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Abstract: Human communities at the transition between the Eneolithic period and the Bronze Age
had to rapidly adapt to cultural and climatic changes, which influenced the whole Mediterranean.
The exact dynamics involved in this crucial passage are still a matter of discussion. As newer studies
have highlighted the key role of climatic fluctuations during this period, their relationship with the
human occupation of the landscape are yet to be fully explored. We investigated the infilling of
negative structures at the archaeological site of Tegole di Bovino (Apulia, Southern Italy) looking
at evidence of the interaction between climate changes and human strategies. The archaeological
sedimentary deposits, investigated though geoarchaeological and micromorphological techniques,
show the presence of natural and anthropogenic infillings inside most structures. Both human
intervention and/or natural events occurred in the last phases of occupation of the site and its
subsequent abandonment. The transition to unfavorable climatic conditions in the same period
was most likely involved in the abandonment of the site. The possible further impact of human
communities on the landscape in that period, testified by multiple other archives, might have in turn
had a role in the eventual change in land use.

Keywords: geoarchaeology; thin section micromorphology; archaeological site; land-use;
Eneolithic/Bronze Age; Apulia

1. Introduction

In the last three decades, the geoarchaeological—and especially micromorphological—
investigation of archaeological sediments has helped archaeologists in the interpretation of the
formation processes of the archaeological record, as well as elucidating the functional aspects
of specific archaeological layers or features [1–6]. On the other hand, archaeological sediments
preserve paleoenvironmental proxy data helpful in reconstructing the climatic and environmental
changes which happened in the life span of ancient settlements [7–11], and which are eventually
correlated to the cultural trajectories of archaeological communities. In the case of prehistoric
sites, for instance, environmental modifications reconstructed from anthropogenic sediments can
be correlated to modifications in subsistence strategies, land-use changes, or the abandonment of
settlements [12–16].

In the case of sheltered archaeological sites (caves and rock shelters) [7,10,17–21] or archaeological
sequences buried by thick sedimentary covers [22–25], the preservation of the pristine signal of
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sediments is assured by the isolation of deposits from surface processes. Conversely, in the case of
open-air archaeological sites laying at the topographic surface or buried by thin sedimentary/soil bodies,
the preservation of environmental proxy data is generally obscured by surface processes—namely
weathering, pedogenetic processes and/or erosion—which occurred after the abandonment of
archaeological sites [6,9,12,26–29]. The latter phenomena hamper our ability in reconstructing
archaeological and anthropological events. However, the geoarchaeological approach, coupled with
the microscopic investigation of natural and anthropogenic sediments’ thin sections, allows discerning
between the superimposed effects of subsequent processes on sediments [4,30].

Here, we report on the geoarchaeological investigation carried out at the prehistoric archaeological
sites of Tegole di Bovino (Apulia, Southern Italy). The site consists of specific archaeological features
(canals, postholes, basins) whose sedimentary infilling formed during the abandonment of the
settlement at the time of the regional Eneolithic (or Copper Age) to Early Bronze Age transition. In this
case study, thin section micromorphology of the infilling of selected archaeological features allowed
us (i) to interpret the main sedimentary processes which occurred at the time of the abandonment
of the site, and (ii) to correlate them to regional climatic changes, thus (iii) suggesting a possible,
climate-triggered land-use change.

2. General Settings

2.1. Geological, Geomorphological, and Palaeoclimatic Background

The archaeological site of Tegole (Figure 1) is located in the municipality of Bovino (Foggia,
Apulia); it lays on the flat top of a small relief that exceeds 200 m in height [31]. The landform is
interpreted in the geological map [32] as part of the belt of alluvial terraces connecting the Apennines
of Apulia to the coastal lowlands. The terrace of Tegole formed in the Pleistocene (probably Middle
Pleistocene), and was sectioned to the north and south by the Cervaro and Carapelle streams [31,33].
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Neolithic and the Bronze Age periods [39,40]. Using a multidisciplinary approach, 
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Bronze Age settlements. These studies highlighted the main climatic features of the dry and wet 
phases, the settlements dynamics, the major transformations of annual crop husbandry, seasonal 
harvesting strategies and storage technologies that appear to be alternately linked to climate forces, 
to settlement sizes, distributions and duration and to socio-economical dynamics. In Apulia, 
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framework of rescue archaeology related to the building of a windmill of the Maestrale Green Energy 
company (Figure 2). The area was surveyed, the extant topsoil removed and then extensively 
excavated on an area of almost 1550 m2 [41], according to the identification of stratigraphic units (SU). 

Figure 1. Position of the Tegole di Bovino archaeological site on the GoogleEarth™ satellite imagine
and on a digital elevation model (red dot); in the latter, the relict of Pleistocene terraces at the foot of
the Apennines are evident. The inset indicates the position of the study site in Italy.

Geologically, the origin of this region is linked to the Plio-Quaternary evolution of the Southern
Apennines foreland-foredeep system [31]. The substrate is consisting of polygenic (mainly carbonates
with sandstone pebbles) Middle Pleistocene conglomerates belonging to the Quaternary units of the
Apulian Tavoliere. Their appearance is as poorly selected conglomerates with a sandy matrix and
sub-rounded clasts originated from Apennine geological formations. The top of the clastic sequence
consists of moderately to strongly cemented gravels with sandy matrix. This terrigenous formation
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rests on the Subappennine Clays (Bradanic Trough Unit), composed by weakly stratified clayey silts
and grey loamy marls, with intercalations of silty clays and thin layers of sand [32]. The latter formation
can be dated to the Calabrian Stage.

From a morphological point of view, the area lies at the passage between the Southern Apennines
and the Apulian Tavoliere. The morphological features of the current landscape are directly related to
the lithological features and tectonic structures of the area [32]. The connection between the Apennine
chain and the Tavoliere plain in the area flanked by the Cervaro and Carapelle streams shows landforms
coming from the presence of wide and complex alluvial fan systems spread from the Apennine margin
towards the NE. The main rivers have deeply affected the floodplains, opening wide flat-bottomed
valleys flowing between the residual fans, broken into multiple separate terraces.

According to several palaeohydrological and pollen-based palaeoclimatic reconstructions, the last
10 millennia can be distinguished in three main phases [34–37] marked by rapid climatic events: (i) an
early Holocene phase (before c. 9800 cal. years BP) with dry climate conditions in winter and summer,
(ii) a mid-Holocene phase (between c. 9800 and c. 4500 cal. years BP) with maximum winter and
summer wetness, and a late Holocene period (from c. 4500 cal. years BP onward) with declining winter
and summer wetness. Major dry events, whose relevance was discussed also for climatic–cultural
changes, occurred at c. 8200 cal. years BP, c. 6000 cal. years BP, c. 4200 cal. years BP, and c. 3000 cal.
years BP. More details on the climatic and environmental changes which occurred in Apulia are related
to the reconstruction of the expansions and declines of the Mediterranean forest from Lago Alimini
Piccolo [38]. This lake registered: a dense evergreen oak forest which dominated the landscape between
c. 5200–4350 cal. years BP, the opening of the forest between c. 4350–3900 cal. years BP, new forest
expansion (with increase of Olea and Mediterranean evergreen shrubs) between 3900–2100 cal. years
BP, a significant opening of the forest and expansion of halophytes in Roman times (2100–1500 cal.
years BP), and a strong decrease of the natural woodland (replaced by Olea) after 1500 cal. years BP.

2.2. Archaeological Framework

Human influence on landcover, and its degree, is subject to changes according to socio-cultural
as well as climate drivers and thus depends on geographical and chronological scales of the
case-studies examined. Over the last few years the Apulia region has been extensively investigated
by interdisciplinary approaches, mainly focused on archaeobotany, paleobotany and geomorphology,
aiming at the a better understanding of the main human–environment interactions during the Neolithic
and the Bronze Age periods [39,40]. Using a multidisciplinary approach, palaeoenvironmental and
palaeoclimatic data at the regional and Mediterranean scales were compared with the results of analyses
performed on natural deposits and deposits in Neolithic and Bronze Age settlements. These studies
highlighted the main climatic features of the dry and wet phases, the settlements dynamics, the major
transformations of annual crop husbandry, seasonal harvesting strategies and storage technologies
that appear to be alternately linked to climate forces, to settlement sizes, distributions and duration
and to socio-economical dynamics. In Apulia, Neolithic communities developed a farm-based
economy that survived several low-intensity climate oscillations, but the settlement density saw a
progressive reduction up to a new expansion at the end of the Neolithic [39]. Several changes in
subsistence strategies occurred in subsequent Bronze Age phases and were the responses to both
climate/environmental variations and socio-cultural dynamics. Archaeological and archaeobotanical
data recorded at least two major transformations of annual crop husbandry and seasonal harvesting
strategies, ultimately related to phases of increased aridity and, the most recent, to social triggers [40].

3. Materials and Methods

3.1. Archaeological Excavation

The archaeological excavation of the site of Tegole di Bovino was performed during 2010 in
the framework of rescue archaeology related to the building of a windmill of the Maestrale Green
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Energy company (Figure 2). The area was surveyed, the extant topsoil removed and then extensively
excavated on an area of almost 1550 m2 [41], according to the identification of stratigraphic units
(SU). Archaeological features and structures were surveyed and recorded with a total station. During
the excavation, also the sedimentological and pedological properties for each stratigraphic unit of
investigated sections were described; color was described using the Munsell® Color System (1994
revised edition, Munsell® Color, New Windsor, ST, USA). Samples for laboratory analyses and dating
were also collected.
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Figure 2. Some views of the Tegole di Bovino archaeological site during the excavation: (A) general
view of the excavation; (B) general view of canals and pits; (C,D) views of the alignment of double pits
that includes STR41, some postholes are also present; (E) a structures interpreted as the basement of a
hut, notice the presence of several postholes; (F) general views of the major canals and alignments of
postholes; (G) panoramic view of the Pleistocene terrace.

3.2. Thin Sections’ Analysis

Oriented and undisturbed sediment blocks from the stratigraphic units of the infilling of selected
archaeological structures (small and large canals, double and single post holes) were collected from the
main sections. Thin sections (5 × 9 cm) were manufactured after consolidation according to the method
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described by Murphy [42]. Micromorphological observation of slides under plane-polarized light (PPL),
cross-polarized light (XPL) and oblique incident light (OIL) of thin sections employed an Olympus
B41 optical petrographic microscope at various magnifications (20×, 40×, 100×, 200× and 400×)
equipped with a digital camera (Olympus E420). For the description of the thin sections, the reader
should consider the terminology and concepts established by Stoops [43], whereas interpretation of
micromorphological features of natural and anthropogenic sediments follows the indications several
guideline books [1,4,44].

3.3. Archaeological and Radiometric Dating

The dating of the sequence relies on: (i) the stratigraphic relationship among archaeological
features; (ii) the chrono-typological interpretation of archaeological materials found into the same
sequence during the archaeological excavation; and (iii) radiocarbon dating of charcoal fragments
found during the excavation of the main canals (Canal A and C) and from a well dated in the V phase
of the site. Accelerator mass spectrometry (AMS) 14C dating results were calibrated (2σ calibration)
with the online version of the OxCal v4.3 software [45] using to the IntCal13 curve [46].

4. Results

In the following section, we report on the data collected at the Tegole di Bovino site. We start
by illustrating archaeological data and the chronological framework available for the site, and then
we report on data on the infilling of selected negative structures collected in the field and under
the microscope.

4.1. Archaeological Evidence and Dating

The archaeological excavation of the site revealed a complex system of negative structures
including postholes, well, pits, and canals of different shape and length, with different infillings.
Figure 3 represents a plan of the excavated area illustrating the distribution of negative features
(Figure 2): canals of different width and depth cross the archaeological areas; several large pits are
distributed in the eastern part of the area; postholes of different width are aligned across the area.
Postholes alignments are of different types: single alignments and postholes in double rows. Distinctive
features are the double alignments of large postholes or pits, of which the functional interpretation is
still discussed.

According to archaeological interpretation of the findings and stratigraphic criteria, different
features can be attributed to at least seven phases of use of the site [47–49] spanning between the IV
millennium BC (initial phase of the Eneolithic) up to the II millennium BC (Bronze Age). The I to VI
phase can be dated at the beginning of the Eneolithic periods; only several post holes belongs to the
VII later phase (Bronze Age). Notwithstanding this, most of the infillings of archaeological structures
seems to be accumulated soon after the abandonment of the settlement. Charcoals were found only in
the infilling of Canal A and Canal C and in the well 1 (Structure 11) and their dating gave the results
reported in Table 1. The infilling of Canal A and Canal C and those of the well 1 (V phase) formed
between ca. 4650 and 4400 years BP (5590–4850 years cal. BP). Typological and decorative studies of
the ceramic [47,48] confirm some analogies with the local archaeological facies (Piano Conte/Taurasi)
of the beginning of the Eneolithic periods in Southern Italy. From the archaeological point of view,
no diagnostic materials are recorded from postholes belonging to the VII later phase of the site.
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Table 1. AMS-14C dating results and 2σ calibrations (OxCal v4.3 software [45], IntCal13 curve [46]).

Sample Laboratory Code Material δ13C (%�) 14C Years BP 2σ cal. BC

Canal A, US 29 LTL-5407A charcoal −20.8 ± 0.2 4398 ± 50
3330BC (13.7%) 3210BC
3180BC (1.6%) 3150BC
3130BC (80.1%) 2900BC

Canal C, US 687 LTL-5408A charcoal −18.6 ± 0.3 4597 ± 45 3520BC (72.1%) 3310BC
3240BC (23.3%) 3100BC

Well, STR11 LTL-5409A charcoal −28.6 ± 0.4 4654 ± 50 3630BC (8.2%) 3570BC
3540BC (87.2%) 3340BC

Well, STR11 LTL-5410A charcoal −39.9 ± 0.2 4652 ± 60

3640BC (12.2%) 3550BC
3540BC (80.9%) 3330BC
3220BC (1.4%) 3190BC
3160BC (1.0%) 3130BC

4.2. Field Evidence of Investigated Structures

During file operations we described and sampled the infilling of selected structures for microscopic
investigation (Figures 2 and 4). Table 2 summarizes the field properties of the archaeological deposits.
We sampled the infilling of one of the two long, narrow and shallow canals belonging to the III phase
of occupation of the site (Canal 2); these small canals are parallel and run from east to west across the
whole archaeological area. Further samples come from the infilling of the deep canals (Canal A and C),
they are likely related to water management. We also investigated the infilling of two of the alignments
of double pits (SRT41 and STR43, but only SRT41 was sampled) that are characteristic of this site and
rarely observed elsewhere; the pit alignments run from SE–NW and to phase VI of the occupation of
the village. Finally, we collected samples of the infilling of the postholes B266, B267, and B271 that
belong to the VII phase of occupation of the site; features B266 and B267 belong to the same alignment
of postholes that cross the whole archaeological area from NE to SW.
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Figure 4. Selected pictures of the stratigraphic sequences investigated at Tegole di Bovino: (A) the
infilling of Canal A (note that the lower-left part of the infilling consists of finer material); (B) the
infilling of Canal C; (C,D) two examples of the coarse infilling of Canal B; (E) view of the stratigraphy
of the bedrock (cemented gravel) of the terrace, where archaeological structures are cut; (F) modern soil
of the study area covering the whitish petrocalcic horizon (the crusta); (G) the infilling of pit STR41;
(H) the infilling of posthole 266.
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Table 2. Field properties of archaeological infilling; color expressed as Munsell® Color System.

Structure/Unit Thickness Color Texture Clasts Anthropogenic
Components

Sedimentary
Structure Cementation Pedofeatures

Canal A-top 50 to 110 2.5Y 7/6
matrix

supported
gravel

heterometric rounded rare ceramic
fragments massive strong -

Canal
A-bottom 30 to 90 2.5Y 5/4 to 2.5Y

6/4 silty sand rare heterometric
rounded gravel

rare to frequent
charcoals chaotic moderate

rare carbonate nodules and
coatings; rare clayey

pedorelicts

Canal B 150 2.5Y 7/6
matrix to clast

supported
gravel

heterometric rounded - massive moderate absent

Canal C-top 50 10YR 3/6 silty loam
scarce to common

heterometric rounded
gravel

rare
carbonate-encrusted
bone fragments; rare
ceramic fragments

massive weak
rare carbonate coatings and
impregnations (increasing

downwards)

Canal
C-bottom 90 10YR 5/6

matrix
supported

gravel
heterometric rounded - massive moderate -

Canal 2-top 15 2.5Y 3/2 silty clay rare heterometric
rounded gravel - massive moderate frequent carbonate coatings

Canal
2-bottom 35 2.5Y 3/2 silty clay rare heterometric

rounded gravel - laminated strong -

STR41-top 35 10YR 3/3 loam rare heterometric
rounded gravel

rare ceramic
fragments

massive to
laminated

downwards
weak few carbonate coatings;

rare carbonate nodules

STR41-middle 15 10YR 4/3 clast supported
gravel heterometric rounded - massive weak -

STR41-bottom 20 10YR 3/2 to
10YR 3/4 silty loam - - massive weak rare manganese coatings

B266 30 10YR 4/2 silty clay - - massive - -

B267 35 10YR 4/3 silty clay - rare charcoals massive - rare carbonate coatings and
impregnations

B271 35 10YR 4/2 silty clay - - massive moderate
rare carbonate

impregnations (increasing
downwards)
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4.2.1. Canals

Canal A (Figure 4) is a deep structure positioned in the central part of the site and attributed to
phase V; the deposit has a maximum depth of 140 cm and is divided into two units. The top unit
consists of abundant matrix-supported gravel cemented by calcium carbonate, bearing rare ceramic
fragments in a yellow sandy matrix. Its lower boundary is wavy and with a depth varying between
50 and 110 cm. The bottom unit is made up of juxtaposed portions of materials of different color,
silty-sandy, with rare coarse materials, small nodules and calcium carbonate coatings as well as clayey
aggregates mixed with the rest of the soil mas. This unit can be divided into further sub-units according
to charcoal content: Two sub-units are rich in charcoal (CanalA-1 and CanalA-2), and one devoid of
them (CanalA-3). Canal B is referred to phase V and filled with rounded heterometric gravels matrix
to clast supported. The matrix consists of yellow sand moderately cemented by carbonates. Canal C is
positioned at the western margin of the excavation and attributed to phase V (Figure 4). It is about 1 m
wide, 1.5 m deep and dug into the gravel substrate. Its filling consists of two macro-units. The top
unit is about 50 cm thick and consists of a massive yellowish brown silty-loam deposit. Coatings and
concentrations of calcium carbonate are present and increase downwards. There are also rare bone
fragments faintly carbonate-encrusted, as well as rare ceramic fragments. The lower unit is about 90 cm
thick and consists of massive heterometric rounded matrix-supported gravel, shifting to clastic support
downwards. The matrix is yellowish, sandy-silty and moderately carbonate cemented. Clasts are often
covered by carbonate coatings. Canal 2 is a shallow cut at the margin of the excavation area (Figure 4).
The top of the filling (15 cm in depth) is silty-clayey, dark brown, massive and fragile with rare coarse
material and widespread carbonate coatings. At the passage to the unit below, an increase in calcium
carbonate and cementation is present. The bottom unit (down to 50 cm) is a yellow silty-clayey
deposit with rare coarse material and moderately expressed laminated sedimentary structures strongly
carbonate cemented.

4.2.2. Pits and Postholes

STR41 corresponds to one of the aligned coupled shallow pits (about 70 cm deep) located in the
central portion of the excavation and belonging to phase VI (Figure 4). Three different fillings are
visible. The top deposit, about 35 cm thick, is brown, loamy and laminated downwards. Laminae
are weak and well separated by cracks infilled by calcium carbonate. The coarse material is fine and
rare. Rare carbonate nodules and ceramic fragments are observed. For this unit, two different thin
sections at different depths were produced and described. The unit below is a layer of heterometric
moderately rounded, clast supported gravel with scarce brown sandy-silty matrix showing cementation.
The bottom unit is a silty-loamy massive to blocky deposit, variably dark brown in color and showing
rare manganese coatings. No coarse materials are present.

B266, B267 and B271 are conical unaligned postholes with a diameter of ca. 30–35 cm related
to the last site phase of occupation of the site (phase VII). The infilling of postholes is uniform for
all three structures (Figure 4): silty-clayey, gray-brown, with weakly developed and fragile blocky
aggregates. In B267, rare coatings and accumulation surfaces of calcium carbonate as well as fine
charcoal fragments are present. B271 shows calcium carbonate concentrations increasing with depth.

4.2.3. Current Soil and Bedrock of the Archaeological Site

The area of Tegole di Bovino, including the archaeological area, is covered by a recent soil (Figure 4),
organized in several horizons and developed at the top of the so called crusta (from the local slang crust).
The soil consists of a sequence of: a dark brown (10YR 3/2) top ploughed horizon rich in organic matter
(Ap horizon), granular weak to moderately resistant aggregates, scarce coarse components, abundant
roots, porosity from common to abundant, scarce archaeological materials dating to multiple phases,
diffuse lower boundary; a moderately thick B horizon, locally strongly mixed with the one above due to
ploughing and an abrupt lower boundary; a strongly CaCO3-cemented Ck horizon consisting at it top of
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superimposed layers of yellow pale (5Y 8/2) microcrystalline calcite followed by progressively massive
and CaCO3-cemented gravel. The bedrock consists of rounded heterometric carbonate/sandstone
gravel of the alluvial fan, strongly to moderately cemented, sandy matrix-supported, interspersed
with slightly cemented sand lenses (Figure 4). All archaeological features are excavated in the heavily
cemented conglomerates forming the substrate. The latter (including the Ck and R horizons) consists
of a laminated upper part followed by cemented gravel strongly cemented by microcrystalline calcium
carbonate, and can be defined as petrocalcic horizon [50–53]. The structure of the petrocalcic horizon
here described is comparable with the evolution of the crusta-bearing soils found in the same area at
lower elevations. Several authors’ reports about the crusta suggest its formation during warm phases
of the Upper Pleistocene or Early Holocene [54–56].

4.3. Micromorphology of Thin Sections

Table S1 summarizes the micromorphological properties of each thin section obtained from the
infilling of the archaeological deposits sampled at Tegole di Bovino.

4.3.1. Canals

The bottom level of Canal A has a complex microstructure, granular in aggregation to more
subangular blocky, with high porosity partially saturated with calcium carbonate (Figure 5). The level of
carbonate impregnation locally produces a massive microstructure. The principal coarse materials are
common sub-rounded mineral grains mainly made of carbonate rocks and quartz, accompanied by rare
igneous minerals, which are generally slightly rounded. Inside the calcite-impregnated groundmass
are present common microfossils and rich carbonate rock fragments (Canal A-1 and Canal A-2) as well
as some sandstone fragments (CanalA-3) impregnated with iron oxides. The former are in many cases
strongly weathered by dissolution and recrystallization processes. The groundmass is silty-clayey,
light in color and strongly impregnated with calcium carbonate, which gives the b-fabric a crystallitic
appearance (Figure 5). Organic components are also present as few to common microcharcoals (Figure 6)
and shell fragments, and as organic pigment impregnations in areas devoid of charcoals. Large light
red-brown centimetric soil aggregates (Figure 5) which are different than the rest of the groundmass
can be found, sometimes clustered (Canal A-2). Inside are included concentrations of igneous mineral
grains, more frequent than in the general groundmass (Figure 5). The difference between their fabric
and the features of the groundmass allows to identify them as pedorelicts (sensu Brewer [57]). Rare
yellowish-brown millimetric concentric iron oxide nodules (Canal A-1) are also present (Figure 6).
Their nature is not compatible with the current position in the deposits and show irregular margins
probably produced by transport. Evidence of irregular margins is also found on some rock fragments
bearing surface weathering, as well as some centimetric nodules of microcrystalline calcite (Canal
A-2). Pedorelicts are almost absent in CanalA-3: The visible ones are smaller and more yellowish.
Pedogenetic features are mainly related to the accumulation of calcium carbonate (Figure 6), forming
impregnations which in places become very abundant (Canal A-3). Calcite coatings are visible inside
the porosity and on the surface of aggregates and mineral grains. In some cases, incomplete micrite
infillings are observed, as well as typical and geodic (Canal A-1) millimetric nodules and rare pendants
(CanalA-1) on rock fragments. Successive phases of micrite crystallization are evident as crystals of
variable dimensions, as well as acicular crystals scattered inside the porosity (Figure 6).
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complex microstructure (granular to subangular) of the infilling (PPL); (B) the same in XPL, note the
impregnation of CaCO3 in the less organic part of the groundmass; (C,D) examples of the different
degrees of CaCO3 impregnation of the groundmass, note also the occurrence igneous mineral grains
(XPL); (E) the arrow indicates a light red-brown centimetric soil aggregates (pedorelict; PPL); (F) ghost
microfossil in a weathered rock fragment (lithorelict; XPL).
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Figure 6. Photomicrographs from the infilling of Canal A and Canal C. (A) The arrow indicates small
fragment of charcoal in the groundmass (PPL); (B) the arrow indicates a millimetric concentric iron
oxide nodules (PPL); (C,D) calcite nodules in the groundmass (XPL and PPL respectively); (E) arrows
indicate a laminated calcite pendent along a rock fragment (PPL); (F) acicular crystals of calcite scattered
inside the porosity (XPL).
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The top unit of Canal C shows a subangular blocky microstructure, with weakly separated
centimetric aggregates held together by calcite impregnation filling part of the porosity (Figure 5).
The lithology of mineral grains is dominated by common carbonate rock fragments and quartz, with a
minority of igneous minerals often slightly rounded; few fragments of weakly weathered carbonate rock
fragments (lithorelicts) are also visible. The organic fraction is rare and represented by microcharcoals
and shell fragments. The groundmass is opaque and yellowish-brown and yellow with two different
b-fabrics: a light yellowish crystallitic b-fabric is found associated to carbonate impregnations, while a
darker, undifferentiated or granostriated b-fabric is elsewhere, often in combination with concentrations
of igneous mineral fragments (Figure 5). Pedofeatures are mainly linked to carbonates: Calcite coatings
are visible around voids and on the surface of aggregates and mineral grains (Figure 6). In some cases,
incomplete micrite infillings are observed inside voids, as well as millimetric typical and geodic nodules
sometimes showing surface weathering. Rare excremental features are visible as accumulations of
ellipsoidal faecal pellets in the porosity. The bottom unit is similar to the previous one, with a marked
increase in pedofeatures linked to calcite mobilisation. Nodules in particular are more frequent and
larger, reaching centimetric dimensions; in addition, acicular calcite concentrations are observed
(Figure 6). Conversely, pedofeatures linked to bioturbation are less frequent and smaller in size;
among these appear transported clay fragments (papulae sensu Brewer [57]). Laminated coarse textural
coatings possibly related to bioturbation are also visible.

The lowest level of Canal 2 consists of parallel sedimentary structures subsequently impregnated
with carbonates. Its fabric consists of horizontal, sub-millimetric to centimetric laminae of brown silty
clay with an undifferentiated b-fabric, locally crystallitic in higher carbonate impregnated areas. In the
central portion laminations are very dense and form stromatolite-like structures (Figure 7). Porosity is
completely infilled with carbonates. The rare coarse elements are carbonate rock fragments and, locally,
quartz and volcanic mineral grains. Portions of the groundmass contain rounded calcium nodules as
well as locally abundant microcharcoals (Figure 7).
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Figure 7. Photomicrographs from the infilling of Canal C. (A) Stromatolite-like structures at the bottom
of the canal (XPL); (B) the same in PPL; (C,D) a detail of the laminated structure trapping microcharcoals
and igneous mineral grains (PPL and XPL, respectively).

4.3.2. Postholes and Pits STR41, B266, B267, B271

The top layer of STR41 has a massive to subangular blocky microstructure, more granular
downwards, with common porosity (Figure 8). The groundmass is brown and silty-clayey with
common heterometric angular quartz grains and carbonate rock fragments, moderately weathered.
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Igneous mineral grains are observed, rarely with large dimensions. The b-fabric is undifferentiated
to crystallitic. The organic constituents are represented by common microcharcoals, partially
burnt bone fragments, unburned plant material and small concentrations of sometimes vitrified
phytoliths (Figure 8). Pedofeatures are represented mainly by rare carbonate nodules sometimes
impregnated with iron, coatings on the surface of coarse grains and moderate impregnations in
the groundmass. Calcite infillings are frequent in the lower part, especially inside bioturbation
related voids. Pseudomorphic calcite aggregates made of crystal clusters are also locally found as the
recrystallization of oxalate pseudomorphs derived from wood ash. Rare thin yellow microlaminated,
strongly birefringent clay coatings can be found on some carbonate rock fragments (Figure 8): These are
considered to be the remains of an older pedogenetic activity, and therefore interpretable as pedorelicts.
The bottom level shows laminations in the upper portion while the rest is massive to subangular blocky.
Porosity is common and partly due to bioturbation. The groundmass is silty-clayey and yellowish
brown. Frequent heterometric angular quartz and carbonate rock fragments and volcanic mineral
grains are observed. The b-fabric is crystallitic, locally striated. The organic constituents are represented
by rare microcharcoals and shell fragments. Sub-rounded very fine pedorelicts, dark brown in color
and rich in amorphous organic matter and microcharcoals, can be found: these aggregates show visible
compression hypocoatings probably due to transport. There is evidence of bioturbation in the form
of textural coatings along the channel walls (passage features), sometimes containing ovoid faecal
pellets. Other pedofeatures linked to carbonate accumulation are coatings and infillings; the strong
impregnation of the groundmass locally forms druses and other macroscopic crystallizations.
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impregnation and infilling (XPL); (B) a partially burnt bone fragment (PPL); (C) a residual clay coating
of a rock fragment (XPL); (D) a detail of the thin yellow microlaminated clay coating (indicated by
arrows; PPL); (E) the arrow indicates small fragment of charcoal in the groundmass (PPL); (F) unburned
plant material with concentration of phytoliths (indicted by the arrows; PPL).

B266, B267 and B271 are very similar to each other. They show a subangular blocky microstructure
(Figure 9), more granular in B271. Voids are frequent, and largely due to bioturbation: In many cases



Quaternary 2020, 3, 14 14 of 23

porosity contains excremental features. The groundmass is silty-clayey and reddish brown. The mineral
fraction is mainly consisting of few angular quartz and rare carbonate rock fragments as well as
igneous mineral grains. Organic constituents are very few microcharcoals and rare shell fragments,
more frequent in B267 (Figure 9). The groundmass shows an undifferentiated or granostriated b-fabric,
locally crystallitic due to micrite impregnation. The pedofeatures observed, in addition to the ellipsoidal
faecal pellets inside voids, are mainly related to carbonates. Calcite coatings are found around voids
(Figure 9), aggregates and mineral grains; incomplete infillings of micrite and impregnations are also
present, as well as typical and geodic millimetric nodules. In B267 the groundmass shows a stronger
carbonate impregnation and, conversely, a weaker expression of recrystallization features, with smaller
nodules and less calcite infillings. Apart from carbonate pedofeatures, rare amorphous iron oxides
nodules and impregnations can also be found in B266. Rare pedorelicts high in organic material are
visible in B267, while one pedorelict in B266 shows clear traces of heat action.
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Figure 9. Photomicrographs from the infilling of postholes. (A) Subangular blocky microstructure with
microcharcoals interspersed in the groundmass (posthole B266; PPL); (B) calcite coatings around a void
in posthole B267 (PPL); (C) fragment of shell in posthole B267 (PPL).

4.3.3. Petrocalcic Ck Horizon

The upper part of the petrocalcic horizon consists mainly of dominant rounded blocky aggregates
of silty-clayey material and carbonate rock fragments and nodules (Figure 10). All these components
are coated with microcrystalline calcite and cemented together by micrite infillings occupying the
frequent construction voids as well as the porosity formed by bioturbation. Such cement has formed
in successive stages which left different layers of crystalline forms and impurities. Rare silty-loamy
pedorelicts rich in organic matter and bearing microcharcoals and igneous mineral granules can
also be found inside the porosity. These are not impregnated with micrite, which instead forms
a coating around them. At the transition towards the topsoil above is a finely laminated level of
clayey material with a stromatolite-like appearance (Figure 10). It contains rare microcharcoals and is
strongly impregnated with carbonates, forming micro- or macro-crystalline calcite infillings between
the laminae.
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Figure 10. Photomicrographs from the petrocalcic soil horizon (crusta). (A) Stromatolite-like structure
of the uppermost part of the horizon (XPL); (B) CaCO3 nodules in the micritic groundmass (XPL);
(C) calcitic laminations around a nodule (PPL).
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5. Discussion

5.1. Formation of the Archaeological Record: Natural vs. Anthropogenic Processes

The deposits inside the deeper canals identified in the excavation area are all characterized by
an abundance of coarse material (sandy matrix supported gravels) alternating with lenses or layers
of silty, silty-clay or silty-loam deposits. By their features, it is safe to assume that gravel deposits
are derived from the substrate (Pleistocene alluvial fans; Figure 4). The presence of such deposits as
canal infillings can be related at least to two major reasons. In some cases, they are more plausibly
the result of intentional activity than mere natural processes occurred after the abandonment of the
structures. For example, Canal B is filled exclusively by gravels from the bedrock of the terrace lacking
any sedimentary structure typical of natural deposition (traces of stratification or intercalated lenses).
This suggests a human intervention filling the canal with local material after its phase of use. The steps
of formation of the infilling of negative archaeological structures at Tegole di Bovino are represented in
Figure 11.
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Figure 11. Sketch (not to scale) representing the steps in the evolution of the archaeological site of Tegole
di Bovino in relation to environmental and anthropogenic processes. (A) Pristine soil developed on
the Pleistocene alluvial fan before the onset of the human settlement. (B) Excavation of archaeological
negative features; here we consider the case of canals. (C) Phase of activity of the canal used to collect
water; notice the deposition (decantation) of anthropogenic debris from the ground of the archaeological
site at the bottom of the canal. During this phase canals were managed and kept empty of debris.
(D) Abandonment of the site and infilling of the negative structures with deposits formed by colluvial
processes under unstable climatic conditions and increased anthropic pressure (soil loss). (E) After the
complete infilling of archaeological structures, CaCO3 remobilization inside the infilling and formation
of a fresh topsoil under warm climatic conditions. Key: (1) bedrock of the Pleistocene alluvial fan
(conglomerate with CaCO3 cement); (2) laminar part of the crusta; (3) pristine soil; (4) decantation in
water; (5) sediment accumulated at the bottom of the canal during the life of the archaeological site;
(6) formation of anthropogenic debris from the archaeological site; (7) colluvial deposit in the canal
(including matrix-supported and clast-supported components); (8) colluvial processes; (9) infilling of
the archaeological feature after calcite remobilization; (10) fresh topsoil.

In other cases, it is still possible to postulate a natural process of infilling through degradation and
failure of the side walls [3,58], or at least the occurrence of a natural dismantling process of the margin
of the canals and limited human intervention. Thin section micromorphology helps in this task. In fact,
the infillings of Canal A and Canal C are very similar in both fabric and composition of the fine and
coarse fractions. In the strongly calcite impregnated groundmass of all layers, silty pedorelicts rich in
amorphous organic matter and slightly rounded volcanic mineral granules appear. These are quite
diagnostic in their nature, and probably represent colluvial material coming from surface horizons of the
soils surrounding the archaeological site [59–61], as the relatively higher presence of humified organic
matter seems to suggest. The abundance of volcanic minerals could also confirm this interpretation:
given that their inheritance from the carbonate parent material is implausible, they were instead
probably transported by wind from tephra clouds and accumulated at the surface of the older soil.
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Late Quaternary pyroclastic clouds, originating in the Volture or Campanian regions, have affected the
area multiple times [56,62,63] with some events dating to the Holocene [62,64–66], which is compatible
with the formation of the topsoil before the archaeological occupation chronology. Even some of
the impregnated groundmass could be colluviated from older calcite-rich soil horizons underneath
the surface organic ones affected by tephra deposition. Based on this interpretation, the deposit
inside Canal C could have been deposited after its abandonment in a phase of soil degradation
(Figure 11). Calcite redeposition is clearly characterised as a post-depositional process [67,68] related to
depth, as these impregnations always appear superimposed over the other features. In fact, the main
discriminant between the different layers inside Canal C is the passage from prevalent bioturbation
features at the top to a progressive appearance of calcite remobilization features towards the bottom.
Here, the influence of groundwater fluctuations is stronger, and multiple generations of micritic and
acicular calcite show several stages of remobilisation. This process has probably been active until
recently [53,67,69,70]. Conversely, the deposit in Canal A is divided between a bottom layer rich in
charcoals and pedorelicts and a top layer of massive gravels. Both units are possibly anthropogenic
in origin and used in turn to fill the canal. The allochthonous origin of the fine bottom deposit is
particularly testified by evidence of rearrangement and transport [61,68] even on some carbonate
nodules, while the clustered distribution of pedorelicts suggests the use of different materials to fill
the canal.

In general, it is possible to observe how the main deposits in the canals are largely formed either
by colluvial events or by intentionally dumped material. In both scenarios, the main filling material
belongs mainly to surface soil horizons that no longer exist. Canal filling events are plausibly timed
during later phases of use or more likely after the abandonment of the Tegole site (Figure 11). In the
latter case, the formation of colluvial deposits inside the canals would relate to an increase in climatic
instability and reactivation of surface processes consequent to the abandonment itself [60], whereas
enhanced colluvial process in a later phase of occupation of the site may be related to a change of
local land use. The latter may include the shift from agricultural activities to herding or to intensive
cultivation (overgrazing) (Cremaschi et al., 2016). In this setting, the deposit of Canal 2 is instead quite
different. The fine laminations of clayey and silty material observed in the field and especially under
the microscope suggest a deposition (likely decantation) under water (Figure 11) [71,72]. The presence
of anthropogenic constituents (anthropogenic debris) such as microcharcoals inside the laminations
point to argue that sedimentation happened while the canal was still in use, therefore during an
occupation phase [73,74]. This type of deposit in a small canal implies its purpose as water drainage,
only at a later stage influenced by a strong process of carbonate build-up. This canal may have been
used to carry and redistribute water collected from the main canals.

The alignments of paired postholes recall in distribution and morphology the foundations for a
fence. Their deposits seem to support this hypothesis. In the postholes quite complex layer alternations
of fine sediments and gravels with variable thickness are found. At the bottom, the presence of
compression surfaces and rounded margins on carbonate nodules and pedorelicts are a sign of the
effect of a strong rearrangement [68,75,76]. Indications of rearrangement are also visible above. Aside
from pedorelicts, the occurrence of clayey coatings around mineral granules is to be connected to
the deposition of strongly weathered soils no longer present near the excavation area. The presence
within these deposits of ash and charcoal accumulation is significant evidence of fire activity, as well
as vitrified phytoliths [9,77]: burned wood in the case of pseudomorphs, herbs for the phytoliths.
Combusted material is strictly related to human activity, possibly coming in part from the wooden
posts themselves.

In general, micromorphological analysis of postholes deposits showed strong similarities between
aligned and isolated holes: Both show strong post-depositional processes linked to carbonate movement
in the groundmass. Common microcharcoals suggest the presence of combusted wood while high
porosity is an indication of sediment remix [1,74,78]. These analogies and the general appearance of the
deposits hint at a similar function for all structures: Maybe unsurprisingly, they hosted wooden posts.
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Postholes are attributed though to different times and are not all ascribable to the same archaeological
phase. The technique seems similar: all deposits are rather homogeneous, and the features cited above
suggest the use of soil material as a stabiliser, in order to fill the spaces left by the wooden posts once
in place [79]. This same functional aspect could also be postulated for the aligned coupled holes,
considering the evidently reworked soil mass and the abundance of pedorelicts from no longer existing
soil horizons.

From all these observations, the origin and formation of the deposits can be unified in a general
interpretation. From a macroscopic point of view, most of the filling material seems to be made by
gravel coming from the Pleistocene terrace substrate, with evident traces of mixing. The provenance
of the gravel highlights the main aspect of the formation of these deposits. It is apparent how the
archaeological area generally withstood remediation work in ancient times using the inert material
found in the vicinity, interpretable in first approximation as related to the abandonment of the original
function of the structures. Slightly different is the case of the basal deposit found in C, which shows
juxtaposed fillings rich in charcoal attributable to the dumping of waste material and combustion
remains. The micromorphological analysis confirms this interpretation, showing how most of the
deposits seem to have originated from colluviation phenomena and/or through intentional filling.

Many of the original features of the deposits are not currently readable. In fact, all sediments have
been heavily affected by pedogenetic processes, which acted after their deposition and the abandonment
of the site and changed their initial appearance. The main recognisable post-depositional processes
are related to the dissolution and recrystallization of calcium carbonate through evapotranspiration.
To better understand its effect, a comparison is useful with the calcrete horizon (the crusta) found as the
substrate for the archaeological structures. Calcite translocation and recycling have been dominant and
prolonged in the study area, as reported in various areas of Apulia [54–56]. These processes, regulated
by a typically Mediterranean climate with seasonal variability and particularly dry summer periods,
produced an array of pedogenetic features, which mostly obliterated other features of the deposits
both at field and microscale. Differently from the crusta itself, the formation of calcite features inside
the deposits is delimited by a shorter time span: This caused incomplete cementation and allowed the
survival of an array of other pedofeatures. The other main visible post-depositional process is related
to bioturbation, mainly as the action of terrestrial invertebrates in the soil mass. The role of other actors
in the development of bioturbation features such as vertebrate burrowing and plant root growth is
here to exclude, especially in the latter case for the distinctive lack of intact plant remains inside the
deposits. From an environmental point of view, it is difficult to give meaningful significance to these
features. The action of soil fauna is usually ubiquitous in agricultural areas and most anthropogenic
deposits [1,74], where they are not particularly linked to specific environmental or climatic contexts.

The same depositional and post-depositional processes have been described to explain the infilling
of the ditch and other structures investigated at the Ripa Tetta Neolithic site, located ca. 20 km
north of Tegole di Bovino, at a lower elevation. At Ripa Tetta, archaeological features are cut in the
petrocalcic horizon and the sedimentary infilling of archaeological structures formed during or after
the abandonment of the settlement. The infilling of structures was interpreted as the consequences of
intentional ripening and colluviation of local soils [58]. Additionally, in this case, the matrix of infilling
includes pyroclastic products (interpreted as the consequence of an Early Holocene Vesuvius eruption)
and the whole deposit is deeply affected by calcite translocation and recrystallization.

5.2. Evidence of Climate Change at Tegole di Bovino

The micromorphological investigation on the sedimentary infilling of the archaeological features
at Tegole di Bovino also offers indications of climatic and environmental changes occurred in the region
in the Mid–Late Holocene.

The high level of impregnation found is to be related to unfavorable conditions, which were not
present at the time of occupation of the site and must be considered active only after this period. In fact,
radiocarbon dating obtained from charcoals indicates how structures were filled slightly before the
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Mid–Late Holocene boundary. It is plausible that the passage to warm conditions documented for that
phase [34,36,38,80] greatly enhanced evapotranspiration and in turn calcite mobility inside the soils.
The low content in calcite of certain portions of the deposits, and especially the pedorelicts, implies a
difference in pedogenetic processes during and after the occupation. In fact, the pristine soils in the
area apparently lacked strong calcite impregnations, which in turn can be the consequence of a more
temperate and humid climate. In the Central Mediterranean region, general wetter climatic conditions
are reported from several pollen and palaeohydrological records [35,36,81–85] and recently confirmed
for the Southern Adriatic area [80]. In this case water dynamics are driven more by percolation than
evapotranspiration and calcite is mostly removed downwards. This also corresponds to the occupation
timeframe of the archaeological site: the human community here was active during favorable climatic
conditions, which allowed the settlement to prosper.

Similarly, it is possible that variations in the climatic and environmental framework could have
been involved also in the final abandonment of the site (Figure 11). In fact, the later phases of occupation
of the Tegole di Bovino site and the transition from the Eneolithic to the Early Bronze Age in the area are
marked by contrasting climatic conditions. Superimposed to the general trend towards warm conditions,
several investigations revealed the occurrence of rapid climatic oscillations [34,80,86,87]–including
the one at the Northgrippian/Meghalayan transition—that may have enhanced environmental aridity.
For the same period, the pollen records from the Lago Alimini Piccolo, Lago Forano, and Fontana
Manca lakes in Southern Italy suggest the rapid decline of the forest [38,88]. As documented for
many other contexts during the Holocene, the climatic instability and rapid oscillations registered
during this phase may have reduced the quantity and quality of natural resources (wood, water, soil),
thus enhancing the vulnerability of human settlements in the area of Tegole di Bovino. In fact, climatic
instability is considered a reliable motor leading to major shifts in subsistence strategies, abandonment
of sites, and population relocation [15,89–92]. To adapt to new environmental and climatic conditions,
the people of the final phases of the Eneolithic may have adjusted their subsistence strategy and this
may have had a consequence on the land use of the area. The rapid decline of the forest registered at
this time may have an anthropogenic trigger [93]. Deforestation may have been enhanced by human
activities as assessed for the same period and for later periods in other parts of Italy [14,25,58,84,88].
Almost for the same reason, colluvial infilling of canals may have been triggered—at least in part—by
human activities. Rapid anthropogenic deforestation and/or overgrazing of soils in the context of
progressive reduction of water availability [94] may have enhanced the effect of surface processes
leading to the dismantling and removal of the pristine Holocene soil cover. Elsewhere, prehistoric
and historical records point to the coupled effect of climatic changes-triggered surface processes and
human agency as a major cause of soil loss [14,15,29,95–100].

6. Conclusions

The findings discovered in the Tegole di Bovino settlement show how climate variations and human
subsistence strategies and land use are very strictly intertwined concepts. If these reconstructions will
be confirmed by further studies, we can say that the transition from the Eneolithic to the Bronze Age in
Apulia was favored by climatic instability and in part by the impact of the human community itself on
the landscape through land use choices. The history of this settlement represents another example of
the reaction of past communities to perturbations of their life system. In this case, the response to what
most likely was a dramatic change in climatic conditions was quite drastic, ending in the abandonment
of the site itself.

Active and dynamic environments such as the Mediterranean area, as in this case, often offer
only incomplete information since post-depositional processes strongly impact the availability and
readability of data. The employment of geoarchaeological techniques allowed nevertheless to recover
precious information from the sedimentary deposits on the processes responsible for the filling of the
settlement structure, highlighting the events of a crucial phase for the archaeological trajectory of the
area [101]. In this, the contribution of microscopic investigations is fundamental: the high level of detail
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obtainable at the microscale is an invaluable tool to understand the nature and features of processes
acting on the archaeological record. This allows to retrieve further information on the climatic and
human footprint on archaeological sites and on the larger landscape, and to better illustrate how these
factors change and interact in time.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-550X/3/2/14/s1,
Table S1: Summary of micromorphological properties of each sample.

Author Contributions: Conceptualization, I.M.M. and A.Z.; analysis, G.S.M. and A.Z.; writing—original draft
preparation, G.S.M., I.M.M. and A.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Part of this research was supported by the Italian Ministry of Education, University, and Research
(MIUR) through the project “Dipartimenti di Eccellenza 2018–2022” (WP4–Risorse del Patrimonio Culturale)
awarded to the Dipartimento di Scienze della Terra “A. Desio” of the Università degli Studi di Milano.

Acknowledgments: The archaeological excavations were performed by Società Cooperativa A.R.A. under the
Scientific Direction of Anna Maria Tunzi of the Soprintendenza per i Beni Archeologici della Puglia.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Courty, M.A.; Goldberg, P.; Macphail, R. Soils and Micromorphology in Archaeology; Cambridge Manuals in
Archaeology; Cambridge University Press: Cambridge, NY, USA, 1989; ISBN 978-0-521-32419-9.

2. Mentzer, S.M. Microarchaeological Approaches to the Identification and Interpretation of Combustion
Features in Prehistoric Archaeological Sites. J. Archaeol. Method Theory 2012, 21, 616–668. [CrossRef]

3. Lisá, L.; Komoróczy, B.; Vlach, M.; Válek, D.; Bajer, A.; Kovárník, J.; Rajtár, J.; Hüssen, C.; Šumberová, R.
How were the ditches filled? Sedimentological and micromorphological classification of formation processes
within graben-like archaeological objects. Quat. Int. 2015, 370, 66–76. [CrossRef]

4. Nicosia, C.; Stoops, G. Archaeological Soil and Sediment Micromorphology; John Wiley & Sons: Hoboken, NJ,
USA, 2017; ISBN 978-1-118-94105-8.

5. Morley, M.W.; Goldberg, P.; Sutikna, T.; Tocheri, M.W.; Prinsloo, L.C.; Jatmiko; Saptomo, E.W.; Wasisto, S.;
Roberts, R.G. Initial micromorphological results from Liang Bua, Flores (Indonesia): Site formation processes
and hominin activities at the type locality of Homo floresiensis. J. Archaeol. Sci. 2017, 77, 125–142. [CrossRef]

6. Zerboni, A.; Mori, L.; Bosi, G.; Buldrini, F.; Bernasconi, A.; Gatto, M.C.; Mercuri, A.M. Domestic firing
activities and fuel consumption in a Saharan oasis: Micromorphological and archaeobotanical evidence from
the Garamantian site of Fewet (Central Sahara, SW Libya). J. Arid. Environ. 2017, 144, 123–138. [CrossRef]

7. Goldberg, P. Micromorphology of sediments from Hayonim Cave, Israel. CATENA 1979, 6, 167–181.
[CrossRef]

8. Goldberg, P.; MacPhail, R.I. Practical and Theoretical Geoarchaeology; Wiley: Hoboken, NJ, USA, 2005.
9. Zerboni, A. Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase

sites in central Sudan. Geoarchaeology 2011, 26, 365–391. [CrossRef]
10. Cremaschi, M.; Zerboni, A.; Mercuri, A.M.; Olmi, L.; Biagetti, S.; Di Lernia, S. Takarkori rock shelter (SW

Libya): An archive of Holocene climate and environmental changes in the central Sahara. Quat. Sci. Rev.
2014, 101, 36–60. [CrossRef]

11. Goldberg, P.; Aldeias, V. Why does (archaeological) micromorphology have such little traction in
(geo)archaeology? Archaeol. Anthropol. Sci. 2016, 10, 269–278. [CrossRef]

12. Karkanas, P. Micromorphological studies of Greek prehistoric sites: New insights in the interpretation of the
archaeological record. Geoarchaeology 2002, 17, 237–259. [CrossRef]

13. Tsatskin, A.; Nadel, D. Formation processes at the Ohalo II submerged prehistoric campsite, Israel, inferred
from soil micromorphology and magnetic susceptibility studies. Geoarchaeology 2003, 18, 409–432. [CrossRef]

14. Cremaschi, M.; Zerboni, A.; Charpentier, V.; Crassard, R.; Isola, I.; Regattieri, E.; Zanchetta, G. Early–Middle
Holocene environmental changes and pre-Neolithic human occupations as recorded in the cavities of Jebel
Qara (Dhofar, southern Sultanate of Oman). Quat. Int. 2015, 382, 264–276. [CrossRef]

15. Cremaschi, M.; Mercuri, A.M.; Torri, P.; Florenzano, A.; Pizzi, C.; Marchesini, M.; Zerboni, A. Climate change
versus land management in the Po Plain (Northern Italy) during the Bronze Age: New insights from the
VP/VG sequence of the Terramara Santa Rosa di Poviglio. Quat. Sci. Rev. 2016, 136, 153–172. [CrossRef]

http://www.mdpi.com/2571-550X/3/2/14/s1
http://dx.doi.org/10.1007/s10816-012-9163-2
http://dx.doi.org/10.1016/j.quaint.2014.11.049
http://dx.doi.org/10.1016/j.jas.2016.06.004
http://dx.doi.org/10.1016/j.jaridenv.2017.03.012
http://dx.doi.org/10.1016/0341-8162(79)90006-7
http://dx.doi.org/10.1002/gea.20355
http://dx.doi.org/10.1016/j.quascirev.2014.07.004
http://dx.doi.org/10.1007/s12520-016-0353-9
http://dx.doi.org/10.1002/gea.10012
http://dx.doi.org/10.1002/gea.10069
http://dx.doi.org/10.1016/j.quaint.2014.12.058
http://dx.doi.org/10.1016/j.quascirev.2015.08.011


Quaternary 2020, 3, 14 20 of 23

16. Maritan, L.; Iacumin, P.; Zerboni, A.; Venturelli, G.; Sasso, G.D.; Linseele, V.; Talamo, S.; Salvatori, S.; Usai, D.
Fish and salt: The successful recipe of White Nile Mesolithic hunter-gatherer-fishers. J. Archaeol. Sci. 2018,
92, 48–62. [CrossRef]

17. Goldberg, P. Some micromorphological aspects of prehistoric cave deposits. Cah. D’Archéol. CELAT 2001, 10,
161–175.

18. Shahack-Gross, R.; Berna, F.; Karkanas, P.; Weiner, S. Bat guano and preservation of archaeological remains
in cave sites. J. Archaeol. Sci. 2004, 31, 1259–1272. [CrossRef]

19. Angelucci, D.E.; Anesin, D.; Susini, D.; Villaverde, V.; Zapata, J.; Zilhão, J. Formation processes at a high
resolution Middle Paleolithic site: Cueva Antón (Murcia, Spain). Quat. Int. 2013, 315, 24–41. [CrossRef]

20. Stahlschmidt, M.; Miller, C.; Kandel, A.; Goldberg, P.; Conard, N. Site formation processes and Late Natufian
domestic spaces at Baaz Rockshelter, Syria: A micromorphological perspective. J. Archaeol. Sci. Rep. 2017, 12,
499–514. [CrossRef]

21. Morley, M.W.; Goldberg, P.; Uliyanov, V.A.; Kozlikin, M.B.; Shunkov, M.V.; Derevianko, A.P.; Jacobs, Z.;
Roberts, R.G. Hominin and animal activities in the microstratigraphic record from Denisova Cave (Altai
Mountains, Russia). Sci. Rep. 2019, 9, 13785–13812. [CrossRef]

22. Dalrymple, J.B. The Application of Soil Micromorphology to Fossil Soils and Other Deposits from
Archaeological Sites. J. Soil Sci. 1958, 9, 199–209. [CrossRef]

23. Simpson, I.; Dockrill, S.; Bull, I.; Evershed, R.P. Early Anthropogenic Soil Formation at Tofts Ness, Sanday,
Orkney. J. Archaeol. Sci. 1998, 25, 729–746. [CrossRef]

24. Kooistra, M.J.; Kooistra, L.I. Integrated research in archaeology using soil micromorphology and palynology.
Catena 2003, 54, 603–617. [CrossRef]

25. Cremaschi, M.; Nicosia, C. Sub-Boreal aggradation along the Apennine margin of the Central Po Plain:
Geomorphological and geoarchaeological aspects. Géomorphol. Relief Process. Environ. 2012, 18, 155–174.
[CrossRef]

26. Mallol, C.; Marlowe, F.W.; Wood, B.M.; Porter, C.C. Earth, wind, and fire: Ethnoarchaeological signals of
Hadza fires. J. Archaeol. Sci. 2007, 34, 2035–2052. [CrossRef]

27. Balbo, A.L.; Madella, M.; Vila, A.; Estévez, J. Micromorphological perspectives on the stratigraphical
excavation of shell middens: A first approximation from the ethnohistorical site Tunel VII, Tierra del Fuego
(Argentina). J. Archaeol. Sci. 2010, 37, 1252–1259. [CrossRef]

28. Friesem, D.; Zaidner, Y.; Shahack-Gross, R. Formation processes and combustion features at the lower layers
of the Middle Palaeolithic open-air site of Nesher Ramla, Israel. Quat. Int. 2014, 331, 128–138. [CrossRef]

29. Zerboni, A.; Bernasconi, A.; Gatto, M.C.; Ottomano, C.; Cremaschi, M.; Mori, L. Building on an oasis in
Garamantian times: Geoarchaeological investigation on mud architectural elements from the excavation of
Fewet (Central Sahara, SW Libya). J. Arid. Environ. 2018, 157, 149–167. [CrossRef]

30. Cremaschi, M.; Trombino, L.; Zerboni, A. Palaeosoils and Relict Soils. In Interpretation of Micromorphological
Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 863–894.

31. ISPRA Carta Geologica D’Italia alla Scala 1: 50.000, Foglio 421 “Ascoli Satriano”; Istituto Superiore per la
Protezione e la Ricerca Ambientale: Roma, Italy, 2011.

32. Ciaranfi, N.; Gallicchio, S.; Loiacono, F. Note Illustrative della Carta Geologica D’Italia alla Scala 1: 50.000, Foglio
421 “Ascoli Satriano”; Istituto Superiore per la Protezione e la Ricerca Ambientale: Roma, Italy, 2011.

33. Caldara, M.A.; Pennetta, L. Nuovi dati per la conoscenza geologica e morfologica del Tavoliere di Puglia.
Bonifica 1993, 8, 25–42.

34. Giraudi, C.; Magny, M.; Zanchetta, G.; Drysdale, R.N. The Holocene climatic evolution of Mediterranean
Italy: A review of the continental geological data. Holocene 2011, 21, 105–115. [CrossRef]

35. Mercuri, A.M.; Sadori, L.; Ollero, P.U. Mediterranean and north-African cultural adaptations to mid-Holocene
environmental and climatic changes. Holocene 2011, 21, 189–206. [CrossRef]

36. Sadori, L.; Jahns, S.; Peyron, O. Mid-Holocene vegetation history of the central Mediterranean. Holocene
2011, 21, 117–129. [CrossRef]

37. Magny, M.; Peyron, O.; Sadori, L.; Ortu, E.; Zanchetta, G.; Vannière, B.; Tinner, W. Contrasting patterns of
precipitation seasonality during the Holocene in the south- and north-central Mediterranean. J. Quat. Sci.
2011, 27, 290–296. [CrossRef]

http://dx.doi.org/10.1016/j.jas.2018.02.008
http://dx.doi.org/10.1016/j.jas.2004.02.004
http://dx.doi.org/10.1016/j.quaint.2013.03.014
http://dx.doi.org/10.1016/j.jasrep.2017.03.009
http://dx.doi.org/10.1038/s41598-019-49930-3
http://dx.doi.org/10.1111/j.1365-2389.1958.tb01911.x
http://dx.doi.org/10.1006/jasc.1997.0216
http://dx.doi.org/10.1016/S0341-8162(03)00137-1
http://dx.doi.org/10.4000/geomorphologie.9810
http://dx.doi.org/10.1016/j.jas.2007.02.002
http://dx.doi.org/10.1016/j.jas.2009.12.026
http://dx.doi.org/10.1016/j.quaint.2013.03.023
http://dx.doi.org/10.1016/j.jaridenv.2018.06.010
http://dx.doi.org/10.1177/0959683610377529
http://dx.doi.org/10.1177/0959683610377532
http://dx.doi.org/10.1177/0959683610377530
http://dx.doi.org/10.1002/jqs.1543


Quaternary 2020, 3, 14 21 of 23

38. Di Rita, F.; Magri, D. Holocene drought, deforestation and evergreen vegetation development in the central
Mediterranean: A 5500 year record from Lago Alimini Piccolo, Apulia, southeast Italy. Holocene 2009, 19,
295–306. [CrossRef]

39. Fiorentino, G.; Caldara, M.; De Santis, V.; D’Oronzo, C.; Muntoni, I.M.; Simone, O.; Primavera, M.; Radina, F.
Climate changes and human–environment interactions in the Apulia region of southeastern Italy during the
Neolithic period. Holocene 2013, 23, 1297–1316. [CrossRef]

40. Primavera, M.; D’Oronzo, C.; Muntoni, I.; Radina, F.; Fiorentino, G. Environment, crops and harvesting
strategies during the II millennium BC: Resilience and adaptation in socio-economic systems of Bronze Age
communities in Apulia (SE Italy). Quat. Int. 2017, 436, 83–95. [CrossRef]

41. Tunzi, A.M. Tegole. In Venti del Neolitico, Uomini del Rame. Preistoria della Puglia Settentrionale; Tunzi, A.M., Ed.;
Claudio Grenzi Editore: Foggia, Italy, 2015.

42. Murphy, C.P. Thin Section Preparation of Soils and Sediments; A B Academic Pub.: Berkhamsted, UK, 1986.
43. Stoops, G. Guidelines for Analysis and Description of Soil and Regolith Thin Sections; Soil Science Society of

America, Inc.: Madison, WI, USA, 2003.
44. Stoops, G.; Marcelino, V.; Mees, F. Interpretation of Micromorphological Features of Soils and Regoliths, 2nd ed.;

Elsevier: Amsterdam, The Netherland, 2018; ISBN 978-0-444-63542-6.
45. Ramsey, C.B.; Lee, S. Recent and Planned Developments of the Program OxCal. Radiocarbon 2013, 55, 720–730.

[CrossRef]
46. Reimer, P.J.; Bard, E.; Bayliss, A.; Beck, J.W.; Blackwell, P.G.; Ramsey, C.B.; E Buck, C.; Cheng, H.; Edwards, R.L.;

Friedrich, M.; et al. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP.
Radiocarbon 2013, 55, 1869–1887. [CrossRef]

47. Tunzi, A.M.; Lozupone, M.; Bubba, D.; Martino, F.M.; Diomede, G.; Malorgio, M. L’insediamento
neo-eneolitico di Tegole (Bovino–Fg). AttiDaunia 2012, 32, 75–99.

48. Tunzi, A.M.; Lo Zupone, M.; Bubba, D.; Gasperi, N. Strutture di abitato e aree produttive dell’età del Rame
nella Puglia settentrionale. In Preistoria e Protostoria della Puglia; Radina, F., Ed.; Istituto Italiano di Preistoria
e Protostoria, Via della Pergola: Firenze, Italy, 2017; pp. 397–402.

49. Muntoni, I.M.; Zerboni, A. Le strutture insediative di Tegole (Bovino): Analisi geoarcheologiche dei
riempimenti. In Preistoria e Protostoria della Puglia; Radina, F., Ed.; Studi di Preistoria e Protostoria; Istituto
Italiano di Preistoria e Protostoria: Firenze, Italy, 2017; pp. 829–834, ISBN 978-88-6045-060-9.

50. Wright, V. A Micromorphological Classification of Fossil and Recent Calcic and Petrocalcic Microstructures.
In Developments in Soil Science; Elsevier BV: Amsterdam, The Netherland, 1990; Volume 19, pp. 401–407.

51. Achyuthan, H. Petrologic analysis and geochemistry of the Late Neogene-Early Quaternary hardpan calcretes
of Western Rajasthan, India. Quat. Int. 2003, 106, 3–10. [CrossRef]

52. Shankar, N.; Achyuthan, H. Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu:
Micromorphology and geochemical studies. Quat. Int. 2007, 175, 140–154. [CrossRef]

53. Sasso, G.D.; Zerboni, A.; Maritan, L.; Angelini, I.; Compostella, C.; Usai, D.; Artioli, G. Radiocarbon dating
reveals the timing of formation and development of pedogenic calcium carbonate concretions in Central
Sudan during the Holocene. Geochim. Cosmochim. Acta 2018, 238, 16–35. [CrossRef]

54. Magaldi, D. Calcareous crust (caliche) genesis in some Mollisols and Alfisols from southern Italy:
A micromorphological approach. In Soil Micromorphology, 2nd ed.; Berkhamsted, Herts Academic:
Hertfordshire, UK, 1983; pp. 623–636.

55. Carnicelli, S.; Ferrari, G.; Magaldi, D. Les accumulations carbonatées de type “calcrete” dans les sols et
formations superficielles d’Italie méridionale. Méditerranée 1989, 68, 51–59. [CrossRef]

56. Magaldi, D.; Giammatteo, M. Microstrutture della crosta calcarea laminare (orizzonte petrocalcico) di due
paleo suoli pleistocenici nell’agro di Cerignola (Foggia). II Quat. Ital. J. Quat. Sci. 2008, 21, 423–432.

57. Brewer, R. Fabric and Mineral Analysis of Soils. Soil Sci. 1965, 100, 73. [CrossRef]
58. Boschian, G. Soil Micromorphology of the Ripa Tetta Neolithic Village (Lucera, South Eastern Italy).

In Proceedings of the UISPP Forlì, ABACO, Lucera, Italy, 8–14 September 1996; pp. 69–80.
59. Bertran, P.; Texier, J.-P. Facies and microfacies of slope deposits. Catena 1999, 35, 99–121. [CrossRef]
60. Leopold, M.; Völkel, J. Colluvium: Definition, differentiation, and possible suitability for reconstructing

Holocene climate data. Quat. Int. 2007, 162, 133–140. [CrossRef]
61. Mücher, H.; Van Steijn, H.; Kwaad, F. Colluvial and Mass Wasting Deposits. In Interpretation of

Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 21–36.

http://dx.doi.org/10.1177/0959683608100574
http://dx.doi.org/10.1177/0959683613486942
http://dx.doi.org/10.1016/j.quaint.2015.05.070
http://dx.doi.org/10.1017/S0033822200057878
http://dx.doi.org/10.2458/azu_js_rc.55.16947
http://dx.doi.org/10.1016/S1040-6182(02)00158-1
http://dx.doi.org/10.1016/j.quaint.2007.05.017
http://dx.doi.org/10.1016/j.gca.2018.06.037
http://dx.doi.org/10.3406/medit.1989.2616
http://dx.doi.org/10.1097/00010694-196507000-00024
http://dx.doi.org/10.1016/S0341-8162(98)00096-4
http://dx.doi.org/10.1016/j.quaint.2006.10.030


Quaternary 2020, 3, 14 22 of 23

62. Cioni, R.; Levi, S.; Sulpizio, R. Apulian Bronze Age pottery as a long-distance indicator of the Avellino
Pumice eruption (Vesuvius, Italy). Geol. Soc. London Spéc. Publ. 2000, 171, 159–177. [CrossRef]

63. Corrado, G.; Di Leo, P.; Giannandrea, P.; Schiattarella, M. Constraints on the dispersal of Mt. Vulture
pyroclastic products: Implications to mid-Pleistocene climate conditions in the foredeep domain of southern
Italy. Géomorphol. Relief Process. Environ. 2017, 23, 23. [CrossRef]

64. Paterne, M.; Guichard, F.; Labeyrie, J. Explosive activity of the South Italian volcanoes during the past
80,000 years as determined by marine tephrochronology. J. Volcanol. Geotherm. Res. 1988, 34, 153–172.
[CrossRef]

65. Narcisi, B. Tephrochronology of a late quatternary lacustrine record from the monticchio maar (vulture
volcano, southern Italy). Quat. Sci. Rev. 1996, 15, 155–165. [CrossRef]

66. Watts, W.; Allen, J.; Huntley, B.; Fritz, S. Vegetation history and climate of the last 15,000 years at Laghi Di
Monticchio, southern Italy. Quat. Sci. Rev. 1996, 15, 113–132. [CrossRef]

67. Durand, N.; Monger, H.C.; Canti, M.G.; Verrecchia, E.P. Calcium Carbonate Features. In Interpretation of
Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 205–258.

68. Fedoroff, N.; Courty, M.-A.; Guo, Z. Palaeosoils and Relict Soils. In Interpretation of Micromorphological Features
of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 821–862.

69. Verrecchia, E.P. L’origine biologique et superficielle des croûtes zonaires. Bull. Soc. Géol. Fr. 1994, 165,
583–592.

70. Tandon, S.K.; Kumar, S. Semi-arid/arid zone calcretes: A review. In Palaeoenvironmental Reconstruction in
Arid Lands; Singhvi, A.K., Derbyshire, E., Eds.; Oxford and IBH Publishing Co: New Delhi, India, 1999;
pp. 109–152.

71. Cremaschi, M.; Nicosia, C. Corso di Porta Reno, Ferrara (Northern Italy): A study in the formation processes
of Urban Deposits. II Quat. Ital. J. Quat. Sci. 2010, 23, 395–408.

72. Peña-Monné, J.; Rubio-Fernández, V.; González-Pérez, J.; Rodanés, J.; Picazo, J.; Médina, J.; Vazquez, M.;
Sampietro-Vattuone, M.M.; Pérez-Lambán, F. Geoarchaeology of defensive moats: Its importance for
site localization, evolution and formation process reconstruction of archaeological sites in NE Spain.
J. Archaeol. Sci. 2014, 50, 383–393. [CrossRef]

73. Gebhardt, A. Impact of charcoal production activities on soil profiles: The micromorphological point of view.
ArchéoSciences 2007, 127–136. [CrossRef]

74. Adderley, W.P.; Wilson, C.; Simpson, I.A.; Davidson, D.A. Anthropogenic Features. In Interpretation of
Micromorphological Features of Soils and Regoliths; Elsevier BV: Amsterdam, The Netherland, 2018; pp. 753–777.

75. Kemp, R.A. Role of micromorphology in paleopedological research. Quat. Int. 1998, 51, 133–141. [CrossRef]
76. Compostella, C.; Mariani, G.S.; Trombino, L. Holocene environmental history at the treeline in the Northern

Apennines, Italy: A micromorphological approach. Holocene 2014, 24, 393–404. [CrossRef]
77. Canti, M. Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils.

Catena 2003, 54, 339–361. [CrossRef]
78. Francis, G.; Cameron, K.C.; Kemp, R. A comparison of soil porosity and solute leaching after six years of

direct drilling or conventional cultivation. Soil Res. 1988, 26, 637–649. [CrossRef]
79. Barker, P. Techniques of Archaeological Excavation; Routledge: London, UK, 2003.
80. Regattieri, E.; Isola, I.; Zanchetta, G.; Tognarelli, A.; Hellstrom, J.C.; Drysdale, R.N.; Boschi, C.; Milevski, I.;

Temovski, M. Middle Holocene climate variability from a stalagmite from Alilica cave (southern Balkans).
Alp. Mediterr. Quat. 2019, 32, 1–16.

81. Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.; Fallick, A.E.; Isola, I.; Gagan, M.; Pareschi, M. Enhanced rainfall
in the Western Mediterranean during deposition of sapropel S1: Stalagmite evidence from Corchia cave
(Central Italy). Quat. Sci. Rev. 2007, 26, 279–286. [CrossRef]

82. Roberts, N.; Jones, M.D.; Benkaddour, A.; Eastwood, W.; Filippi, M.; Frogley, M.; Lamb, H.F.; Leng, M.J.;
Reed, J.M.; Stein, M.; et al. Stable isotope records of Late Quaternary climate and hydrology from
Mediterranean lakes: The ISOMED synthesis. Quat. Sci. Rev. 2008, 27, 2426–2441. [CrossRef]

83. Vannière, B.; Power, M.; Roberts, N.; Tinner, W.; Carrion, J.; Magny, M.; Bartlein, P.; Colombaroli, D.;
Daniau, A.-L.; Finsinger, W.; et al. Circum-Mediterranean fire activity and climate changes during the
mid-Holocene environmental transition (8500-2500 cal. BP). Holocene 2011, 21, 53–73. [CrossRef]

http://dx.doi.org/10.1144/GSL.SP.2000.171.01.13
http://dx.doi.org/10.4000/geomorphologie.11731
http://dx.doi.org/10.1016/0377-0273(88)90030-3
http://dx.doi.org/10.1016/0277-3791(95)00045-3
http://dx.doi.org/10.1016/0277-3791(95)00038-0
http://dx.doi.org/10.1016/j.jas.2014.07.026
http://dx.doi.org/10.4000/archeosciences.833
http://dx.doi.org/10.1016/S1040-6182(97)00040-2
http://dx.doi.org/10.1177/0959683613518588
http://dx.doi.org/10.1016/S0341-8162(03)00127-9
http://dx.doi.org/10.1071/SR9880637
http://dx.doi.org/10.1016/j.quascirev.2006.12.003
http://dx.doi.org/10.1016/j.quascirev.2008.09.005
http://dx.doi.org/10.1177/0959683610384164


Quaternary 2020, 3, 14 23 of 23

84. Regattieri, E.; Zanchetta, G.; Isola, I.; Zanella, E.; Drysdale, R.N.; Hellstrom, J.C.; Zerboni, A.; Dallai, L.;
Tema, E.; Lanci, L.; et al. Holocene Critical Zone dynamics in an Alpine catchment inferred from a speleothem
multiproxy record: Disentangling climate and human influences. Sci. Rep. 2019, 9, 17829–17839. [CrossRef]
[PubMed]

85. Marchegiano, M.; Francke, A.; Gliozzi, E.; Wagner, B.; Ariztegui, D. High-resolution palaeohydrological
reconstruction of central Italy during the Holocene. Holocene 2018, 29, 481–492. [CrossRef]

86. Magny, M.; Vannière, B.; Zanchetta, G.; Fouache, E.; Touchais, G.; Petrika, L.; Coussot, C.; Walter-Simonnet, A.-V.;
Arnaud, F.; Zanchetta, G. Possible complexity of the climatic event around 4300—3800 cal. BP in the central and
western Mediterranean. Holocene 2009, 19, 823–833. [CrossRef]

87. Pelfini, M.; Leonelli, G.; Trombino, L.; Zerboni, A.; Bollati, I.M.; Merlini, A.; Smiraglia, C.; Diolaiuti, G.A.
New data on glacier fluctuations during the climatic transition at ~4,000 cal. year BP from a buried log in the
Forni Glacier forefield (Italian Alps). Rend. Lincei 2014, 25, 427–437. [CrossRef]

88. Sevink, J.; Bakels, C.C.; Attema, P.A.; A Di Vito, M.; Arienzo, I.; Di Vito, M. Holocene vegetation record
of upland northern Calabria, Italy: Environmental change and human impact. Holocene 2019, 29, 633–647.
[CrossRef]

89. Brooks, N. Cultural responses to aridity and increased social complexity in the Middle Holocene. Quat. Int.
2006, 151, 29–49. [CrossRef]

90. Nicoll, K. Geoarchaeological Perspectives on Holocene Climate Change as a Civilizing Factor In the
Egyptian Sahara. In Biogeochemical Cycles; American Geophysical Union (AGU): Washington, DC, USA, 2013;
pp. 157–162.

91. Zerboni, A.; Biagetti, S.; Lancelotti, C.; Madella, M. The end of the Holocene Humid Period in the central
Sahara and Thar deserts: Societal collapses or new opportunities? Past Glob. Chang. Mag. 2016, 24, 60–61.
[CrossRef]

92. Nicoll, K.; Zerboni, A. Is the past key to the present? Observations of cultural continuity and resilience
reconstructed from geoarchaeological records. Quat. Int. 2019. [CrossRef]

93. Stephens, L.; Fuller, D.; Boivin, N.; Rick, T.; Gauthier, N.; Kay, A.; Marwick, B.; Armstrong, C.G.; Barton, C.M.;
Denham, T.; et al. Archaeological assessment reveals Earth’s early transformation through land use. Science
2019, 365, 897–902. [CrossRef] [PubMed]

94. Boles, O.; Shoemaker, A.; Mustaphi, C.J.C.; Petek, N.; Ekblom, A.; Lane, P.J. Historical Ecologies of Pastoralist
Overgrazing in Kenya: Long-Term Perspectives on Cause and Effect. Hum. Ecol. 2019, 47, 419–434. [CrossRef]

95. Evans, R. The erosional impacts of grazing animals. Prog. Phys. Geogr. Earth Environ. 1998, 22, 251–268.
[CrossRef]

96. Henry, D.O.; E Cordova, C.; Portillo, M.; Albert, R.M.; DeWitt, R.; Emery-Barbier, A. Blame it on the goats?
Desertification in the Near East during the Holocene. Holocene 2016, 27, 625–637. [CrossRef]

97. Zerboni, A.; Mariani, G.S.; Castelletti, L.; Ferrari, E.S.; Tremari, M.; Livio, F.; Amit, R. Was the Little Ice Age
the coolest Holocene climatic period in the Italian central Alps? Prog. Phys. Geogr. Earth Environ. 2019,
0309133319881105. [CrossRef]

98. Zerboni, A.; Perego, A.; Mariani, G.S.; Brandolini, F.; Al Kindi, M.; Regattieri, E.; Zanchetta, G.; Borgi, F.;
Charpentier, V.; Cremaschi, M. Geomorphology of the Jebel Qara and coastal plain of Salalah (Dhofar,
southern Sultanate of Oman). J. Maps 2020, 16, 187–198. [CrossRef]

99. Wright, D.K. Humans as Agents in the Termination of the African Humid Period. Front. Earth Sci. 2017, 5, 4.
[CrossRef]

100. Zerboni, A.; Nicoll, K. Enhanced zoogeomorphological processes in North Africa in the human-impacted
landscapes of the Anthropocene. Geomorphology 2019, 331, 22–35. [CrossRef]

101. Liritzis, I.; Laskaris, N.; Vafiadou, A.; Karapanagiotis, I.; Volonakis, P.; Papageorgopoulou, C.; Bratitsi, M.
Archaeometry: An Overview. Sci. Cult. 2020, 6, 49–98. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/s41598-019-53583-7
http://www.ncbi.nlm.nih.gov/pubmed/31780672
http://dx.doi.org/10.1177/0959683618816465
http://dx.doi.org/10.1177/0959683609337360
http://dx.doi.org/10.1007/s12210-014-0346-5
http://dx.doi.org/10.1177/0959683618824695
http://dx.doi.org/10.1016/j.quaint.2006.01.013
http://dx.doi.org/10.22498/pages.24.2.60
http://dx.doi.org/10.1016/j.quaint.2019.02.012
http://dx.doi.org/10.1126/science.aax1192
http://www.ncbi.nlm.nih.gov/pubmed/31467217
http://dx.doi.org/10.1007/s10745-019-0072-9
http://dx.doi.org/10.1177/030913339802200206
http://dx.doi.org/10.1177/0959683616670470
http://dx.doi.org/10.1177/0309133319881105
http://dx.doi.org/10.1080/17445647.2019.1708488
http://dx.doi.org/10.3389/feart.2017.00004
http://dx.doi.org/10.1016/j.geomorph.2018.10.011
http://dx.doi.org/10.5281/zenodo.3625220
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	General Settings 
	Geological, Geomorphological, and Palaeoclimatic Background 
	Archaeological Framework 

	Materials and Methods 
	Archaeological Excavation 
	Thin Sections’ Analysis 
	Archaeological and Radiometric Dating 

	Results 
	Archaeological Evidence and Dating 
	Field Evidence of Investigated Structures 
	Canals 
	Pits and Postholes 
	Current Soil and Bedrock of the Archaeological Site 

	Micromorphology of Thin Sections 
	Canals 
	Postholes and Pits STR41, B266, B267, B271 
	Petrocalcic Ck Horizon 


	Discussion 
	Formation of the Archaeological Record: Natural vs. Anthropogenic Processes 
	Evidence of Climate Change at Tegole di Bovino 

	Conclusions 
	References

