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ABSTRACT 

 

Fish farming is an important source of organic matter input in coastal waters, which 

contributes to eutrophication. In this study, the macrofaunal benthic community was 

studied after the cessation of fish farming with the aim of improving our understanding 

of benthic succession and sediment recovery in a marine ecosystem. The results showed 

that the best environmental variables for assessing organic pollution were AVS and 

redox potential. Succession and recovery was best explained by a macrofaunal analysis 

based on community composition as well as for trophic groups. The patterns of 

recovery differed between each impacted station. For this reason, succession could not 

be accurately predicted due to the unique environmental parameters and the singular 

community functional structure of each location. The Azti Marine Benthic Index 

(AMBI) proved its validity for assessing pollution but did not distinguish, between 

successional stages. 

 

Keywords: Benthic, succession, feeding guilds, trophic groups, organic enrichment, 

aquaculture. 
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INTRODUCTION 

 

 

During recent decades, fish farming in the open sea has undergone almost exponential 

growth (FAO, 2004). Fish-farms produce a large quantity of wastes (Gowen & 

Bradbury, 1987), which results in the accumulation of organic matter on bottom 

sediments, causing severe modification of the physical and chemical characteristics of 

the benthic environment (Diaz & Rosenberg, 1995; Karakassis, Tsapakis, Hatziyanni, 

Papadopoulou & Plaiti, 2000).  

 

Many studies have focused on processes related to the environmental impact produced 

by aquaculture, using macrofaunal analysis and measuring a great number of 

environmental variables (Karakassis et al., 2000; Pawar, Matsuda & Fujisaki, 2002). 

But very few studies have focused on the benthic recovery after fish farming cessation.  

 

In previous studies of benthic recovery after fish farming cessation (Karakassis, 

Hatziyanni, Tsapakis & Plaiti, 1999; Brooks, Stierns, Mahnken & Blackburn, 2003; 

Pereira, Black, McLusky & Nickell, 2004) the recovery rates observed in the different 

experiments differed to a large extent. In Greece, (Karakassis et al., 1999), total benthic 

recovery had not been achieved after 23 months, while in British Columbia, Brooks et 

al. (2003) reported complete biological remediation after 6 months. At a Scottish sea 

loch, Pereira et al. (2004) found that sampled stations were highly to moderately 

disturbed after 15 months. In all these experiments recovery was considered to have 

been achieved when benthic fauna assemblages were similar to those of control stations. 
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The study was carried out at a fish farm located in the Mediterranean Sea on the SE 

coast of Spain. At the time of the study, fish culture had been practised for more than a 

decade, with a mean fish biomass of between 30 and 60 tonnes per year. From January 

2001 to March 2003 the installation was progressively dismantled and fish were 

transferred to another farm located 3 km NE. The singularity and interest of this study is 

based on two facts: (1) fish culture abatement involved different groups of cages at 

different times, which enabled us to study, the way succession occurs before, during and 

after organic pollution abatement in different locations within a single site over 2 years; 

(2) for a period of two months, in the summer of 2002, production increased 

enormously as extra fish cages were deployed. This fact produced substantial 

disturbance in the surroundings, including the sampled stations, each of which was in a 

different stage of succession at the time of the disturbance. The aim of the study was to 

monitor the three different groups of fish cages of the same fish-farm, which were in 

different stages of succession.  

 

 

MATERIALS AND METHODS 

 

 

Location and sampling 

 

The study area was located at Hornillo Cove, Águilas, SE Spain (Western 

Mediterranean) (Fig. 1). The cove has an area of approximately 700,000 m2 with an 

average depth of 21 m and a maximum depth of 37 m. 
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Four stations were sampled. Replicates were taken over an area of 10 m from the 

anchoring point. Three stations (N, S, and P) corresponded to each of the different fish 

cage groups (Fig. 1). The reference station, F, was chosen outside the cave due to its 

biotic and physico-chemical resemblance with the other stations. The depth for each 

station was N: 14 m, S: 18 m, P: 15 m and F: 20 m. 

 

The fish farm had produced guilthead sea bream (Sparus aurata) and sea-bass 

(Dicentrarchus labrax) since 1989. During the last year of full production (2000) the 

cultured fish biomass was around 12, 12 and 6 tonnes and feeding rate was 13, 12 and 2 

metric tons of food per month for stations N, S and P, respectively. During abatement, 

the cultured fish biomass and feeding rate fluctuated (Fig. 2). The cages were removed 

in January 2001, July 2001 and March 2003, (N, S and P stations, respectively) and 

moved to the new area leased for fish farming. 

 

Sampling was carried out in October 2001, January 2002, May 2002, October 2002, 

April 2003, July 2003 and November 2003. In the first survey, only stations N, S and P 

were sampled, while all four stations were sampled in subsequent surveys. Four 

replicate samples were taken from each station at every sampling time. All the samples 

were collected by scuba divers. 

 

 

Physico-chemical analysis 

 

Physico-chemical sediment parameters such as redox potential, ammonia, acid-volatile 

sulfides (AVS), organic matter, carbon-nitrogen ratio (C:N) and grain size were 
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measured. For the granulometric analysis, sediment samples were first dried at 60 ºC 

and then sieved through a series of sieves on a mechanical sieve shaker (Buchanan, 

1984). Redox potential was measured in sediment cores of 6 cm diameter and 25 cm 

length, which were immediately frozen. In the laboratory, cores were thawed, sliced into 

2 cm sections and redox potential was measured with an Orion ORP 91-80 electrode. To 

measure ammonia, interstitial water was extracted from the top 2-3 cm of the sediment. 

The ammonia content was measured with an Orion 95-12 ammonia electrode. The 

sediment samples used for measuring sulfides were stored in plastic bags without air 

bubbles to prevent oxidation and were frozen until analysis. The sulfide content was 

extracted and measured following Allen’s protocol (Allen, Fu & Deng, 1993). The 

organic matter content was measured by weight difference, heating dry sediment at 

450ºC for 5 hours. The atomic C/N ratio was measured by Elemental Analyzer C, N 

mod. EA1108 by a Carlo Erba Instrument. Total organic carbon was also measured 

using the same equipment after a treatment with 2 N HCl and then drying at 105ºC. 

A two-way factorial analysis of variance (ANOVA) was used for testing significant 

differences between stations and times for all the physico-chemical sediment 

parameters. ANOVA was performed after checking for normality with Kolmogorov 

Smirnov’s test and homogeneity of variances with Levene’s test. To achieve normality, 

values were log10(x+1) transformed. 

 

Biological analysis 

 

Macrofaunal samples were taken using a hand grab (400 cm2). Samples were washed 

through a 0.5 mm sieve. The remaining sediment was fixed in a 4% formalin buffered 

solution, separated into major faunal groups and stored in a 70 % alcohol solution for 



Sanz-Lázaro & Marin  Page 8 

 

later identification. Determination of benthic groups was made to the lowest possible 

taxonomic level. 

 

Using macrofaunal data, abundance and species richness were obtained. These 

parameters were used to calculate the faunal descriptive Shannon-Wiener index for 

measuring diversity. 

 

The Azti Marine Biotic Index (AMBI) was calculated using the September 2004 species 

list. This index assesses environmental benthic quality by quantifying the occurrence of 

macrofaunal species. The species are divided into five groups according to their 

sensitivity to an increasing stress, obtaining a marine biotic index (BI). Because of the 

limitations of using such an index with discrete values, the continuous index, Biotic 

Coefficient (BC) was obtained (Borja, Franco & Pérez, 2000). AMBI was applied to 

see how well it assessed organic enrichment and to compare it with the other 

tools used. 

 

Taxa that contributed < 4% to the total abundance were removed from the dataset and a 

Bray-Curtis similarity matrix (Bray & Curtis, 1957) was calculated after transformation 

of log(x+1). Non-parametric multidimensional scaling (MDS) ordination analysis 

(Clarke & Warwick, 1994) was performed to represent the similarity between the 

samples (MDS-A). The BioEnv routine was used to find which environmental 

parameters best explained the MDS pattern, based on the macrofaunal data. Percentage 

of organic matter, percentage of silt and clay (fines), ammonia, AVS, redox potential 

(measured between 0 and 2 cm at the sediment surface) and the C/N ratio were used as 

environmental variables. BIOENV was performed using Spearman’s rank correlation. 
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The SIMPER routine was applied to know which species are the most important in 

terms of their contribution to the similarity or dissimilarity and to identify indicator 

species in different stages of succession. Analysis was made with a cut-off of 90 %. 

Multivariate analyses were obtained with the statistical package Primer version 5. 

 

Functionality was compared between the different stations and periods of time by 

grouping species according to their feeding guilds following Pearson’s (2001) 

recommendations without considering absorbers due to our lack of knowledge of 

species with such a feeding habit. The trophic groups included: predators, surface 

deposit feeders, sub-surface deposit feeders, suspension feeders and grazers. Taxa were 

associated to their feeding guild according to bibliography as well as our own previous 

knowledge. Feeding guild abundance was plotted against time, as well as by MDS 

(MDS-F). The MDS was also based on a Bray-Curtis similarity matrix with a 

transformation of log(x+1).  

 

 

 

 

RESULTS 

 

 

Physico-chemical parameters 

 

Organic matter did not show any marked trend during the studied period. The silt and 

clay percentage remained stable for all the stations, except N, where it decreased (Table 
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1). Ammonia values showed similar levels in stations N, S and F but where higher in P 

most of the time (Fig. 3). AVS values remained low in the reference station throughout 

the experiment compared with the impacted stations, where the values clearly fell, 

although at different rates (Fig. 4).  

 

The redox potential depth was fairly stable at the reference station (F) and only towards 

the end of the surveyed period did it slightly decrease. In all the other stations, to a 

greater or lesser extent, redox potential showed a rising trend. At the last survey time all 

the redox values for the top 2 cm were positive or only slightly negative. Station N 

showed the lowest redox values (Fig. 5). 

 

The atomic C/N ratio at station P presented the lowest values while the reference station 

showed the highest values for the most of the surveyed time. Organically enriched 

stations (N, S and P) showed an initial rise and then a fall to the initial levels (Table 1). 

 

ANOVA pointed to significant temporal and spatial differences (p<0.001) for the 

physico-chemical sediment parameters analysed (Table 2). These results showed that 

the surveyed sediment parameters varied greatly in time as in space due to changes in 

organic input. 

 

Biological analysis 

 

A total of 17637 individuals corresponding to 184 taxa were collected. The organically 

enriched stations showed similar behaviour as far as the Shannon-Wiener is concerned, 

decreasing at first and ending with a marked increase, with values similar to the 
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reference station (Fig. 6). The values recorded at the reference station remained fairly 

constant. The Shannon-Wiener index for stations N and S clearly decreased in the 

October 2002 survey.  

 

According to the AMBI pollution classification (Table 3), the reference (F) and station 

N were unpolluted, except in October 2002. Station S was slightly polluted except in 

January 2002 and November 2003. The last two surveys classified station P as 

unpolluted.  

 

Feeding guild abundance fluctuated in N, S and P, especially as regards the surface 

deposit feeder group (Fig. 7). Stations N and S showed the highest variation in the 

October 2002 survey, while at station P the most important peaks of surface deposit 

feeder abundance were observed in May 2002 and April 2003. At stations N, S and P 

the ratio between the different feeding guilds underwent substantial variations. At 

reference station (F), this ratio was more stable, only presenting a slight peak 

(corresponding to the predator group) in April and July 2003. 

 

MDS based on species abundance (MDS-A) as well as MDS based on feeding guild 

abundance (MDS-F) indicated a clear trend for station N, followed by station S, to 

approximate the reference station. Station P showed a much lower degree of similarity 

with the rest of the stations, approximating the reference station much more slowly and 

fluctuating greatly in position (Fig. 8a, 8b). First surveys of station S (SA, SB and SC) 

share considerable similarities with mid-time surveys of station P (PB, PC, PD and PE). 

Station P during July and November 2003 surveys showed very low similarity to other 
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stations. The difference was mainly due to the lack of some functional groups at station 

P during most of the surveys and at station S during the first surveys. 

 

According to BioEnv, the variable that best explained the community pattern was the 

AVS with a correlation of 0.169, followed by ammonia with a correlation of 0.163 and 

C/N with a correlation of 0.111. The highest correlation was 0.303 and was obtained 

using these three environmental variables together. 

 

SIMPER was applied using the individual abundance matrix, comparing every station 

and the different surveyed times. The analysis showed that polychaete families, 

Capitellidae, Spionidae and Nereidae (in this order), were the most representative taxa 

of the impacted stations when fish-farming was in operation. The taxa which best 

represented the reference station and impacted stations after abatement were the order 

Gammaridea, Apseudes latreillei (Tanaidacea) and the polychaete family Onuphidae. 

The polychaete family Sabellidae also seemed to be useful as an indicator of non-

polluted areas, although to a lesser extent. 

 

 

 

 

DISCUSSION 

 

This work is the first study in the Western Mediterranean related with benthic recovery 

after open sea fish-farm abatement. Its relevance is based on the comparison of species 

abundance, trophic groups and a benthic index (AMBI) to assess benthic recovery. 
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As regards the physico-chemical parameters, AVS was the most suitable chemical 

parameter for assessing and monitoring eutrophication in fish farming, as Pawar et al. 

(2002) and Vita, Marin, Jiménez-Brinquis, Cesar, Marín-Guirao & Borredat (2004) also 

found. Redox potential was the second best variable, although in the BioEnv analysis, 

ammonia and C/N seemed to be more robust variables. Because this type of analysis 

does permit evaluation of the whole redox profile, the redox potential can on some 

occasions lead to misleading conclusions. The first abandoned station (N) did not seem 

to have recovered because the redox potential on the surface was still strongly negative, 

perhaps due to the existence of dead mats of the seagrass Posidonia oceanica, which 

would favour the accretion of limes and clays. However, dead mats may also act as a 

substrate and encourage benthic faunal establishment. BioEnv as well as ANOVA 

showed that the measured environmental parameters differed significantly in time and 

space, and presented low correlations with the macrofauna. Clearly, environmental 

parameters on their own could not explain the succession and recovery trends, although 

some parameters did help to throw light on the status of the benthic ecosystem.  

 

The benthic index (AMBI) has been shown to be a useful tool for assessing organic 

enrichment, since it provides a quite accurate picture of the real situation.  

 

The potential recovery of an area after organic enrichment depends on the abiotic and 

biotic factors that determine the benthic community and on the hypoxia and anoxia 

tolerance of the species involved (Diaz & Rosenberg, 1995). Such recovery seems to 

follow defined patterns (Pearson & Rosenberg, 1978; Diaz-Castañeda, Frontier & 

Arenas, 1993). Going against the classical paradigm of succession as a continuum, 
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Karakassis et al. (1999) introduced a different perspective for the recovery process. 

These authors considered that recovery has the same “final point” as Pearson & 

Rosenberg (1978) proposed, but with a highly fluctuating rate that produces forward 

and backward movements, due to stochastic secondary perturbances in the ecosystem. 

 

In our experiment, succession did not follow a predetermined temporal pattern 

according to trophic structure and MDS analysis. There was a considerable spatial 

variation, although each station seemed to tend to the same successional end. This 

observation coincides with that of Rosenberg, Agrenius, Hellman, Nilsson & Norling 

(2002) who found that the pioneering and mature benthic successional stages were 

predictable but not the intermediate stages.  

 

Less stable habitats usually recover more quickly than stable habitats (Dernie, Kaiser & 

Warwick, 2003), and so this kind of environment studied was expected to make a rapid 

recovery. Since the impact of open sea fish farms is restricted to a relatively small 

perimeter around the cages, benthic recovery is made possible by the recolonization of 

nearby non-affected areas.  

 

The recovery rate and the way in which it takes place can only be understood by taking 

into consideration the great physico-chemical variability in environmental parameters 

(Dernie et al., 2003). Furthermore, basic characteristics of the water area such as 

topography, hydrodynamic conditions, water turbidity presence or absence of a sharp 

temperature stratification and water exchange patterns should also be considered 

(Kraufvelin, Sinisalo, Leppäkoski, Mattila & Bonsdorff, 2001). These parameters give 

to each location an almost unique configuration that makes it difficult to compare with 
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others. However, we propose that not only environmental variability influences the time 

of recovery, but that trophic structure (feeding guilds) may also play a major role in 

recovery processes. 

 

MDS analysis and the Shannon-Wiener index pointed to a clear pattern of recovery in 

the impacted stations. Both analyses suggested that station N and S had fully recovered 

by the last survey, while station P had not. Even so, no indicators of heavy organic 

pollution, such as Capitellidae, Spionidae or Nereidae families, were found in the 

sampled community during the last survey. This fact leads us think that station P 

followed a way of succession that differed considerably from that followed by the other 

impacted stations. 

 

Our results suggest that AMBI is appropriate for assessing organic pollution levels but 

not for evaluating community structure status.  

 

MDS analyses based on abundance and on feeding guilds were performed because 

species diversity does not always necessarily reflect functional diversity. Ecosystem 

processes are affected by the functional characteristics of organisms involved, rather 

than by taxonomic identity (Loreau, Naeem & Inchausti et al., 2002). The number of 

functionally different roles represented in an ecosystem may be a stronger determinant 

of ecosystem processes than the total number of species, per se (Tilman, Knops, Wedin, 

Reich, Ritchie & Siemann, 1997; Hector, Schmid, Beierkuhnlein, Caldeira, Diemer, 

Dimitrakopoulos et al., 1999). The fact that both MDS-A and MDS-F showed a similar 

ordination of successional changes indicated that there were differences in species 

composition and abundance but also in trophic structure (feeding guilds). Functional 
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groups provide a perspective of the ecological processes and the status of the ecosystem. 

MDS analysis based on functional groups, such as feeding guilds, could be used as a 

complementary tool for assessing organic enrichment impact. 

 

The analysis based on feeding guilds through time provided useful information 

concerning organic matter perturbation. Fish farm impacted stations showed an 

unbalanced feeding guild ratio, where the surface deposit feeders were the prevailing 

group. However, the reference station remained with a relatively constant feeding guild 

ratio throughout the experiment. Feeding guild ratio stability seems to be a logical 

expectation for non-disturbed ecosystems with considerable diversity and species 

redundancy. This fact coincides with the view of Andrew & Hughes (2005), who found 

that feeding guild ratios between insects living in the same tree species was constant in 

pristine environments, even at different latitudes. 
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TABLE LEGENDS 
 
Table 1. Organic matter, % silt / clay (i.e. <63 µm) and C:N ratio data (mean ± SD, n=4).  For 

location of sampling stations F, N, S and P, see Fig. 1. 

 
Table 2. Two-way factorial ANOVA without replication on differences in physico-chemical 

sediment parameters among the effects, stations (df=3) and times (df=6). 

 
Table 3. AMBI biotic coefficient (BC), biotic index (BI) and pollution classification.  For location 

of sampling stations F, N, S and P, see Fig. 1. 
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Table 1 

Date Station % Organic matter % silt / clay C:N 
N 
S Oct 01 
P 

4.3 ± 1.29 
2.6 ± 0.38 
2.8 ± 1.16 

14.5 ± 6.19 
5.5 ± 1.85 
3.4 ± 0.95 

9.1 ± 0 
9.6 ± 0 

6.3 ± 0.53 
F 
N 
S 

Jan 02 

P 

1.9 ± 0.29 
8.3 ± 2.8 
4.3 ± 2.38 
6.4 ± 3.49 

1.2 ± 0.15 
11.0 ± 2.18 
3.6 ± 0.57 
3.6 ± 0.58 

19.4 ± 9.16 
12.4 ± 1.67 
24.0 ± 19.55 
10.4 ± 2.40 

F 
N 
S 

May 02 

P 

1.8 ± 0.13 
14.0 ± 1.98 
6.5 ± 3.07 
3.9 ± 0.31 

1.5 ± 0.22 
14.7 ± 3.63 
5.5 ± 1.04 
4.5 ± 0.70 

13.3 ± 3.45 
16.2 ± 5.06 
17.1 ± 4.48 
11.1 ± 2.48 

F 
N 
S 

Oct 02 

P 

1.6 ± 0.11 
5.3 ± 1.56 
3.4 ± 0.85 
2.1 ± 0.35 

1.0 ± 0.48 
13.6 ± 6.10 
3.3 ± 0.82 
2.8 ± 0.53 

13.9 ± 3.67 
8.6 ± 1.62 
7.5 ± 1.77 
13.0 ± 1.82 

F 
N 
S 

Apr 03 

P 

4.1 ± 0.33 
3.8 ± 0.50 
3.7 ± 1.02 
1.6 ± 0.56 

2.9 ± 0.73 
5.5 ± 0.77 
3.7 ± 0.80 
1.5 ± 0.53 

6.3 ± 1.23 
6.6 ± 1.31 
14.4 ± 5.87 
6.2 ± 1.70 

F 
N 
S 

Jul 03 

P 

3.9 ± 0.34 
4.0 ± 0.53 
3.5 ± 0.34 
3.2 ± 1.07 

3.8 ± 0.97 
5.9 ± 2.49 
2.0 ± 0.22 
1.9 ± 0.53 

7.8 ± 1.24 
6.3 ± 1.29 
4.2 ± 0.23 
3.7 ± 0.77 

F 
N 
S 

Nov 03 

P 

4.1 ± 0.47 
3.6 ± 0.42 
4.2 ± 0.25 
2.9 ± 0.21 

4.0 ± 1.07 
3.8 ± 0.75 
4.4 ± 0.91 
1.6 ± 0.30 

9.0 ± 0.67 
7.8 ± 1.42 
6.0 ± 0.44 
8.4 ± 4.80 
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Table 2 

Variable Source of variability F p 

Station 107.748 <0.001 
AVS 

Time 9.975 <0.001 

Station 21.886 <0.001 
Ammonia 

Time 34.165 <0.001 

Station 49.436 <0.001 
Redox (-2 cm) 

Time 16.757 <0.001 

Station 51.944 <0.001 
% organic matter 

Time 13.230 <0.001 

Station 176.353 <0.001 
% silt / clay 

Time 10.376 <0.001 

Station 12.645 <0.001 
C:N 

Time 28.564 <0.001 
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Table 3  

Date Station BC BI 
Pollution 

Classification 
N 0.694 1 Unpolluted 
S 1.882 2 Slightly polluted Oct 01 
P 4.274 3 Moderately polluted 
F 0.363 1 Unpolluted 
N 0.717 1 Unpolluted 
S 3.971 3 Moderately polluted 

Jan 02 

P 5.582 6 Heavily polluted 
F 1.087 1 Unpolluted 
N 1.057 1 Unpolluted 
S 3.156 2 Slightly polluted 

May 02 

P 5.666 6 Heavily polluted 
F 1.367 2 Slightly polluted 
N 2.436 2 Slightly polluted 
S 2.815 2 Slightly polluted 

Oct 02 

P 5.323 5 Heavily polluted 
F 1.106 1 Unpolluted 
N 1.015 1 Unpolluted 
S 2.305 2 Slightly polluted 

Apr 03 

P 4.235 3 Moderately polluted 
F 1.107 1 Unpolluted 
N 1.063 1 Unpolluted 
S 1.458 2 Slightly polluted 

Jul 03 

P 0.138 0 Unpolluted 
F 0.730 1 Unpolluted 
N 0.476 1 Unpolluted 
S 1.018 1 Unpolluted 

Nov 03 

P 0.469 1 Unpolluted 
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FIGURE LEGENDS 
 
 
Figure 1. Location of Hornillo Bay and sampling sites: N (37º 24’ 34.5” N, 1º 33’ 26.6” W), S (37º 

24’ 30.2” N, 1º 33’ 28.9” W), P (37º 24’ 32.3” N, 1º 33’ 33.1” W) and F, (37º 24’ 33.3” N, 1º 32’ 

35.9” W)  

 

Figure 2. Feeding rate of the different fish cage groups from December 2000 until April 2003. 

Data of station P from January 2002 until April 2003 was estimated according to the number of 

fish cultured due to the inexistence of feeding rate data for this period of time 

 
Figure 3. Temporal changes in ammonia concentration in the interstitial water extracted from 

the top 2-3 cm of sediment (mean ± SE, n=4 ) 

 

Figure 4. Temporal fluctuations in acid volatile sulphides (AVS) in the top 2-3 cm of sediment 

(mean ± SE, n=4) 

 

Figure 5. Temporal variation in REDOX profiles in the top 10 cm of sediment (mean, n=4) 

 
Figure 6. Changes in Shannon-Wiener diversity index (mean ± SE, n=4) 

 
Figure 7. Time variation of feeding guilds abundance for each station (mean, n=4) 

 
Figure 8. a) MDS based on species at the different stations in different surveys. The MDS 

results have been grouped according to the cluster results, each assemblage showing 

approximately 60% or greater similarity. b) MDS based on feeding guilds of the different stations 

in different surveys. The MDS results have been grouped according to the cluster results, each 

assemblage showing approximately 75 % or greater similarity. The first letter of each point 

corresponds to the station (F, N, S and P) and the second one corresponds to the time. A: 

October 2001, B: January 2002, C: May 2002, D: October 2002, E: April 2003, F: July 2003, G: 

November 2003 
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Figure1 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 

 

 

 


