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Abstract: Magnesium (Mg2+) levels are associated with insulin resistance, hypertension,
atherosclerosis, and type 2 diabetes (T2DM). We evaluated the clinical utility of physiological
Mg2+ in assessing subclinical cardiovascular organ damage including increased carotid artery intima-
media thickness (c-IMT) and left ventricular mass index (LVMI) in a cohort of well-characterized
adult non-diabetic individuals. Age- and gender-adjusted correlations between Mg2+ and metabolic
parameters showed that Mg2+ circulating levels were correlated negatively with body mass index
(BMI), fasting glucose, and 2h-oral glucose tolerance test (OGTT) glucose. Similarly, Mg2+ levels were
significantly and negatively related to c-IMT and LVMI. A multivariate regression analysis revealed
that age (β = 0.440; p < 0.0001), BMI (β = 0.225; p < 0.0001), and Mg2+ concentration (β = −0.122;
p < 0.01) were independently associated with c-IMT. Age (β = 0.244; p = 0.012), Mg2+ (β = −0.177;
p = 0.019), and diastolic blood pressure (β = 0.184; p = 0.038) were significantly associated with LVMI
in women, while age (β = 0.211; p = 0.019), Mg2+ (β = −0.171; p = 0.038) and the homeostasis model
assessment index of insulin resistance (HOMA-IR) (β = −0.211; p = 0.041) were the sole variables
associated with LVMI in men. In conclusion, our data support the hypothesis that the assessment of
Mg2+ as part of the initial work-up might help unravel the presence of subclinical organ damage in
subjects at increased risk of cardiovascular complications.

Keywords: magnesium; subclinical atherosclerosis; atherosclerosis; cardiovascular disease;
carotid-intima media thickness; left ventricular mass index

1. Introduction

Magnesium (Mg2+), the principal intracellular divalent cation, is vital for a healthy human body
and its importance has been highlighted since 1933, when Kruse et al. [1] reported the negative
effects of acute Mg2+ deficiency in rats. Serum concentrations of Mg2+ is not routinely included as
part of the automated chemistry profile and hypomagnesemia has been commonly unrecognized [2].
For this reason, Mg2+ has been defined as the “forgotten cation” in clinical practice [3]. Indeed it is
nowadays recognized that Mg2+ plays a key role in a wide range of fundamental cellular reactions
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and biological processes, such as DNA synthesis, RNA expression [4], protein synthesis, and the
regulation and catalysis of many enzymatic reactions [5]. At a molecular level, it forms a crucial
complex with adenosine triphosphate and neutralizes its negative charge to facilitate binding to
enzymes [6], and it activates rate-limiting glycolytic and tricarboxylic acid cycle enzymes regulating
intermediary metabolism [7]. Furthermore, it is involved in fundamental physiological mechanisms
for transfer, storage, and use of energy [8,9].

Clinical and experimental evidences suggest that serum Mg2+ concentration decreases in humans
and animals in several chronic diseases [10]. Values below the threshold of 0.5 mM [11] are indicative
of hypomagnesemia [12] and could result from redistribution of Mg2+ from the extracellular to the
intracellular space, reduced intake, intestinal absorption alterations, and gastrointestinal loss [11].

It has been demonstrated that Mg2+ has vasodilatory, anti-inflammatory, anti-ischemic, and
antiarrhythmic properties; thus, it is presumably a useful therapeutic agent in cardiovascular medicine.
Indeed, several epidemiological studies have established that hypomagnesemia may increase the risk
of cardiovascular disease (CVD) [13]. Accordingly, randomized controlled trials and meta-analyses
have revealed an inverse association between dietary Mg2+ intake and a large number of preclinical
and clinical risk factors of CVD [14], hypertension, atherosclerosis, stroke, cardiac arrhythmias [15],
abnormal lipid metabolism, insulin resistance, metabolic syndrome, and type 2 diabetes mellitus
(T2DM) [16].

The task of assessing subclinical organ damage is a crucial key in the identification of subjects
with primary hypertension. In fact, a diagnosis of left ventricular hypertrophy (LVH) or peripheral
atherosclerosis strongly increases the overall cardiovascular risk profile and may be helpful for deciding
whether to begin treatment or to detect optimal target blood pressure [17]. Carotid artery intima-media
thickness (c-IMT) is a well-established subclinical marker of vascular damage, and it has been shown
to predict cardiovascular events [18–20]. Increased left ventricular mass index (LVMI) is another
independent organ damage index that has been associated with cardiovascular morbidity and mortality
in the general population [21].

In this study, we aimed to analyze the clinical utility of physiological Mg2+ levels in assessing
subclinical cardiovascular organ damage, including increased carotid artery c-IMT and LVMI in a
cohort of well-characterized adult non-diabetic individuals participating in the CATAnzaro MEtabolic
RIsk factors (CATAMERI) study.

2. Materials and Methods

2.1. Study Population

The study population consisted of 413 unrelated Caucasian subjects (180 men and 233 women;
mean age 44± 12 years), who were enrolled in the CATAMERIS, an observational study dedicated to the
identification and characterization of cardio-metabolic risk factors [22,23]. The exclusion criteria were
the presence of autoimmune diabetes, T2DM, chronic gastrointestinal diseases, chronic pancreatitis,
a history of any malignant disease, a history of alcohol or drug abuse, and liver or kidney failure.

For all participants, anthropometrical parameters such as body mass index (BMI), waist
circumference, systolic (SBP) and diastolic (DBP) blood pressure after a 12-h fast, were assessed,
and blood samples were collected for biochemical measurements. Height was measured to the nearest
0.1 cm, while body weight was measured with a calibrated electronic scale to the nearest 0.1 kg. BMI was
calculated as body weight in kilograms divided by height in square meters (kg/m2). A 75-g oral glucose
tolerance test (OGTT) was performed with 0, 30, 60, 90, and 120 min sampling for circulating plasma
glucose and insulin measurements.

The study was approved by the Institutional Ethics Committee of the University “Magna Graecia”
of Catanzaro (approval code: 2012.63). Written informed consent was obtained from each subject in
accordance with the principles of the Declaration of Helsinki.
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2.2. Ultrasound Measurement of c-IMT and Echocardiographic Assessments

High resolution B-mode ultrasound was used to measure c-IMT of the common carotid artery
using an ATL HDI 3000 ultrasound system (Advanced Technology Laboratories, Bothell, WA) equipped
with a 7.5 MHz transducer, as previously described in [24]. Echocardiographic assessments were
performed by a single experienced examiner, who was blinded to the clinical and laboratory results of
the study group. Tracings were taken with patients in a partial left decubitus position using a VIVID-7
Pro ultrasound machine (GE Technologies, Milwaukee, WI) with an annular phased array 2.5-MHz
transducer. Only frames with optimal visualization of cardiac structures were considered for reading.
LVM was calculated using the Devereux equation [25] and normalized by body surface area (LVM
index [LVMI]).

2.3. Laboratory Determinations

Blood levels of glucose, triglycerides, total cholesterol, and high-density lipoprotein (HDL)
cholesterol levels were measured by enzymatic methods (Roche, Basel, Switzerland). HbA1c was
assessed with high performance liquid chromatography using a National Glycohemoglobin
Standardization Program (NGSP) certified automated analyzer (Adams HA-8160 HbA1C analyzer,
Menarini, Italy). A chemiluminescence-based assay (Immulite®, Siemens, Italy) was used to measure
serum insulin concentrations. Serum Mg2+ concentrations were measured by COBAS INTEGRA Mg2+,
based on a colorimetric method assay (Roche Diagnostic, Mannheim, Germany).

2.4. Calculations

The homeostasis model assessment index of insulin resistance (HOMA-IR) was calculated as
fasting insulin × fasting glucose/22.5 [26]. A value of c-IMT > 0.9 mm was used as the index of vascular
atherosclerosis according to the 2018 ESC/ESH Guidelines for the management of arterial hypertension:
The Task Force for the management of arterial hypertension of the European Society of Cardiology
(ESC) and the European Society of Hypertension (ESH) [27]. The partition values adopted for the
definition of hypertension-mediated organ damage by echocardiography were LVMI > 115 (men) and
> 95 (women), as recommended by the 2018 ESC/ESH guidelines [27].

2.5. Statistical Analysis

Variables with skewed distribution (i.e., triglycerides, fasting insulin, and HOMA-IR) were log
transformed to meet the normality assumption for statistical purposes. The results for continuous
variables are given as means ± SD, whereas categorical variables are reported as percentages. The χ2

test was used for comparison of categorical variables within quartile groups. Correlation coefficients
were calculated according to Pearson’s method. Anthropometric and cardio-metabolic variables were
tested after adjusting for age, gender, and BMI using a general linear model with post hoc Bonferroni
correction for multiple comparisons. A multivariable linear regression analysis was performed in
order to evaluate the independent contribution of Mg2+ to c-IMT and LVMI. A logistic regression
analysis adjusted for confounders was used to determine the strength of the association between the
study groups and vascular atherosclerosis (c-IMT > 0.9 mm) [28] or hypertension-mediated organ
damage (LVMI > 115 in males, LVMI > 95 in women) [27]. All analyses were performed using the
statistical package SPSS 22.0 for Windows (SPSS, Chicago, IL, USA) and p ≤ 0.05 was considered
statistically significant.

3. Results

The anthropometric and metabolic characteristics of the study group are summarized in Table 1.
Notably, the study cohort was relatively young (44 ± 12 years), and it showed a wide range of BMI
(30.6 ± 7.2) with a ~43.6% prevalence of obese subjects. Women were significantly younger than
men, and they also showed significantly lower values of blood pressure, 2h-OGTT glucose levels,
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triglycerides, and LVMI. When comparing gender groups (men and women) no significant differences
were observed in BMI, total cholesterol, fasting insulin, and HOMA-IR, while we observed significant
variation in lipid profiles, 2h-OGTT glucose levels, and smoking habits.

Table 1. Anthropometric and metabolic characteristics of the study subjects.

Variables Whole Study Group Male Female p

Gender (M/F) 413 180 233 <0.01 *
Age (years) 44 (±12) 46 (±11) 43 (±12) <0.03 **

BMI (Kg/m2) 30.6 (±7.2) 30.2 (±5.5) 30.9 (±8.2) 0.305 ***
SBP (mmHg) 123.2 (±15.0) 128.9 (±13.7) 119.0 (±14.5) <0.0001
DBP (mmHg) 77.6 (±10.2) 80.7 (±9.4) 75.2 (±10.2) <0.0001

Total cholesterol (mg/dl) 197.9 (±35.7) 198.7 (±34.1) 197.2 (±36.8) 0.67
HDL-Chol (mg/dl) 50.9 (±13.9) 43.1 (±10.1) 56.8 (±13.5) <0.0001
LDL-Chol (mg/dl) 126.0 (±30.8) 129.4 (±30.1) 123.3 (±31.1) <0.05

Triglycerides (mg/dl) 122.8 (±71.7) 139.9 (±76.3) 109.6 (±64.9) <0.0001
Mg2+ (mg/dl) 2.00 (±0.16) 2.02 (±0.16) 1.98 (±0.16) <0.05

Fasting glucose (mg/dl) 92.8 (±10.5) 94.9 (±10.5) 91.4 (±10.2) <0.001
Fasting insulin (U/l) 14.3 (±9.3) 14.9 (±9.1) 13.8 (±9.5) 0.249

2h OGTT glucose (mg/dl) 120.7 (±29.7) 124.1 (±29.5) 118.2 (±29.6) <0.05
HOMA-IR 3.30 (±2.2) 3.52 (±2.18) 3.13 (±2.16) 0.063

c-IMT (mm) 0.69 (±0.16) 0.70 (±0.17) 0.67 (±0.15) 0.061
LVMI (g/m2) 94.8 (±22.9) 106.5 (±25.5) 86.1 (±16.0) <0.0001

Smoking habits (Y/N) 83/330 46/134 37/196 <0.01

The data are presented as means ± SD for continuous variables and number (percentages) for dichotomous variables.
Comparisons were performed using a general linear model with post hoc Bonferroni correction for multiple
comparisons and by the χ2 test for categorical variables. P values refer to results after analyses with adjustment
for age, gender, and BMI. * P values refer to results after analyses with adjustment for age and BMI. ** P values
refer to results after analyses with adjustment for gender and BMI. *** P values refer to results after analyses with
adjustment for age and gender. Triglycerides and fasting insulin were log transformed for statistical analysis, but
values in the table represent back transformation to the original scale. SBP, systolic blood pressure; DBP, diastolic
blood pressure; HDL-Chol, high-density lipoprotein cholesterol; LDL-Chol, low-density lipoprotein cholesterol;
HOMA-IR, the homeostasis model assessment index of insulin resistance; LVMI, left ventricular mass index; and
c-IMT, carotid intima-media thickness.

As shown in Table 1, men and women had similar distributions of c-IMT, whereas the mean value
of LVMI differed significantly in the two groups (p < 0.0001).

The results of univariate correlations between Mg2+ concentration and anthropometric and
cardio-metabolic variables in the whole study group are presented in Table 2. Mg2+ circulating levels
were positively correlated with SBP (r = 0.105; p = 0.03) whereas were negatively correlated with BMI
(r = −0.144; p < 0.01), 2h OGTT glucose (r = −0.108; p < 0.03), HOMA-IR (r = −0.102; p = 0.04), c-IMT
(r = −0.113; p < 0.03) and LVMI (r = −0.122; p < 0.03). In a Pearson’s correlation analysis adjusted for
age and gender, BMI (r = −0.176; p < 0.001), fasting glucose (r = −126; p < 0.03), 2h OGTT glucose
(r = −0.164; p < 0.01), c-IMT (r = −0.140; p = 0.01) and LVMI (r = −0.209; p < 0.001) remained negatively
correlated to Mg2+ circulating levels, and in addition HDL-Col showed a significant positive correlation
(r = 0.124; p < 0.03).

To evaluate the independent factors influencing the variability of c-IMT, a multivariate linear
stepwise regression analysis was run in a model including age, BMI, Mg2+, gender, SBP, DBP, total
HDL- and LDL-cholesterol, HOMA-IR, and smoking habits. The three variables that remained and
significantly associated with c-IMT were age (β = 0.440; p < 0.0001), BMI (β = 0.225; p < 0.0001),
and Mg2+ concentration (β = −0.122; p < 0.01), accounting for 27.8 % of c-IMT variation (Table 3).

Next, a multiple linear regression analysis was separately performed in women and men in
order to estimate the strength of the association between Mg2+ and LVMI (Table 4A,B, respectively).
Comparison of standardized coefficients were allowed to determine the relative impact of each factors
on LVMI. Age (β = 0.244; p = 0.012), Mg2+ (β = −0.177; p = 0.019) and DBP (β = 0.184; p = 0.038)
were significantly associated with LVMI in women (Model 1), while when the multivariate regression
analysis was performed in men (Model 2), age (β = 0.211; p = 0.019), Mg2+ (β = −0.171; p = 0.038),
and HOMA-IR (β = −0.211; p = 0.041) were the sole statistically significant variables. Altogether, our
models explained 21.6% of LVMI variance in women and 15.4% in men.
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Table 2. Univariate correlations between Mg2+ and anthropometric and biochemical variables.

Unadjusted Correlations Between Mg2+

and Metabolic Variables
Age- and Gender-adjusted Correlations
Between Mg2+ and Metabolic Variables

Variables Pearson’s Correlation
Coefficient (r) P Pearson’s Correlation

Coefficient (r) P

Age (yr−1) 0.082 0.098 0.072 0.146 **
BMI (Kg/m2) −0.144 <0.01 −0.176 <0.001 *
SBP (mg/dl) 0.105 0.032 0.038 0.494

DBP (mmHg) 0.060 0.224 −0.005 0.927
Total cholesterol (mmHg) 0.006 0.908 −0.017 0.754

HDL-Chol (mg/dl) 0.032 0.518 0.124 <0.03
LDL-Chol (mg/dl) 0.029 0.560 −0.004 0.935

Triglycerides (mg/dl) 0.002 0.973 −0.036 0.512
Fasting glucose (mg/dl) −0.060 0.224 −0.126 <0.03

2h OGTT glucose (mg/dl) −0.108 <0.03 −0.164 <0.01
FP insulin (mU/mL) −0.085 0.084 −0.072 0.195

HOMA-IR −0.102 0.040 −0.098 0.077
c-IMT (mm) −0.113 <0.03 −0.140 0.010
LVMI (g/m2) −0.122 <0.03 −0.209 <0.001

BMI = body mass index; SBP = systolic blood pressure; DBP = diastolic blood pressure; HDL-Chol = high density
lipoprotein; LDL-Chol = low density lipoprotein; FP insulin = fasting plasma insulin; c-IMT = carotid intima-media
thickness; LVMI = left ventricular mass index. * P values refer to results after analyses with adjustment for age.
** P values refer to results after analyses with adjustment for gender.

Table 3. Stepwise multivariable regression analysis of the c-IMT index as a dependent variable and
different covariates in the whole population.

Dependent Variable c-IMT Independent Contributors Standardized Coefficient β P

AGE 0.440 <0.0001
BMI 0.225 <0.0001

Mg2+ −0.122 < 0.01
Gender 0.035 0.505

SBP 0.065 0.292
Model DBP −0.075 0.204

Total- cholesterol −0.131 0.220
HDL-Chol −0.026 0.657
LDL-Chol 0.182 0.087
HOMA-IR −0.036 0.481

Smoking habits −0.017 0.706

Table 4. Stepwise multivariable regression analysis of LVMI as a dependent variable and different
covariates in women (Model 1) and men (Model 2).

Dependent Variable LVMI Independent Contributors Standardized Coefficient β p

AGE 0.244 0.012
Mg2+ −0.177 0.019
DBP 0.184 0.038
SBP 0.083 0.383
BMI 0.150 0.090

Model 1 Total- cholesterol −0.071 0.710
HDL-Chol 0.101 0.268
LDL-Chol 0.091 0.623
HOMA-IR 0.057 0.512
Menopause −0.025 0.787

Smoking habits −0.085 0.240

AGE 0.211 0.019
Mg2+ −0.171 0.038

HOMA-IR −0.211 0.041
BMI 0.221 0.220

Model 2 SBP 0.147 0.176
DBP −0.075 0.488

Total cholesterol −0.231 0.248
HDL-Chol 0.070 0.935
LDL-Chol 0.181 0.354

Smoking habits 0.034 0.693
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4. Discussion

Mg2+ has a pivotal role in the homeostasis of the organism because it is a cofactor of several
enzymes involved in most cellular processes [29]. Alterations of Mg2+ levels have been involved
in several pathologic conditions [30], and a tight regulation of Mg2+ absorption and excretion is
fundamental for the well-being of the organism [31]. Intestinal Mg2+ uptake is counterbalanced by
renal Mg2+ depletion in urine, and in the case of deficiency, circulating Mg2+ levels are maintained
stable by deploying the bone or muscle reservoir [32].

Mg2+ has profusely been associated with several aspects of glucose metabolism, such as insulin
resistance [33], which is understandable because many enzymes required for the control of metabolic
pathways and for signaling transduction require Mg2+. Moreover, many authors have demonstrated
a clear relationship between hypomagnesemia and cardio-metabolic events both in humans and in
experimental animals [34,35]. In model rats supplemented with Mg2+ the onset of diabetes appeared
to be delayed, while animals with low Mg2+ levels showed increased serum glucose levels and
an alteration of their lipid pattern, thought to justify the association with incidental CVD [36–38],
hypertension [39,40], or T2DM [41,42]. In addition to this, Mg2+ is also known as a physiological
regulator of vascular tone with the ability of modulating contractile proteins and reducing peripheral
vascular resistance [43]. Although its importance for the regulation of blood pressure and vascular
tone [12] is widely accepted, Mg2+ role in the pathophysiology of CVD is still controversial [31,44,45],
and very recently, an accurate meta-analysis of prospective cohort studies [46] discussed the difficulties
of interpreting associations of Mg2+ levels intended as a quantitative variable. Our study supplies
evidences of this complex phenomenon producing data obtained from a large population study.

Increased c-IMT is strongly associated with the risk of CV events, and it is considered a marker
of preclinical atherosclerosis and a surrogate marker of structural remodeling of the arterial wall.
It is often used as a predictor of acute coronary events [47,48] and severity of atherosclerosis [49–53].
Similarly, LVMI is considered a marker of preclinical and subclinical development of atherosclerosis
and an estimate of vascular damage, and it is also a major determinant of CV mortality because of the
contractile impairment of CV dysfunction [54,55].

Thus, to determine whether Mg2+ is independently associated with the early manifestation of
atherosclerosis, we measured c-IMT by ultrasonography. We also evaluated the correlation between
Mg2+ and LVMI, and we observed that Mg2+ levels were negatively correlated with both c-IMT and
LVMI, further confirming that reduced Mg2+ increases CV risk. In addition, we applied a multiple
regression analysis to evaluate the independent influence of Mg2+ on c-IMT and LVMI.

Our multivariate model included the whole study cohort when focusing on c-IMT, and the
covariates together explained 27.8% of the overall variation in c-IMT. Regarding LVMI, the average
values of this marker are known to be different according to gender, as reported by the ESC/ESH
Guidelines for the management of arterial hypertension [27]; therefore, the multivariate analysis
was performed distinctly for men and women. Furthermore, the incidence of nondiabetic CVD is
lower in premenopausal women and it has been hypothesized that estrogens protect women against
atherosclerotic complications [56]. Although we considered menopause as a potential confounder,
and we included “presence of menopause” among the covariates of Model 1, it is possible that the
discrepancy observed in the resulting statistical model (Model 1 explained 21.6% of LVMI variation for
women; Model 2 explained 15.4% for men) could be due to the influence of estrogens, in the sense that
the male gender, which is already prone to the development of CVD and lacks the beneficial influence
of estrogens, might resent less of a Mg2+ decrement than its counterpart.

Our findings are in accordance with previous evidences obtained in vitro and in clinical studies
that have correlated lower Mg2+ levels with vascular calcification [57], cardiovascular mortality [58],
and several markers of CVD [13–15].

The strength of our study is the sample size and the homogeneity of the study cohort, which
minimizes differences in dietary habits and nutritional conditions. At the same time, the geographical
and ethnical restriction of our cohort might represent a limitation to the generalizability of the data,
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since the results refer exclusively to Caucasian subjects from Southern Italy. Other solid aspects are
exclusions of known confounding factors that could be associated with cardiovascular alterations,
including metabolic disorders.

The current study has some weaknesses due to its observational nature. Indeed, making causal
interpretations of associations between diagnostic parameters and the risk of CVD is hazardous when
it is not accomplished in a longitudinal context. In spite of this issue, it should be noted that our results
reflect only an association with early atherosclerosis and not incident CVD, which is consistent with
the relative young age of our study subjects. Furthermore, our study cohort was recruited at a referral
university hospital, representing subjects carrying at least one cardio-metabolic risk factor, it showed a
~43.6% prevalence of obesity, and therefore, the current findings may not be extendible to the healthy
general population. Finally, serum Mg2+ concentrations and clinical parameters were measured only
once, at the beginning of the study.

Hypomagnesaemia is a CV risk factor in the general population, and our study highlights a
significant negative relationship between normal range of Mg2+ and CV risk markers, such as LVMI
and c-IMT in a normal population. Although c-IMT and LVMI are widely used as validated indices
of early atherosclerosis and vascular damage and as surrogate marker of CVD, further prospective
studies with incident cases of CV events are necessary to confirm these findings.

Our evaluation of c-IMT and LVMI strongly suggests that measuring serum Mg2+ concentrations
could be a useful and inexpensive instrument for the precocious identification of subgroups of
hypertensive patients with asymptomatic subclinical vascular atherosclerotic disease and with higher
cardiovascular risk. Furthermore, our data indicate that higher serum Mg2+ concentrations may play a
key protective role in the development of vascular calcification and, in general, for atherovascular risks.

In conclusion, the present study confirms and extends previous clinical data on the role of Mg2+

as a marker of increased cardiovascular risk in hypertension, and we propose to include the assessment
of magnesium as part of the initial work-up of hypertensive patients.
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