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Abstract: Taylor’s law quantifies the scaling properties of the fluctuations of the number of
innovations occurring in open systems. Urn-based modeling schemes have already proven to
be effective in modeling this complex behaviour. Here, we present analytical estimations of Taylor’s
law exponents in such models, by leveraging on their representation in terms of triangular urn
models. We also highlight the correspondence of these models with Poisson–Dirichlet processes
and demonstrate how a non-trivial Taylor’s law exponent is a kind of universal feature in systems
related to human activities. We base this result on the analysis of four collections of data generated by
human activity: (i) written language (from a Gutenberg corpus); (ii) an online music website (Last.fm);
(iii) Twitter hashtags; (iv) an online collaborative tagging system (Del.icio.us). While Taylor’s law
observed in the last two datasets agrees with the plain model predictions, we need to introduce a
generalization to fully characterize the behaviour of the first two datasets, where temporal correlations
are possibly more relevant. We suggest that Taylor’s law is a fundamental complement to Zipf’s
and Heaps’ laws in unveiling the complex dynamical processes underlying the evolution of systems
featuring innovation.

Keywords: innovation dynamics; Taylor’s law; adjacent possible; Poisson–Dirichlet process;
Pólya’s urn; triangular urn schemes

1. Introduction

The laws of Zipf [1–3], Heaps [4,5] and Taylor [6,7], which quantify, respectively, the frequency
distribution of elements in a given system, the rate at which new elements enter a given system,
and fluctuations in that rate, are recognized as the more general statistical laws characterizing complex
systems featuring innovations. As such, they also set minimal requirements for the predictions a given
modeling scheme should have to correctly address the fundamental mechanisms driving innovation
processes. Zipf’s law, or generalized Zipf’s law predicting a frequency-rank distribution of the form
f (R) = R−β, with 0 < β < +∞ (whereas the strict Zipf’s law refers to β = 1) characterizes disparate
systems, from cities population to earthquakes amplitudes to the frequency of words in written texts,
and different explanations for its emergence have been proposed so far [8–10]. While Zipf’s law is a
static property of the system, Heaps’ law explicitly refers to its evolution and states that the number
of distinct elements D(n) when the system consists of n elements follows a power law D(n) ∝ nγ,
0 < γ ≤ 1. This points to two fundamental properties shared by different systems related to human
activity, from natural language, to the way humans listen to music or interact in a collaborative online
systems, or build up collaborations in a research activity: (i) new elements continuously enter the
system; (ii) the rate at which innovation occurs slows down with the intrinsic time of the system
(when the strict inequality γ < 1 holds), e.g., it is easier and easier to continue with established
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collaborations than linking to new ones. These two simple laws puzzled the scientific community to a
large extent, and although it was recognized that in some conditions one law implies the other [11],
a general model able to account for both in a common ground, without deriving one from the other,
and from microscopic mechanisms, was only recently proposed [12]. This model was based on the
notion of the adjacent possible [13], and was generalized in different forms [14,15] to account for
higher-level properties of the systems under study.

Taylor’s law was more recently related to the onset of complex behaviour. The law was originally
formulated in the context of population ecology, where the observation was made [6] that the variance
σ2 of the population density of different species scales as a power-law of the mean population density:
σ2 ∝ µb, with the exponent 1 . b . 3. While b = 1 arises in the case of random distribution of
species in the environment, a value b > 1 points to correlated patterns. During the past half-century,
Taylor’s power law was then observed both in biological and non-biological contexts, from ecology
to life-sciences, from physics to economics [7]. In the framework of populations ecology, different
mechanisms have been proposed to account for the observed Taylor’s law exponents, from (negative)
interaction between species in an ecosystem [16], to correlations between individuals reproduction
ability [17]. In [18,19], a simple stochastic multiplicative process is shown to produce Taylor’s exponents
ranging from zero to infinity depending on the population’s growth regime, and in this context the
value b ' 2 observed in real systems is shown to be ascribable to a sampling artifact [20]. In the contest
of complex systems, Taylor’s law was measured for the first time in [21] referred to the number of
different elements D(n) at a given text’s length n. In particular, it was observed that the standard
deviation σ[D(n)] as a function of the mean µ[D(n)] scales in written texts as σ[D(n)] ∝ µ[D(n)]β,
with β ∼ 1. Here, an exponent β = 1/2 was expected if successive introductions of novel elements
in the words sequence were independent of previous innovations. This is the case for instance
in Simon-like models [22,23], both with constant and time-dependent innovation rate, where the
introduction of novelties follows a Poissonian process, respectively homogeneous and inhomogeneous,
thus the variance being proportional to the mean. Correlations between the introduction of different
novelties have to be considered to predict β > 1/2. The model introduced in [12] was recognized [24]
to predict exponents for Taylor’s law ranging from 1/2 to 1, depending on the relative importance of
the processes of innovation versus reinforcement of old elements, thus better accounting for the values
observed in real systems.

The contribution of the present study is twofold. Firstly, we fully characterize the prediction
for Taylor’s law of the recently introduced modeling scheme [12] based on the adjacent possible.
We recall results for its exchangeable [25,26], counterpart and, relying on known results on triangular
urn models, extend them for all the spectrum of the parameter values of the original model, including
the non exchangeable region. We further give results for two generalizations of the model, allowing to
also predict exponents for Taylor’s law greater than one, as observed in real systems: (i) a version with
random quenched parameters and (ii) a version where semantic triggering is introduced, as in [12].
We devote a particular emphasis to the connection of the urn model with triggering with the two
parameters Poisson–Dirichlet process [27,28]. The two parameters Poisson–Dirichlet process is the
state-of-the-art reference process for language modeling [29], and in its hierarchical form [30], for the
search of underlying semantic categories or topics [31], since it reproduces the correct basic statistics
of words, namely the Zipf’s and Heaps’ laws and Taylor’s law with exponent β = 1. In general,
by choosing the underlying stochastic process, that defines the space of probability over which one
performs the optimization, we steer the prediction on key statistical features of the system. In this
perspective, adopting the best model becomes crucial, and the urn model with triggering opens the way
for generalizations that go beyond exchangeability, for instance by considering semantic triggering,
as already introduced in [12], thus posing the ground for more effective inference schemes.

Secondly, we extend the observation of Taylor’s law, referred to fluctuations in innovation rate,
in several datasets, showing that a non-trivial behaviour of Taylor’s law seems to be universal in those
systems. In particular, we consider four datasets related to human activities: (i) written language from
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a subset of the Gutenberg corpus of English texts; (ii) Twitter hashtags; (iii) a collaborative tagging
system (Delicious); (vi) the list of temporarily ordered songs listened by many users in the Last.fm
website. We observe how Taylor’s law of the actual sequences of events follows in all the dataset the
form σ[D(n)] ∝ µβ[D(n)], with β & 1. Furthermore, we highlight how the randomized sequences,
obtained by retaining all the elements of the original sequences and changing their temporal order
(see Section 5 for details), show different behavior in the Gutenberg corpus and Last.fm compared
to Twitter and Delicious. This issue remains still not fully explained, and leaves open the need of a
deeper understanding of the process responsible for this behavior.

The paper is organized as follows. In the next section, we recall the urn model with
triggering, devoting a particular emphasis to its connection with the two parameters Poisson–Dirichlet
process [27,28]. We recall, in particular, how the urn model with triggering can be recast to be equivalent
to the latter stochastic process. At the same time, it extends the Poisson–Dirichlet process in the region
where the latter is not defined, i.e., in the region of linear innovation growth. In Section 3, relying on
known results on triangular urn models [32,33], we characterize the limit distribution for the number
of distinct elements D(n) and Taylor’s law for the urn model with triggering (Section 4). In Section 5,
we discuss the Taylor’s law in the four datasets mentioned above. Finally, in Section 6, we discuss two
different mechanisms that can increase the exponent of Taylor’s law at a value β > 1, as observed in
the considered real-world systems.

2. The Urn Model with Triggering

The urn model with triggering, introduced in [12], is a minimal model based on Pólya’s urn able to
reproduce the main statistical signatures of innovation processes, namely Zipf’s, Heaps’ and Taylor’s
law. It casts in a mathematical framework the idea of the expansion into the adjacent possible [13,34,35]
where the space of possibilities is continuously enlarged, due to the realization of part of them. A crucial
element is thus correlations between the emergence of novel elements in the system. The model works
as follows. An urn initially contains N0 > 0 distinct balls of different colors. Then, at each time step t,
a ball is drawn at random from the urn to construct a sequence S of events, and it is put back in the
urn. Further,

• if the color of the extracted ball is a new one, (it appears for the first time in S , i.e., it is a realization
of a novelty), then we add ρ̃ balls of the same color plus ν + 1 distinct balls of different new
colors, which were not yet present in the urn; note that we use here the word new in two different
acceptations: on one hand we refer to events that occur for the first time, on the other one to new
colors that enter the space S of events

• if the color of the extracted ball is already present in S , we add ρ balls of the same color.

Therefore, if Ct+1 is the color of the extracted ball at time t + 1 and Dt is the number of different colors
extracted until time t, we have:

bt := P(Ct+1 = new |C1, . . . , Ct) =
N0 + νDt

N0 + ρt + aDt
, (1)

where a := −ρ + ρ̃ + ν + 1. Moreover, if c denotes an old color, we have

pc,t := P(Ct+1 = c |C1, . . . , Ct) =
1 + ρ̃ + ρ(Kc,t − 1)

N0 + ρt + aDt
=

ρKc,t + a− ν

N0 + ρt + aDt
, (2)

where Kc,t denotes the number of extractions of the color c until time t.

Values of the Model Parameters

Note that we have pc,t > 0 for each t when ρ̃ > −1. The model can be defined also for ρ̃ = −1,
but this implies bt = 1 and Dt = t for all t. Moreover, the value ρ = 0 is possible, but in that case pc,t
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would not depend on Kc,t, e.g., no reinforcement effect would be present. Therefore, we focus on the
case ρ̃ > −1, ν ≥ 0 and ρ > 0.

In [24], an interesting particular case was highlighted. When a = 0, i.e., ρ̃ = ρ − (ν + 1)
the above model corresponds to the Poisson–Dirichlet (PD) process, also called Chinese restaurant
model [27,28,36]. Indeed, we have

bt =
N0 + νDt

N0 + ρt
and pc,t =

ρKc,t − ν

N0 + ρt
. (3)

More precisely, it corresponds to the PD process with parameters α = ν/ρ and θ = N0/ρ.
Note that the condition ρ̃ > −1 becomes ρ > ν (hence ρ > 0) and so 0 ≤ α < 1. The particular
case ν = 0 is also known as Dirichlet process with parameter θ = N0/ρ. Moreover, if we also set
ρ = 1, we find a particular Dirichlet process, known as the Hoppe’s model [37]. The PD process is a
well-known example of exchangeable “species sampling sequence” [27] and a generalization of this
process with random weights can be found in [38].

3. Triangular Urn Schemes and Innovation Rate

Concerning the behavior of the number of distinct elements Dt, the above urn model can be seen
as a triangular two-color urn scheme [32,33,39,40]. More precisely, we can consider an urn model with
the following dynamics. The urn initially contains N0 > 0 black balls. Then, at each time step t, a ball
is drawn at random from the urn and

• if the color of the extracted ball is black, then we replace the extracted ball with a white ball and
we add ρ̃ white balls plus ν + 1 black balls;

• if the color of the extracted ball is white, we return the extracted ball in the urn together with ρ

additional white balls.

Therefore, in this urn scheme the extraction of a black (resp. white) ball corresponds to the
extraction of a new (resp. old) color in the urn model with triggering. If we denote by Bt and Wt,
respectively, the number of black and white balls in the urn at time step t and by δt a random variable
taking values in {0, 1} such that δt = 1 if the extracted ball at time step t is black, then we have
B0 = N0 > 0, W0 = 0 and, for each t ≥ 0,(

Bt+1

Wt+1

)
=

(
Bt

Wt

)
+

(
ν 0
ρ̂ ρ

)(
δt+1

1− δt+1

)
, (4)

with ρ̂ := ρ̃ + 1 and P(δt+1 = 1|δ1, . . . , δt) = Bt/(Bt + Wt). A dynamics of this kind is a two-color urn
model with triangular replacement matrix

R =

(
ν ρ̂

0 ρ

)
. (5)

The balance condition, which requires that the number of added balls is the same at each time step,
independently of the color of the extracted ball, corresponds to the particular case a = ν + ρ̂− ρ = 0.
Recalling that we are assuming ν ≥ 0, ρ > 0 and ρ̂ > 0, the balance condition is possible only if
ρ > ν. According to the above notation, we can write Dt = ∑t

k=1 δk, Bt = N0 + ν ∑t
k=1 δk = N0 + νDt,

Wt = ρ̂ ∑t
k=1 δk + ρ ∑t

k=1(1 − δk) = ρt + (ρ̂ − ρ)Dt, so that Bt + Wt = N0 + ρt + aDt. Therefore,
when ν > 0, the asymptotic behaviour of Dt coincides with the one of Bt/ν and from the results
in [32,33,39] (simply translating the results proven in that papers in terms of the considered model) we

immediately obtain (in the following a.s.→ means almost sure convergence and d→ means convergence in
the distribution sense):
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• (Case 0 < ν < ρ)

t−ν/ρDt
a.s.−→ D, (6)

where D is a suitable random variable with finite moments. In particular, when a = 0, the random
variable D has probability density function given by

f (x) = cxN0/ν fML(x) for x > 0,

where c is a normalizing constant and fML denotes the probability density function of the
Mittag-Leffler distribution with parameter ν/ρ. Hence, for a = 0, we have

µ[Dq] =
Γ(N0/ν + q)Γ(N0/ρ)

Γ(N0/ν)Γ(N0/ρ + qν/ρ)
.

• (Case ν = ρ)
ln(t)

t
Dt

a.s.−→ ρ

ρ̂
(7)

and

ln(t)
(

ln(t)
t

Dt −
ρ

ρ̂
− ρ

ρ̂

ln(ln(t))
ln(t)

)
d−→ Z, (8)

where Z is a suitable random variable.
• (Case ν > ρ)

t−1Dt
a.s.−→ (ν− ρ)

a
(9)

and the second-order behaviour depends on the value of ρ/ν. Precisely, denoting by N (0, σ2) the
normal distribution with mean value equal to zero and variance equal to σ2, we have:

– for ρ/ν < 1/2,

√
t
(

Dt

t
− (ν− ρ)

a

)
d−→ N (0, σ2) with σ2 =

ν(ν− ρ)ρ̂

(ν− 2ρ)a2 ; (10)

– for ρ/ν = 1/2,

√
t/ ln(t)

(
Dt

t
− (ν− ρ)

a

)
d−→ N (0, σ2) with σ2 =

ρρ̂

(ρ + ρ̂)2 ; (11)

– for ρ/ν > 1/2,

t1−ρ/ν

(
Dt

t
− (ν− ρ)

a

)
d−→ − (ν− ρ)1+ρ/ν

ρa1+ρ/ν
V, (12)

where V is a suitable random variable.

For the degenerate case ν = 0, we trivially have Bt = N0 for each t. Moreover, we recall that ρ > 0
and Wt − ρt = (ρ̂− ρ)Dt. Hence, when ρ̂ 6= ρ, the asymptotic behaviour of Dt follows from the results
on Wt (see [33]), that is we have

Dt

ln(t)
a.s.−→ N0

ρ
(13)

and √
ln(t)

(
Dt

ln(t)
− N0

ρ

)
d−→ N (0, N0/ρ). (14)
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The balance condition with ν = 0 means ρ̂ = ρ and in this case we have a Dirichlet process with
parameter θ = N0/ρ and the above convergence results still hold true.

In particular, the above convergence results imply Dt ∝ tν/ρ for 0 < ν < ρ, Dt ∝ t/ ln(t) for ν = ρ,
Dt ∝ t for ν > ρ and, finally, Dt ∝ ln(t) for ν = 0 (see also [12,24]).

4. Taylor’s Law

The Taylor’s law connects the standard deviation of a random variable to its mean. In the
considered model, when the balance condition a = 0 is satisfied, we can obtain explicit formulas for
the moments of Dt: indeed, from [33,41], using the relation Bt = N0 + νDt, we get for ν > 0

µ[Dt] =
N0Γ(N0/ρ)

νΓ(N0/ρ + ν/ρ)
tν/ρ + O(tν/ρ−1)

σ2[Dt] =
N0

ν2

[
(N0 + ν)

Γ(N0/ρ)

Γ(N0/ρ + 2ν/ρ)
− N0

Γ(N0/ρ)2

Γ(N0/ρ + ν/ρ)2

]
t2ν/ρ + O(tν/ρ) .

Therefore, we find σ[Dt] ∝ µ[Dt]. For the Dirichlet process (ν = 0, a = 0), we simply have

µ[Dt] =
t

∑
k=1

E[δk] =
t

∑
k=1

N0

N0 + ρt
∼ N0

ρ
ln(t) and

σ2[Dt] =
t

∑
k=1

σ2[δk] =
t

∑
k=1

N0ρt
(N0 + ρt)2 ∼

N0

ρ
ln(t) ,

(15)

and so σ[Dt] ∝ µ[Dt]
1
2 .

To our knowledge, in the unbalanced case we have not explicit formulas for the first and the
second asymptotic moments of Dt. Here, we conjecture that suitable uniform integrability conditions
hold for the convergence results in Section 3 in order to infer the convergence of the first two moments
having only almost sure convergence and convergence in distribution (see, e.g., [42,43]). In other words,
we leverage the convergence results in Section 3 in order to guess the corresponding Taylor’s law.

• (Case 0 < ν < ρ) From the almost sure convergence (6), we guess σ[Dt] ∝ µ[Dt], where the
constant of proportionality is σ[D]/µ[D].

• (Case ν = ρ) Since the limit in (7) is a constant, we can not exploit the almost sure convergence
(7) in order to obtain a Taylor’s law as done for the previous case 0 < ν < ρ. However, from the
convergence in distribution (8), we can guess

ln(t)
t

µ[Dt] −→
ρ

ρ̂

and

ln(t)4

t2 σ2[Dt] = ln(t)2σ2
[

ln(t)
t

Dt −
ρ

ρ̂

]
= µ

[
ln(t)2

(
ln(t)

t
Dt −

ρ

ρ̂

)2
]
−
(

µ

[
ln(t)

(
ln(t)

t
Dt −

ρ

ρ̂

)])2

−→ σ2[Z].
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Hence, combining together the above two limit relations, we find

σ2[Dt] ∼ σ2[Z]
ρ̂2

ρ2
µ[Dt]2

ln(t)2 , that is σ[Dt] ∝
µ[Dt]

ln(t)
∼ µ[Dt]

ln(µ[Dt]) + ln(ρ̂/ρ)
.

• (Case ν > ρ) Since Dt/t ∈ [0, 1] for all t, the almost sure convergence (9) implies the convergence
of the moments (see [43]) for that equation. However, it is not enough in order to get a Taylor’s
law, but we need to use (10), (11) and (12). First of all, we observe that

t−2σ2[Dt] = σ2
[

Dt

t
− (ν− ρ)

a

]
= µ

[(
Dt

t
− (ν− ρ)

a

)2
]
−
(

µ

[
Dt

t
− (ν− ρ)

a

])2

.

Hence:

– for ρ/ν < 1/2, we guess from (10) that the first term on the right hand of the above equality
behaves as σ2/t, while the second term is o(1/t), and so we get σ2[Dt] ∼ σ2t and

σ[Dt] ∝ µ[Dt]
1
2

with the constant of proportionality equal to σ
√

a/(ν− ρ);
– for ρ/ν = 1/2, we guess from (11) that the first term on the right hand of the above

equality behaves as σ2 ln(t)/t, while the second term is o(ln(t)/t) and so we get σ2[Dt] ∼
σ2t ln(t) and

σ[Dt] ∝ µ[Dt]
1
2 (ln(µ[Dt]) + ln(a/ρ))

1
2

with the constant of proportionality equal to σ
√

a/ρ;
– for ρ/ν > 1/2, we guess from (12) that the first term and the second term on the right hand

of the above equality behave as µ[Z2]t2(ρ/ν−1) and µ[Z]2t2(ρ/ν−1) respectively and so we get
σ2[Dt] ∼ σ2[Z]t2ρ/ν and

σ[Dt] ∝ µ[Dt]
ρ/ν

with the constant of proportionality equal to σ[Z] (a/(ν− ρ))ρ/ν.

In the degenerate case ν = 0, from the almost sure convergence (13) we guess 1
ln(t)µ[Dt] → N0

ρ .
Moreover, we observe that

1
ln(t)

σ2[Dt] = ln(t)σ2
[

Dt

ln(t)
− N0

ρ

]
= µ

[
ln(t)

(
Dt

ln(t)
− N0

ρ

)2
]
−
(

µ

[√
ln(t)

(
Dt

ln(t)
− N0

ρ

)])2

and, from the convergence in distribution (14), we guess that the first term on the right hand of
above equality converges to N0/ρ, while the second term converges to zero. Hence, we find σ2[Dt] ∼
N0 ln(t)/ρ and so σ[Dt] ∝ µ[Dt]

1
2 .

All the above theoretical predictions are supported by simulations, shown in Figure 1, left.
We also report in Figure 1, right, the Taylor’s law for the corresponding reshuffled sequences, where
the elements are the same as in the original sequences but the temporal order (their ordering in the
sequence) is lost. For a discussion on the shuffling procedure see the next section.
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Figure 1. Taylor’s law in the urn model with triggering. Left: Taylor’s law from 100 realizations of
the stochastic process described in Section 2 (the urn model with triggering), for each of the indicated
values parameters. The values of parameters are chosen in order to have a representative curve for
each of the analyzed regimes, i.e., ρ < ν/2, ρ = ν/2, ν/2 < ρ < ν, ρ = ν, ρ > ν. Each realization is
a sequence of 106 elements. Right: Taylor’s law from the same sequences as in the left side picture,
individually reshuffled so that to loose the temporal order (refer to the parallel file random reshuffling
procedure discussed in Section 5 and in Figure 2).

Figure 2. Shuffling procedures. In this example we consider three different streams A, B, C, consisting
of five tokens each. When the analysis is carried in parallel the streams are aligned respecting their
natural order (left panel). In the parallel file random case (middle panel), each stream is reshuffled
singularly. Eventually, the parallel random case shuffles the elements all together (right panel).

5. Taylor’s Law in Real World Systems

We base our empirical analysis on four datasets whose content is the result of voluntary human
activity. The first dataset consists of english written texts from the on-line collection of public domain
books hosted at the Gutenberg project [44]. This dataset was crawled in year 2007. From that,
we selected the longest 100 books. In this case, innovations are represented by new words entering the
text. The second dataset contains the list of songs listened by 1000 Last.fm users until the 5th of May
2009 [45]. This list has been ordered according to the time of listening. Songs listened for the first time
in the Last.fm platform are considered as innovations. The third dataset contains the time ordered list
of tags in the platform Del.icio.us [46], where users used keywords (tags) to categorize bookmarked
URLs. The dataset contains the tag sequence of users activity from early 2004 up to the end of 2006.
The Del.icio.us platform has been discontinued. We treat as innovation the very first usage of a tag
in Del.icio.us. The fourth and last dataset contains the time ordered sequence of the 10% of all the
hashtags appeared in January 2013 on the micro-blogging platform Twitter [47]. Also in this database,
we consider brand new hashtags entering the system as innovations. All these four datasets were
already studied in previous works [12,14].
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In order to estimate the average number of different tokens and their standard deviation,
we preprocessed data such to split them into sequences of given fixed length. We use the generic
term token to address the elements of the sequences, which are words in the Gutenberg dataset,
song titles in Last.fm, tags in Del.icio.us and hashtags in Twitter. In Gutenberg we consider the natural
splitting, each sequence being a book. To obtain sequences with the same length, we cut all the
books at the length of the shortest one, so that we extracted the first 200,000 words of each of the 100
books. In Del.icio.us we took the last 2× 107 tags and split them into 1000 chunks with 20,000 tags
each. In Last.fm, we selected the last 19× 106 titles and split them into 190 chunks of length 100,000.
In Twitter we selected the last 346× 105 hashtags and created 346 chunks of length 100,000.

The estimation of the average number of distinct tokens, as well as the standard deviation, is done
by determining the number of distinct tokens appeared before a certain position in all the split chunks
in parallel. For example, in Gutenberg, we count the number of different words D(N) appeared after
N total words for all the M = 100 books and calculate

µ(N) =
M

∑
i=1

Di(N)/M and σ(N) =

√√√√ M

∑
i=1

(Di(N)− µ(N))2/M . (16)

We plot these two quantities one against each other for each N and display the result in Figure 3.
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Figure 3. Taylor’s law in real systems and in their randomized instances. The standard deviation
σ(N) of the number of different tokens after N total tokens appeared, is plotted vs the average number
of different tokens µ(N) in four different datasets. The shuffled counterparts are also evaluated.
The shuffling schemes are shown in Figure 2.
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In order to evaluate the influence of the token macroscopic statistical properties, e.g., the Zipf’s
law, on Taylor’s law, we destroy the correlations by reshuffling the sequences. We perform two different
shuffles, with increasing randomization, as displayed in Figure 2. In the first one, which we denote as
parallel file random, we shuffle the tokens inside the same sequence. In the other one, which we call
parallel random, we shuffle the tokens throughout the all sequences. The results of these randomization
schemes on Taylor’s law are shown in Figure 3. Let us first comment that the Del.icio.us and Twitter
datasets feature a Taylor exponent, that is the exponent β in the relation σ(N) ∝ µ(N)β, approximately
equal to one. This behavior is well reproduced by the urn model with triggering discussed in Section 2,
in the parameters region ν < ρ (refer to Figure 1), that is the region where its exchangeable counterpart,
namely the two parameters Poisson–Dirichlet process, is defined. Conversely, the Gutenbeng and
Last.fm datasets show a significant deviation from the linear relation between the standard deviation
and mean of Dt, featuring a Taylor’s exponent β > 1. The simple urn model with triggering, as well
as the two parameters Poisson–Dirichlet process, fails in predicting this deviation from an unitary
exponent. However, simple generalization of the considered model can account for it. In the next
section we will discuss two possible approaches leading to similar effect on the Taylor’s exponent.
Before doing that, we wish to further comment on the results obtained on the reshuffled sequences.
The parallel random procedure produces asymptotically a trivial (equal to 1/2) Taylor’s exponent for
all the datasets, and this reflects the fact that a random sampling from a power law distribution
produces a Taylor’s exponent β = 1/2 [7,21]. The (parallel file random) procedure poses the need to
distinguish again the Gutenbeng and Last.fm datasets from Del.icio.us and Twitter. While in the latter
datasets the locally reshuffled sequences behave essentially as the original (temporarily ordered) one,
in the first two dataset a peculiar behavior of the locally reshuffled sequences emerges, similar in the
two datasets and stable against different choices of sets of books in the Gutenberg dataset (Figure 4).
The discrepancy between the Taylor’s law in the reshuffled sequences with respect to the original ones
points to the fact that randomly sampling from different power law distributions cannot account for
the observations, and a different dynamical process has to be considered. The exact mechanism leading
to the observed behavior remains an open question, that calls for a more detailed analysis probably
adopting hierarchical models, where correlations between the words distributions in different books
are taken into account. This will be the topic of a further work.
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Figure 4. Stability of Taylor’s law results in the Gutenberg corpus. Left: the analogous of Figure 3
(top left) for three different sets of M = 100 books from the Gutenberg corpus. Right: as in Figure 3
(top left), with 20 different realizations of the parallel file random reshuffling procedure. We see that the
difference between the curve referred to the ordered sequences and those referred to the reshuffled
ones is much higher than fluctuations due to different realizations of the reshuffling.

6. Two Mechanisms that Increase Fluctuations

We here propose two mechanisms that generalize the basic model and that are able to account
for that higher exponent. On the one hand, increasing fluctuations can be obtained by a quenched
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stochasticity in the model parameters. That is, each book can be considered as an instance of the
considered stochastic process with parameters extracted from a given probability distribution. The term
quenched refer to the fact that the parameters are extracted from each realization of the process and
remain fixed all along the sequence generation. As a second mechanism, we consider the urn model
with semantic triggering introduced in [12] to account for observed clusterization in the emergence
on novelties.

6.1. Random Parameters

For the sake of analytical simplicity, we here discuss in detail only the case with ν as the random
parameter. We show from simulations that similar behaviors are obtained when we take ρ or N0 as the
random (Figure 5).

• (Case ν > ρ) As seen before, the Taylor’s exponent in the case ν > ρ is always smaller than 1.
Suppose now that ρ and ρ̂ are constants and there exists a random variable X0, with σ2[X0] > 0,
that gives the value of ν. Given the value of X0, the urn process behaves as described before.
If X0 is concentrated on (ρ,+∞), that is X0/ρ > 1 almost surely, then, on the event {X0 = ν},
the sequence Dt/t converges almost surely to the value (ν− ρ)/(ν + ρ̂− ρ). Therefore, since Dt/t
is bounded, we have [43]

µ[Dt] ∼ tµ
[

(X0 − ρ)

(X0 + ρ̂− ρ)

]
and µ[D2

t ] ∼ t2µ

[
(X0 − ρ)2

(X0 + ρ̂− ρ)2

]
.

Therefore, by setting D̃ = (X0−ρ)
(X0+ρ̂−ρ)

= 1− ρ̂
X0+ρ̂−ρ , we find

σ2[Dt] ∼
σ2[D̃]

µ[D̃]2
µ[Dt]

2, that is σ[Dt] ∝ µ[Dt].

This means that while a deterministic parameter ν > ρ gives a Taylor’s exponent smaller than 1,
a random parameter ν, with ν/ρ > 1 almost surely, gives a Taylor’s exponent equal to 1.

• (Case ν < ρ) As seen before, the Taylor’s exponent in the case ν < ρ is equal to 1. Suppose now,
as before, that X0 is a random variable, with σ2[X0] > 0, that gives the value of ν, while the
other parameters are constant. If X0 is concentrated on (0, ρ), that is X0/ρ < 1 almost surely,
then, on the event {X0 = ν}, the sequence t−ν/ρDt converges almost surely to a suitable random
variable Dν. Moreover, from [33], we have

gq(ν) := µ[Dq
ν] =

Γ(N0/ν + q)
Γ(N0/ν)Γ(qν/ρ)

∫ +∞

0
xqν/ρ−1

(
1 +

ν

ρ
xν/ρh(x)

)−N0/ν−q
dx

with

h(x) =
∫ x

0
[1− (1 + u)−ρ̂/ρ]u−ν/ρ−1 du.

(17)

Assuming, as in the previous section, a condition of uniform integrability, we can say that

µ[Dt] ∼ µ[tX0/ρg1(X0)],

where g1(ν) is the function given in (17) with q = 1. Similarly,

µ[D2
t ] ∼ µ[t2X0/ρg2(X0)],

where g2(ν) is the function given in (17) with q = 2.
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If we neglect the terms gq(X0) in the above mean values, we have

µ[Dt] ∼ µ[tX0/ρ] = µ[eX0 ln(t)/ρ] = GX0(ln(t)/ρ),

µ[D2
t ] ∼ µ[t2X0/ρ] = µ[e2X0 ln(t)/ρ] = GX0(2 ln(t)/ρ),

where GX0 is the moment-generating function of X0. For instance, if X0 is uniformly distributed
on (0, ρ), we get

µ[Dt] ∼
t− 1
ln(t)

∼ t
ln(t)

, µ[D2
t ] ∼

t2 − 1
2 ln(t)

∼ t2

2 ln(t)
,

and so σ2[Dt] ∝ µ[Dt]2 ln(t). Finally, if we use the approximation ln(µ[Dt]) ∝ ln(t), we obtain
σ[Dt] ∝ µ[Dt](ln(µ[Dt]))

1
2 .

Similarly, if X0 is exponentially distributed on (0, ρ), that is fX0(x) = c(ρ, λ)e−λx I(0,ρ)(x) with
λ > 0 and c(ρ, λ) = λ/(1− e−ρλ), we get

µ[Dt] ∼ c(ρ, λ)ρe−ρλ (t− eρλ)

(ln(t)− ρλ)
∼ c(ρ, λ)ρe−ρλ t

ln(t)
,

µ[D2
t ] ∼ c(ρ, λ)ρe−ρλ (t2 − eρλ)

(2 ln(t)− ρλ)
∼ c(ρ, λ)ρe−ρλ t2

2 ln(t)
,

and so, as above, σ[Dt] ∝ µ[Dt] ln(t)
1
2 ∝ µ[Dt](ln(µ[Dt]))

1
2 .

From Figure 5 we see that the above predictions are valid asymptotically, after a long transient
where a law σ[Dt] ∝ µ[Dt]β, β > 1 seems to be valid.

6.2. Urn Model with Semantic Triggering

For the sake of completeness, we recall here the urn model with semantic triggering introduced
in [12], where it was shown that this generalization with respect to the basic model discussed in
Section 2 was crucial in order to reproduce higher level features ruling the introduction of novelties in
real systems. Let us again consider an urn U initially containing N0 > 0 distinct balls with different
colors. Each ball is endowed by a color and by a label as well. Balls with different colors can share the
same label, each label defining a semantic group, while balls with different labels necessarily have
different colors. The N0 balls belong to N0/(ν + 1) groups, the elements in the same group sharing
a common label. In the following, we will say that an element a triggered the enter in the urn of the
element b, if the element b is one of the ν + 1 elements added in the urn when a is drawn for the first
time. We thus define the following process. To construct the sequence S , we randomly choose the first
element. Then, at each time step t:

(i) we give weight 1 to: (a) each element in U with the same label, say C, as st−1 (the last element
added in the sequence), (b) to the element that triggered the enter in the urn of st−1, and (c) to the
elements triggered by st−1; a weight η ≤ 1 is given to any other element in U ;

(ii) The element st is chosen by drawing randomly from U , each element with a probability
proportional to its weight;

(iii) the element st is added to the sequence S and put back into U along with ρ additional copies of it;
(iv) if and only if the chosen element st is new (i.e., it appears for the first time in the sequence S), ν + 1

brand new distinct elements (balls with different colors, not yet present in the urn), all with a
common brand new label, are added to U .

We thus introduced a mechanism through which the occurrence of a ball with a given label
facilitates further occurrences, close in time, of other balls with the same label, i.e., semantically related
to it. Note that if η = 1 the dynamics of this model reduces to that of the model described in Section 2.
We do not analyzed in details the behavior of this model (the interested reader can refer to [12],
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but we remind here that it produces again power laws for the Heaps and Zipf’s laws, with exponents
respectively min( νη

ρ , 1) ≤ γ ≤ min( ν
ρ , 1) and 1/γ. The behavior for the Taylor’s law is reported in

Figure 5 for some choices of the model parameters, showing that it also account for an exponent
β > 1. For the sake of completeness, we show in Figure 5 also a case where the model with semantic
triggering is coupled with a random choice of the model parameters, observing that this does not lead
to any substantial different behavior.
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Figure 5. Taylor’s law in the urn model with triggering and quenched stochasticity of the parameters
and in the urn model with semantic triggering. Top: Taylor’s law in the urn model with triggering,
with parameter’s N0 = 100, ρ = 1 and ν is randomly extracted for each simulation of the process from
a uniform distribution on the interval (0, 1) (left) and from an exponential distribution on the interval
(0, 1) and parameter λ = 1 (right), as discussed in the main text. Center: Taylor’s law in the urn model
with triggering, with parameter’s respectively: (left) N0 = 100, ν = 2, ρ = 3 + ri, with ri randomly
extracted for each simulation of the process from an exponential distribution with mean r̄i = 1; ν = 2,
ρ = 3, N0 = 1 + ni, with ni randomly extracted for each simulation of the process from an exponential
distribution with mean n̄i = 104. Bottom: (left) Taylor’s law in the urn model with semantic triggering,
with parameters N0 = 100, ν = 6, ρ = 9, η = 0.6; (right) Taylor’s law in the urn model with semantic
triggering, with parameters ν = 2, ρ = 3, η = 0.6, N0 = 1 + ni, with ni randomly extracted for each
simulation of the process from an exponential distribution with mean n̄i = 104. The parameters of the
simulations were chosen such to lie in the regime ρ < ν. The parameter η = 0.6 used in the bottom
graphs was chosen in the regime where the Heaps’ and Zipfs’ laws feature exponents compatible with
those observed in real systems. In all the figures the curves for the Taylor’s law are constructed from 100
independent realizations of the process (M = 100 in Equation (16)).

7. Conclusions

In this paper, we discussed predictions for the Taylor’s law both of a recently introduced modeling
scheme based on the notion of the adjacent possible [12], and in four open systems characterized by
human activities, where a notion of innovation can be defined. We obtained rigorous mathematical
predictions relying on known results for triangular urn models. We supported analytical results and
conjectures with simulations of the discussed stochastic process. Further, contrasting model’s predictions
and observations from real data, we proposed two, not necessary alternative, generalizations of the
model to account for deviations of real data from a pure linear dependence of σ[Dt] from µ[Dt]. Namely,
we consider the effect of a quenched stochasticity of the model parameters, and the introduction of
semantic correlations, already discussed in [12].

By providing a rigorous mathematical framework to characterize the recently introduced urn
model with triggering, the present paper opens the way to a deeper comprehension of the basic
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mechanisms underlying the observed universalities. On the other hand, a careful analysis of real data
highlights relevant observables that unveil distinct behaviours in different systems, possibly due to
varying degrees of correlations. A deeper understanding of this subtle behavior could shed some light
on distinctive features of human language or on the cognitive and social pressure driving cultural
production and fruition.

We finally note that we do not consider here hierarchical models, which we plan to investigate
in further works. Hierarchical generalizations of the Poisson–Dirichlet process have proved to be
extremely promising in inference problems adopting a Bayesian approach, such as topic modeling
in textual corpora. We think that a hierarchical approach can be fundamental to reproduce further
statistical features observed in written texts and not already fully explained, such, for instance,
the double slope observed in Zipf’s law in large text corpora and the subtle behaviour of Taylor’s law
discussed in Section 5.
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