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Abstract

We consider classic clustering problems in fully dynamic data streams, where
data elements can be both inserted and deleted. In this context, there are several
important parameters: (1) the quality of the solution after each insertion or deletion,
(2) the time it takes to update the solution, and (3) how different consecutive
solutions are. The question of obtaining efficient algorithms in this context for
facility location, k-median and k-means has been raised in a recent paper by
Hubert-Chan et al. [WWW’18] and also appears as a natural follow-up on the
online model with recourse studied by Lattanzi and Vassilvitskii [ICML’17] (i.e.:
in insertion-only streams).
In this paper, we focus on general metric spaces and mainly on the facility location
problem. We give an arguably simple algorithm that maintains a constant factor
approximation, with O(n log n) update time, and total recourse O(n). This im-
proves over the naive algorithm which consists in recomputing a solution after each
update and that can take up to O(n2) update time, and O(n2) total recourse. Our
bounds are nearly optimal: in general metric space, inserting a point takes O(n)
times to describe the distances to other points, and we give a simple lower bound
of O(n) for the recourse. Moreover, we generalize this result for the k-medians
and k-means problems: our algorithms maintain a constant factor approximation
in Õ(n+ k2) time per update.
We complement our analysis with experiments showing that the cost of the solution
maintained by our algorithm at any time t is very close to the cost of a solution
obtained by quickly recomputing a solution from scratch at time t while having a
much better running time.

1 Introduction

Clustering is a core procedure in unsupervised machine learning and data analysis. Due to the large
number of applications, clustering problems have been extensively studied for several decades. The
existing literature includes both very precise algorithms[1, 18, 31], and very fast ones [34]. Due to
the importance of the task, clustering problems have also been studied in several computing settings,
such as the streaming model [11] and the sliding-window model [7], the distributed model [4], in the
dynamic model [24], and others.

Applications nowadays operate on dynamically evolving data, e.g., pictures are constantly added and
deleted from picture repositories, purchases are continuously added into online shopping systems,
reviews are added or being edited in retail systems, etc. Due to the scale and the dynamic nature
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of the data at hand, conventional algorithms designed to operate on static inputs become unable to
handle the task for two main reasons. First, the running time of even the most efficient algorithms
is too expensive to execute after every single change in the input data. Second, re-running a static
algorithm after every update might generate solutions that differ substantially between consecutive
updates, which might be undesirable for the application at hand. The number of changes in the
maintained solution between consecutive updates is called the recourse of the algorithm. Our study is
motivated by these limitations of static algorithms, or dynamic algorithms that are effective on only
one of the two objectives.

Most fundamental problems in computer science have been studied in the dynamic setting. In a
very high-level, a dynamic algorithm computes a solution on the initial input data and as the input
undergoes insertions or/and deletions of elements, the algorithm updates the solution to reflect the
current state of the data. A dynamic algorithm may allow only insertions or only deletions, or may
support an intermixed sequence of insertions and deletions, in which case the algorithm is called fully
dynamic. The running time of a dynamic algorithm can either guarantee a worst-case update time
after each update, or a bound on the average update time over a sequence of updates which is called
amortized update bound. A dynamic algorithm with worst-case update bounds is the most desirable,
and often hard to obtain, but in several applications algorithms with amortized update bounds are
sufficient.

Most of the clustering-related literature has focused on the online model where the updates are
restricted to insertions only and a decision cannot be revoked or on the streaming model where there
is a specific memory budget not to be exceeded. However, as observed by Lattanzi and Vassilvitskii
[30] the online model may appear too restrictive: if a bad decision has been made, it is often fine to
spend some time to correct it instead of suffering the bad decision (i.e.: keeping a bad clustering) for
the rest of the stream. However, spending too much time on the modification of the clustering may
be counterproductive and that’s what we aim at capturing in the fully-dynamic model with limited
recourse: keeping a good clustering by spending the least among of time and making as few changes
to the current clustering as possible.

In this paper, we study fully-dynamic algorithms for classic clustering problems. In particular, we
consider the facility location, the k-means, and the k-median problems in the dynamic setting. In the
static case, these problems are defined as follows. Let X be a set of n points, and d : X ×X → R
a distance function. We assume that d is symmetric and that (X, d) forms a metric space. For
the (k, p)-clustering problem, the objective function that we seek to optimize is Cp(X,S), where
S ⊆ X, |S| = k. Setting p = 1 gives the k-median objective, and p = 2 the k-means one. For the
facility location problem the objective function is C(X,S).

C(X,S) :=
∑
x∈X

min
c∈S

d(x, c) + f · |S| Cp(X,S) :=
∑
x∈X

min
c∈S

dp(x, c),

All of these problems are NP-Hard, so our best hope is to design algorithms with provable approxi-
mation guarantees. There is an extensive line of work on algorithms with constant approximation
guarantees for all three aforementioned problems [1, 3, 10, 20, 26, 27, 31, 33]. On the other hand,
Mettu and Plaxton [34] showed an Ω(nk) lower bound for computing an O(1)-approximate solution
for k-median and k-means in general metric spaces.

In the dynamic setting, the goal is to maintain efficiently a good solution to the clustering problem at
hand as the set of points undergoes element insertions and deletions. The main criterion for designing a
good dynamic algorithm for these problems is the quality of the clustering, with respect to the optimum
solution, at any given time. However, in many applications, it is equally important to maintain a
consistent clustering, namely a clustering with bounded recourse. Lattanzi and Vassilvitskii [30] have
recently considered consistent clustering problems in the online setting, where the points appear in
sequence and the objective is to maintain a constant factor approximate solution while minimizing the
total number of times the maintained solution changes over the whole sequence of points. Another
criterion that has been explored much less but which is highly important when dealing with massive
data is the time it takes to update the solution after each update so that the solution remains within a
constant factor from the optimum solution.
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1.1 Our Contribution

We present the first work that studies fully-dynamic algorithms while considering the approximation
guarantee, consistency and update time, all at the same time. From an input perspective, we consider
general metric spaces. Thus, an element of the input is a point in a metric space which is defined
by the distances to the other points of the metric. The contribution of our paper is summarized as
follows:

•We give a fully-dynamic algorithm for the facility location problem that maintains a constant factor
approximate solution with constant recourse per update and O(n log n) update time. We moreover
show that constant recourse per update is necessary for achieving a constant factor approximation.

•We extend the algorithm for facility location to the k-median and k-means problems. Here, our
algorithm maintains a constant factor approximate solution with Õ(n + k2)1 update time (Theo-
rem 3.1). This is the first non-trivial result for these problems, as the only known solution for these
problems was to recompute from scratch after each update: this requires time Ω(nk) for k-median
and Ω(n2) for facility location, per update. Hence, our time bounds are significantly better than the
naive approach for a large range of k.

Empirical Analysis. We complement our study with an experimental analysis of our algorithm
on three real-world data sets and show that it outperforms the standard approach that recomputes
a solution from scratch after each update using a fast static algorithm. Interestingly, we show that
this barely impacts the approximation guarantee. At the same time, our algorithm outperforms by at
least three orders of magnitude the simple-minded solutions, both in terms of running time and total
number of changes made in the maintained solution throughout the update sequence.

1.2 Related Work

Online and Consistent Clustering. Online algorithms for facility location were first proposed by
Meyerson [35] in his seminal paper. Fotakis [16] later showed that the algorithm has a competitive
ratio of O(log n/ log log n), which is also optimal. Additionally, the algorithm has a constant
competitive ratio if the points arrive in a random order [35, 29]. There also existO(log n) competitive
deterministic algorithms, see [2, 15]. This was recently extended to the online model that incorporates
deletions [12].

Online algorithms for clustering that are only allowed to place centers cannot be competitive. This
led to the consideration of the incremental model, which allows two clusters to be merged at any
given time. Work in this area includes [9, 14]. The number of reassignments (commonly referred
to as recourse) over the execution of an incremental algorithm may be arbitrary. However, recently,
Lattanzi and Vassilvitskii [30] considered the online clustering problem with bounded total recourse.
They showed a lower bound of Ω(k log n) changes over an arbitrary sequence of updates, and
presented an algorithm that can maintain a constant factor approximation while limiting the total
recourse toO(k2 · log4 n). Their work differs to ours in that elements can only be added, and that they
do not consider optimizing the running time. In the fully dynamic case their bound on the recourse
does not hold, and we moreover show that constant recourse per update is unavoidable.

Fully-Dynamic and Streaming Algorithms. Streaming algorithms for clustering can be used to
obtain fast dynamic algorithms by recomputing a clustering after each update. Since streaming
algorithms are highly memory compressed and typically process updates in time linear in the memory
requirement, the approach automatically yields good update times. Low-memory adaptations of
Meyerson’s algorithm [35] turned out to be simple and particularly popular, see [8, 29, 37]. Another
technique for designing clustering algorithms in the streaming models is by maintaining coresets, see
the following recent survey for an overview [36]. For fully dynamic data streams, the only known
algorithms for maintaining coresets for k-means and k-median in Euclidean spaces using small space
and update times are due to Braverman et al. [6] and Frahling and Sohler [17]. There also exists some
work on estimating the cost of Euclidean facility location in dynamic data streams, see [13, 25, 28].

For more general metrics, the problem of maintaining a clustering dynamically has been considered
by Henzinger et al. [22] and Goranci et al. [19] who consider the facility location in bounded doubling

1Õ(·) hides polylog factors.
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dimension. The arguably most similar previous work to ours is due to Hubert-Chan et al. [24]. They
consider the k-center problem in general metrics in the fully dynamic model. Here, they were able to
maintain a constant factor approximation with update time O(k log n) 2. Whether an algorithm in the
fully dynamic model with low recourse and update times exists, was left as an open problem.

1.3 Preliminaries

We assume that we are given some finite metric space (X, d), where X is the set of points and
d : X ×X → R≥0 a distance function. Every entry d(a, b) is stored in a (symmetric) n× n matrix
D. Our algorithms work in the distance oracle model, which assumes that we can access any entry of
D in constant time.

Our input consists of tuples (X,Rn≥0, {−1, 1}). The first coordinate is the identifier of some point
p ∈ X , the second coordinate is the column/row vector inD associated with p, and the last coordinate
signifies insertion (1) or deletion (−1). We assume that the stream is consistent, which means that
no point can be deleted without having been previously inserted. The adversary generating the point
sequence is called adaptive if he can modify the sequence depending on the algorithm’s choices.
Throughout the paper, we let Xt be the set of points present at time t, n be the total number of
updates, and n∗ := supt∈1,...,n |Xt| be the maximum number of points present at the same time. We
denote by OPT t the optimum solution at time t. All our results could be phrased in term of |Xt|,
but for simplicity we present them in terms of n∗.

Roadmap. Our paper is organized as follows. In Section 2, we describe our algorithm for fully
dynamic facility location. Section 3 extends these results to k-median and k-means clustering. We
conclude with an experimental evaluation of our algorithms in Section 4 on real-world benchmarks.
All omitted proofs can be found in the supplementary material.

2 Dynamic Facility Location

The goal of this section is to prove the following theorem.
Theorem 2.1. There exist a randomized algorithm that, given a metric space undergoing insertion
and deletions of points, maintains a set of center St such that :

• each update is processed in time O (n∗ log (n∗)) with probability 1− 1/n∗

• at any given time t, C(Xt, St) = O(1) · C(Xt,OPTt) with probability 1− 1/n∗

•
∑n
t=0 |St4St+1| = O(n), i.e. the amortized recourse is O(1) per update.

The proof is divided into several lemmas: we first study how the optimal cost behaves upon dynamic
updates, and we exhibit then an algorithm that maintains a solution whose cost evolves in a similar
way as the optimum.

Although, perhaps counter intuitive, removing a point from the input in a finite metric may increase
the cost of a clustering, if one cannot locate a center there anymore. We show in the supplementary
material that this increase is bounded by a factor 2: this leads to the following lemma, which bounds
the evolution of the optimal cost.
Lemma 2.2. Let OPTbefore be the optimal cost of an initial metric space X . After an arbitrary
sequence of ni insertions and nd deletions of points in X , the optimal solution OPTafter satisfies
OPTbefore/2− nd · f ≤ OPTafter ≤ 2(OPTbefore + ni · f)

Maintaining a solution during a few updates. We now turn on designing an algorithm competitive
with the optimal solution, showing first how to deal with a small number of updates. In order to
process deletions, we define the notion of substitute centers: given a function s mapping every center
from the initial solution to a center in the current one, we say that s(c) substitutes c. Initially, s(c) = c.
When a center c is deleted, the algorithm opens a replacement center cr, and updates the function s:
s(s−1(c)) = cr.

2Under the common assumption that the ratio longest distance / shortest distance of the metric is polynomially
bounded.
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The algorithm is as follows: when a point x is inserted, we open as a facility at x, and for convenience
we define s(x) = x. When a point x is deleted, we have two cases: either x was not an open facility,
in which case the algorithm does nothing, or x was a facility. In the latter case, let c = s−1(x) : the
algorithm opens the closest point c′ of c in X0 that is still part of the metric, and set s(c) = c′. This
choice of c′ ensures that, for all points x in the current metric space, d(c′, c) ≤ d(x, c).

Lemma 2.3. Starting from any metric space (X0, d) and an α-approximation with cost Θ, the
algorithm described above maintains a (8α + 4)-approximation during Θ

4αf updates, with O(1)

recourse and O(n∗) time amortized per update.

Proof. This algorithm opens at most one new facility at every update: the recourse is thus at most 1.
The time to process an insertion is constant, and the time to process a deletion is at most O(n∗) (the
time required to compute the closest point to x).

We now analyse the cost of the solution produced after t updates. Since the recourse is at most 1 per
update, the cost of open facilities increases by at most t · f . Since every inserted points is opened as a
center, it does not contribute to the connection cost: this cost changes therefore only by deletions of
points from X0. Similarly to Lemma 2.2, one can show that the connection cost of a point x ∈ X0

at most doubles. More formally, let c ∈ X0 be the center that serves x in the initial solution. Let
c′ = s(c) be the center that substitutes c in the current metric. By the choice of c′ and triangle
inequality, it holds that d(x, c′) ≤ d(x, c) + d(c, c′) ≤ 2d(x, c). Hence, the total serving cost is at
most twice as expensive as in the initial solution. The cost at time t is therefore at most 2Θ + t · f .

Let t ≤ Θ
4αf , and OPT0 the optimal cost in the initial state. By Lemma 2.2, the optimal cost at time t

is at least OPT0/2− t · f ≥ OPT0/4, since by definition of α it holds t ≤ OPT0

4f . Moreover, the cost
of our algorithm at time t is at most Θ(2 + 1

α ) ≤ OPT0(2α + 1). Combining the two inequalities
gives that our algorithm is a (8α+ 4)-approximation for all t ≤ Θ

4αf , which concludes the proof.

We remark that the parameters can be optimized: for instance, with a suitable data structure, the time
to find a substitute center can be logarithmic; however, this is dominated by the complexity of finding
the initial α-approximation.

Maintaining a solution for any number of updates. We combine Lemma 2.3 with a classic static
O(1)-approximation algorithm, namely Meyerson’s algorithm, to prove Theorem 2.1.

Proof of Theorem 2.1. We summarize here the useful properties of Meyerson algorithm, and refer to
the supplementary material for more details. The algorithm processes the input points in a random
order, opening each point x with probability d(x, F )/f (where F is the set of previously opened
facilities). If the algorithm opens k facilities, its running time is O(kn∗), and the cost is at least
Θ ≥ kf . Hence, the running time is O(Θ/f · n∗). Moreover, one can assume that the cost is always
at most n∗f (by opening a facility at every point).

We say that a run of Meyerson’s algorithm is good if it yields a O(1)-approximate solution. By the
analysis in [35], a run is good in expectation (where the randomness comes from the random ordering
of points): hence, by running log(2n∗) independent copies of the algorithm, at least one run is good
with probability 1− (1/n∗)2. We let α be the approximation constant of this algorithm.

Therefore, our main algorithm works as follows: start with a solution given by Meyerson’s algorithm
of cost Θ, use Lemma 2.3 to maintain a solution during Θ

4αf updates, and then recompute from
scratch. We call the intervals between consecutive recomputations periods, and note that they are
random objects: the length of a period is determined by the cost of its initial solution, which is a
random variable.

We first analyze the running time of this algorithm. Within one period, Lemma 2.3 ensures that
the running time is O(n∗) per update. Moreover, the running time of the initial recomputation is
O(Θ/f ·n∗ log n∗), and the length of the period is Ω(Θ/f). Therefore the amortized running time is
Õ(n∗) per update. Since the initial recourse is O(Θ/f), the same argument proves that the recourse
is amortized O(1) per update.

We aim at using again Lemma 2.3 to prove that, at a given time t, the solution is a constant factor
approximation. For this, let P be the period in which t appears. If the period is good, then Lemma 2.3
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concludes. Unfortunately, the fact that t is in P is not independent of P being good (for instance, if
P is very long it is unlikely to be good). However, note that the starting time of P cannot be before
t− n∗: indeed, a period lasts for at most Θ

4αf ≤
n∗f
4αf ≤ n∗ updates. Hence, if we condition on all

periods starting between t − n∗ and t, Lemma 2.3 applies and the solution at time t is a constant
factor approximation. Since any period is good with probability 1− (1/n∗)2, all periods between
t− n∗ and t are good with probability 1− 1/n∗ by union bound. This concludes the proof.

The algorithm sketched in the previous proof can be transformed so that the complexity becomes
Õ(n∗) in the worst case, by spreading the recomputation over several updates (see supplementary
material). Moreover, randomization is not needed in order to maintain the solution (only to compute
a starting approximation): hence the algorithm works against an adaptive adversary.

We conclude this section by showing that our algorithm is (up to a logarithmic factors) optimal both
for update time and recourse.
Proposition 2.4. Any algorithm maintaining a O(1)-approximation for Facility Location must have
an amortized update time Ω(n∗) and total recourse Ω(n), where n the total number of updates.

3 Dynamic k-Median and k-Means in Linear Time

In this section we adapt the algorithm from Section 2 to handle the stricter problems of k-Median and
k-Means. For simplicity, we call (k, p)-clustering the problem of finding k centers that minimize Cp
(p = 1 for k-Median and p = 2 for k-Means).

Roughly speaking, our algorithm works as follows. We use an adaptation of the algorithm from
Section 2 to maintain a coresetR of Õ(k) points that contain a constant factor approximate solution
for the (k, p)-clustering problem. Then, we apply a constant factor approximation algorithm for
the metric (k, p)-clustering problem on the maintained coreset (e.g., we can use a quadratic-time
local-search algorithm, see [21]). This yields the following theorem.
Theorem 3.1. There exists a randomized algorithm that, given a metric space undergoing insertions
and deletions of points, maintains a set of centers St with Õ(n∗ + k2) update time such that, for any
time t, Cp(Xt, St) = O(1) · Cp(Xt,OPTt).3

The remainder of this section is devoted in proving Theorem 3.1. The main hurdle in applying the
framework from Section 2 is that the optimum solution can change drastically with the addition
or deletion of a point, and it is therefore not easy to adapt the previous amortization argument. To
overcome this barrier, we make use of the following lemma, from [9] and [30]:
Lemma 3.2. Let L be some integer. With probability 1/2, running Meyerson’s algorithm for Facility
Location with f = L

k(1+logn∗) gives a set S of 4k · (1 + log n∗) · (22p+1 · Cp(X,OPT)
L + 1) centers

such that Cp(X,S) ≤ L+ 4 · Cp(X,OPT).

For completeness, we provide the pseudocode of Meyerson’s algorithm, adapted for our purpose,
in Procedure MeyersonCapped. The lemma implies that, if we know a value L that approximates
OPT within a factor 2, Procedure MeyersonCapped computes a set of pointsR and an assignment
of points φ such that

∑
x∈X d(x, φ(x)) ≤ 6 ·Cp(X,OPT) with probability 1/2. This probability can

be boosted to 1− (1/n∗)2 by taking the union of q = O(log n∗) independent copies of the algorithm.
Therefore for all i = 1, ..., q, our algorithm will use this lemma assuming Cp(X,OPT) ∈ [2i, 2i+1),
and taking L = 2i. This provides, for all i, a setRi of O(k log2 n∗) centers.

It remains to maintain those sets dynamically. Similarly to Section 2, we use the solution computed by
Procedure MeyersonCapped for the subsequent k updates, so that we can amortize the update-time
bound. However, for (k, p)-clustering it is not possible to bound the cost of OPT after a few updates.
We overcome this obstacle by updating the sets Ri more carefully. More precisely, let Rti be the
(updated) setRi after t updates of the algorithm. The algorithm ensures the following invariant:
Invariant 3.3. The setRti has size O(k log2 n∗) and, with high probability, there exists i such that
Cp(Xt,Rti) = O(1) · Cp(Xt,OPTt).

3We assume (as in [30]) that the minimum distance in the metric is 1 and the maximum ∆ is bounded by a
polynomial in n∗. Alternatively, our bounds can be stated with log ∆ instead of logn∗.
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Input: An integer L, a set of points X
Output: A set of centers R, an assignment φ

of point to centers, and tl the id of the last
center opened

1: Let R ← ∅ and x1, ..., x|X| be a random
order on the points of X

2: for all i ∈ {1, ..., |X|} do
3: if |R| < 4k · (1 + log n∗) · (22p+2 + 1)

then
4: add xi to R with probability

d(xi,R)pk(1+logn)
L

5: if |R| = 4k · (1 + log n∗) · (22p+2 + 1)
then

6: tl ← i
7: end if
8: end if
9: φ(xi)← arg min

c∈R
{d(xi, c)

p}

10: end for
(a) MeyersonCapped(L,X)

Input: Integers L and tl, a set of points X and
a set of centersR

Output: UpdatedR and tl, an assignment φ of
points to centers

1: {tl is the last time MeyersonCapped was
invoked.}

2: for all j ∈ {tl, ..., |X|} do
3: if no center was opened yet then
4: add xj to R with probability

d(xj ,R)pk(1+logn∗)
L

5: if xj is added toR then
6: tl ← j, φ(xj)← xj
7: end if
8: else {Update φ}
9: φ(xj)← arg min

z∈{φ(xj),xtl
}
{d(xj , z)

p}

10: end if
11: end for
(b) DeletePoint(L, tl, X,R). L is the value with
which we approximate Cp(X,OPT) and tl is the last
time MeyersonCapped opened a center.

For this, initialize Ri to be the union of the outputs of q = O(log n∗) independent executions of
MeyersonCapped(Li, X), for Li = 2i and i = 1, ..., q. The algorithm updates these sets during k
updates before recomputing them from scratch. In the case of a point insertion, it suffices to add the
new point to allRi: over k updates, this changes the cardinality by at most k while the cost remains
the same, and therefore the two conditions are met. The case of a point deletion requires more work.
The idea is, as in Section 2, to replace the deleted center by its closest point. However, this is not
enough to ensure Invariant 3.3: this is taken care of by Procedure DeletePoint, which finds the next
point in Xt that MeyersonCapped would open, if there was no constraint on the size ofR.

We are now ready to describe our fully-dynamic algorithm for maintaining a constant-approximate
solution to the (k, p)-clustering problem. The algorithm uses Procedures MeyersonCapped and
DeletePoint as subroutines to build and maintain the setsRi for i, and after each update calls the
static constant-approximate algorithm to compute an approximate solution Sti on each weighted
instance Ri (where the weight of each point x ∈ Ri corresponds to the number of points of Xt

assigned to x by the function φi, computed in Procedures MeyersonCapped and DeletePoint.
After each update, the algorithm keeps the solution Sti that minimizes Cp(Rti, Sti ), that is, St = Sti
for i = arg mini{Cp(Rti, Sti )}. The pseudocode of the algorithm is stated in Algorithm 1. The proof
of Invariant 3.3 is stated in the supplementary material. The next lemma, together with Invariant 3.3,
shows that St can be used as a solution for the entire set Xt.
Lemma 3.4. Let OPT(Rti) be the optimal solution in the weighted set Rti. Then it holds that
Cp(Xt,OPT(Rti)) ≤ 23p−1(Cp(X,Rti) + Cp(Xt,OPTt)).

This proves the second part of Theorem 3.1: for i such that Cp(Xt,Rti) = O(1) ·Cp(Xt,OPTt), the
solution computed on the setRti is a good approximation of the optimal solution, and therefore the
algorithm maintains a constant factor approximation. The bound on the running time being similar to
the one of Section 2, we provide it in the supplementary material.

4 Empirical Analysis

In this section, we evaluate our algorithm for facility location experimentally. Recall that we aim to
strike a balance between (1) overall running time, (2) the cost of the solution, (3) the total recourse.
Our implementation follows the framework outline in Theorem 2.1. As part of the recomputation
step between two periods, we run 5 independent executions of Meyerson’s algorithm, and selecting
the execution with lowest cost. The updates within a period are handled by assigning to closest
center if distance is less than f or otherwise open a new center at the point, and we simply remove
a client if it gets deleted. We compare our algorithm against two variants of Meyerson’s algorithm.
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Algorithm 1 Fully Dynamic (k, p)-clustering
Input: For all t, Xt be the set of points at time t
Output: For all t, a set St of centers at time t and an mapping φt : Xt → St of points to St

1: Let Rti be the coreset at time t for Li, and φti the function mapping every point of Xt to its
closest point inRti

2: Let t0 be the last time MeyersonCapped was called

3: for all time t do
4: if a point xt is inserted then
5: LetRti = Rt−1

i ∪ {xt},∀i ∈ [log n]
6: else if a point xt is removed then
7: for all i← 1, ..., log n do
8: if xt /∈ Rt−1

i then
9: Rt ← Rt−1

10: else
11: Let z ← φt0(xt)
12: Let z′ ∈ Xt be the closest to z

(breaking ties arbitrarily)
13: Rt ← Rt−1 ∪ {z′}
14: {til is the last timeMeyersonCapped

was invoked onRt−1}
15: Call DeletePoint(Li, til,Rt−1)
16: end if
17: end for
18: end if

19: if t is a multiple of k then
20: {Recompute from scratch allRi}
21: t0 ← t
22: for all i← 1, ..., log n do
23: Rti ←MeyersonCapped(Li, X

t)
24: end for
25: end if
26: {Keep the best among allRti and

assignments φt}
27: (i, St)← arg min

i,Ci=A(Rt
i)

Cp(Ci,Rti)

28: Let ψ : Rti → Ci be the assignment
computed by A

29: φt ← ψ ◦ φti
30: end for

The first one, termed MeyersonRec, re-runs Meyerson at every single update. The second, termed
MeyersonSingle, consists of a single execution of Meyerson for all updates, where deletions are
handled by just removing the distance cost of the deleted point. Following Hubert-Chan et al. [24],
we incorporate deletions by considering a sliding window over the data set. A point is inserted/deleted
when it enters/exists the window, respectively.

Data Set and Setup. We consider the following data sets, equipped with the Euclidean distance.

• The Twitter data set [23], considered by [24], consists of 4.5 million geotagged tweets in 3
dimensions (longitude, latitude, timestamp). We restricted our experiments to the first 200K tweets.

• The COVERTYPE data set [5], considered by [30], from the UCI repository with 581K points and
54 dimensions. We restricted our experiments to the first 100K points and 10 dimensions (the ones
we believed to be appropriate for an Euclidan metric).

• The USCensus1990 data set [32] from the UCI repository has 69 dimensions and 2.5 million points.
We restricted our experiments to the first 30K points.

We restricted the number of points considered due to time constraints. Since larger data sets typically
have more complicated ground truths, we used a larger windows for them containing more samples.
To avoid overfitting, we also adjusted the cost of opening a facility depending on the window size,
i.e. for larger windows a lower opening cost per facility. For COVERTYPE and USCensus1990, we
used a window size of 5000 points and a facility cost of 0.5; for Twitter, the window size was 10000
and the facility cost 0.004. All our codes are written in Python. The experiments were executed on a
Windows 10 machine with processor: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 3701 Mhz, 6
cores, 12 Logical processors, and 16 GB RAM.

Results. In all three data sets we generally observed the same behavior in terms of running time,
cost, and the number of clusters opened, see Figure 2. Our algorithm is 100 times faster than
MeyersonRec. Compared to MeyersonSingle, our algorithm is slower initially. When the number of
processed points becomes very large, the running time of MeyersonSingle deteriorates comparatively,
as it never removes a facility once it has been opened: the time to compute the distance to the
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(a) Running time, Twitter. (b) Cost, Twitter. (c) Recourse, Twitter.

(d) Running time, covertype. (e) Cost, covertype. (f) Recourse, covertype.

(g) Running time, USCensus1990. (h) Cost, USCensus1990. (i) Recourse, USCensus1990.

Figure 2: A comparison of the algorithms we consider in terms of running time (left column), cost of
the solution (middle column), and recourse (right column).

set of facilities is therefore increasing (see Figure 1 in the supplementary material). The cost of
MeyersonSingle generally has a linear dependency on the number of updates, though the slope is
very gentle. This is also what our algorithm takes advantage off, broadly speaking by approximating
the curve with a step function (adapted to handle insertions and deletions). The cost of our algorithm
and MeyersonRec is basically indistinguishable, and in certain cases our algorithm fares even slightly
better. The recourse of our algorithm is expectedly much better than MeyersonRec by a wide margin,
and significantly worse than MeyersonSingle.

Finally, we ran our algorithm with multiple choices of facility cost f , and we observed that the
recourse is almost independent of the both cost and running time of the algorithm, and only depends
on the number of updates. This is consistent with tracking evolving data in time, where the underlying
ground truth clustering also evolves in time.
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