot production was 377 g dry wt m−2 yr−1 (Apostolaki
et al., 2009a).

2.2 Sampling procedure

Six bimonthly sampling events from June 2006 to April 2007
were done to integrate the natural variability during the year.
During each sampling event and two months before the first
one, 24 to 45P. oceanicashoots were punched with a hy-
podermic needle just above the leaf sheath according to a
modified Zieman method (Alcoverro et al., 2000) to measure
growth. At each sampling event, punched shoots (including
the below-ground parts) were collected in triplicates using
cores to measure trace element concentration in plant tissues
and in epiphytes growing on the leaves of the plant. Divers
inserted cores approximately 20 cm in the sediment, to en-
close adequate number of punched shoots. Then, they gently
dag the sediment around the core (from the exterior part),
inserted a knife to cut the roots, and retrieved the enclosed
shoots.

To estimate trace element loss rate through decomposi-
tion of P. oceanicadetritus, a litter bag experiment was con-
ducted. In June 2006, the oldest alive leaf blades from dif-
ferent seagrass shoots were collected by hand. Then, 15 bags
containing 10 g fresh weight of the senescent leaf blades with
its epiphytes were collected and enclosed in a 1 mm pore size
mesh bag. The bags were anchored under the canopy of the
seagrass meadow. The bags were retrieved in triplicates one,
two, three, four, and six months after deployment, (i.e. from
July until December 2006).

2.3 Laboratory analyses

In the laboratory, epiphytes were gently scraped from leaves
(i.e. 8 to 15 leaves per replicate). Epiphyte biomass obtained
was variable but always sufficient to do a proper sample ho-
mogenization. As a reference, the average epiphyte biomass
on the studied seagrass meadow was 12.6 g dry wt m−2

(Apostolaki et al., 2011b).P. oceanicatissues were separated
into new (i.e. unmarked tissue produced between sampling
events) and old leaves, rhizomes and roots.P. oceanicatis-
sues, epiphytes, and detritus collected during each retrieval
point of the litter bag experiment were dried at 70◦C for 48 h,
ground to powder and stored in a moisture-free atmosphere.

For the analysis of Ag, As, Ba, Bi, Cd, Co, Cr, Cs, Cu, Fe,
Ga, Li, Mn, Ni, Pb, Rb, Sr, Tl, V and Zn,∼0.1 g of sam-
ple was weighted and placed in a Teflon reactor. Then, 3 ml
ultrapure water (18.2M�cm), 5 ml of concentrated HNO3
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Table 1.Analysis of the reference materials of the Community Bureau of ReferenceUlva lactucaCRM 279 andLagarosiphon majorCRM
060: certified values, measured values and recovery (mean± SD). Certified values are given when they are available from the Community
Bureau of Reference. Values in parentheses are indicative values of the reference materials.

Lagarosiphon major(CRM-60) Ulva lactuca(CRM-279)
Element Measured Certified Recovery Measured Certified Recovery

(µg g−1 dry wt) (µg g−1 dry wt) (%) (µg g−1 dry wt) (µg g−1 dry wt) (%)

Ag 0.24± 0.01 (0.2) 0.036± 0.003
As 5.1± 0.2 (8) 3.95± 0.2 3.09± 0.2 128
Ba 97± 4.3 10± 0.6
Bi 0.42± 0.03 0.07± 0.001
Cd 2.11± 0.04 2.2± 0.1 96 0.27± 0.004 0.27± 0.02 98
Co 3.5± 0.1 (4) 1.96± 0.1
Cr 20± 5.3 (26) 9± 1.6
Cs 0.22± 0.009 (0.4) 0.38± 0.02
Cu 40± 1.3 51.2± 1.9 77 10± 0.2 13.1± 0.4 76
Fe 1668± 66 1802± 65 (2400)
Ga 0.45± 0.06 0.45± 0.02
Li 0.96± 0.1 2.2± 0.2
Mn 1424± 25 1760± 60 81 1660± 1.2 (2090)
Ni 35± 4.4 (40) 12± 0.1
Pb 64± 4.2 64± 4 101 11± 1.3 13.5± 0.4 81
Rb 12± 0.2 (23) 8± 0.03
Sr 460± 6 476± 12
Tl 0.18± 0.01 (0.24) 0.026± 0.003
V 3.8± 0.3 (6) 4.8± 0.4
Zn 265± 9.1 313± 8 85 42± 2.2 51.3± 1.2 81

(Promochem, high purity for trace analysis), and 2 ml of
30 % H2O2 (Fluka, TraceSelectUltra for trace analysis) were
added. The reactor was maintained in a microwave digester
for 40 min with a top temperature of 200◦C. For each batch
of samples there was a blank (another reactor with all the
reagents used in the digestion but without sample ofP. ocean-
ica), which was used as a control of the reagents used, but
also to check sample contamination and differences among
the sample digestions on each batch. Following digestion, the
content of each vessel was poured into volumetric flasks and
ultrapure water was added to make up 25 ml, the final vol-
ume. Then, samples were stored at 4◦C. Trace element con-
centrations were done with an X-series inductively coupled
plasma-mass spectrometer (ICP-MS; Thermo Fischer Scien-
tific, Winsford, United Kingdom).

The limits of detection of the ICP-MS were calculated as
three times the standard deviation of the blanks and were:
0.009 (Ag), 0.368 (As), 0.117 (Ba), 0.002 (Bi), 0.005 (Cd),
0.034 (Co), 1.766 (Cr), 0.001 (Cs), 0.524 (Cu), 42.51 (Fe),
0.005 (Ga), 0.204 (Li), 0.164 (Mn), 1.372 (Ni), 0.043 (Pb),
0.010 (Rb), 0.519 (Sr), 0.006 (Tl), 0.428 (V) and 6.009 (Zn)
µg g−1. Yttrium and Indium were used as internal standards.
The accuracy of the technique was checked with the analy-
sis of standard reference materials (Ulva lactucaCRM 279,
Lagarosiphon majorCRM 060, Community Bureau of Ref-
erence). For most of the trace elements for which we had the

certified value, recoveries were within the limits of required
performance (between 80 and 120 %), nevertheless, in the
case of As and Cu, values were close but did not fall within
this range (Table 1).

2.4 Calculations

Data on shoot biomass, shoot production rate, leaf shedding
rate and leaf residual loss rate (biomass consumed by her-
bivores or torn off by waves and currents) were obtained
from Apostolaki et al. (2009a). Biomass (g dry wt m−2) of
leaves, rhizomes and roots was estimated as the product of
dry weight per shoot and shoot density (shoots dry wt m−2) at
each sampling event. Leaf production rate (g dry wt m−2 d−1)
at each sampling event was estimated as the product of dry
weight of “new” leaf tissue per shoot and the mean shoot den-
sity at the beginning and end of sampling interval, divided by
the duration of sampling interval in days.

For rhizome and root production, we used the annual pro-
duction rate (g dry wt m−2 yr−1), since more detailed esti-
mates were not possible. This extrapolation was reasonable
because belowground biomass growth ofP. oceanicashows
low variation among seasons (Wittmann, 1984). In the case
of rhizome, it was estimated as the sum of annual horizon-
tal and vertical production rate. Annual horizontal rhizome
production rate (27.51 g dry wt m−2 yr−1) was estimated as
the product of annual rhizome elongation rate per apex, the

www.biogeosciences.net/9/2497/2012/ Biogeosciences, 9, 2497–2507, 2012
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Fig. 1. Annual trace element concentration (µg g−1 dry wt; mean± SD) in the compartments ofPosidonia oceanica(leaves, rhizomes, roots
and epiphytes). The letters on the right top of each graph indicate the trace element.

horizontal rhizome biomass per cm of rhizome and apex den-
sity at the study area. Data on apex density were obtained
from measurements at the sameP. oceanicameadow in June
2003 (Apostolaki et al., 2009a). Similarly, annual vertical
rhizome production rate (27.96 g dry wt m−2 yr−1), obtained
from Marb̀a et al. (2006), was calculated as annual verti-
cal rhizome elongation multiplied by the vertical rhizome
biomass per cm of rhizome and mean shoot density during
the study.

Annual root production rate (25.81 g dry wt m−2 yr−1)
was estimated by multiplying the maximum root biomass
measured during this study with the mean root turnover
(0.13 yr−1) estimated forP. oceanicaDuarte et al., 1998).

Leaf shedding rate (g dry wt m−2 d−1) was calculated at
each sampling event as the product of the number of leaf
blades per shoot shed by senescence, the dry weight of the
oldest leaf per shoot and the mean shoot density at the begin-
ning and end of sampling interval, divided by the duration of
sampling interval in days.

Leaf residual loss rate (g dry wt m−2 d−1) at each sam-
pling event was calculated from leaf production rate minus
leaf shedding rate and minus the difference in standing leaf
biomass during the sampling interval, divided by time in
days (Cebrian et al., 1997).

Trace element incorporation rate (EILi ;
µg dry wt m−2 d−1) in leaf tissue at each sampling event was
estimated as

EILi = LPi × ECi,

where LPi is the leaf production rate (µg dry wt m−2 d−1) at
the corresponding sampling event and ECi is the mean trace
element concentration (µg g−1 dry wt) in “new” leaf tissue
at the corresponding sampling event. Then, the annual mean
trace element incorporation rate (g dry wt m−2 yr−1) is cal-
culated as the mean of the trace element incorporation rates
calculated at each sampling event.

Trace element incorporation rate for rhizomes and roots
(EIRi ; g dry wt m−2 yr−1) was estimated as

ERIi = RPi × ECoi,

where RPi is either, rhizome and root production rate
(g dry wt m−2 yr−1), and ECi is the corresponding annual
mean trace element concentration (µg g−1 dry wt). In the case
of rhizomes, the trace element incorporation rate was calcu-
lated separately for the horizontal vertical rhizome produc-
tion. Then, both are summed up to obtain the trace element
incorporation rate in rhizomes.

Trace element loss rate through leaf shedding (ELSi ;
µg dry wt m−2 d−1) at each sampling event was estimated as

ELSi = LSi × ECi,
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where LSi is the leaf shedding rate (g dry wt m−2 d−1) at the
corresponding sampling event and ECi is the correspond-
ing trace element concentration (µg g−1 dry wt) of “old” leaf
tissue at the corresponding sampling event. Then, the an-
nual mean trace element loss rate through leaf shedding
(g dry wt m−2 yr−1) was calculated as the mean of the trace
element loss rates at each sampling event.

Trace element residual loss rate (ERLi ;
µg dry wt m−2 d−1) at each sampling event was estimated as

ERLi = RLi × ECi,

where RLi is the leaf residual loss rate (g dry wt m−2 yr−1)

at the corresponding sampling event and ECi is the cor-
responding annual mean trace element concentration (µg
g−1 dry wt) of leaf tissue at the corresponding sampling
event. Then, the annual mean trace element residual loss rate
(g dry wt m−2 yr−1) was calculated as the mean of the trace
element residual loss rates at each sampling event.

Trace element release rate through decomposition ofP.
oceanicadetritus was estimated as the fraction of element
releasedk(d−1) according to this formula:

Et = Eoe
−kt ,

where Et (µg dry wt trace element bag−1) is the element con-
tent at each retrieval event of the litter bag experiment, and
was calculated by multiplying the weight of litter mass at that
time with the corresponding trace element concentration of
leaf litter. Eo (µg trace element bag−1) is the initial element
content and was calculated by multiplying the initial weight
of litter mass with the corresponding trace element concen-
tration of leaf litter.t is the time of retrieval (d) from the
beginning of the experiment.k was calculated as the slope of
the regression analysis between ln(Et E−1

o ) at each retrieval
event and time elapsed since the start of the experiment. Esti-
mates of detritus decomposition were obtained from Aposto-
laki et al. (2009b). We estimated annual trace element release
rate through decomposition ofP. oceanicadetritusk (yr−1)

by multiplying the mean daily rate over a year with 365 days.
Annual trace element incorporation rate per shoot was cal-

culated as the sum of annual incorporation rates in leaves,
rhizomes and roots. The trace element accumulation excess
was calculated as the element incorporation minus the sum
of both element loss sources (shedding, as well as grazing
and mechanical breakage).

The annual trace element budget at basin level was cal-
culated by extrapolating the total coverage ofP. oceanica
in the Mediterranean, 50 000 km2 estimated by Pasqualini et
al. (1998).

2.5 Data analyses

A two-way factorial ANOVA was used to analyze the vari-
ability in trace element concentrations among plant compart-
ments and time. The factors considered were compartment

of the plant (four levels, fixed) and time (six levels, random).
The independence of data among samples was checked by
plotting the mean versus the standard deviation. Homogene-
ity of variances was tested by Cochran’s C-test (Underwood,
1997). When variances were not homogeneous, data was
ln(x+1) transformed. After transformation, some data was
still not showing homogeneity of variances. In these cases,
we analyzed the data untransformed, since ANOVA is con-
sidered robust to lack of homogeneity of variances with
balanced designs and a considerable large amount of treat-
ments (Underwood, 1997). ANOVA main effects may be dif-
ficult to interpret in the presence of statistically significant in-
teractions (Underwood, 1997), but in mixed effect ANOVAs,
the test of the fixed main effect is potentially interpretable
even in the presence of an interaction (Quinn and Keough,
2002). Student–Newman–Keuls test was performed to check
for a posterioricomparisons among levels after significant
main effects in ANOVA.

Two principal component analysis (PCA) were performed
to identify patterns in element concentrations amongP.
oceanica compartments through time. Both PCAs were
based on a matrix with the concentrations of the ele-
ments (samples) on the plant compartment for each sam-
pling event (variables). Data was previously normalized (for
each variable, values had their mean subtracted and were
divided by their standard deviation) since element concen-
trations had different scales (Clarke and Gorley, 2006). One
PCA was performed with all plant compartments to investi-
gate the general element concentration patterns among all the
compartments ofP. oceanicathrough time. The other PCA
comprised only the compartments of the plant that are phys-
iologically connected, i.e. leaves, rhizomes and roots. This
second PCA was intended to investigate element transloca-
tion and discerned which elements showed similar accumu-
lation patterns among plant compartments that are physio-
logically connected.

PERMANOVA was applied to compare the concentration
patterns of the different trace elements in the compartments
of the plant and along time using the complementary pack-
age PERMANOVA + (v. 1) of the Primer software. The PER-
MANOVA design was the same as the ANOVA and was per-
formed based on resemblance matrices calculated using Eu-
clidean distances. Prior to the PERMANOVA routine, a PER-
MDISP (Distance-based test for homogeneity of multivariate
dispersions) analysis was used to measure the dispersion of
the data for each factor independently, which is equivalent
to an analysis of the homogeneity of variances in the uni-
variate analyses. After checking that the results of the PER-
MDISP indicated that the dispersion of the data was homoge-
neous, then the PERMANOVA analysis was performed. Both
analyses comprised 9999 permutations. Multivariate analy-
ses were done with Primer (v6) software package. All statis-
tical tests were conducted with a significance level ofα=0.05
and data was reported as mean± standard deviation (SD).
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Table 2.Two-way factorial ANOVA on differences in trace element concentration ofPosidonia oceanicaamong the factors,compartment of
the plant(df = 3) andtime(df = 5) and the interaction between them (df= 15). Le: leaves; Rh: rhizomes; Ro: roots; Ep: epibiota.

Compartment of the plant Time Interaction SNK test
MS F MS F MS F

Ag 2.6 35.8*** 0.07 2.6** Rh> Ro> Ep= Le
As # 12.8 56.1*** 0.2 7.2*** Ep> Ro> Rh> Le
Ba # 12.2 113*** 0.109 2.1* Ep> Ro> Rh> Le
Bi 0.02 89.8*** 0.0003 2.2* Ep> Ro> Rh= Le
Cd 1.8 56.6*** 0.01 0.4 0.03 1.7 Le> Ro> Rh= Ep
Co 6.2 12.0*** 0.5 12.6*** Ep> Le> Ro> Rh
Cr 412 43.7*** 5.6 0.6 9.4 1.5 Ep> Rh= Ro= Le
Cs 0.1 110*** 0.001 2.1* Ep> Ro= Rh> Rh= Le
Cu 430 18.1*** 24 2.8** Ep> Le= Ro> Rh
Fe# 28.4 106*** 0.3 3.9*** Ep> Ro> Rh> Le
Ga 0.5 188*** 0.004 1.4 0.003 0.7 Ep> Ro= Rh> Le
Li # 2.5 162*** 0.02 2.9** Ep> Le> Rh= Ro
Mn # 24.5 33.4*** 0.7 16.5*** Ep> Le= Ro> Rh
Ni 686 6.3** 110 1.0 109 1.4 Le= Rh> Ep= Ro
Pb# 26.0 72.1*** 0.4 7.8*** Ep> Ro> Rh> Le
Rb 82.8 35.8*** 3.0 1.3 2.3 1.1 Ro= Le> Rh> Ep
Sr 17 166 117 65.8*** 262 279 7.4*** Ep> Ro= Le= Rh
Tl 0.005 21.5*** 0.0004 1.6 0.0002 1.1 Ep> Ro= Rh= Le
V # 9.7 80.7*** 0.1 2.4* Ep> Ro> Rh> Le
Zn 30 925 19.3*** 3017 1.9 1608 1.5 Le= Ep> Rh= Ro

# = ln(x+1) transformation
∗ = p < 0.05; ∗∗ = p < 0.01; ∗∗∗ = p < 0.001

3 Results

Annual concentrations showed very different scales among
trace elements, varying from thousands (Sr and Fe) to thou-
sandths (Bi, Cs and Tl) of µg g−1 dry wt (Fig. 1). Differ-
ent trace elements exhibited contrasting accumulation pat-
terns amongP. oceanicacompartments (Fig. 1; Table 2).
All trace elements showed significant (p <0.01) differences
on trace element concentrations among plant compartments,
while there were no significant (p>0.15) temporal variations
for Cd, Cr, Ga, Ni, Rb, Tl and Zn. For Ag, As, Ba, Bi, Co,
Cs, Cu, Fe, Li, Mn, Pb, Sr, and V; the main effecttimecould
not be tested because there was an interaction between the
two factors (compartment of the plantandtime; Table 2).

The PCA plot based on trace element concentrations in
all P. oceanicacompartments grouped samples according to
plant compartments. PC1 and PC2 explained, respectively,
68 % and 14 % of the variation. Epiphyte samples stood out
from the rest of the plant compartments along PC1. Leave
samples were at the opposite position from rhizome and root
samples for PC2. Epiphytes were the plant compartment that
showed the greatest temporal variation (Fig. 2).

The main test of the PERMANOVA showed significant
differences for the factorcompartment of the plant(p =

0.0001). Since the interaction between both factors was
significant (p = 0.0002), the other factor,time, could not
be tested. The pair-wise test of the factorcompartment of
the plant was significantly (p = 0.0001) different for all
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Fig. 2.Principal component analysis (PCA) ofP. oceanicacompart-
ments for each sampling event based on element concentrations. Le:
leaves; Rh: rhizomes; Ro: roots; Ep: epiphytes; jn: June 2006; au:
August 2006; oc: October 2006; de: December 2006; fb: February
2007; ap: April 2007. Note that the names of some trace elements
are plotted very close to each other, this is the case of Co and Cu;
and As, Ba, Bi, Cr, Cs, Fe, Ga, Pb, Sr, Tl, and V.

plant compartments, showing that trace element concentra-
tion among plant compartments was highly dependent on the
trace element.

The epiphyte samples showed significantly (p < 0.05)
highest concentrations in most elements (As, Ba, Bi, Co, Cr,
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Fig. 3. Principal component analysis (PCA) ofP. oceanicacom-
partments that are physiologically connected (leaves, rhizomes and
roots) for each sampling event based on element concentrations.
Acronyms are explained in the caption of Fig. 2. Note that the names
of some trace elements are plotted very close to each other, this is
the case of (from top to bottom in a counterclockwise direction) Co
and Cu; Mn and Rb; As, Bi, Fe and Pb; Cs and V; Ba, Ga and Tl.

Cs, Cu, Fe, Ga, Li, Mn, Pb, Sr, Tl and V; Figs. 1 and 2; Ta-
ble 2). Out of these trace elements, As, Ba, Bi, Cr, Cs, Fe,
Ga, Pb, Sr, Tl and V showed the lowest concentrations on
leaves, while Co, Cu, Li, Mn and Zn showed, to some ex-
tent, high concentrations on leaves. Cd, Ni and Rb were the
elements which had the highest concentrations in leaves. Ag
had significantly (p < 0.05) greatest concentrations in rhi-
zome samples, although the concentration of this element in
roots was relatively high (Figs. 1 and 2).

The PCA that only comprised leaves, rhizomes and roots
grouped samples mainly according to plant compartments.
Roots and rhizomes showed higher temporal variation in
trace element concentration compared to leaves (Fig. 3). PC1
explained 47 % of the variation and gathered, on the one
hand, all leave samples and rhizome samples from Febru-
ary, August and December, and, on the other had, root and
the remaining rhizome samples. PC2 explained 28 % of the
variation and grouped, on the one hand, leave and most root
samples, and, on the other had, rhizome samples and the root
sample from August (Fig. 3). The PCA ofP. oceanicacom-
partments that were physiologically connected plotted same
elements very close together, indicating very similar accu-
mulation patterns among these plant compartments. This was
the case for: Co and Cu; Mn and Rb; As, Bi, Fe and Pb; Cs
and V; Ba, Ga and Tl. In contrast, Ag and Ni showed partic-
ular accumulation patterns that markedly differed from the
rest of the elements (Fig. 3).

Zn, Cd, Sr and Rb showed the highest release rates through
decomposition ofP. oceanicadetritus, while Cs, Tl and Bi

Table 3. Annual amount of trace element accumulation excess (kg
yr−1) by P. oceanicafor the Mediterranean basin according to the
estimates of the total cover ofP. oceanica(50 000 km2) (Pasqualini
et al., 1998). Positive or negative values indicate either incorpora-
tion or release byP. oceanica, respectively.

Trace element Annual
accumulation

excess

Fe 1 890 708
Ni 174 804
Cr 30 000
As 4591
Ag 3605
Cs 73.92
Tl −29.59
Bi −63.93
Ga −225.0
Ba −3074
Li −5636
Pb −7895
Cd −11 239
Rb −19 262
Co −21 067
V −38 489
Cu −45 097
Mn −587 261
Zn −1 459 340
Sr −1 754 053

showed the lowest (Table 1S, see Supplement). According to
the obtained budget, Fe was the trace element with the great-
est incorporation rate (37 815µg dry wt m−2 yr−1), followed
by Ni, Cr, As, Ag and Cs. Sr was the trace element with the
highest release rate (35081 µg dry wt m−2 yr−1) followed by
Zn, Mn, Cu, V, Co, Rb, Cd, Pb, Li, Ba, Ga, Bi and Tl (Ta-
ble 1S, see Supplement). The estimates ofP. oceanicaan-
nual trace element release and incorporation for the Mediter-
ranean basin were considerably high for some elements such
as Sr (1 754 053 kg yr−1) and Fe (1 890 708 kg yr−1), respec-
tively (Table 3).

4 Discussion

Trace elements are toxic above certain concentrations on ma-
rine life (Alloway 1995). We choose the studied trace ele-
ments since all of them are potentially toxic above natural
concentrations and because some of them are essential for
organisms.

Trace element concentrations in this study were mainly
within the range of values reported forP. oceanicain pre-
vious studies (Table 4). Cr and Pb were the only elements
whose concentrations were generally high compared to pre-
viously reported data (Table 4). The only source of pollution
that, to the best of our knowledge, is close to the studied site
is a fish farm (1 km away). The studied site has been used
in many studies as a reference site and widely proved not
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to be affected by this facility (e.g. Apostolaki et al., 2011a).
Besides, concentrations of Cr and Pb inP. oceanicacompart-
ments at 20 m from the fish farm were similar or moderately
lower than in the studied site (unpubl. data.). Furthermore, Cr
and Pb are not pollutants derived from fish farming (Dean et
al., 2007; Sanz-Ĺazaro et al., 2011). Thus, the relatively high
concentrations found in this experiment may be due to an un-
known diffuse source of these trace elements or because the
basal level of the area has naturally high Cr and Pb levels.

Some trace elements for which we did not find previ-
ously reported concentrations inP. oceanica(As, Ba, Li and
Sr), the values reported here were within the same range
of other seagrasses, such asThalassia testudinum(Whelan
et al., 2005) andZostera capricorni, (Sanchez-Jerez et al.,
2002). For Bi, Cs, Ga, Rb, Tl and V, we did not find previ-
ous reported concentrations in seagrasses. The compartments
which showed the greatest lack of data on trace element con-
centrations were the roots and epiphytes (Table 4). Thus, this
study fills this gap, providing novel data on trace element
concentrations inP. oceanicacompartments, which helps to
understand their cycling dynamics in seagrass meadows.

Marine macrophytes, i.e. seagrasses and macroalgae, ac-
cumulate trace elements, but seagrasses, opposed to macroal-
gae, have a well developed belowground system. On one
hand, this detritus is very recalcitrant and can form mattes
where roots and rhizomesP. oceanicacan persist for thou-
sand of years (Mateo et al., 1997). Because of that, a frac-
tion of the trace metals accumulated byP. oceanicais se-
questered, reducing the total amount that is available to other
organisms (Pergent et al., 1997). On the other hand, sea-
grasses, since they have roots, can also mobilize metals that
are buried in the sediment (Amado et al., 2004). Depend-
ing on the plant compartment where the trace elements are
mainly accumulated and on their incorporation and loss dy-
namics,P. oceanicacan act as a sink or source of these ele-
ments.

Trace element concentrations were mainly dependent on
plant compartment rather than on time, and the accumu-
lation trends among plant compartments varied depending
on each trace element (Figs. 1 and 2; Table 2). This dif-
ferential accumulation patterns within plant compartments
has been reported for some metals inP. oceanica(Catsiki
and Panayotidis, 1993; Schlacher-Hoenlinger and Schlacher,
1998; Sanchiz et al., 2000) and other seagrasses (Lyngby and
Brix, 1984; Llagostera et al., 2011). We found preferential
accumulation of Cd and Zn in the above-ground plant parts
compared to roots (Pergent-Martini and Pergent, 2000 and
references therein).

Cd, Cu and Zn had a higher accumulation in the leaves
than in the rhizomes (Sanchiz et al., 2000; Campanella et al.,
2001; Tranchina et al., 2005), while Cr, Fe and Pb showed
an opposed trend (Lewis and Devereux, 2009). The accu-
mulation dynamics inP. oceanicacompartments (leaves,
rhizomes, roots and epiphytes) agreed to some extent with
Schlacher-Hoenlinger and Schlacher (1998) for Cd, Pb and

Zn, while for Cu it was totally different. Differences in trace
element accumulation among compartments within studies
could be due to differences in the relative bioavailability of
trace elements in the sediments and the water column (Malea
et al., 2008).

Trace element uptake and translocation in seagrasses dif-
fers depending on the trace element and plant tissue. This
specificity depends on the chemical properties of each trace
element (Pulich, 1985). We found that some groups of trace
elements have similar accumulation patterns. This was the
case for Co and Cu; Mn and Rb; As, Bi, Fe and Pb; Cs and
V; Ba, Ga and Tl (Fig. 3). Thus, trace elements within each
of these groups are expected to have very similar uptake and
translocation pathways inP. oceanica. On the other hand, Ag
and Ni showed very different accumulation dynamics with
the rest of the trace elements, indicating unique uptake and
translocation dynamics.

Element translocation dynamics in seagrasses are hard to
elucidate since seagrasses take up trace elements by leaves
and roots (Schroeder and Thorhaug, 1980). Thus, trace ele-
ments that mainly accumulate in the rhizomes are expected to
have a high translocation rate either from leaves and/or roots.
In this experiment, this was only the case for Ag (Fig. 1; Ta-
ble 2). Also, trace elements that have similar concentrations
in all the compartments of the plant that are physiologically
connected are also expected to have a considerable translo-
cation rate. This was the case for Cr and Sr.

For some trace elements, accumulation trend followed the
order: roots> rhizomes> leaves. These were: As, Ba, Bi,
Cs, Fe, Ga, Pb, Tl and V. While other trace elements ac-
cumulated in the order: leaves> roots> rhizomes. These
were: Cd, Co, Cu and Mn (Fig. 1; Table 2). These obser-
vations seem to indicate that, for most analyzed trace ele-
ments, translocation was low and acropetal. In fact, under
oligotrophic scenarios such as the Mediterranean sea, sea-
grass root uptake of nutrients may notably exceed leaf up-
take (Stapel et al., 1996). Thus, acropetal translocation is ex-
pected to be the main direction of element translocation.

Among all P. oceanica compartments, epiphytes showed
the greatest, while leaves showed the lowest temporal vari-
ation on element concentrations (Figs. 2 and 3). Temporal
variation of trace element concentrations in plant compart-
ments among seagrasses is common, even though variations
are not necessarily significant (Malea and Haritonidis, 1999;
Pergent-Martini and Pergent, 2000). In this study, there were
no significant differences on trace element concentrations
among sampling events for all the trace elements for which
the main effecttimecould be tested. In the case of trace el-
ement variation among plant compartments, there were sig-
nificant differences among plant compartments for all trace
elements (Table 2). Furthermore, PCA plot showed that sam-
ples were mainly grouped according to plant compartment
than to sampling events (Fig. 2). So, although the concentra-
tions of trace elements showed temporal variations to some
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Table 4.Trace element concentration (µg g−1 dry wt) in P. oceanicacompartments. Data is given as range of the means, mean± SD or just
the mean, depending on the data availability. The symbol “∼” indicates that the value is approximated because it was estimated from a graph.

Trace element
Referencesa Compartment Location Ag Cd Co Cr Cu Fe Mn Ni Pb Zn

1 Leaves Sounion, Greece 0.18± 0.07 1.19± 0.19 1.24± 0.3 5.46± 2.47 10.9± 2 105± 35 27.5± 8.7 24.5± 14 6.12± 1.6 133± 38
2 Leaves France & Italy –b 2.1–5.38 1.7–12.1 0.2–1.27 – – – 27.47–60.3 1.4–1.8 –
3 Leaves Corsica, France – 1.47–3.97 1.83–7.73 0.15–1.07 – – – 14.6–48.73 1.30–3.37 –
4 Leaves Corsica, France – 2.8± 0.9 – 1.6± 1.5 11.1± 6.5 – – 22.9± 10.2 5.2± 3.8 109.3± 41.1
5 Leaves Ischia, Italy – ∼ 1.05 – – 14 – – – 3 167
6 Leaves Antikyra Gulf, Greece – 2.7–44.0 – – 2.8–148 164–815 – – 10.5–123 27.1–97.7
7 Leaves Sicily, Italy – 5.98± 1.64 – 0.35± 0.11 31.88± 15.8 – – – 2.29± 1.56 213± 47
8 Leaves Sicily, Italy – 2.42± 1.17 – 0.11± 0.03 11.7± 4.58 – – – 1.94± 1.67 70.9± 31.2
9 Leaves Sicily, Italy – 1.13–3.03 – 0.31–0.94 5.7–20.2 – – – 0.7–10 105–155
10 Leaves Sicily, Italy – 1.2–3.4 – – 8.4–15.3 – – – 5.8–12.5 213–676
11 Leaves Aegean Sea, Greece – – – 1.75–5.73 7.67–13.7 – – 19.1–30.7 – –
12 Leaves Spain – ∼ 2.2–∼ 25 – – – – – – ∼ 1–∼ 31 ∼ 100–∼ 700
1 Rhizomes Sounion, Greece 1± 0.34 0.53± 0.07 0.47± 0.2 5.93± 2.04 5.1± 1 411± 209 9.1± 5 23± 6.4 15.2± 7.5 59± 12
5 Rhizomes Ischia, Italy – 0.63 – – 17 – – – ∼ 12 60
9 Rhizomes Sicily, Italy – 0.40–1.16 – 0.91–1.29 6.6–15.3 – – – 2.81–16.86 41–140
10 Rhizomes Sicily, Italy – 0.45–2.44 – – 7.6–14.6 – – – 4–6.1 135–421
11 Rhizomes Aegean Sea, Greece – – – 1.05–5.93 3.44–10.1 – – 9.24–17.7 – –
12 Rhizomes Spain – ∼ 0.6–∼ 2.0 – – – – – – ∼ 1.5–∼ 7.5 ∼ 20–∼ 75
13 Rhizomes Balearic Islands, Spain 4.66–16.08 0.72–1.13 0.22–0.86 0.24–1.06 9.41–15.22 48.5–190.9 4.22–16.16 3.66–17.05 0.45–8.89 23.4–49.3
14 Rhizomes Gulf of Naples, Italy – 0.25–1.6 – – 6.0–62 100–600 4–23 – 0.15–1.25 20–220
1 Roots Sounion, Greece 0.43± 0.12 0.74± 0.12 1.02± 0.22 5.52± 2.66 10.5± 1.6 1092± 444 26.4± 11.6 11.2± 9.2 43.1± 14.7 55± 33
5 Roots Ischia, Italy – 1.23 – – 27 – – – ∼ 4 ∼ 75
11 Roots Aegean Sea, Greece – – – 2.66–4.84 6.23–10.6 – – 7.96–13.4 – –
12 Roots Spain – ∼ 0.6–∼ 2.1 – – – – – – ∼ 4–∼ 23 ∼ 25–∼ 90
1 Epiphytes Sounion, Greece 0.21± 0.15 0.48± 0.18 1.9± 0.73 15.7± 3.4 17.3± 7.6 2000± 484 181± 97 15.8± 4.5 123± 29 123± 53
5 Epiphytes Ischia, Italy – 0.25 – – 16 – – – 30 109

a References= 1, present study; 2, Lafabrie et al. (2007); 3, Lafabrie et al. (2008); 4, Gosselin et al. (2006);
5, Schlacher-Hoenlinger and Schlacher (1998); 6, Malea et al. (1994); 7, Conti et al. (2007); 8, Conti et al. (2010);
9, Campanella et al. (2001); 10, Tranchina et al. (2005); 11, Catsiki and Payanotidis (1993); 12, Sanchiz et al. (2000);
13, Tovar-Śanchez et al. (2010); 14, Ancora et al. (2004)
b

= no data

extent, plant compartment was the main driver of trace ele-
ment concentrations.

Accumulation of trace elements was significantly higher
in epiphytes for most trace elements (Table 2). High concen-
trations in epiphytes may be due to its great accumulation
capacity of trace elements (Sanz-Lázaro et al., 2011), but
also to seagrass leaching of elements through leaves, which
is a pathway to transfer elements from sediments to epi-
phytes (Mcroy and Goering, 1974) . Thus, epiphytes are ex-
pected to play a relevant role in the accumulation and transfer
of trace elements inP. oceanicameadows. Epiphytes should
be taken into consideration when studying trace element cy-
cling in P. oceanicaas well as in other seagrass meadows,
since it is ubiquitous on the leaves of seagrass species.

Zn, Cd, Sr and Rb were the trace elements that showed
the highest release rate through decomposition ofP. oceanica
detritus. Therefore, they are expected to be released in theP.
oceanicameadow. In contrast to, Cs, Tl and Bi, which had
the lowest release rate through decomposition. So, Cs, Tl and
Bi are more likely to be exported to adjacent ecosystems.

Based on the mass balance analysis, this study shows that
P. oceanicaacts as a sink for Fe, Ni, Cr, As, Ag and Cs.
Out of these elements, Fe had the highest incorporation rate.
This is maybe because Fe is a micronutrient which normally
limits primary production, specially in the Mediterranean
(Marbá et al., 2007). The rest of the elements for whichP.
oceanicaacts as a sink (Ni, Cr, As, Ag and Cs) are com-
mon pollutants at relatively low concentrations (Lewis and

Devereux, 2009). According to our calculations,P. ocean-
ica in the whole Mediterranean can sequester 174.8 t Ni in
a year (Table 3). The high incorporation rate of some trace
elements byP. oceanicain the Mediterranean basin (Table 3)
points to the major role thatP. oceanicamay have in seques-
tering some potentially toxic trace elements, and reducing
their bioavailability.

Even though, we acknowledge the limitations of doing
an estimate for the whole Mediterranean based on just one
meadow, this estimation can be a good starting point, since,
to the best of our knowledge, it has never been done be-
fore for a wide set of trace elements. Furthermore, the stud-
ied P. oceanicameadow can be taken as representative of
the Mediterranean for the following reasons. Firstly, the
primary production rate of theP. oceanicameadow sam-
pled (377 g dry wt m−2 yr−1) is close to the mean produc-
tion rate of P. oceanicameadows in the Mediterranean
(352 g dry wt m−2 yr−1) (Pergent et al., 1997). Secondly, the
characteristics of the studiedP. oceanicameadow, such
as depth (14.5 m), mean shoot density (312 shoots m−2),
biomass (518 g dry wt m−2), and mean rate of decomposition
(0.0033 d−1 reported in Apostolaki et al. (2009b)) are similar
to otherP. oceanicameadows (Pergent et al., 1994, 1997).

Apart from the many important ecosystem functions that
have been reported onP. oceanica(Hemminga and Duarte,
2000), the present study demonstrates thatP. oceanicaacts
as a sink of potentially toxic trace elements. Further studies
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should be done in other seagrass species, since they may also
sequester trace elements, which can be potentially toxic.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/9/
2497/2012/bg-9-2497-2012-supplement.pdf.
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Cebrian, J., Duarte, C. M., Marbà, N., and Enriquez, S.: Magnitude
and fate of the production of four co-occurring Western Mediter-
ranean seagrass species, Mar. Ecol.-Prog. Ser., 155, 29–44, 1997.

Clarke, K. R. and Gorley, R. N.: Primer v6: User Manual/Tutorial
PRIMER-E Ltd, Plymouth, UK, 2006.

Conti, M. E., Iacobucci, M., and Cecchetti, G.: A biomonitoring
study: trace metals in seagrass, algae and molluscs in a marine
reference ecosystem (Southern Tyrrhenian Sea), Int. J. Environ.
Pollut., 29, 308–332, 2007.

Conti, M. E., Bocca, B., Iacobucci, M., Finoia, M. G., Mecozzi,
M., Pino, A., and Alimonti, A.: Baseline Trace Metals in Sea-
grass, Algae, and Mollusks in a Southern Tyrrhenian Ecosystem
(Linosa Island, Sicily), Arch. Environ. Contam. Toxicol., 58, 79–
95, 2010.

Dean, R. J., Shimmield, T. M., and Black, K. D.: Copper, zinc and
cadmium in marine cage fish farm sediments: an extensive sur-
vey, Environ. Pollut., 145, 84–95, 2007.

Duarte, C. M. and Chiscano, C. L.: Seagrass biomass and produc-
tion: a reassessment, Aquat. Bot., 65, 159–174, 1999.

Duarte, C. M., Merino, M., Agawin, N. S. R., Uri, J., Fortes, M. D.,
Gallegos M. E., Marb̀a, N., and Hemminga, M. A.: Root produc-
tion and belowground seagrass biomass, Mar. Ecol.-Prog. Ser.,
171, 97–108, 1998.

Gosselin, M., Bouquegneau, J. M., Lefebvre, F., Lepoint, G., Per-
gent, G., Pergent-Martini, C., and Gobert, S.: Trace metal con-
centrations inPosidonia oceanicaof North Corsica (Northwest-
ern Mediterranean Sea): use as a biological monitor?, BMC
Ecol., 6, 12, 2006.

Hemminga, M. A. and Duarte, C. M.: Seagrass Ecology, Cambridge
University Press, Cambridge, 2000.

Islam, M. S. and Tanaka, M.: Impacts of pollution on coastal and
marine ecosystems including coastal and marine fisheries and
approach for management: a review and synthesis, Mar. Pollut.
Bull., 48, 624–649, 2004.

Kaldy, J. E.: Carbon, nitrogen, phosphorus and heavy metal bud-
gets: how large is the eelgrass (Zostera marinaL.) sink in a tem-
perate estuary?, Mar. Pollut. Bull., 52, 342–353, 2006.

Lafabrie, C., Pergent, G., Kantin, R., Pergent-Martini, C., and Gon-
zalez, J. L.: Trace metals assessment in water, sediment, mussel
and seagrass species – Validation of the use ofPosidonia ocean-
ica as a metal biomonitor, Chemosphere, 68, 2033–2039, 2007.

Lafabrie, C., Pergent-Martini, C., and Pergent, G.: Metal contami-
nation ofPosidonia oceanicameadows along the Corsican coast-
line (Mediterranean), Environ. Pollut., 151, 262–268, 2008.

Lepoint, G., Havelange, S., Gobert, S., and Bouquegneau, J. M.:
Fauna vs. flora contribution to the leaf epiphytes biomass in
aPosidonia oceanicaseagrass bed (Revellata Bay, Corsica), Hy-
drobiologia, 394, 63–67, 1999.

Lewis, M. A. and Devereux, R.: Nonnutrient anthropogenic chem-
icals in seagrass ecosystems: fate and effects, Environ. Toxicol.
Chem., 28, 644–661, 2009.

Llagostera, I., Perez, M., and Romero, J.: Trace metal content in the
seagrassCymodocea nodosa: differential accumulation in plant
organs, Aquat. Bot., 95, 124–128, 2011.

Lyngby, J. E. and Brix, H.: The uptake of heavy-metals in eelgrass
Zostera marinaand their effect on growth, Ecol. Bull., 36, 81–
89, 1984.

Malea, P. and Haritonidis, S.:Cymodocea nodosa(Ucria) aschers.
as a bioindicator of metals in Thermaikos Gulf, Greece, during

Biogeosciences, 9, 2497–2507, 2012 www.biogeosciences.net/9/2497/2012/

http://www.biogeosciences.net/9/2497/2012/bg-9-2497-2012-supplement.pdf
http://www.biogeosciences.net/9/2497/2012/bg-9-2497-2012-supplement.pdf


C. Sanz-Lázaro et al.: Trace element cycling byPosidonia oceanica 2507

monthly samplings, Bot. Mar., 42, 419–430, 1999.
Malea, P., Haritonidis, S., and Kevrekidis, T.: Seasonal and lo-

cal variations of metal concentrations in the seagrassPosidonia-
oceanica(L) Delile in the Antikyra Gulf, Greece, Sci. Total En-
viron., 153, 225–235, 1994.

Malea, P., Boubonari, T., and Kevrekidis, T.: Iron, zinc, copper, lead
and cadmium contents inRuppia maritimafrom a Mediterranean
coastal lagoon: monthly variation and distribution in different
plant fractions, Bot. Mar., 51, 320–330, 2008.
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