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Abstract1

Forecasting mortality is still a big challenge for Governments that are interested in2

reliable projections for defining their economic policy at local and national level. The3

accuracy of mortality forecasting is considered an important issue for longevity risk4

management. In the literature, many authors have analyzed the long-run relationship5

between mortality evolution and socioeconomic variables, such as economic growth,6

unemployment rate or educational level. This paper investigates the existence of a link7

between mortality and real gross domestic product per capita (GDPPC) over time in8

the Italian regions. Empirical evidence shows the presence of a relationship between 19

mortality and the level of real GDPPC (and not its trend). Therefore, we propose a 210

multi-population model including the level of real GDPPC and we compare it with the11

Boonen–Li model (Boonen and Li in Demography 54:1921–1946, 2017). The validity12

of the model is tested in the out-of-sample forecasting experiment.13

Keywords Longevity risk · Mortality forecasting · Multi-population mortality14

models · Boonen–Li model15

1 Introduction16

3

In the twentieth century, life expectancy has considerably increased, raising the issue17

of longevity risk. An increasing attention is paid by Governments toward more reli-18

able projections of survival probabilities so as to face uncertainty in future mortality19

and better estimate health and pension expenditure, and by insurance companies and20

pension schemes in order to face their obligations. There is an extensive literature on21

mortality forecasting especially in the category of extrapolation methods, including22

the Lee–Carter models family that is widely used in actuarial sciences. The extrap-23
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olation models work on some latent factors, summarizing mortality trend along age,24

period and cohort. Therefore, future mortality rates will depend on unknown param-25

eters. This problem can be overcome by explaining or substituting the latent factors26

with observable variables (e.g., economic growth, health expenditure, environmen-27

tal conditions), which have a greater explanatory power compared to endogenous and28

unobservable factors. There is a growing attention in the analysis of the long-run corre-29

lations between mortality evolution and observable trends of socioeconomic variables.30

The related literature is quite extensive, especially on gross domestic product (used31

as a proxy for the economic growth). The relationship between mortality and gross32

domestic product has been investigated in several empirical studies, among them, the33

most recent are Hanewald (2011), Niu and Melenberg (2014), Boonen and Li (2017)34

and Seklecka et al. (2019). From the beginning of the twentieth century, many authors35

have observed that mortality rates tend to fluctuate with economic cycles and the lit-36

erature was divided between those who argue that the relationship between mortality37

and economic cycles is pro-cyclical [e.g., (Tapia Granados 2008; Tapia Granados and38

Ionides 2011; Ruhm 2005)] and those who argues that mortality increases in times of39

economic instability [e.g., (Brenner 1983) and (Brenner 2005)]. In a pro-cyclical rela-40

tionship, economic expansions imply increasing mortality rates, while recessions an41

opposite behavior. However, Brenner (2005) demonstrates that the economic growth42

occurred in the USA in the twentieth century led to a decrease in mortality rates. The43

impact of macroeconomic fluctuations on the mortality evolution has been typically44

discussed in a single-population framework, while an extension to a multi-population45

framework has been recently proposed by Boonen and Li (2017). They study the46

existence of a long-term relationship between economic growth and mortality for47

groups of closely related populations, and forecast mortality for each population by48

considering this relationship. They assume that the real gross domestic product per49

capita (GDPPC) of the countries within a group with similar socioeconomic condi-50

tions should not diverge and extend the Li–Lee multi-population model (Li and Lee51

2005) by incorporating the GDPPC common trend for the whole group, instead of the52

population-specific GDPPC. The literature about multi-population models based on53

regional analyses is quite extensive. By way of example, Debón and Montes (2011)54

proposed a multi-population mortality model for the Spanish regions, while Danesi55

et al. (2015) compared ten different extensions of the Lee–Carter model (1992) for the56

Italian regions. The use of multi-population models in forecasting mortality is moti-57

vated by the need of coherent mortality forecasts for a group of populations, when the58

populations are similar for socioeconomic conditions and/or belong to a single pop-59

ulation that has been classified according to gender, country area, income level and60

other meaningful characteristics. In this paper we investigate the relationship between61

mortality evolution and macroeconomic fluctuations over time for the Italian regions.62

It is well understandable that the regional populations share some common features63

and their mortality can be jointly modeled by a common time trend. In this perspective,64

we should consider a multi-population mortality model that is able to integrate this65

relationship by simultaneously modeling the regional populations. However, mortality66

improvements can be due to advances in economic growth, public health, lifestyle and67

government regulation that may differ region by region. There are many examples68

of regions that are inhomogeneous along multiple dimensions and this is reflected69
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Longevity risk and economic growth in subpopulations…

on their mortality experience. Our analysis is focused on Italy that we believe could70

provide a meaningful case study. Italian regions, in fact, are characterized by differ-71

ent types of socioeconomic development, living conditions and historical differences72

(which implies a geoeconomic division of the country) as well as different levels of73

mortality improvement. Indeed, during the last decades Italian regions have experi-74

enced significant improvements in mortality, but to different extents. Differently from75

the findings of the paper of Boonen and Li, we observe that Italian regional mortality76

is correlated to the level of real GDPPC and not to its trend. Therefore, we propose77

a multi-population mortality model including a population-specific term depending78

from this level, multiplying a common mortality trend. In order to check the predictive79

capacity of our model, we perform an out-of-sample test. The regional differences cap-80

tured by our model may have important implications on longevity risk management81

in annuity business.82

The paper is organized as follows. In Sect. 2 we illustrate two multi-population83

mortality models: the Li and Lee and the Boonen and Li models. In Sect. 3 we study84

the relationship between mortality and real GDPPC in the Italian regions through a85

cointegration analysis. Section 4 relies on the proposed multiplicative common factor86

model that includes real GDPPC level. The results of the out-of-sample test are also87

provided as well as a discussion on the GDPPC predictive power on regional mortality88

improvements. Section 5 concludes the paper.89

2 Mortality modeling and real GDPPC90

In the following we present the multi-population Li and Lee model (2005) and the91

Boonen and Li model (2017) that is a multi-population model including GDPPC. We92

assume that the number of deaths are modeled by a Poisson distribution (Brouhns93

et al. 2002), D(x, t, i) ∼ Pois(m(x, t, i) · E(x, t, i)), and the models’ parameters are94

estimated by maximizing the corresponding log-likelihood function.95

2.1 The augmented common factor model96

Li and Lee (2005) proposed a multi-population generalization of the Lee–Carter model,97

known as the Augmented Common Factor (ACF), aiming to model mortality for98

a group of populations “in a coherent way, taking advantage of commonalities in99

their historical experience and age patterns, while acknowledging their individual100

differences in levels, age patterns, and trends.” Hence, the ACF ensures that the Lee–101

Carter forecast of the central death rates of two or more populations within a group102

will not diverge in the long-run. This idea is based on the consideration that the past103

differences among similar populations belonging to a single group should not lead to104

a divergence in the long-run. The ACF model has the following parameterization:105

log m(x, t, i) = α(x, i) + B(x)K (t) + β(x, i)k(t, i) + ε(x, t, i) (2.1)106
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where α(x, i), β(x, i) and k(t, i) are population-specific parameters and K (t) is an107

index of the general level of mortality over time. B(x) is a age-dependent parameter108

indicating the sensitivity of log m(x, t, i) to K (t). Both the parameters B(x) and K (t)109

are common to all the subpopulations. For the parameters identifiability, the following110

constraints are necessary:111

∑

x

B(x) = 1;
∑

t

K (t) = 0;
∑

x

β(x, i) = 1;
∑

t

k(t, i) = 0 (2.2)112

2.2 The Boonen–Li model113

Boonen and Li (2017) studied the long-term relationship between economic growth114

and mortality evolution, considering groups of populations related to each other. They115

analyzed four groups: countries with low mortality, Eastern European countries, for-116

mer Soviet Union countries and Sweden. They explain the mortality of a group of117

populations through the common GDPPC trend using a principal component analysis,118

instead of looking at population-specific GDPPC. In practice, their model extends the119

ACF by including an additional component given by the common real GDPPC in log120

scale, g(t). The Boonen–Li model (BL) has the following parameterization:121

log m(x, t, i) = α(x, i) + B(x)K (t) + β(x, i)k(t, i) + γ (x)g(t) + ε(x, t, i)122

(2.3)123
124

where α(x, i), β(x, i), k(t, i), B(x) and K (t) have the same meaning as in the ACF125

model and γ (x) is an index describing the age pattern of g(t). The authors focused the126

analysis on the real GDP trend and transform the logarithm of the real GDPPC in each127

population to have a mean equal to 0. In order to identify the parameters, the model128

requires the same constraints of the ACF (Eq. 2.2) and an orthogonality constraint129

between K (t) and g(t):
∑

t K (t)g(t) = 0.130

3 Analysis of the relationship betweenmortality and GDPPC131

3.1 Data description and notation132

We consider a dataset, provided by Istat (www.istat.it), collecting mortality rates and133

GDPPC from the Italian regions. We joined the small size regions (having population134

less than 500,000 units in 2017) to one of the neighbor regions,1 obtaining 18 regions135

instead of the official 20. The dataset concerns the Italian regional population for ages136

40–89 and years 1980–2016. The real GDPPC dataset covers the same time period. In137

order to exclude the accidental mortality (typically affecting the younger ages) from138

our analysis, we focus on adult ages. We define the index i = 1, 2, . . . , I as the i-139

th subpopulation among the I populations in the study, where I ≥ 2 and consider140

the following data referred to the i-th population at time t : deaths among individuals141

1 Valle d’Aosta is joined to Piemonte (Piemonte-Valle d’Aosta) and Molise to Abruzzo (Abruzzo-Molise).
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aged x , d(x, t, i), exposure-to-risk aged x , E(x, t, i), the corresponding central death142

rate, m(x, t, i) and the logarithm of real GDPPC, g(t, i). While the logarithm of real143

GDPPC for the group of populations is denoted by G(t).144

In Fig. 1 panel a, we plot the curtate life expectancy at age 40 for the Italian145

regions, divided by geographical location (North, Center and South and Islands).2 In146

some regions the life expectancy converges to the national data, e.g., in Abruzzo-M.147

where the value was higher than the national level in 1980 but almost equal in 2016. In148

other cases, it remains far from the national value, e.g., in Campania. More generally,149

we cannot assert that regional life expectancies converge to the national one. Figure150

1b shows log m(x, t, i) for three fixed ages (40, 60, 80) and for five regions that can151

be considered representative of the geographic location of the country. During the152

four past decades Italy experienced a significant improvement in mortality, and these153

plots seem to suggest that the level of this improvement over the period 1980–2016154

follows different patterns among ages and regions, as already observed by Danesi155

et al. (2015). From the plots in panels a, b, c, it is not possible to state that there is156

an evident convergence of central death rates among regions. Their specific socioeco-157

nomic characteristics have probably led these subpopulations to experience a different158

mortality evolution. Therefore, a mortality model common to all the regions seems to159

be inadequate. In particular, a single latent factor for all regions could overestimate160

the evolution of mortality in some regions and underestimate it in others. On the other161

hand, independently modeling the mortality of each region would neglect the possi-162

ble dependencies that regions of the same country should present as part of the same163

system. An adequate mortality model should include one or more common factors to164

take into account possible dependencies among regions, and one or more independent165

factors to take into account the regional divergences. The Italian regions show strong166

differences, not only from the point of view of the survival evolution, but also under167

social and economic aspects.168

Among the Italian regions, a considerable gap in the real GDPPC level exists: for169

example the GDPPC is e34,233 in Lombardia against e15,738 in Calabria in 2017170

(source: Istat). Therefore, the possible relationship between mortality trend and real171

GDPPC has to be deeply investigated in order to verify if the real GDPPC could172

be a possible candidate to explain the different evolution of mortality among the173

Italian regions. Both Hanewald (2011) and Niu and Melenberg (2014) analyzed this174

relationship through the comparison between the Lee–Carter mortality time index and175

the real GDPPC. Since our analysis refers to a group of subpopulations, we study176

the behavior of the ACF population-specific time index of mortality, k(t, i) instead177

of the Lee–Carter time index. The values of k(t, i) show considerable differences178

in the regional mortality trend (Fig. 2a, c–e). In particular, the latent factor shows a179

clear increasing trend for Abruzzo-M., Basilicata, Calabria, Campania, Sardegna and180

Sicilia, a clear decreasing trend for Friuli-V.G., Lombardia, Trentino A.A. and Veneto,181

and a stable trend for the remaining regions. The evolution of real GDPPC in log scale182

by region, g(t, i), evidences appreciable differences between southern and northern183

regions (Fig. 2b, d–f: solid lines refer to regional parameter g(t, i), while dashed line184

2 In the following, we abbreviate Abruzzo-Molise as “Abruzzo-M.,” Emilia-Romagna as “Emilia-R.,”

Friuli-Venezia Giulia as “Friuli-V.G.,” Piemonte-Valle D’ Aosta as “Piemonte-V.D.,” Trentino Alto-Adige

as “Trentino A.A.”
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Fig. 1 a–c Life expectancy (LE) at age 40; d–f logarithm of m(x, t, i). Years 1980–2016. Solid lines refer

to Italian regions, dashed line to Italy

to parameter G(t) for Italy). The North of Italy is richer than the South and this gap185

has been widened by the last economic crisis. The comparison between left and right186

panels of Fig. 2 shows at a glance that mortality has improved over time at higher level187

in the regions with higher level of real GDPPC, suggesting that the driver of mortality188

evolution could be the level of GDP rather than its trend.189

3.2 Cointegration analysis190

To further investigate the long-run relationship between GDP and mortality, we study191

the cointegration between g(t, i) and the ACF population-specific time index, k(t, i).192

The g(t, i) and k(t, i) time series are cointegrated if the following conditions hold:193

– They are non-stationary (i.e., they have a unit root);194

– Their linear combination is stationary.195

This second condition is equivalent to state that there exists a constant b1 such that196

the series k(t, i) − b1 · g(t, i) is stationary.197

We study the cointegration relationship using the Engle and Granger approach198

(Engle and Granger 1991). Following this approach, we preliminarily have to test the199

condition of non-stationarity of g(t, i) and k(t, i), using the Phillips–Perron (PP) test200

(Phillips and Perron 1988) that is a unit root test checking if the time series is integrated201

of order 1, I (1). Secondly, if the condition of non-stationarity is confirmed by the test,202

the constant b1 can be estimated using linear regression: k(t, i) = b0+b1·g(t, i)+u(t),203
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Fig. 2 k(t, i) of ACF model (left panels) and g(t, i) (right panels). Years 1980–2016

where b0 is the intercept and u(t) are the residuals. The k(t, i) and g(t, i) series are204

cointegrated if the residuals of the linear models u(t) are stationary. This last condition205

can be validated by, e.g., the Augmented Dickey–Fuller (ADF) test on the residuals206

u(t). The PP test can be applied by adding a constant, a constant and a linear trend,207

or neither. As regard to our data, we observe that k(t, i) in the years 1980–2016 are208

characterized by a downward/upward trend depending from the region (Fig. 2 left209

panels), while g(t, i) over the same period show similar patterns in all the regions210

(Fig. 2 right panels).211
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Therefore, we perform the PP test on k(t, i) including both a constant and a linear212

trend, while not-including a linear trend for g(t, i). The tests’ results carried out on the213

levels of the time series are shown in Table 1 (columns 3 and 4). The null hypothesis of214

non-stationarity can be rejected for k(t, i) and accepted for g(t, i).The PP test is also215

applied to the first differences of k(t, i) and g(t, i), even if such a transformation might216

miss the long-term properties of the data (see Hanewald (2011) for further details on217

the discussion of the opportunity of differencing a time series). Results given in Table218

1 (columns 5 and 6) show that all the series become stationary after differencing. We219

can conclude that only the level of g(t, i) satisfies the condition of non-stationarity220

required by the Engle–Granger procedure for cointegration.221

Although the series are stationary, we still analyze the cointegration to get a defini-222

tive picture of the relationship between g(t, i) and k(t, i). This analysis is developed223

according to the ADF test, where the null hypothesis is the absence of cointegra-224

tion (Table 1, columns 7 and 8). Critical values for the null of no cointegration are225

provided at the end of the table. As we expected, the results of the ADF test do not226

support the existence of a cointegration relationship between the two series. g(t, i)227

and k(t, i) are not cointegrated in 12 regions (i.e., the null hypothesis of no cointegra-228

tion is accepted), except for Basilicata (cointegration verified at 1% level), Puglia (at229

5% level) and Lazio, Piemonte V.D. and Toscana (at 10% level). The Engle–Granger230

procedure has been also used by Hanewald (2011) to test the cointegration between231

the Lee–Carter mortality index k(t), and real GDP growth rate in six OECD countries232

and different age groups. Similarly to our case, Hanewald’s results show a cointegra-233

tion relationship in about one-quarter of the cases. Also, Niu and Melenberg (2014)234

applied Engle–Granger in order to directly study the long-run relationship between235

log m(x, t) and real GDPPC on log scale and found that these series are cointegrated.236

However, our analysis does not validate the hypothesis of cointegration between the237

evolution of mortality and the logarithm of GDPPC.238

4 Amultiplicative common factor model239

As previously observed, mortality declined more in those regions characterized by a240

highest GDPPC level. Therefore, we focus on the level of g(t, i), rather than on its241

trend, as a possible explanatory factor for describing Italian regions mortality evolu-242

tion. To this aim, we define the following population-specific index, m(i), as the mean243

of the ratio between the GDPPC at regional and national level over time:244

m(i) =
1

T

∑

t

[

g(t, i)

G(t)

]

(4.1)245

where T is the length of the time series. This index will be greater/lower than 1 in the246

wealthier/poorer regions (using GDPPC as proxy) with respect to the national value.247

In order to investigate the link between mortality and real GDPPC level, we compare248

m(i) with the ratio, r(i), between the slope of regional life expectancy (at age 40 over249

the period 1980–2016) with respect to the corresponding slope for the entire country.250

Hence, r(i) is greater than 1 for those regions that have experienced a higher increase251
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Longevity risk and economic growth in subpopulations…

Table 1 Results of the PP test on the ACF population-specific index, k(t, i), and real GDPPC on log scale,

g(t, i), in Italian regions. Levels of time series (columns 3–4) and first differences (columns 5–6)

Region PP test: levels PP test: first diff. ADF test

i Name k(t, i) g(t, i) k(t, i) g(t, i) Test statistics

1 Abruzzo-M. − 38.940∗∗∗ − 0.566 − 42.921∗∗∗ − 20.500∗∗ − 0.887

2 Basilicata − 31.054∗∗∗ − 3.673 − 42.707∗∗∗ − 27.766∗∗∗ − 4.259∗∗∗

3 Calabria − 26.697∗∗∗ − 0.299 − 43.094∗∗∗ − 52.168∗∗∗ − 0.934

4 Campania − 24.864∗∗∗ − 2.805 − 38.991∗∗∗ − 23.154∗∗ − 1.288

5 Emilia-R. − 13.195 − 0.955 − 42.048∗∗∗ − 21.461∗∗ − 1.958

6 Friuli-V.G. − 34.819∗∗∗ − 0.917 − 50.146∗∗∗ − 22.328∗∗ − 1.225

7 Lazio − 36.120∗∗∗ 0.238 − 48.929∗∗∗ − 23.678∗∗ − 3.040∗

8 Liguria − 27.088∗∗∗ − 0.606 − 52.285∗∗∗ − 19.602∗∗ − 2.156

9 Lombardia − 36.344∗∗∗ − 0.832 − 52.112∗∗∗ − 29.009∗∗∗ − 0.574

10 Marche − 20.939∗∗ − 0.062 − 39.633∗∗∗ − 19.948∗∗ − 2.892

11 Piemonte-V.D. − 21.895∗∗ − 0.645 − 40.356∗∗∗ − 26.629∗∗∗ − 3.153∗

12 Puglia − 19.123∗∗ − 1.163 − 33.767∗∗∗ − 22.271∗∗ − 3.494∗∗

13 Sardegna − 32.431∗∗∗ 0.309 − 43.368∗∗∗ − 29.558∗∗∗ − 0.316

14 Sicilia − 22.309∗∗ − 1.303 − 47.296∗∗∗ − 21.174∗∗ − 0.358

15 Toscana − 21.196∗∗ − 0.285 − 42.290∗∗∗ − 22.791∗∗ − 3.085∗

16 Trentino-A.A. − 25.693∗∗∗ − 1.445 − 51.140∗∗∗ − 35.945∗∗∗ − 1.747

17 Umbria − 25.739∗∗∗ 0.159 − 48.441∗∗∗ − 31.669∗∗∗ − 2.911

18 Veneto − 38.940∗∗∗ − 0.627 − 46.206∗∗∗ − 24.436∗∗∗ − 1.349

Engle–Granger cointegration approach: results of the ADF for the residuals of regression of k(t, i) and

g(t, i) (column 7)

PP test ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. ADF test +−2.91 for p < 0.10, ∗−3.17 for p < 0.05, and
∗∗−3.73 for p < 0.01. Lags = 1

in life expectancy than Italy. In order to be a good candidate to explain mortality, m(i)252

should not be too sensitive to the estimation horizon. Therefore, we test its robustness253

using data from three periods of different extent: 1980–2006, 1980–2011, 1980–2016254

(Table 2). We observe a correspondence between m(i) (period 1980–2016) and r(i)255

in 14 regions over 18. The values of m(i) show very small variations over the time256

intervals included in our test. Overall, considering all the periods, m(i) has values257

between 0.950 (Calabria 1980–2016) and 1.030 (Trentino-A.A. 1980–2016), while258

the percentage variation obtained by changing the estimation period is very small259

(under 1%). Therefore, m(i) can be considered fairly stable over time.260

Our analysis shows that regions characterized by a higher level of income show261

a more increasing trend in life expectancy compared to the national level, and the262

opposite is true for lower-income regions. Moving from this consideration, we use263

the m(i) index (measuring the regions’ level of wealth) to differentiate the evolution264

of mortality among the Italian regions and propose the following multi-population265

mortality model:266

log m(x, t, i) = α(x, i) + m(i)B(x)K (t) + ε(x, t, i) (4.2)267
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G. Bozzo et al.

Table 2 Values of m(i) by different fitting periods and values of r(i)

Region m(i) r(i)

i Name 1980–2006 1980–2011 1980–2016 1980–2016

1 Abruzzo-M. 0.992 0.987 0.986 0.861

2 Basilicata 0.965 0.961 0.963 0.856

3 Calabria 0.952 0.951 0.950 0.837

4 Campania 0.967 0.964 0.963 0.942

5 Emilia-R. 1.017 1.017 1.017 0.958

6 Friuli-V.G. 1.001 1.002 1.003 1.181

7 Lazio 1.017 1.021 1.020 0.918

8 Liguria 1.006 1.010 1.010 0.936

9 Lombardia 1.018 1.026 1.025 1.205

10 Marche 0.999 0.994 0.994 0.911

11 Piemonte-V.D. 1.014 1.009 1.009 1.020

12 Puglia 0.962 0.958 0.958 0.942

13 Sardegna 0.973 0.971 0.971 0.875

14 Sicilia 0.967 0.964 0.963 0.862

15 Toscana 1.005 1.006 1.006 0.927

16 Trentino-A.A. 1.028 1.029 1.030 1.223

17 Umbria 0.995 0.999 0.997 0.938

18 Veneto 1.004 1.010 1.011 1.168

Italian regions

Parameters are identified by applying the constraints,
∑

x B(x) = 1 and
∑

t K (t) =268

0. The m(i) index is an exogenous variable linking the mortality evolution over time,269

common to a group of subpopulations [and described by K (t)], to the GDPPC level270

of each subpopulation. Note that our model does not imply coherence of the forecasts271

as defined by Li and Lee (2005), consistently with the lack of coherence among272

Italian regions in the observed mortality evolution. The main advantages of our model273

are: the parsimony (number of parameters less than other models including GDP),274

the demographical significance due to an observable economic variable (the GDPPC275

level) and the ease of implementation.276

In the forecasting, the time-dependent parameter K (t) is modeled by an ARIMA277

(0, 1, 0):278

K (t) = K (t − 1) + δ + ǫ(t), ε(t) ∼ N (0, σ 2
K ) (4.3)279

where δ is the drift parameter and ε(t) are the error terms, normally distributed with280

null mean and variance σ 2
K . The model’s goodness of fit is evaluated according to the281

Bayesian Information Criterion (BIC) providing a trade-off between the quality of the282

fit and the parsimony of the model. The BIC formula is: B I C = −2 log L + N log n,283

where n is the number of observations, N the number of free parameters to be estimated284

and L the maximized value of the likelihood function for the estimated model. Our285

model provides the best BIC result (−151, 293), compared to the BL model (−151,286
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Longevity risk and economic growth in subpopulations…

716), as a direct consequence of the parsimony: 985 parameters versus 2564 for the287

BL model.288

4.1 Out-of-sample test289

We check the model’s predictive capacity through the out-of-sample test that is290

a traditional statistical test of a model’s forecast performance. Empirical evidence291

from out-of-sample forecast performances is generally considered more reliable with292

respect to in-sample performances, usually more sensitive to outliers and data mining.293

In the test, the data set is split into an in-sample period (1980–2006), used to estimate294

the model’s parameter and an out-of-sample period (2007–2016), used to evaluate the295

forecasting performance. The goodness of the out-of-sample test is measured through296

the Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE).297

MAPE is defined by:298

MAPE = 100 ·
1

τ · N
·
∑

x,t

∣

∣

∣

∣

mx,t,i − m̂x,t,i

mx,t,i

∣

∣

∣

∣

(4.4)299

where N is the number of free parameters to be estimated, τ is the number of out-300

of-sample years and m̂x,t,i are the central death rates forecasted by the model for the301

subpopulation i . While, RSME is defined by:302

RMSE =

√

∑

x,t

(

mx,t,i − m̂x,t,i

)2

N
(4.5)303

The forecast’s accuracy of our model is compared to the BL model. In the latter,304

following the authors, the population-specific parameters k(t, i) are forecasted by an305

AR (1) for each i ∈ I in order to avoid a long-term divergence between mortality306

rates, while G(t) is extrapolated by a RWD. In our model, m(i) is calculated from307

the observed values of the GDPPC level over the in-sample period 1980–2006 and308

supposed to remain constant over the out-of-sample period (we checked its robustness309

in the previous section). Table 3 shows the results of the MAPE and RMSE for the310

out-of-sample forecast (period 2007–2016), where G(t) is extrapolated by a RWD.311

Our model obtains the best performance in 8 regions (representing 44% of the country)312

according to MAPE and in 11 regions (61% of the country) according to RMSE. In313

light of these results, it is not possible to clearly determine which model is preferable314

between BL and our model.315

4.2 Discussion on the GDPPC predictive power on regional mortality316

improvements317

The BL model is based on the idea that the evolution of mortality is influenced by318

the GDPPC dynamics. Therefore, in the out-of-sample window, the model requires319

an assumption on the future evolution of GDPPC, and mortality projections depend320

on such an assumption. The G(t) values, both historical (black line) and forecasted321

according to the BL model (blue line), are illustrated in Fig. 3 (panel a) with 95%322
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Table 3 MAPE and RMSE

i Name MAPE RMSE

Boonen–Li Our model Boonen–Li Our model

1 Abruzzo-M. 11.81% (2) 11.78% (1) 0.003236 (1) 0.003373 (2)

2 Basilicata 10.37% (2) 9.70% (1) 0.004748 (2) 0.003326 (1)

3 Calabria 12.24% (2) 10.47% (1) 0.003664 (2) 0.002542 (1)

4 Campania 10.54% (2) 9.97% (1) 0.003899 (2) 0.003584 (1)

5 Emilia-R. 6.09% (1) 7.20% (2) 0.002987 (1) 0.003914 (2)

6 Friuli-V.G. 8.70% (2) 8.63% (1) 0.003305 (2) 0.003030 (1)

7 Lazio 9.11% (1) 10.12% (2) 0.003116 (2) 0.002969 (1)

8 Liguria 8.83% (1) 9.49% (2) 0.003122 (1) 0.003724 (2)

9 Lombardia 4.07% (1) 5.15% (2) 0.002676 (2) 0.002335 (1)

10 Marche 9.19% (1) 9.40% (2) 0.003006 (1) 0.003096 (2)

11 Piemonte-V.D. 5.48% (1) 6.39% (2) 0.002899 (1) 0.003416 (2)

12 Puglia 8.78% (2) 7.63% (1) 0.003143 (2) 0.002450 (1)

13 Sardegna 12.02% (2) 11.24% (1) 0.002509 (2) 0.001790 (1)

14 Sicilia 11.07% (2) 10.42% (1) 0.003704 (2) 0.002696 (1)

15 Toscana 7.12% (1) 7.74% (2) 0.003061 (1) 0.003548 (2)

16 Trentino-A.A. 7.49% (1) 8.64% (2) 0.003388 (2) 0.002679 (1)

17 Umbria 8.56% (1) 8.68% (2) 0.003112 (2) 0.002840 (1)

18 Veneto 4.77% (1) 6.69% (2) 0.003137 (1) 0.003215 (2)

Italian regions. Years 2007–2016

confidence intervals. It is clearly evident that the historical G(t) suffered a setback in323

2008 due to economic crisis, bringing the country into a recession from which it has324

not yet come out. Since the GDPPC has grown in the estimation window (1980–2006),325

the BL model assumes that this growth will continue in the next years (2007–2016).326

As a consequence, the model assumes a positive impact of GDPPC on mortality327

trend in the period 2007–2016: as γ (x) has a negative sign, an increase in GDPPC328

causes a reduction in mortality rates (see Eq. 2.3). According to the BL model, a329

decreasing GDPPC trend should produce a mortality increase or at least a slower330

reduction. Nevertheless, Italy has experienced a worsening of the economic conditions4 331

that, apparently, had no immediate consequences on mortality rates as shown by the332

evolution of life expectancy at age 40 (Fig. 3b). In light of these considerations, based333

on the Italian regions, the explanatory capacity of the BL model during a period of334

economic crisis could be questionable as the mortality rates obtained for 2007–2016335

depend on the increased GDPPC assumption, not verified in Italy.336

4.3 Application to annuity portfolios337

In this section we measure the impact of applying our model to evaluate a life annuity338

portfolio. We consider three portfolio compositions: in the first (Italian portfolio) the339

insured population portrays the regional composition of the Italian population aged340
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Fig. 3 a Values of G(t), historical (black line) and forecasted with the BL model (blue line) with 95%

confidence intervals. b Life expectancy at age 40. Years 1980–2016. Italy

Table 4 Annuity values with

different portfolio regional

compositions

Italy North–East South–West

a(65, 2017) 22.207 22.744 21.323

Relative change (%) – 2.42% −3.98%

65 in 2016, in the second (North–East portfolio) the composition of Emilia-Romagna,341

Veneto and Trentino Alto-Adige population, in the third (South–West portfolio) the342

composition of Campania, Calabria and Sicilia population. North–East regions are343

characterized by high GDPPC level while the South–West ones by low GDPPC level.344

Consequently, according to our model, the North–East portfolio will experience higher345

mortality improvements than the Italian population and the opposite for the South–346

West portfolio.347

We define the expected present value of an immediate annuity of 1 m.u. per year,348

paid in arrears, if the policyholder is alive as:349

a(x, t) =

ω−x
∑

h=1

h px,t · d(t, t + h) (4.6)350

where ω is the maximum attainable age, h px the probability of an individual aged x at351

time t to be alive at age x + h and d(t, t + h) the discount factor from time t to t + h.352

We consider a portfolio of immediate annuities written on a cohort of 1000 indi-353

viduals, all aged 65 in 2017. The interest rate is assumed to be deterministic and equal354

to zero, therefore a(x, t) corresponds to the life expectancy at age x and time t .3 The355

a(x, t) values for the 18 regions are depicted in Fig. 4 and vary from 21.06 (Campania)356

to 22.94 (Trentino Alto-Adige), with a difference in life expectancy of almost 2 years.357

The expected present value of the three annuity portfolios are reported in Table 4.358

Our results show that the evaluation of an annuity portfolio with national life tables359

(as usual in actuarial practice) could lead to an overestimation/underestimation in pric-360

3 Life tables are extended until age 119 (ω = 120) using a logistic extrapolation.
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Fig. 4 Annuity values for a cohort aged 65 in 2017. Italian regions

ing and reserving. In this regard, our model, accounting for the regional heterogeneity,361

allows to reduce misestimations in actuarial evaluations.362

5 Conclusions363

During the period 1980–2016, Italy experienced a significant improvement in mortality364

with different regional patterns, probably due to specific socioeconomic character-365

istics. To deepen the understanding of this phenomenon, we study the long-term366

relationship between economic growth (using real GDPPC as a proxy) and mortality367

evolution at both regional and national level. We analyze the cointegration between368

the ACF population-specific time index of mortality and the logarithm of the regional369

real GDPPC, concluding that the evolution of mortality in Italy is not driven by the370

GDPPC trend. We observe that mortality declined more in the wealthiest regions,371

therefore we test a model that describes the mortality evolution by the GDPPC level372

and not by its trend. Our model is compared to the multi-population model of Boonen373

and Li, which includes a factor representing the GDPPC common trend, providing374

the best BIC results. The out-of-sample test confirms the validity of our model. It375

provides the best performance in term of RMSE for 61% of the country respect to the376

BL model. However, the level of the best performance decreases when considering377

MAPE (44% of the country). Our analysis shows that both the BL and our model378

are adequate to represent the Italian regional mortality. However, the BL model could379

overestimate the effects of an economic crisis on mortality rates. As soon as mortality380

data for a longer period is available, further analyses may be conducted by including381

the economic crisis in the estimation window in order to evaluating the performance382
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of the two models. The application of our model to an annuity portfolio highlights the383

importance of including regional heterogeneity in actuarial evaluations. Therefore, it384

might be considered an useful tool for the longevity risk management of the annuity385

business in Italy.386
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