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Key Points:

• A methodology for optimizing neural network models based on categorical bi-
nary indices is introduced

• A novel multi-objective loss function combining continuous and categorical bi-
nary indices is presented.

• The experimental section tests this generic methodology training a neural net-
work for estimating precipitation.

• Results of the experiments are tested using well-known metrics in weather anal-
ysis, such as ROC curves.
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Abstract
This work introduces a methodology for optimizing neural network models using a
combination of continuous and categorical binary indices in the context of precipitation
forecasting. Probability of detection or false alarm rate are popular metrics used in
the verification of precipitation models. However, machine learning models trained
using gradient descent cannot be optimized based on these metrics, as they are not
differentiable. We propose an alternative formulation for these categorical indices that
are differentiable and we demonstrate how they can be used to optimize the skill of
precipitation neural network models defined as a multi-objective optimization problem.
To our knowledge, this is the first proposal of a methodology for optimizing weather
neural network models based on categorical indices.

Plain Language Summary

Deep neural networks have recently demonstrated great versatility and an un-
precedented capacity to model complex problems. In weather modeling, these algo-
rithms have been applied to solve different problems. This is a promising area of
research, given the availability of large volumes of weather data and increasingly pow-
erful computers.

Neural network models can learn to solve problems based on a metric, which the
model tries to optimize. However, the quality of weather models is measured using
a large variety of metrics, which can be a challenge when choosing which metric the
model should optimize.

In the case of precipitation, categorical binary metrics are a popular choice to
asses the quality of a model. These metrics reduce precipitation to a ’yes’ or ’no’ event
and the results of the predicting model can be compared with the actual observations.
This method is simple, yet powerful and a large number of indices and statistics have
been developed to assess different aspects of the quality of precipitation models.

As precipitation models are commonly assessed using these categorical binary
metrics, it would be very convenient to optimize models based on them. Unfortunately,
the mathematical nature of these metrics makes them unsuitable for optimizing deep
learning models.

In this work we present an alternative formulation for these categorical binary
indices which can be used to train models. We demonstrate how a deep learning model
can be trained to generate better quality precipitation data.

1 Introduction

It is increasingly common in meteorology to use machine learning approaches for
identifying patterns in the atmosphere using large amounts of historical data. (Weyn
et al., 2019; Scher & Messori, 2019; Dueben & Bauer, 2018; Ukkonen & Mäkelä, 2019).
This approach, of extracting the underlying physical relationships in the atmosphere
from data, opens an opportunity to explore new algorithms that optimise the output
based on different verification metrics. In this work, we propose a methodology to train
neural network precipitation models using a loss function which combines continuous
and binary, or dichotomous [yes, no], metrics.

Verification dichotomous events has been extensively explored in the context of
weather forecasting (Stephenson, 2000; Casati et al., 2008; Jolliffe & Stephenson, 2012;
Ebert et al., 2013). Detection of rain, frost, flood and fog are examples of dichotomous
meteorological events.
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Verification of categorical binary events usually starts with the construction of a
contingency table, which represents the frequency of “yes” and “no” model predictions
and observed occurrences. In weather forecasting, thresholds are usually defined to
categorically determine the occurrence of weather events from continuous variables by
being above or below these thresholds. Several popular indices can be derived from
contingency tables, such as Probability Of Detection (POD) and False Alarm Rate
(FAR). These indices allow measuring different aspects of the quality of dichotomous
predictive models and are popular evaluation metrics in meteorology studies.

Gradient descent is a versatile and popular technique in machine learning and cur-
rently constitutes the de-facto methodology to train Artificial Neural Network (ANN)
models. Gradient descent prescribes an iterative process that computes the derivative
of the loss function (model error) and updates the model parameters following the
direction that minimises this loss until a local or global minimum is reached.

Weather models trained using gradient descent can be evaluated using binary
indices, but these indices cannot be naturally integrated in the optimization process,
as they are not differentiable. Gradient descent requires smooth, differentiable loss
functions for determining its minima points. Categorical binary indices are built using
logical comparison operators (<,>), which define a function containing a discontinuity
at the threshold point, and therefore are non-differentiable.

The problem of optimizing non-differentiable categorical classifiers has been ex-
plored before in the context of machine learning (Yan et al., 2003; Herschtal &
Raskutti, 2004). However, in weather forecasting, precipitation generated by Numeri-
cal Weather Prediction (NWP) is usually a quantitative variable and is verified using
a variety of quantitative and categorical verification metrics. We propose a method-
ology for combining both types of metrics and optimizing models that perform well
using these metrics. This problem can be formulated as a Pareto or multi-objective
optimization problem in which no single solution exists that simultaneously optimizes
each objective individually.

In this work we present an alternative formulation of binary indices, which present
the desired characteristics of being both continuous and differentiable. We show how
these indices can be integrated in the loss function of weather models trained with
gradient descent, learning to optimize them. In the experimental section we apply this
methodology to train a deep learning network used to predict gridded total precipi-
tation using NWP geopotential heights as input. We demonstrate how the proposed
indices are used to optimize the skill of neural network models based on different cat-
egorical binary metrics. To our knowledge, this is the first proposal of a methodology
for optimizing weather precipitation models using a combination of categorical and
quantitative indices.

This manuscript is structured as follows: Section 2 briefly covers the derivation of
classical categorical binary indices and presents the theoretical basis of the equivalent
differentiable indices. Section 3 presents the data, model and experiments for testing
the behaviour of the proposed indices. Section 4 presents the results of the experiments
demonstrating how ANN models can be optimised using categorical binary metrics.
We finish with Section 5, which provides conclusions and ideas on how the proposed
methodology can be further developed in future works.

2 Methodology

2.1 Categorical binary verification metrics

Performance of binary forecasts can be measured as a function of hits, misses,
false alarms and true negatives, which relate observed and forecasted events. The
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four combinations of forecasts [yes, no] and observations [yes, no], called the joint
distribution, can be represented using a contingency table (see Table 1).

Table 1: Contingency table for evaluating models which forecast dichotomous categorical
events.

Observed
Yes No

F
o
re

c
a
st

Yes Hits False Alarms
No Misses True Negatives

Contingency tables are a useful way to represent the skill and errors made by
deterministic models – a perfect forecast contingency table contains only hits and
correct negatives, and no misses or false alarms. A variety of popular categorical
statistics can be computed based on the indices in this contingency table to de-
scribe different aspects of the skill of a model. Probability Of Detection POD =
hits / (hits + misses), also known as hit rate, and the Probability Of False Detection
POFD = false alarms / (false alarms + true negatives) are examples of these
statistics. We refer readers to “Forecast verification: a practitioner’s guide in atmo-
spheric science” (Jolliffe & Stephenson, 2012) for a detailed and rigorous coverage of
categorical binary indices and weather forecast verification in a broader context.

Categorical binary metrics constitute also a popular choice to determine the
skill of quantitative models, such as NWP (McBride & Ebert, 2000; Accadia et al.,
2003). Quantitative NWP models generate a continuous range of output values, such as
precipitation, wind and temperature. Contingency tables can be computed by setting
a threshold value for an event and using the [<,>] relational operators to transform
forecast continuous values into its binary [yes, no] representations or [rain, dry ] in the
case of precipitation.

Logical relational operators define a step function which is normally represented
using 0 to denote the boolean ’no’ or ’false’, and 1 for ’yes’ or ’true’ values. The
transition between 0 and 1 happens at the threshold value creating a discontinuity
or singularity at this point. These functions are non-continuous and therefore non-
differentiable.

2.2 Differentiable categorical binary metrics

We propose an alternative formulation for these categorical verification indices
using smooth and differentiable functions. Specifically, we use the sigmoid function to
represent a smooth transition between the boolean values at the threshold point. The
following formula defines the sigmoid function:

sigmoid(x) =
1

1 + e−βx

Figure 1 represents the sigmoid function as a differentiable alternative to the
’<’ and ’>’ step functions. Parameter β defines the slope of the sigmoid function,
where larger values of β correspond to a steeper transition in the output. In the
case of considering a threshold value α the sigmoid variable X gets translated by this
amount, resulting in the case of the ’>’ operator:
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sigmoid(x) =
1

1 + e−β(x−α)

Figure 1: Comparison between the step functions representing the ’<’ and ’>’ operators
with the equivalent sigmoid functions for α = 0 and β = 1.

These sigmoid functions can be used to approximate the step function and com-
pute a differentiable version of the contingency table previously presented. Each entry
in the contingency table is calculated using an element-wise product of the vectors
containing the observations and predictions compared with the threshold value α. For
example, the following expression calculates Hits:.

Hits = (observed > α)� (predicted > α)

The previous expression can be made differentiable, by substituting the compar-
ison in the “predicted” term with a sigmoid function. This new expression provides a
gradient allowing model outputs to be optimised around the threshold. Differentiable
categorical statistics such as POD or POFD can be formulated using sigmoid func-
tionsto replace the comparison operators. For example, the differentiable versions of
POD and POFD can be defined as follows:

PODdiff =
Hitsdiff

Hitsdiff + Missesdiff

POFDdiff =
False Alarmsdiff

False Alarmsdiff + True Negativesdiff

where :

Hitsdiff = (observed > α)� sigmoid (predicted− α)

Missesdiff = (observed > α)� sigmoid (−predicted− α)

False Alarmsdiff = (observed < α)� sigmoid (predicted− α)

True Negativesdiff = (observed < α)� sigmoid (−predicted− α)
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Other differentiable categorical indices can be derived using the new indices in the
differentiable contingency table.We refer readers interested in the derivation of these
indices to the interactive notebook included in the accompanying code repository (see
end of section 4).

3 Data and Experiments

This section presents the dataset, model and experiments used to assess the
proposed differentiable categorical binary indices. We choose a neural network model
that is trained to derive the total precipitation field using geopotential height as input.

The neural network model is trained to learn the relationship between geopoten-
tial values and total precipitation grids. Precipitation is represented using continuous
values for each grid cell and during training the models learns to minimize the er-
ror between the predicted grid and ERA-Interim’s total precipitation. The error of
continuous precipitation fields is typically quantified using the Root Mean Squared
Error (RMSE) metric (Stanski et al., 1989; Wardah et al., 2011). In machine learning,
the use of Mean Squared Error (MSE) is preferred to RMSE as it is computationally
simpler but equivalent in terms of their local and global minima.

3.1 Dataset

The ERA-Interim (Dee et al., 2011) global climate reanalysis dataset produced
by the European Centre for Medium-Range Weather Forecasts (ECMWF) is used to
run the experiments. ERA-Interim contains reanalysis data from 1979 to present with
a 6-hour temporal resolution. The spatial resolution of the dataset is approximately 80
km (reduced Gaussian grid N128) on 60 vertical levels. ERA-Interim data is publicly
accessible at the ECMWF’s Public Datasets web interface (Berrisford et al., 2011).

For our experiments, we choose geopotential height (z) and total precipitation
(tp) variables. We consider a subset of the original data centered on the mid-latitudes
rectangular region delimited by the coordinates comprising (latitude: [75, 15], longi-
tude = [-50, 40]) degrees, which corresponds to the eastern part of the Atlantic Ocean
and Europe. The temporal domain data spans from the year 1979 up to the end of
2018, with a resolution of 6 hours.

Geopotential height at the following pressure levels [1000, 900, 800, 700, 600, 500,
400, 300, 200, 100] hPa is used as input to the model and total precipitation consti-
tutes the output or predicted field. Resulting geopotential height data are represented
as a 4-dimensional numerical array with shape [58440, 80, 120, 10] corresponding to
dimensions [time, latitude, longitude, height]. Similarly, the total precipitation is rep-
resented by a 3-dimensional numerical array with shape [58440, 80, 120] representing
the [time, latitude, longitude] dimensions. For clarification, the ERA-Interim total
precipitation parameter is originally represented using 3-hour period accumulations,
which we further aggregate into 6-hour periods to match the 6-hour frequency of the
geopotential height field. Figure 2 represents the geographic area (bottom-left) as well
as the correspondence between the geopotential height and the total precipitation field
time series (right).

3.2 Neural Network Model

Convolutional encoder-decoder networks are a type of neural network that are
able to map between multidimensional inputs and outputs by learning a compressed
representation of the data. These networks have been used in many different domains
to perform classification, segmentation and regression tasks (Krizhevsky et al., 2012;
Long et al., 2015). In the field of meteorology similar networks have been used to model
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Figure 2: Representation of the geographic study area (latitude: [75, 15], longitude =
[-50, 40]) degrees, and temporal extent subset from the ERA-Interim geopotential height
(top-right) and total precipitation fields (bottom-right).

extreme weather events (Liu et al., 2016) and general circulation of the atmosphere
(Scher, 2018).

The proposed model is a specific type of convolutional encoder-decoder net-
work called U-net (Ronneberger et al., 2015). We refer readers to our previous work
(Larraondo et al., 2019) for a detailed comparison between different encoder-decoder
architectures for the case of deriving precipitation from geopotential fields.

Figure 3 shows the architecture of the U-net network representing the changes it
performs to the dimensionality of the data. This network is composed by two symmet-
ric parts which perform a compression of the input data (encoder) and a subsequent
decompression that recreates the output space (decoder). The chained convolution
operations are able to capture the spatial relationships in the data at different scales
and extract the relevant features that relate the input and output spaces. In our case,
these are the geopotential heights (at 10 atmospheric levels) and total precipitation.
Numbers at the top of this figure represent the dimensions of the images at each stage
of the CNN model. Similarly, numbers at the bottom represent the channels or fea-
tures at each layer of the network. The input to the network are the 10 geopotential
levels and its output is one image representing the total precipitation field.

3.3 Experiment design

The objective of the experiments presented in this section is to demonstrate how
the proposed differentiable categorical indices can be used to optimize the performance
of neural network models. We define an objective function using a combination of these
indices and use it to train a U-net model that predicts ERA-Interim total precipitation
with geopotential levels as input. In particular, we choose Probability Of Detection
(POD) and Probability Of False Detection (POFD) as the indices to optimise. These
indices measure different aspects of the performance of a model and a combination of
them is used to generate Relative Operating Characteristics (ROC) (Fawcett, 2006),
which is a popular graphical method often used to represent the overall skill of cate-
gorical weather models.
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Figure 3: Transformations in the dimensionality of the data performed by a U-net convo-
lutional encoder-decoder mapping geopotential heights to total precipitation.

POFD measures the fraction of the observed ”no” events incorrectly forecast as
”yes”. This index ranges from 0 to 1, being 0 the score of a perfect model. POD mea-
sures the fraction of the observed ”yes” events correctly forecast. POD also ranges
from 0 to 1, but differently than POFD, its optimal value is 1, the maximum. Im-
proving model performance, using these two indices, requires maximizing POD and
minimizing POFD scores. POD cannot be directly used in gradient descent optimiza-
tion as minimizing POD would minimize this index resulting in a model with no skill
at all. For performing optimization in the right direction POD needs to be inverted,
so minimization corresponds to an increase in the skill of the model. For this purpose,
we use the False Negative Rate (FNR), which is the complementary index to POD,
formalised through the following equation:

FNR = 1− POD = 1− hits

hits+misses
=

misses

hits+misses

The loss function used in the experiments uses the differentiable versions of FNR
and POFD, defined using the equations introduced in section 2.2. The sigmoid func-
tions used to compute the differentiable indices in the experiments set a fixed value
of β = 1, which works well when using the original unscaled values of precipitation.
Section 5 discusses the effect of this parameter in the results of the experiments.

Optimizing a model which combines these two metrics, FNR and POFD, results
in finding a balance between two opposing forces. Reducing FNR generates over-
confident models which predict precipitation everywhere whereas minimizing POFD
generates under-predicting models with a complete absence of precipitation. Our ob-
jective is to use these indices to enhance the output of quantitative models trained to
minimize the MSE error. In the case of precipitation prediction, MSE is commonly
used for verification in the literature (Murphy, 1988; Jolliffe & Stephenson, 2012). We
propose the following loss function combining MSE with the differentiable versions of
FNR and POFD, following the method defined in section 3:

min {MSE + λ FNRdiff + µ POFDdiff}

In this equation λ and µ are constant parameters that control the relative weight
of each categorical index in the overall loss function. MSE acts as a regularization
term allowing the model to output continuous precipitation values in the range of the
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original ERA-Interim total precipitation variable. Without the MSE term, the network
would learn to differentiate categorical precipitation around the defined threshold α,
but would not account for quantitative differences in the range of precipitation values.

In the next section we compare the output of the U-net model trained using
different values of λ and µ in the loss function. To carry out the experiments we apply
a 70/30 split over the temporal dimension of the ERA-Interim dataset for training and
testing the results (training split contains years from 1979 to mid-2005 and validation
split from mid-2005 to 2018). The same splits are consistently applied to train each
model, so results can be fairly compared using MSE, POD and POFD as measures of
performance.

The baseline performance is set by training the U-net network with MSE exclu-
sively, which corresponds to setting both λ and µ constants to zero. Iterating through
different combinations in the values of λ and µ, we compare the resulting models
performance relative to the baseline to understand the influence of these categorical
indices.

4 Results

We start this section by setting up a baseline for the model comparison using just
MSE in the loss function, which corresponds to setting both λ = 0 and µ = 0 in the
loss function presented in the previous section. We train the U-Net model using the
predefined ERA-Interim splits during 100 epochs – iterations over the whole training
dataset.

During training, we assess the model performance on the validation split at the
end of each epoch. The skill of the model is measured using MSE, FNR and POFD
considering α = 1.0 [mm/h] as the threshold value that discriminates precipitation.
As a clarification for the reader, the standard POD and POFD indices, and not their
differentiable versions, are used for verification. The differentiable indices are used in
the loss function, which is derived at the backpropagation phase during the NN model
training.

Figure 4: Evolution of the U-net MSE, FNR and POFD scores during training of the
baseline model λ = 0, µ = 0 using validation data.

Figure 4 shows the evolution of the validation MSE, FNR and POFD scores
across the 100 epochs of training of the U-net model. The first iterations result in a
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(a) λ = 2 µ = 0 (b) λ = 0 µ = 2

Figure 5: Evolution of the POD, POFD and MSE values for different µ and λ parameter
combinations.

rapid reduction in these indices, which slow down and stabilize towards the end of the
training period.

Using this model as the reference, we now train similar models using different
combinations of the λ and µ constants in the loss function. We consider three scenarios,
in the first two we fix one of the constants to 0 and traverse the {2, 4, 8} values with
the other one. The third scenario traverses the same set of values for both variables.
In total, we end up with 9 models trained with the resulting combinations of λ and µ.

Figure 5 shows the evolution during training of two of these models, in the same
way as the previous figure. On the right, for the model trained with λ = 2 and µ = 0,
we see how the POD score is significantly lower than the baseline model at the expense
of an increase in MSE and POFD. Similarly, on the left, the model trained with λ = 0
and µ = 2 shows a significant decrease in the POFD score, which penalises MSE and
POD.

Table 2 contains the score values of each model, with the baseline model in the
first row. FNR has been converted to its complementary POD, which is a more familiar
score in weather forecasting. This table shows the relationships between the values of
both constants in the loss function and the resulting variation of the scores.

Figure 6 provides a visual understanding of the effect of these constants in the
precipitation field learned by the models. Taking one sample from the validation split,
which corresponds to the 16th September 2016, we sequentially represent the original
ERA-Interim total precipitation field (not used during training), the output of the
baseline U-net model and, in the second row, the three models corresponding to the
extremes for each of the scenarios considered.

Fig. 6c shows an extremely conservative model which only predicts rain in the
regions where there is a strong signal. On the other extreme, in Fig. 6d, POD has a
large weight in the loss function and the model becomes overconfident, representing
precipitation values greater than the threshold α = 1. The third model corresponding
to λ = 8 and µ = 8, achieves a significantly better POD score with a slight sacrifice
of POFD and a significant degradation in MSE, by looking at the values in Table
2. Visually, this model tends to generate precipitation with crisper edges than the
reference but it also seems to over-estimate precipitation values on average, which
probably explains the increase in MSE.
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Table 2: Results for the MSE, POD and POFD values over the validation dataset for
different combinations of λ and µ.

Model MSE POD POFD

λ = 0, µ = 0 0.4148 0.7090 0.0278

λ = 1, µ = 0 0.4549 0.8355 0.0550
λ = 2, µ = 0 0.4923 0.8438 0.0553
λ = 4, µ = 0 0.5710 0.8570 0.0584
λ = 8, µ = 0 0.7944 0.8833 0.0678

λ = 0, µ = 1 0.4356 0.7075 0.0277
λ = 0, µ = 2 0.4675 0.6815 0.0231
λ = 0, µ = 4 0.5695 0.6563 0.0200
λ = 0, µ = 8 0.8360 0.6247 0.0161

λ = 1, µ = 1 0.4516 0.7997 0.0433
λ = 2, µ = 2 0.5305 0.8197 0.0466
λ = 4, µ = 4 0.7217 0.8328 0.0490
λ = 8, µ = 8 1.1311 0.8444 0.0503

The proposed objective function establishes a three way trade-off between the
scores. The sensitivity of these scores is however non-symmetric. For example, Figure
7 represents the evolution of the three scores for the two scenarios where one the
constants is set to 0. For small values of λ and µ there is a small performance decrease
in MSE and the non-weighted variable. Performance is significantly degraded for
constant values greater than 4.

Another interesting observation about the results is that POFD in the baseline
model is low. The relative improvement achieved by weighting POFD with large µ
values might not compensate the penalization in the rest of scores. This fact be-
comes apparent when assessing performance with compound indices, such as Relative
Operating Characteristics (ROC) (Fawcett, 2006).

ROC is a popular metric often used to assess the skill of categorical weather
forecasts (Mason, 1982; Kharin & Zwiers, 2003) which combines POD and POFD
scores measured at different thresholds in a single plot. Area Under the Curve (AUC)
(Marzban, 2004), measures the skill of a ROC plots in the range [0,1], being 1 the
score of the perfect model.

Figure 8 represents the ROC plots and corresponding AUC scores for the baseline
and λ = 2 and µ = 0 model using the following threshold values α = {0.5, 1, 2, 5, 10}.
We can see how by increasing λ and µ the shape of the ROC plot changes by bringing
the points closer to the top and left sides of the figure respectively. However, the
nature of the optimization problem makes it impossible to achieve the perfect AUC
score.

Increasing µ penalises POD so strongly that the resulting AUC scores are worse
than the baseline model. For our models, we find the best combination at [λ = 2,
µ = 0], which results in an AUC score of 0.982 compared to 0.977 for the baseline
model. Increasing the value of λ further penalises POFD index resulting in lower
AUC scores. Using the methodology presented in this work it would be possible to
design new loss functions that optimize NN models based on the AUC score.
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Figure 6: Comparison of precipitation outputs for the 16th September 2016: a) ref: ERA-
Interim total precipitation b) λ = 0 µ = 0 c) λ = 0 µ = 8 d) λ = 8 µ = 0 e) λ = 2
µ = 2

(a) Increasing λ (b) Increasing µ

Figure 7: Evolution of the POD, POFD and MSE metrics for different combinations of λ
and µ.

Figure 9 represents the results in Table 2 as points in a 3-dimensional scatter
plot. For interpretability, points have been projected onto each of the three orthogonal
planes defined at the origin of coordinates. Points in the vertical planes, containing the
MSE axis, define a Pareto front, represented by a blue line in the figure. Pareto effi-
ciency studies the relationship between the variables in a multi-objective optimization
problem. Optimality in multi-objective problems happens when an improvement in
any one individual criterion makes at least one of the other criterion worse off. Pareto
fronts are a graphical representation of the optimal points, as lines or surfaces, using
multi-dimensional plots. In our case, these Pareto fronts represent the relationship
and trade-offs that POD and PFD present in relation to MSE. The front defines the
dependency between both variables showing that it is impossible to optimize both
variables simultaneously. The horizontal plane, defined by the POD and POFD axes,
shows a nearly linear relationship between both variables and no Pareto relationship
is observed.
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(a) λ = 0 µ = 0 (b) λ = 2 µ = 0

Figure 8: Comparison of two ROC plots and corresponding AUC values for two values of
the λ parameter.

Figure 9: Pareto fronts projected for the three indices in the loss function.

The models used in this section are implemented using Keras (Chollet et al.,
2018), a high-level neural networks interface written in Python and TensorFlow (Abadi
et al., 2016) as back-end. The code and data to reproduce the experiments presented
in this manuscript are available at this repository: https://github.com/prl900/

weather encoders. This repository contains a module with the implementation of
differentiable version of some of the most popular categorical indices used in meteo-
rology, which can be used independently by external models.

5 Conclusions and Future Work

This manuscript introduces a differentiable version of categorical binary indices
that allow training neural networks optimizing categorical indices. These indices use
the sigmoid function to approximate the logical comparison operators (<,>), making
them continuous and therefore differentiable. Building upon these sigmoid functions,
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we define differentiable versions of well-known categorical indices, such as POD and
POFD. We demonstrate how these differentiable indices can be used to train models
using gradient descent methods and optimize their loss function based on them.

In our experiments we use a specific deep learning NN architecture called U-
net encoder-decoder to learn the spatial relationships between NWP variables, ERA-
Interim geopotential height and total precipitation. The baseline model is optimised
to minimize MSE and we propose a new objective function that combines MSE with
POD and POFD indices. The experiment results demonstrate how the skill of the
model can be optimised towards a specific index by weighting individual scores in this
objective function.

Section 2.2 introduces parameter β in the definition of the sigmoid function.
This parameter controls the steepness of the sigmoid function, where larger values of
β result in steeper sigmoids and therefore better approximations to the step function.
Although we expect β to be related to the scale of the precipitation values and have
an influence in the optimization results, we did not find significant differences in the
results for larger and smaller values of β = 1. At this point, we do not fully understand
why the combined loss function seems to be almost invariant to changes in the shape
of the sigmoid (or scale of the precipitation values). We are currently exploring this
relationship, experimenting with new scale invariant loss functions and we hope to give
an answer to these questions in future works.

Currently, the values of the constants that weight the different scores in the
proposed objective function have to be determined relative to the model and data.
Although categorical variables represent probabilities bounded between [0,1], the re-
gression term (i.e. MSE, MAE) does not usually have an upper bound. We are plan-
ning to carry out further research to come up with new objective functions containing
normalised constants which are generic and invariant under scaling of the input data.

Another interesting avenue for research is to explore the definition of high-level
objective functions for optimizing models using a combination of scores. Weather
forecasting verification is normally performed using a defined suite of tests and scores.
Being able to design objective functions according to the verification suites would
result in better performing models.
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