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Spain

vvidal@dsic.upv.es
3 Dpto. de Ciencia de la Computación e Inteligencia Artificial, Universidad de Alicante, Alicante,

Spain
arnal@ua.es
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Abstract
A parallel algorithm to remove impulsive noise in digital images using heterogeneous CPU/GPU
computing is proposed. The parallel denoising algorithm is based on the peer group concept and
uses an Euclidean metric. In order to identify the amount of pixels to be allocated in multi-core
and GPUs, a performance analysis using large images is presented. A comparison of the parallel
implementation in multi-core, GPUs and a combination of both is performed. Performance
has been evaluated in terms of execution time and Megapixels/second. We present several
optimization strategies especially effective for the multi-core environment, and demonstrate
significant performance improvements. The main advantage of the proposed noise removal
methodology is its computational speed, which enables efficient filtering of color images in
real-time applications.

Keywords: parallel computing, noise removal in images, GPU, CUDA, multi-core, OpenMP

1 Introduction

Noise removal is an important problem in the field of image processing which has many applica-
tions in different fields. Very often noise corrupting the image is of impulsive nature. Impulsive
noise is commonly caused by the malfunction of sensors and other hardware in the process
of image formation, storage or transmission [2, 18]. This type of noise affects some individual
pixels, changing their original values. The most usual model of impulsive noise is the Salt
and Pepper noise or fixed value noise, which considers that the new, wrong, pixel value is an

Procedia Computer Science

Volume 29, 2014, Pages 2219–2229

ICCS 2014. 14th International Conference on Computational Science

Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

2219

doi: 10.1016/j.procs.2014.05.207 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.207&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.207&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.207&domain=pdf


extreme value within the signal range. This is the noise type we consider in this paper. Many
algorithms have been proposed for correcting impulsive noise, for instance those mentioned
in [3–5, 7–9, 14–18, 20]. In the context of color image filtering, one of the most used techniques
is based on a vector ordering scheme defined through the ordering of aggregated distances [12].
Filters based on the ordering principle are efficient reducing the impulses, but they do not pre-
serve fine image structures, which are treated as noise. In order to avoid the problems caused by
the blurring properties of filters based on the ordering principle, a filtering method based on the
concept of peer group was introduced in [6] and widely used in filtering design [3,4,8,10,18,19].
The peer group associated with the central pixel xi is the set of neighboring pixels from the
filtering window W beeing similar to xi according to an appropriate metric value, this is, the
nearest neighbors. This type of filters have recently shown good results in quality but they do
not seem appropiate for real-time processing [3–6, 8, 9, 18, 19]. In this context, parallel com-
puting emerges as a solution to decrease computational time. Nowadays parallel algorithms
are widely present in noise removal literature [1, 13, 21]. In this paper, we introduce a parallel
version of peer group based filters in order to retain their good quality results while trying to
improve its performance, making them usable in real-time processing. We have tested these
parallel algorithms developing programs for GPUs and multi-cores and we did an analysis of
the best distribution of pixels in these two devices to take advantage of the hardware.

This paper is organized as follows: Section 2 explains the parallel noise removal method and
how the parallel algorithm was implemented on GPUs and multi-core. Experimental results
are shown in Section 3, and lastly, the conclusions are presented in Section 4.

2 Parallel image noise removal algorithm

Let the color image A be defined as a mapping Z
2 → Z

3. That is, the color image is defined
as a two-dimensional matrix A of size M × N consisting of pixels xi = (xi(1), xi(2), xi(3)),
indexed by i, which gives the pixel position on the image domain Ω. Components xi(l), for
i = 1, 2, ...,M × N and l = 1, 2, 3, represent the color channel values in RGB quantified into
the integer domain. Let W = {xk ∈ Z

2, k = 1, 2, . . . , n} represents a square filtering window
(Figure 3) consisting of n color pixels centered at pixel x1 (in the present study, n = 3 was
considered). The parallel denoising algorithm introduced in this study uses the peer group of
a central pixel xi in a window W according to [18] and uses an Euclidean metric. In order to
describe the parallel algorithm, and how the pixels were assigned to each computing element,
we consider a domain decomposition of the image domain Ω in P subdomains {Ωi}Pi=1, where
P is the number of computing elements. Figure 1 shows an example of the image domain
decomposition used in the experiments. Then, to detect and reduce the impulse noise the fuzzy
peer group concept is used. For impulse noise reducing, we use the arithmetic mean filter AMF
(e.g. [3]). Algorithm 1 shows the parallel filtering algorithm. The following lines detail the two
steps of the filter. For a central pixel xi in a n × n filtering window W and fixed the distance
threshold d ∈ [0, 1], we denote by P(xi, d) the set

P(xi, d) = {xj ∈W : ‖xi − xj‖) ≤ d}. (1)

Using the terminology employed in [3, 19], given a non-negative integer m, it will be called
peer group of m peers associated to xi a subset P(xi,m, d) of P(xi, d) formed by xi and other
m pixels, where m ≤ n2 − 1. Note that if P(xi, d) contains c+ 1 pixels then P(xi, d) is a peer
group of c peers. The algorithm performs two main steps. In the first step (detection) the pixels
are labeled as either corrupted or uncorrupted. In the second step (noise reduction) corrupted
pixels are corrected. Then, the detection and filtering steps are described for a single pixel xi:
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Algorithm 1 Parallel filtering algorithm.

Require: Image A, a domain decomposition {AΩk}Pk=1, m, d
Ensure: Filtered image.
1: for k = 1, . . . , P , in parallel do
2: for xi pixel in AΩk do
3: Impulse noise detection:
4: Calculate P(xi, d) :
5: distance = ‖xi − xj‖
6: if distance ≤ d then
7: pixel xj ∈ P(xi, d)
8: endif
9: if (#P(xi, d) ≥ m+ 1) then

10: pixel xi is free of impulse noise
11: else
12: Impulse noise reduction:
13: xi is an impulse and it is replaced with AMFout

14: end if
15: end for

16: end for

Figure 1: Distributed image: (3/4) on 4 GPUs and (1/4) on 8 cores.

• Detection: xi is declared as corrupted if #P(xi, d) < (m + 1), where m is the voting
threshold and #P the cardinality of set P.

• Noise reduction: Given a pixel xi previously marked as corrupted, it is replaced by the
arithmetic mean of uncorrupted pixels in its window W . This is, the new value for xi(l)

is

∑
xj∈W ′ xj(l)

#W ′ , where W ′ is the set of uncorrupted pixels of W.

2.1 Comments on the GPU and multi-core implementation

We have developed three implementations. The first on multi-core using OpenMP, the second
with CUDA on GPUs and the third is a combination of multi-core and GPUs. Figure 1 shows
an example of the pixel distribution used in the experiments. The flowchart, Figure 2, shows
the elimination of noise with these three implementations. In the detection process described
in Algorithm 1, on the GPUs, the kernel was configured so that each thread processed one
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Figure 2: Flowchart describing the noise removal algorithm.

item of pixel data. The thread corresponding to the pixel xi analyzes the n × n pixels of W ,
calculates the peer group and if this satisfies the cardinality m+1, the central pixel is diagnosed
as uncorrupted; if not, it is diagnosed as corrupted. Given that AMF considers only uncor-
rupted pixels for mean computation, the noise reduction step cannot start until the detection
phase is completed. In consequence, to ensure this synchronisation requirement, in the parallel
implementation on GPU we have developed two kernels, so that the noise reduction kernel is
not launched until the detecting kernel has finished. In multi-core two separate functions have
been implemented. The arithmetic mean was used instead of the median for two main reasons:
first, because in the calculation of the median, comparison operations are required and these
operations are not recommended on the GPU. Second, because the computational cost of the
arithmetic mean is lower than the median. In the GPU implementation, we reserve space in
memory using 4 bytes per pixel and we access data through the texture memory. After several
tests, this proved to be the best option.

2.2 Optimized detection step

To calculate the peer group and the Euclidean metric in the detection step, each pixel (i, j)
in the domain Ω of the image forms a filtering window W with 3 × 3 pixels (see Figure 3).
Euclidean metric considers the distance between the central pixel (i, j) and its 8 neighbors in
the windowW . Sequential algorithm performsM×N cycles, corresponding to theM×N image
pixels. Figure 4 shows the execution of two cycles. Pixel (i, j) calculates the distance to its 8
neighbors. The value of the pixel (i, j) is used to calculate the distance from its 8 neighbors to
it. In Figure 4 can be seen that when analyzing pixel (3, 4), pixels (2, 3), (2, 4), (2, 5), (3, 3) are
accessed to calculate the distance between those pixels (Figure 2.2). These distances have been
calculated previously, i.e., distance form pixel (3.4) to (2.3) is calculated when analyzing pixel
(2, 3). Then, in this process some distances are computed more than once. Concretely, distance
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Figure 3: Filtering window W .

(a) Cycle i (b) Cycle i+ 1 (c) Memory access and
repeated computations
at cycle i+ 1

Figure 4: Detection step cycle.

computation and data access in the peer group are repeated 4 times per pixel. In order to reduce
the computation, 8 distances per pixel, we propose an optimized detection step, in which for
each pixel (i, j) only distances to 4 neighbors, (i− 1, j− 1), (i− 1, j), (i− 1, j+1), (i, j− 1), are
computed. Then to compute the cardinality of the peer group associated with the pixel (i, j),
we use information computed when analyzing the neighboring pixels. This process can be seen
in Figure 5. Then, pixel (i− 1, j − 1) is classified as corrupt or not after pixel (i, j) is analyzed
(see Figure 6).

3 Experimental results and discussion

We carried out specific experiments and developments using a Mac OS X Intel Xeon Quad-
Core processor at 2 x 2.26 GHz with 8GB memory and with four NVIDIA GPUs (GeForce GT
120 with 512MB of memory (see [11])). This GPU supports CUDA Compute Capability 1.1.
The CUDA toolkit 4.0.50 was used. Our implementation used C language and single-precision
calculations. In order to adjust of the filter parameters d and m the filter performance has
been analyzed in terms of PSNR as a function of d and m contaminating images with different
densities of impulse noise. The best results were obtained when d = 0.95 and m = 2.

The results presented in this paper were obtained using the Lenna image (Figure 1) with
RGB format and square dimensions 512×512, 1024×1024, 2048×2048 and 4096×4096 pixels.
These images have been corrupted with 10% impulse noise.

To determine the number of threads per block that best fits the application, a heuristic
study concluded that 64 × 64 threads per block gave lowest computational costs. Optimized
detection step proposed in Section 2.2 has been implemented in parallel on multi-core, but not
on GPUs. This is due to the fact that GPUs are particularly useful performing calculations,
but they are penalized when memory access is needed. Moreover, optimized detection step
algorithm generates many memory accesses conflicts among threads.

Image Noise Removal on CPU-GPU Arnal, Sánchez, Vidal and Vidal

2223



(a) Cycle i (b) Cycle i + 1, contribution of
pixel (i, j + 1) to the cardinality
of pixel (3, 3)

(c) Contribution of pixel (i +
1, j−1) to the cardinality of pixel
(3, 3)

(d) Contribution of pixel (i +
1, j) to the cardinality of pixel
(3, 3)

(e) Contribution of pixel (i +
1, j+1) to the cardinality of pixel
(3, 3

(f) Distances and cardinality
completed for pixel (3, 3)

Figure 5: Optimized detection step.

Figure 6: Pixel (i− 1, j − 1) is classified as corrupt or not after pixel (i, j) is analyzed.

Table 1 shows the results obtained on the multi-core dividing the image only in cores. As
it can be seen, the less time is presented when the image is divided among the 8 available
cores, even for small size images (512× 512 pixels). Next test consists of dividing image among
the available GPUs. As shown in Table 2, the best results parallelizing an image smaller than
2048× 2048 were obtained using 2 GPUs. When the image is larger than 2048× 2048, the best
time is obtained by using 4 GPUs. If times obtained on GPUs and CPUs are compared for
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Table 1: Parallelizing Lenna image on multi-core. Time in seconds.
Image Size 1 core 2 cores 4 cores 6 cores 8 cores
512× 512 0.020798 0.010955 0.005939 0.004343 0.004316
1024× 1024 0.081733 0.041231 0.021845 0.015151 0.014856
2048× 2048 0.323281 0.162790 0.082566 0.058701 0.051113
4096× 4096 1.292198 0.647913 0,329343 0.229460 0.185927

each size, the best results were obtained using 8 cores for images smaller than 4096× 4096, and
for images of size 4096× 4096 a better performance was obtained using 4 GPUs.

Table 2: Parallelizing Lenna image on GPUs. Time in seconds.
Image size 1 GPU 2 GPUs 4 GPUs
512× 512 0.016530 0.015097 0.0224067
1024× 1024 0.040734 0.031762 0.0349600
2048× 2048 0.135072 0.091344 0.0827400
4096× 4096 0.510320 0.319990 0.1684350

Table 3: Hybrid CPU-GPU. Image Size 4096× 4096.
Number of Cores

Size on GPUs Number of GPUs 1 2 4 6 8
7/8 1 0.432482 0.432538 0.432662 0.432729 0.432921
3/4 1 0.381904 0.371174 0.371137 0.371156 0.371461
1/2 1 0.724824 0.370513 0.261091 0.247571 0.24775
1/4 1 1.08635 0.54421 0.280308 0.198086 0.1796
1/8 1 1.268269 0.635293 0.324827 0.223815 0.21045

7/8 2 0.272231 0.272124 0.272006 0.272115 0.274267
3/4 2 0.382045 0.233651 0.233481 0.235535 0.234778
1/2 2 0.725656 0.370293 0.204804 0.158565 0.164457
1/4 2 1.086432 0.544539 0.277794 0.194978 0.180735
1/8 2 1.268063 0,635606 0.321942 0.224208 0.194173

7/8 4 0.214141 0.167618 0.155008 0.164813 0.160218
3/4 4 0.379341 0.209139 0.146158 0.153328 0.139776
1/2 4 0.729261 0.37423 0.202995 0.171603 0.147168
1/4 4 1.089055 0.547068 0.294627 0.221558 0.18351
1/8 4 1.267636 0.636421 0.324567 0.238853 0.19316

Table 3 presents the results obtained for image size 4096×4096 for different combinations of
CPUs and GPUs. Table 3 also shows the portion of the image assigned to the GPUs. The rest
was processed by the CPUs. Similar experiments were performed for the image size 2048×2048.
For this size, Table 4 shows the best distribution using available hardware.

Figure 7 shows the results obtained when the image is divided into 4 GPUs and all the cores,
for different image sizes. Figure 7 shows that the best results for the image 2048 × 2048 were
obtained assigning 1/2 of the image in 8 cores and 1/2 in 4 GPUs. As can be seen in Figure
7, if the image size increases, then the best results were obtained assigning more processing on
the GPU. As can be seen in the results, the parallelization performed using a combination of
cores and GPUs gives better results than the parallelization performed only in 4 GPUs. For
the image of 4096× 4096 pixels, the reduction rate is 9.5% when the CPUs option is compared
with the GPUs option, and 24.8% when CPUs model is compared with hybrid CPUs/GPUs
model. Figure 8(a) presents time obtained using the optimized detection proposed in Section
2. Detection step is compared with the optimized detection step when the process is executed
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Table 4: Hybrid CPU-GPU. Image size 2048× 2048.
Number of GPUs Optimal size on GPUs Optimal number of CPUs Time

1 1/8 8 0.051960
2 1/2 8 0.049696
4 3/4 8 0.053220

(a) Image size 2048× 2048. (b) Image size 4096× 4096.

Figure 7: Hybrid CPU-GPU using 4 GPUs

sequentially in one CPU. It can be seen from Figure 8(a) that the improvement is significant. If
the image size increases, improvement increases. Figure 8(b) compares Mpixels processed per
second. For image of size 4096× 4096 optimized version of detection step processes 6 Mpixels
per second more than non optimized version. Figure 9 presents this comparison in parallel
on multi-core. Figure 10 analyzes Gflops performed in the optimized detection step. In the
sequential version, for the 4096×4096 image, the GFlops decrease from 1.501 to 1.08876 GFlops
(27% reduction) when comparing detection step with optimized detection step. For the same
image, in the parallel version using 8 cores, the GFlops decrease 41% in the optimized version.

(a) Computational time (b) Megapixels per second

Figure 8: Optimized detection step. Sequential version.
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(a) Computational time (b) Megapixels per second

Figure 9: Optimized detection step. Parallel version on multi-core.

(a) Sequential version (b) Parallel version on multi-core

Figure 10: GFlops performed in optimized detection step.

4 Conclusions

A parallel algorithm to remove impulsive noise of a digital image using heterogeneous
CPU/GPU computing has been proposed. The denoising parallel algorithm is based on the
peer group concept and uses an Euclidan metric. We have implemented it to be run on GPUs
using the CUDA library and on multi-cores using OpenMP. This processing was divided into
two steps: noise detection and noise elimination. For detection, the Euclidean metric and the
concept of peer group were used. In the correction stage, corrupted pixel values were replaced
by calculating the mean of those neighbors not labeled as corrupted in the detection step.
Three implementations have been developed to be executed either on a multi-core, on several
GPUs, or using a combination of CPUs and GPUs. Results showed that hybrid implementation
CPU/GPU obtains the best performance. Several optimization strategies especially effective
for the multi-core environment have been presented, demonstrating significant performance im-
provements. Numerical experiments show the efficient computational speed of the proposed
noise removal methodology, which enables efficient filtering of color images in real-time appli-
cations.
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