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- A new methodology is proposed for sampling the exhaust of small vehicles
- PCDD/F emissions from various diesel vehicles are measured in on-road conditions
- The effect of the engine temperature on the PCDD/F emissions is assessed
- Contribution of power generators to atmospheric pollution is estimated
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PCDD/F EMISSIONS FROM LIGHT-DUTY DIESEL VEHICLES OPERATED 

UNDER HIGHWAY CONDITIONS AND A DIESEL-ENGINE BASED POWER 

GENERATOR

M.D. Rey*, R. Font, I. Aracil

Chemical Engineering Department, University of Alicante, P.O. Box 99, E-03080 Alicante, 

Spain.
* Corresponding author. E-mail address: md.rey@ua.es

Abstract

PCDD/F emissions from three light-duty diesel vehicles – two vans and a passenger car –

have been measured in on-road conditions. We propose a new methodology for small 

vehicles: a sample of exhaust gas is collected by means of equipment based on United States

Environmental Protection Agency (U.S. EPA) method 23A for stationary stack emissions. 

The concentrations of O2, CO, CO2, NO, NO2 and SO2 have also been measured.

Six tests were carried out at 90-100 km/h on a route 100 km long. Two additional tests were

done during the first 10 minutes and the following 60 minutes of the run to assess the effect of 

the engine temperature on PCDD/F emissions. The emission factors obtained for the vans 

varied from 1800 to 8400 pg I-TEQ/Nm3 for a 2004 model year van and 490-580 pg I-

TEQ/Nm3 for a 2006 model year van. Regarding the passenger car, one run was done in the 

presence of a catalyst and another without, obtaining emission factors (330-880 pg I-

TEQ/Nm3) comparable to those of the modern van. Two other tests were carried out on a 

power generator leading to emission factors ranging from 31 to 78 pg I-TEQ/Nm3. All the 

results are discussed and compared with literature.

Keywords: PCDD/Fs, emission factor, diesel vehicles, power generator.

1. Introduction 
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There is growing concern about compounds and particles emitted by diesel engine exhausts

since they contain carcinogenic substances [1]. It is widely known that internal combustion 

engines are also an important source of nitrogen oxides (NOx) and particulate matter. These 

exhausts also contain other pollutants such as polycyclic aromatic hydrocarbons (PAHs), 

nitro-PAHs, VOCs (benzene, toluene, etc.), oxygenated compounds (formaldehyde, 

acetaldehyde, etc.) and other compounds which can be formed as a result of incomplete 

combustion. Already in 1986, Ballschmiter et al. [2] reported emissions of 

polychlorodibenzodioxins (PCDDs) and polychlorodibenzofurans (PCDFs) from automobile 

exhaust and compared these emissions with those from a municipal waste incinerator. The 

combined effect of all these chemical pollutants can raise the potential hazard of the exhaust 

gases.   

Internal combustion engines are widely used in applications ranging from small portable 

equipment to large stationary and marine engines. Overall, they consume fuel in large 

amounts and the potential for emissions of PCDD/Fs from these sources has to be carefully 

assessed.

Power generators producing electricity by means of an internal combustion engine are

commonly used when there is a power deficit or when power cuts are a frequent occurrence. 

The legislation in some countries make it compulsory to install such equipment in places of

considerable population density such as hospitals, factories, shopping centres, prisons, official 

buildings, etc.

It is not easy to quantify emission factors to gauge the incidence of vehicle emissions in 

dioxin inventories. There are published papers that propose such emission factors, but the

range of values is rather wide. Table S1 of the supporting information shows data reported by 

different authors on PCDD/F emission factors for four groups of engines: leaded gasoline

engines (LGE), unleaded gasoline engines (ULGE), heavy-duty diesel engines (HDDE) and 

light-duty diesel engines (LDDE) [3-30]. The emission factors are expressed in units of pg I-

TEQ/Nm3, pg I-TEQ/km and pg I-TEQ/L fuel. Original data that are quoted directly from

references are shown without parentheses. Table S2 of the supporting information shows the 

conversion factors deduced from the values in the references when there are data presented on 
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different basis. These conversion factors have been used to estimate the emission factors in 

other units, which are presented in Table S1 between parentheses.

From Table S1, it can be noticed that there are three main groups of results:dynamometer tests 

for vehicles and engines, on-road tests and tunnel studies. There is also another study on a

power generator that reports only a single range of values. The emission factors in pg I-

TEQ/Nm3 deduced for dynamometer tests are commonly very low whereas the emission 

factors reported for tunnel studies are much higher than those obtained by the other 

procedures. Several other aspects are worth commenting: 

a) For LGE, the emission factors vary from 1.4 to 254 pg I-TEQ/Nm3.

b) For ULGE, these factors range from 0.03 to 301 pg I-TEQ/Nm3, except for the values of 

625 and 650 pg I-TEQ/Nm3 estimated in two tunnel studies when vehicles circulated 

upwards. 

c) For LDDE, the factors are between 0.06 and 47 pg I-TEQ/Nm3. The value of 47 pg I-

TEQ/Nm3 was reported from a tunnel study where the contribution from heavy-duty diesel

vehicles was also taken into account.

d) For HDDE, the emission factors vary between 0.04 and 121 pg I-TEQ/Nm3, except for one 

value of 470 pg I-TEQ/Nm3 when the diesel particulate filter is catalyzed with a copper-based 

fuel additive and two tunnel studies in which the emission factor was estimated to be 703 pg 

I-TEQ/Nm3.

Monitoring of real-world emissions of road vehicles is important for reviewing the 

effectiveness of control measures and for taking into account all real-world variables that may 

affect emissions [31,32]. We found only two papers in literature dealing with on-road 

procedures involving HDD vehicles that obtained small PCDD/F emission factors varying

between 0.6 and 5.1 pg I-TEQ/Nm3. Only one paper on PCDD/F emissions from a stationary 

diesel engine has been found with emission factors of 1.5-6.1 pg I-TEQ/Nm3. No reference

works dealing with on-road samplings in passenger vehicles have been found.

Table S3 of the supporting information summarizes some published data concerning the main

congeners (without toxicity factors), the congeners that contribute to the total toxicity I-TEQ 

(taking into account the toxicity factors), and the percentage x 100 of
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PCDFs/(PCDFs+PCDDs) without and with TEF factors [2,3,6,8,15-19,21,22,24,26,27,29-33].

There is no uniform fingerprint but there are some significant aspects:

 a) Concerning the congeners in many exhaust samples, OCDD exhibits one of the highest

concentrations. Other congeners with relatively high concentration are HpCDD/Fs.

b) 2,3,4,7,8-PeCDF is among the congeners that contribute most to total toxicity I-TEQ.  

c) In general, PCDFs occur in higher concentrations than PCDDs, although there are several

references that report similar contributions from PCDFs and PCDDs, or where PCDD 

concentrations exceed those of PCDFs.

The objectives of this paper are to (i) prove a methodology for mobile sampling of PCDD/F 

emissions from light-duty diesel vehicles; (ii) compare these results with those obtained by 

other procedures; (iii) evaluate if other aspects such as catalyst, old or dirty exhaust tailpipes, 

mileage, fuel, automobile brand, etc., can be studied under real driving conditions; (iv) call 

attention to the pollution from small generators located on streets and in small shops, 

hospitals, etc. whose emitted pollutant gases can have a marked influence on the air quality of 

the surrounding areas; and (v) compare the results obtained from a stationary engine to those 

obtained on-road.

2. Materials and methods 

Three diesel vehicles were selected for sampling: a 5-year-old Renault Kangoo van (RK1)

(about 125000 km, 1500 cm3 cylinder, 2004 model year), another 5-year-old Renault Kangoo

van (RK2) (about 125000 km, 1500 cm3 cylinder, 2006 model year) and a 12-year-old VW 

Golf passenger car (about 200000 km, 1900 cm3 cylinder, 2000 model year). All three 

vehicles are equipped only with a diesel oxidation catalyst (DOC) to reduce hydrocarbons 

(HCs) and carbon monoxide (CO) emissions, but not with a diesel particulate filter (DPF) 

arranged in series with the DOC to reduce particulate matter. RK1, RK2 and the VW Golf 

belong to Euro 3, Euro 4 and Euro 2 stages, respectively. At the moment of sampling, the 

three vehicles were in a roadworthy condition and had passed all previous inspection tests in 

accordance with legislation. 

The driving route selected for carrying out the tests was representative of a highway route,

and the driving conditions were kept constant as far as possible during the samplings. The 
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testing speed averaged around 95 km/h (2400 rpm) and a total distance of approximately 100 

km was driven on an inclined motorway (slope of around 1.5%) between Alicante and Alcoy 

(Spain). Half the distance was uphill-, the other half downhill driving. A cold condition test, 

which comprised the first 10 minutes from the engine start, and a warm condition test, which 

took place from minute ten till the end, were done with the RK1 van to assess the effect of the 

engine temperature on the PCDD/F emissions.All samplings were performed from the same 

lot of standard diesel compliant with EN 590 standard. Tables S4-S6 of the supporting 

information show the results of the analyses carried out to the test diesel.

Figure 1 shows a scheme of the on-road dioxin sampling train; it travelled inside the vehicle

during samplings. This system enables measuring the emissions under real and representative 

driving conditions. Moreover, different parameters such as the exhaust gas composition were 

monitored and measured in real time and continuously. The exhaust was sampled directly 

during on-road operation by means of a modified version of the U.S. EPA Method 23 

sampling train. Every effort was made to follow U.S. EPA Method 23 equipment and 

operational requirements. The sampling train consisted of a probe, filter, condenser, organic 

sorbent trap, flow meter and gas analyzer (pumping/metering system). The probe was

designed specifically for these samplings since the one specified in the original method 

cannot be used under conditions prevalent during driving. It consisted of a stainless steel tube

of 8 mm internal diameter starting inside the exhaust pipe and extending outward from it, 

forming a 90º angle to it further out as shown in Figure 1. A Teflon® tube connected the 

probe to a 9 cm glass filter housing containing a 9 cm quartz microfiber filter. The filters were 

supported in the filter housing by a perforated Teflon disk, sealed with Teflon-coated O-rings.

Figure 1

The particulate matter fraction of the sample was collected in the filter whereas the 

condensable PCDD/Fs were collected in a glass module containing about 40 g of XAD-2 

sorbent resin. The two modifications with respect to U.S. EPA Method 23 were: the filter 

housing was not heated and the sample gases were not cooled before entering the sorbent 

module. These two modifications were necessary in view of the fact that no power was 
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available due to sampling conditions. In any event, the XAD-2 module inlet temperature was 

measured and was always below 35ºC, which is slightly above the inlet temperature limit 

specified in Method 23 but is below the temperature at which the resin begins to decompose.

Collection of the condensate (1-2 mL) and rinses of the probe were done to minimize 

PCDD/F losses.

The exhaust was drawn through the sampling system with an IM 2800-P portable gas 

analyzer (IM Environmental Equipment Germany GmbH), which was also used as the pump. 

The sample flow rate was 1.6 L/min and the total sampling time was about 75 min. The 

sampling took place with the sample probe inlet positioned at the center of the 5 cm internal 

diameter exhaust pipe, and perpendicular to the gas flow. The sampling was not performed 

under isokinetic conditions because of the assumption that diesel particulate matter is 

sufficiently small to follow gas streamlines.

The IM 2800-P portable gas analyzer gives information in real time and continuously about

the pumped gas in terms of the concentrations of O2, CO, CO2, NO, NO2 and SO2. The 

percentage of CO2 is calculated from that of O2 by a mass balance depending on the type of 

fuel used. Prior to each run, the gas analyzer was calibrated. 

The power generator used to carry out the samplings was purchased from Franvicar® and is 

powered by a 3.8 kW KAMA air-cooled diesel engine; it was fueled with the same standard 

diesel as the one used in vehicle samplings. PCDD/F samples were collected following U.S.

EPA Method 23. The all-glass sampling train consisted of a probe, a filter stage, a cooler, a 

condensate separator and an adsorber unit. The probe was covered by a stainless steel sheath 

and heated at 120ºC. The filter housing containing a 9 cm quartz microfiber filter was kept in 

a heated (120°C), insulated enclosure whose temperature was monitored. The horizontal 

condenser and the module containing the XAD-2 sorbent resin were cooled using a 

submersible pump which provides chilled water to the condenser and sorbent trap water 

jackets. This ensures that the gas sample was not hot before entering the sorbent module. At 

the back of the sampling train, there was a metering/pumping system to control and measure 

various parameters such as probe temperature, filter temperature and the gas flow. As in the 

vehicle samplings, various parameters such as the exhaust gas composition were monitored 

and measured using the IM 2800-P portable gas analyzer. The particulate matter fraction of 
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the sample was collected in the filter whereas the condensable PCDD/Fs were collected in the

XAD-2 sorbent resin. The total sampling time was one hour and about 0.7 Nm3 was sampled. 

The sampling took place with the sample probe inlet positioned at the center of the 25 cm 

internal diameter exhaust pipe and perpendicular to the flow. The sampling was not 

performed under isokinetic conditions for the reasons mentioned previously. During the 

sampling a 2000 W electric heater was connected to the power generator to guarantee higher

fuel consumption and obtain denser exhaust fumes. 

For both the vehicle studies and the power generator study, 40 L of surrogate PCDD/F 

standard was added to the XAD-2 sorbent prior to the sampling and 40 L of internal 

standard prior to sample extraction. The same set of isotopically labeled PCDD/F standards 

was also added to the filter prior to sample extraction. For the determination of tetra- through 

octa- CDDs and CDFs the U.S. EPA 1613 method was used. Every step (sample preparation, 

extraction and concentration, extract cleanup and HRGC/HRMS analysis) was done following 

the instructions of methods 0023A and 1613. After extraction was completed, the extracts 

were concentrated for cleanup. Sample cleanup included liquid-liquid extraction with acid and 

base, and HPLC using silica, alumina and carbon columns which was performed with a 

Power-PrepTM station from FMS (Fluid Management Systems). The filter and the XAD-2 

resin were extracted separately with toluene by Soxhlet extraction and analyzed individually, 

but combined for a single batch of data. Separation and quantification of PCDD/Fs were 

achieved by high-resolution gas chromatography/high-resolution mass spectrometry 

(HRGC/HRMS) on an Autospec Ultima-NT high resolution mass spectrometer (Micromass, 

UK) with a positive electron impact (EI+) source and interfaced with a Hewlett–Packard 

(Palo Alto, CA, USA) 6890 Plus gas chromatograph equipped with a split/splitless injector. 

An Agilent DB5-MS chromatographic column (60 m x 0.25 mm x 0.25 µm) was used.

Field blanks, laboratory blanks and the capacity to achieve surrogate and internal standard 

recovery criteria have been used to validate and qualify PCDD/F data. Quality control and 

quality assurance also included GC performance and MS sensitivity.

3. Results and discussion
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Tables 1 and 2 show the experimental results for the Renault Kangoo vans and the VW Golf 

car, respectively, along with data on the combustion gases, driving and sampling conditions, 

amount of PCDD/Fs in the field blanks, PCDD/F congener concentrations and total pg I-TEQ 

on a Nm3, km and L fuel basis. The values of PCDD/F are the result of subtracting the blanks 

values to the corresponding values of the samples to eliminate any contribution apart from 

that of the samplings.

Tables 1 and 2

Unexpectedly high emission factors have been obtained for the three vehicles studied. The 

results vary from 7.9 to 12, 0.71 to 0.78 and 0.46 to 1.3 ng I-TEQ/km for the light duty vans 

RK1, RK2 and the passenger car, respectively. These values are slightly higher or on the same 

order of the highest available published data: 1.3-9.5 ng I-TEQ/km [7], 0.72-9.5 ng I-TEQ/km

[9], 0.91 ng I-TEQ/km [24] and 1.7 ng I-TEQ/km [26]. Tables S7 and S8 of the supporting 

information show the congener emissions in terms of pg I-TEQ/Nm3 and pg I-TEQ/km, 

respectively.It can be observed that oxygen levels fall within the 10.3-13.4 % range, except in 

the case of test 3 (cold), where the oxygen and carbon monoxide concentrations are higher 

than in the other tests; this fact is consistent with the initial period of engine warming. The 

levels of CO and NOx are below or close to the emission limits proposed in the European 

legislation for new vehicles [34] which establish values of 1.0, 0.80 and 0.63 g CO/km in 

Euro 2, Euro 3 and Euro 4, respectively, and values of 0.65 and 0.33 g NOx/km in Euro 3 and 

Euro 4, respectively. The sampled volume is much smaller than that of the emitted exhaust 

gas but can be considered as representative of the total volume.

As to the concentrations of 2,3,7,8-substituted PCDD/Fs, OCDD, 1,2,3,4,6,7,8-HpCDD/F and

1,2,3,6,7,8-HxCDD, they constitute the four dominant congeners emitted by both RK1 and 

RK2. For the passenger car operating with the oxidation catalyst, the dominant congeners are 

OCDD, 1,2,3,4,7,8,9-HpCDF, 1,2,3,4,7,8-HxCDD and 1,2,3,6,7,8-HxCDD. These results are

consistent with the data reported in several papers [16,19,22,24,26,33,35], with the exception

of the HxCDD congeners mentioned above. Only the study made by the California Air 

Resources Board (CARB) [3] reported significant concentrations of the HxCDD homologue
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in heavy-duty diesel exhaust. For the passenger car operating without oxidation catalyst, the 

PCDD/F patterns are dominated by OCDD/F and 1,2,3,4,7,8,9-HpCDF, while there is no 

prevalence of the HxCDD homologue.

The existing differences in dioxin concentration between tests 1 and 2 (RK1 van) are 

attributed to dissimilarities in driving conditions considering the difficulty in maintaining 

driving conditions constant. The same consideration is made for the differences in dioxin 

concentration between tests 5 and 6 (RK2 van).

Concerning test 3 (cold conditions) and test 4 (warm conditions), which were carried out 2 

days apart, it can be observed that the emission of PCDD/Fs was higher in the former than the 

latter. These results are consistent with the fact that in the cold period the formation of char 

particles and CO is greater than during the subsequent warm period, indicating that the 

combustion is not perfect and consequently there can be a parallel formation of intermediate 

organic compounds that can lead to the formation of many compounds, including PCDD/Fs. 

Regarding Table 2, it is important to note that the DOC reduces PCDD/F emissions by 

approximately 65%. Dyke et al. [22] claimed that the DOC had in their testing a major effect 

of reducing PCDD/F emissions by approximately 80%, from 97 to 23 pg I-TEQ/L of fuel. In 

all runs, the concentration of PCDDs in exhaust gases exceeds that of PCDFs.

Figure 2 shows the distribution of congeners for the light duty vehicles RK1 and RK2, 

expressed as pg I-TEQ/Nm3. The compounds that contribute the most to the total toxicity in 

the case of the RK1 van are 1,2,3,6,7,8-HxCDD (38-45%) and 1,2,3,7,8,9-HxCDD (18-19%) 

from among the PCDDs, and 2,3,4,7,8-PeCDF (3.8-5.1%) from among the PCDFs. The 

pattern changes when it comes to the cold test and the main contributors now are 2,3,7,8-

TCDD (25%), 1,2,3,7,8-PeCDD (23%) and 2,3,4,7,8-PeCDF (8.3%). As far as the RK2 van is 

concerned, the total toxicity is still dominated by PCDDs, 1,2,3,7,8-PeCDD (30-34%), 

1,2,3,6,7,8-HxCDD (9.5-21%), 2,3,7,8-TCDD (12-14%) and 2,3,4,7,8-PeCDF (6.3-23%)

contributed most. When we compare these results with those reported in the literature and 

compiled in Table S3, we see that several authors [17,19,24,27] reported 2,3,4,7,8-PeCDF, 

2,3,7,8-TCDD and 1,2,3,7,8-PeCDD as the main contributors to toxicity. However, we found 
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no papers mentioning the high contributions of 1,2,3,6,7,8-HxCDD and 1,2,3,7,8,9-HxCDD. 

In all runs, the PCDD contribution to I-TEQ is greater than that of the PCDFs.

Figure 2

The TEQ-weighted congener distribution of the diesel passenger car is shown in Figure 3. 

The majority of the I-TEQ contribution comes from 2,3,7,8-TCDD (32%), 1,2,3,4,7,8-

HxCDD (16%), 1,2,3,6,7,8-HxCDD (13%) and 2,3,4,7,8-PeCDF (9.0%) for the vehicle 

operating with the diesel oxidation catalyst, and 1,2,3,7,8-PeCDD (23%), 2,3,7,8-TCDD

(15%), 2,3,4,7,8-PeCDF (11%) and 1,2,3,7,8,9-HxCDF (8.8%) for the vehicle operating 

without the catalyst. Figure 3 also shows the effect of the catalyst on the reduction of PCDD/F 

emissions.

Figure 3

RK2 and the passenger car release PCDD/Fs on a comparable level and reproduce 

comparable congener patterns. However, the emission strength and the pattern of RK1are 

quite different. Most remarkable are the differences between both Renault Kangoo. Both vans 

were 5 years old and about 125000 km at the moment of sampling. However, RK1 is from the 

year 2004 and RK2 from 2006. It is possible that the engine of RK2 worked more efficiently 

which results in a better combustion and lower emissions of incomplete combustion products.

Moreover, RK2 belongs to Euro 4 whereas RK1 belongs to Euro 3. That means that RK1 is 

allowed to emit 0.07 g/km of particulate matter whereas RK2 only 0.04 g/km. These two 

aspects would justify the difference between RK1 and RK2 with respect to the emission 

strength but not with respect to the pattern. There is no clear explanation about the difference 

in the patterns but since the pattern of RK1 is the same for the three samplings carried out 

with this van, it could be thought that some unexplained effect of the DOC could be taking 

place.

In general, vehicle engines are not very efficient, which is demonstrated by their considerable 

emissions of incomplete combustion products (CO and HCs). Incomplete combustion in 
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engines can increase PCDD/F emissions. There is a temperature gradient from in-cylinder 

combustion to actual exhaust release at the tailpipe-end: combustion temperatures in diesel 

engine are about 2000 ºC, diesel engine-out exhaust temperatures range between 200 and 400 

ºC and tailpipe exhaust temperatures typically are 180 ºC. PCDD/Fs can be formed in both the 

engine and exhaust system. Finally, chlorine content is important since chlorine input 

concentration and dioxin output concentration are related when concentrations of chlorine in 

the feed are small (less than 1%) and when poor combustion occurs [36]. Wang et al. [37]

determined that the formation mechanisms of PCDD/Fs are influenced by whether the

chlorine content in fuels and wastes is over or below 0.8-1.1 %. When the chlorine level is 

below that value, the formation of PCDDs dominates. This conclusion is in agreement with

our results.

Therefore, the residence time of the exhaust gas in the temperature range of 200-800 °C, the 

quantity of available chlorine and the presence of fly ash and metals (which serve as catalysts) 

affect the formation of dioxins [38].

Ballschmiter et al. [2] and Marklund et al. [5] reported similarities in the congener patterns in 

the used motor oil and in the car exhausts, and those found in fly ash and stack emissions 

from municipal waste incinerators. Similarities in the PCDD/F patterns could be a 

consequence of similarities in the PCDD/F formation mechanisms.

Several authors [39-42] found that dioxin versus furan emissions during the start-up of a 

municipal waste incineration plant were greater than under steady conditions. Neuer-Etscheidt

et al. [39] proposed that the combustion conditions during heat-up combined with residual 

deposits were sufficient to promote the formation of halogenated products of incomplete 

combustion. These findings could have a link with the results obtained in this study, in which 

higher emissions of PCDDs than PCDFs are observed, considering that the time needed for 

the vehicle engine to reach steady conditions constitutes an important part of the total 

sampling time. Inside the tailpipe the combination of the combustion conditions during the 

start-up with the accumulated soot could boost the formation of considerable amounts of 

PCDD/Fs. Other authors [2,17,27] also reported more PCDDs than PCDFs in exhaust gases.

Tejima et al. [41] estimated that around 41% of the total annual emissions of dioxins from 

MSW incinerators could be attributed to the start-up period. This percentage corresponds to 3 
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start-ups per year so the contribution of the start-ups to the total emissions of dioxins is 

considerable. This fact would also explain the relatively high values obtained in this study 

since the start-up period represents an important part of the total sampling time, which does 

not occur in studies conducted by other researchers. Moreover, the vehicles are only equipped 

with a DOC and not with a DPF arranged in series with the DOC. This has the evident 

consequence of an exhaust with a higher concentration on particles. The combination of these 

particles with the diesel engine-out exhaust temperatures (200-400 ºC) can create the perfect 

atmosphere for an extra formation of PCDD/Fs. The various results obtained thus far suggest 

that the system described in this study is useful for analysing cases in which there is a 

considerable level of PCDD/F emissions, as well as for assessing vehicle emissions on short 

journeys. However, for emission factors of around 50 pg/Nm3 or lower, the sampling time 

and/or the sampled volume should be increased by using a portable analyzer of greater 

pumping capacity or by increasing the distance over which the tests are conducted. The 

methodology adopted is also useful for determining emission factors under real driving 

conditions: start/stop, driving uphill/downhill, changing velocity, windy/cold/warm weather

conditions, etc.

Table 3 shows PCDD/F emissions, data on the combustion gases, sampling conditions, 

amount of PCDD/Fs in the field blanks and emission factors in terms of pg I-TEQ/Nm3 for 

the power generator. It is important to note that all the isomers from TCDD/Fs to OCDD/Fs

were detected although the values are considerably lower than in the case of the vehicles. This 

can be due to the fact that (i) the distance from the engine to the sampling point in the power 

generator is very short. This fact together with the fast cooling of the exhaust in the sorbent 

trap have the consequence that the time spent by the exhaust in the 200-450 ºC temperature 

region is minimized which results in lower PCDD/F emissions, (ii) power generators are 

designed so that their engines work with a very poor fuel/air mixture. They do not need to 

develop power as vehicles do. They just need to produce electricity and that is why their 

fuel/air mixture is very poor. A lower amount of diesel in the mixture involves a better 

combustion and a better combustion implicates lower PCDD/F emissions, and (iii) there is no

residual carbon deposits in the tube placed after the tailpipe to collect the exhaust gas. Geueke 

et al. [14] reported emission factors of between 1.5 and 6 pg I-TEQ/Nm3, which are lower
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than the values obtained in this study: 31-78 pg I-TEQ/Nm3. The dominant congeners are 

OCDD/F and 1,2,3,4,6,7,8-HpCDD/F as reported by several authors [6,19,33,35].

Table 3

Figure 4 shows the TEQ-weighted PCDD/F profiles obtained for the emissions from the 

power generator. As in the case of the vehicles, PCDDs are more prevalent than PCDFs. 

Among the PCDDs, the congeners that contribute most to the total toxicity are 1,2,3,6,7,8-

HxCDD (23-24%), 1,2,3,7,8-PeCDD (14-19%) and 2,3,7,8-TCDD (13-24%) whereas among 

the PCDFs, 2,3,4,7,8-PeCDF (7-9%) contributes the most. The power generator had neither a 

particle filter nor an oxidation catalyst and the tube placed after the tailpipe to collect the 

exhaust gas, in which the sample probe was inserted, was new and soot-free. Thus, the fact 

that the emission factors are lower than those of vehicles is also consistent with the 

assumption of possible effects on the formation of PCDD/Fs due to the presence of soot in the 

tailpipe.

Figure 4

4. Conclusions

An innovative methodology for measuring PCDD/F emissions from light-duty diesel vehicles 

in on-road conditions has been tested and characterized. This system enables measurements of

the emissions under real and representative driving conditions and can be appropriate to 

estimate emission factors of light-duty diesel vehicles. The vehicles investigated have shown 

to be an important source of dioxins under the conditions studied. However, vehicles with 

other diesel engine combustion technology as well as other driving and traffic conditions may 

lead to considerably different emissions. It is not clear to what extent this limited study is 

representative of the PCDD/F emissions from the on-road light-duty diesel population.

Obtaining reliable estimates of the emission factors of this kind of vehicles would require an 

extensive sampling program which considered multi-vehicles and multi-routes. The results 

obtained for the power generator show that these types of equipment should also be 
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considered as important contributors to the levels of PCDD/Fs emitted into the atmosphere.

Comparing PCDD/F emissions from vehicles and power generators could prove useful for 

discussing the effects of other parameters such as the type of fuel and the presence of soot in 

the exhaust tailpipe.
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Table 1. Emission factors of the two diesel vans 

  Diesel RK1  Diesel RK2 

 
Field 

Blank 
Test 1 Test 2 

Field 

Blank 

Test 3 

(cold) 

Test 4 

(warm) 

Field 

Blank 
Test 5 Test 6 

O2 (%)  12.5±2.2 10.3±2.2  15.9±1.9 13.4±2.5  12.9±2.3 12.5±2.0 

CO2 (%)  6.4±1.7 6.2±1.7  3.5±1.4 5.3±1.9  5.8±1.8 5.9±1.5 

CO (ppm)  76±180 93±232  163±126 73±149  88±190 114±152 

CO (g/km)  0.14 0.17  0.54 0.14  0.16 0.19 

SO2 (ppm)  14±10 3±3  6±3 16±6  166±93 231±76 

NO (ppm)  89±58 108±89  32±10 54±16  107±76 130±103 

NO2 (ppm)  3±3 8±8  1±1 3±2  64±18 85±17 

NOx (g/km)  0.18 0.23  0.12 0.12  0.39 0.47 

Emitted gas (Nm
3
)  136 138  26.5 125  148 129 

Sampled volume 

(Nm
3
) 

 
0.123 0.115 

 
0.0109 0.0780 

 
0.104 0.0864 

Distance (km)  95 95  10 84  103 95 

Time (min)  76 74  8 58  74 65 

Velocity (km/h)  95 95  95 100  100 105 

 pg pg/Nm
3
 pg pg/Nm

3
 pg pg/Nm

3
 

2378-TCDF 1.2 106 144 1.1 247 94.9 0.65 26.8 28.9 

Table 1
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12378-PeCDF 7.6 569 224 4.2 667 117 3.7 7.90 196 

23478-PeCDF 8.6 540 633 5.2 658 185 4.0 62.1 267 

123478-HxCDF 10.8 579 649 6.6 256 153 4.1 138 194 

123678-HxCDF 9.4 451 401 4.9 402 132 3.5 149 187 

234678-HxCDF 7.9 953 1290 4.1 439 318 3.5 86.7 162 

123789-HxCDF 7.1 1050 846 3.9 101 56.4 2.5 67.5 168 

1234678-HpCDF 11.2 16800 34900 7.0 3360 8940 4.7 724 416 

1234789-HpCDF 5.2 478 355 4.0 64.0 59.0 3.3 20.8 72.0 

OCDF 6.1 6910 11200 5.9 3760 1850 5.4 220 101 

2378-TCDD 1.6 320 412 1.1 1010 124 1.0 67.8 70.7 

12378-PeCDD 8.5 1160 912 5.3 1830 488 4.0 336 353 

123478-HxCDD 8.4 681 674 5.0 429 114 4.2 18.1 147 

123678-HxCDD 11.1 20900 37400 6.8 8120 6820 4.4 1020 551 

123789-HxCDD 8.7 10200 16300 5.5 4490 3180 4.2 542 316 

1234678-HpCDD 7.6 51400 87400 4.8 16000 12600 4.4 1370 874 

OCDD 11.8 118000 172000 12.2 23100 22600 14.5 1730 2130 

TCDFs  3530 5090  6200 1550  608 354 

TCDDs  12800 17100  23700 7590  2700 1310 

PeCDFs  3640 4600  5380 4280  684 661 

PeCDDs  36700 62800  37100 22000  4680 2080 
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HxCDFs  20900 37800  6500 12800  911 663 

HxCDDs  308000 278000  52600 50400  7990 3470 

HpCDFs  34300 59900  5380 16000  1130 1110 

HpCDDs  110000 200000  14100 25400  3790 2480 

Total pg I-TEQ/Nm
3
  5500 8380  3950 1790  495 582 

Total pg I-TEQ/km  7850 12100  10500 2670  708 783 

Total pg I-TEQ/L 

fuel 

 
123000 191000 

 
101000 41900 

 
11100 12300 
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Table 2. Emission factors of the diesel VW Golf car 

 Field Blank 
Test 7 

Car with catalyst 

Test 8 

Car without catalyst 

O2 (%)  12.1±2.6 12.9±2.6 

CO2 (%)  6.2±2.0 5.6±2.0 

CO (ppm)  353±63 565±66 

CO (g/km)  0.60 1.1 

SO2 (ppm)  37±25 54±26 

NO (ppm)  272±167 181±132 

NO2 (ppm)  57±20 83±20 

NOx (g/km)  0.66 0.62 

Emitted gas (Nm
3
)  125 139 

Sampled volume 

(Nm
3
) 

 
0.094 0.092 

Distance (km)  91 92 

Time (min)  66 67 

Velocity (km/h)  100 100 

pg pg/Nm
3
 

2378-TCDF 0.68 14.5 12.2 

12378-PeCDF 3.6 68.1 252 

23478-PeCDF 8.8 60.0 201 

123478-HxCDF 3.2 117 438 

123678-HxCDF 3.1 109 506 

234678-HxCDF 5.2 201 533 

123789-HxCDF 4.8 149 778 

1234678-HpCDF 10 177 627 

1234789-HpCDF 3.7 229 1330 

OCDF 7.4 177 1890 

2378-TCDD 3.1 106 129 

12378-PeCDD 5.3 23.7 399 

123478-HxCDD 1.2 539 707 

123678-HxCDD 10.2 423 368 

123789-HxCDD 5.1 211 727 

Table 2
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1234678-HpCDD 6.6 50.8 876 

OCDD 9.3 193 1650 

TCDFs  14.5 205 

TCDDs  106 275 

PeCDFs  128 453 

PeCDDs  636 996 

HxCDFs  577 2260 

HxCDDs  1920 1980 

HpCDFs  406 2140 

HpCDDs  1150 2560 

Total pg I-TEQ/Nm
3
  332 880 

Total pg I-TEQ/km  455 1330 

Total pg I-TEQ/L 

fuel 

 
7150 20900 
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Table 3. Emission factors of the power generator 

 Field Blank Test 9 Test 10 

O2 (%)  11.8±0.3 14.8±0.2 

CO2 (%)  6.4±0.2 3.7±0.1 

CO (ppm)  479±24 476±23 

SO2 (ppm)  0±0 4±1 

NO (ppm)  623±19 353±11 

NO2 (ppm)  66±2 41±2 

Sampled volume (Nm
3
)  0.671 0.635 

Time (min)  60 60 

 pg pg/Nm
3
 

2378-TCDF 0.93 32.7 4.58 

12378-PeCDF 3.2 8.78 4.26 

23478-PeCDF 4.0 13.5 4.10 

123478-HxCDF 5.3 16.1 4.73 

123678-HxCDF 3.9 14.0 7.10 

234678-HxCDF 4.6 20.4 6.79 

123789-HxCDF 3.7 3.27 2.05 

1234678-HpCDF 6.8 316 18.0 

1234789-HpCDF 3.3 32.4 2.05 

OCDF 4.7 337 24.6 

2378-TCDD 1.5 10.1 7.58 

12378-PeCDD 4.9 21.9 11.7 

123478-HxCDD 4.7 5.66 4.10 

123678-HxCDD 7.0 189 71.8 

123789-HxCDD 5.1 110 37.4 

1234678-HpCDD 4.4 515 116 

OCDD 7.1 1590 200 

TCDFs  623 102 

TCDDs  587 175 

PeCDFs  226 84.3 

PeCDDs  843 337 

HxCDFs  362 98.2 

Table 3
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HxCDDs  1390 494 

HpCDFs  454 20.0 

HpCDDs  630 116 

Total pg I-TEQ/Nm
3
  77.9 31.1 

 




