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Abstract

We provide a description of the orbit space of a sheet S for the con-

jugation action of a complex simple simply connected algebraic group G.

This is obtained by means of a bijection between S/G and the quotient of

a shifted torus modulo the action of a subgroup of the Weyl group and it is

the group analogue of a result due to Borho and Kraft. We also describe the

normalisation of the categorical quotient S//G for arbitrary simple G and

give a necessary and sufficient condition for S//G to be normal in analogy

to results of Borho, Kraft and Richardson. The example of G2 is worked out

in detail.

1 Introduction

Sheets for the action of a connected algebraic group G on a variety X have their

origin in the work of Kostant [16], who studied the union of regular orbits for

the adjoint action on a semisimple Lie algebra, and in the work of Dixmier [10].

Sheets are the irreducible components of the level sets of X consisting of points

whose orbits have the same dimension. In a sense they provide a natural way

to collect orbits in families in order to study properties of one orbit by looking

at others in its family. For the adjoint action of a complex semisimple algebraic

group G on its Lie algebra they were deeply and systematically studied in [2,

4]. They were described as sets, their closure was well-understood, they were

classified in terms of pairs consisting of a Levi subalgebra and suitable nilpotent

orbit therein, and they were used to answer affirmatively to a question posed by

Dixmier on the multiplicities in the module decomposition of the ring of regular
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functions of an adjoint orbit in sl(n,C). If G is classical then all sheets are smooth

[14, 24]. The study of sheets in positive characteristic has appeared more recently

in [26].

In analogy to this construction, sheets of primitive ideals were introduced and

studied by W. Borho and A. Joseph in [3], in order to describe the set of primitive

ideals in a universal enveloping algebra as a countable union of maximal varieties.

More recently, Losev in [18] has introduced the notion of birational sheet in a

semisimple Lie algebra, he has shown that birational sheets form a partition of

the Lie algebra and has applied this result in order to establish a version of the

orbit method for semisimple Lie algebras. Sheets were also used in [25] in order

to parametrise the set of 1-dimensional representations of finite W -algebras, with

some applications also to the theory of primitive ideals. Closures of sheets appear

as associated varieties of affine vertex algebras, [1].

In characterisitc zero, several results on quotients S/G and S//G, for a sheet

S were addressed: Katsylo has shown in [15] that S/G has the structure of a

quotient and is isomorphic to the quotient of an affine variety by the action of a

finite group [15]; Borho has explicitly described the normalisation of S//G and

Richardson, Broer, Douglass-Röhrle in [27, 6, 11] have provided the list of the

quotients S//G that are normal.

Sheets for the conjugation action of G on itself were studied in [8] in the

spirit of [4]. If G is semisimple, they are parametrized in terms of pairs consist-

ing of a Levi subgroup of parabolic subgroups and a suitable isolated conjugacy

class therein. Here isolated means that the connected centraliser of the semisim-

ple part of a representative is semisimple. An alternative parametrisation can be

given in terms of triples consisting of a pseudo-Levi subgroup M of G, a coset in

Z(M)/Z(M)◦ and a suitable unipotent class in M . Pseudo-Levi subgroups are,

in good characteristic, centralisers of semisimple elements and up to conjugation

they are subroot subgroups whose root system has a base in the extended Dynkin

diagram of G [22]. It is also shown in [7] that sheets in G are the irreducible com-

ponents of the parts in Lusztig’s partition introduced in [19], whose construction

is given in terms of Springer’s correspondence.

Also in the group case one wants to reach a good understanding of quotients

of sheets. An analogue of Katsylo’s theorem was obtained for sheets containing

spherical conjugacy classes and all such sheets are shown to be smooth [9]. The

proof in this case relies on specific properties of the intersection of spherical con-

jugacy classes with Bruhat double cosets, which do not hold for general classes.

Therefore, a straightforward generalization to arbitrary sheets is not immediate.

Even in absence of a Katsylo type theorem, it is of interest to understand the orbit
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space S/G. In this paper we address the question for G simple provided G is sim-

ply connected if the root system is of type C or D. We give a bijection between

the orbit space S/G and a quotient of a shifted torus of the form Z(M)◦s by the

action of a subgroup W (S) of the Weyl group, giving a group analogue of [17,

Theorem 3.6],[2, Satz 5.6]. In most cases the group W (S) does not depend on

the unipotent part of the triple corresponding to the given sheet although it may

depend on the isogeny type of G. This is one of the difficulties when passing from

the Lie algebra case to the group case. The restriction on G needed for the bijec-

tion depends on the symmetry of the extended Dynkin diagram in this case: type

C and D are the only two situations in which two distinct subsets of the extended

Dynkin diagram can be equivalent even if they are not of type A. We illustrate by

an example in HSpin10(C) that the restriction we put is necessary in order to have

injectivity so our theorem is somehow optimal.

We also address some questions related to the categorial quotient S//G, for a

sheet in G. We obtain group analogues of the description of the normalisation of

S//G from [2] and of a necessary and sufficient condition on S//G to be normal

from [27]. Finally we apply our results to compute the quotients S/G of all sheets

in G of type G2 and verify which of the quotients S//G are normal. This example

will serve as a toy example for a forthcoming paper in which we will list all normal

quotients for G simple.

2 Basic notions

In this paper G is a complex simple algebraic group with maximal torus T , root

system Φ, weight lattice Λ, set of simple roots ∆ = {α1, . . . , αℓ}, Weyl group

W = N(T )/T and corresponding Borel subgroup B. The numbering of simple

roots is as in [5]. Root subgroups are denoted by Xα for α ∈ Φ and their elements

have the form xα(ξ) for ξ ∈ C. Let −α0 be the highest root and let ∆̃ = ∆∪{α0}.

The centraliser of an element h in a closed group H ≤ G will be denoted by Hh

and the identity component of H will be indicated by H◦. If Π ⊂ ∆̃ we set

GΠ := 〈T, X±α | α ∈ Π〉.

Conjugates of such groups are called pseudo-Levi subgroups. We recall from [22,

§6] that if s ∈ T then its connected centraliser Gs◦ is conjugated to GΠ for some

Π by means of an element in N(T ). By [13, 2.2] we have Gs = 〈Gs◦, N(T )s〉.
WΠ indicates the subgroup of W generated by the simple reflections with respect

to roots in Π and it is the Weyl group of GΠ.
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We realize the groups Sp2ℓ(C), SO2ℓ(C) and SO2ℓ+1(C), respectively, as the

groups of matrices of determinant 1 preserving the bilinear forms:
(

0 Iℓ
−Iℓ 0

)

,
(

0 Iℓ
Iℓ 0

)

and
(

1
Iℓ

Iℓ

)

, respectively.

If G acts on a variety X , the action of g ∈ G on x ∈ X will be indicated

by (g, x) 7→ g · x. If X = G with adjoint action we thus have g · h = ghg−1.

For n ≥ 0 we shall denote by X(n) the union of orbits of dimension n. The

nonempty sets X(n) are locally closed and a sheet S for the action of G on X is an

irreducible component of any of these. For any Y ⊂ X we set Y reg to be the set

of points of Y whose orbit has maximal dimension. We recall the parametrisation

and description of sheets for the action of G on itself by conjugation and provide

the necessary background material.

A Jordan class in G is an equivalence class with respect to the equivalence

relation: g, h ∈ G with Jordan decomposition g = su, h = rv are equivalent if

up to conjugation Gs◦ = Gr◦, r ∈ Z(Gs◦)◦s and Gs◦ · u = Gs◦ · v. As a set, the

Jordan class of g = su is thus J(su) = G · ((Z(Gs◦)◦s)regu) and it is contained

in some G(n). Jordan classes are parametrised by G-conjugacy classes of triples

(M,Z(M)◦s,M · u) where M is a pseudo-Levi subgroup, Z(M)◦s is a coset

in Z(M)/Z(M)◦ such that (Z(M)◦s)reg ⊂ Z(M)reg and M · u is a unipotent

conjugacy class in M . They are finitely many, locally closed, G-stable, smooth,

see [20, 3.1] and [8, §4] for further details.

Every sheet S ⊂ G contains a unique dense Jordan class, so sheets are parametrised

by conjugacy classes of a subset of the triples above mentioned. More precisely,

a Jordan class J = J(su) is dense in a sheet if and only if it is not contained in

(J ′)reg for any Jordan class J ′ different from J . We recall from [8, Proposition

4.8] that

(2.1) J(su)
reg

=
⋃

z∈Z(Gs◦)◦

G · (sIndGzs◦

Gs◦ (Gs◦ · u)),

where IndGzs◦

Gs◦ (Gs◦ ·u) is Lusztig-Spaltenstein’s induction from the Levi subgroup

Gs◦ of a parabolic subgroup of Gzs◦ of the class of u in Gs◦, see [21]. So, Jordan

classes that are dense in a sheet correspond to triples where u is a rigid orbit in

Gs◦, i.e., such that its class in Gs◦ is not induced from a conjugacy class in a

proper Levi subgroup of a parabolic subgroup of Gs◦.

A sheet consists of a single conjugacy class if and only if S = J(su) = G · su
where u is rigid in Gs◦ and Gs◦ is semisimple, i.e., if and only if s is isolated

and u is rigid in Gs◦. Any sheet S in G is the image through the isogeny map

π of a sheet S ′ in the simply-connected cover Gsc of G, where S ′ is defined up
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to multiplication by an element in Ker(π). Also, Z(Gπ(s)◦) = π(Z(Gs◦
sc)) and

Z(Gπ(s)◦)◦ = π(Z(Gs◦
sc)

◦) = Z(Gs◦
sc)

◦Ker(π).

3 A parametrization of orbits in a sheet

In this section we parametrize the set S/G of conjugacy classes in a given sheet.

Let S = J(su)
reg

with s ∈ T and u ∈ U∩Gs◦. Let Z = Z(Gs◦) and L = CG(Z
◦).

The latter is always a Levi subgroup of a parabolic subgroup of G, [29, Proposition

8.4.5, Theorem 13.4.2] and if Ψs is the root system of Gs◦ with respect to T , then

L has root system Ψ := QΨs ∩ Φ.

Let

(3.2) W (S) = {w ∈ W | w(Z◦s) = Z◦s}.

We recall that CG(Z(G
s◦)◦s)◦ = Gs◦. Thus, for any lift ẇ of w ∈ W (S) we have

ẇ · Gs◦ = Gs◦, so ẇ · Z◦ = Z◦ and therefore ẇ · L = L. Thus, any w ∈ W (S)
determines an automorphism of Ψs and Ψ. Let O = Gs◦ · u. We set:

(3.3) W (S)u = {w ∈ W (S) | ẇ · O = O}.

The definition is independent of the choice of the representative of each w because

T ⊂ L.

Lemma 3.1 Let Ψs be the root system of Gs◦ with respect to T , with basis Π ⊂
∆∪{−α0}. Let WΠ be the Weyl group of Gs◦ and let WΠ = {w ∈ W | wΠ = Π}.

Then

W (S) = WΠ ⋊ (WΠ)Z◦s = {w ∈ WΠW
Π | wZ◦s = Z◦s}.

In particular, ifGs◦ is a Levi subgroup of a parabolic subgroup ofG, then W (S) =
WΠ ⋊WΠ = NW (WΠ) and it is independent of the isogeny class of G.

Proof. Let WX denote the stabilizer of X in W for X = Z◦s,Gs◦, Z, Z◦. We

have the following chain of inclusions:

W (S) = WZ◦s ≤ WGs◦ ≤ WZ ≤ WZ◦.

We claim that WGs◦ = WΠ ⋊ WΠ. Indeed, WΠW
Π ≤ WGs◦ is immediate and

if w ∈ WGs◦ then wΨs = Ψs and wΠ is a basis for Ψs. Hence, there is some

σ ∈ WΠ such that σw ∈ WΠ. By construction WΠ normalises WΠ. The elements
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of WGs◦ permute the connected components of Z = Z(Gs◦) and WZ◦s is precisely

the stabilizer of Z◦s in there. Since the elements of WΠ fix the elements of Z(Gs◦)
pointwise, they stabilize Z◦s, whence the statement. The last statement follows

from the equality WΠ⋉WΠ = NW (WΠ) in [12, Corollary3] and [22, Lemma 33]

because in this case Z◦s = zZ◦ for some z ∈ Z(G), so WZ◦s = WZ◦. �

Remark 3.2 If Gs◦ is not a Levi subgroup of a parabolic subgroup of G, then

W (S) might depend on the isogeny type of G. For instance, if Φ is of type C5 and

s = diag(−I2, x, I2,−I2, x
−1, I2) ∈ Sp10(C) for x2 6= 1, then:

Π = {α0, α1, α4, α5}

Z = Z(Gs◦) = {diag(ǫI2, y, ηI2, ǫI2, y
−1, ηI2), y ∈ C∗, ǫ2 = η2 = 1},

Z◦s = {diag(−I2, I2, y,−I2, I2, y
−1), y ∈ C∗},

and WΠ = 〈sα1+α2+α3+α4
sα2+α3

〉. Since sα1+α2+α3+α4
sα2+α3

(Z◦s) = −Z◦s we

have W (S) = WΠ. However, if π : Sp10(C) → PSp10(C) is the isogeny map,

then WΠ preserves π(Z◦s) so W (π(S)) = WΠ ⋊ WΠ. Taking u = 1 have an

example in which also W (S)u depends on the isogeny type.

Table 1: Kernel of the isogeny map; Φ of type Bℓ, Cℓ or Dℓ

type parity of ℓ group Kerπ
Bℓ any SO2ℓ+1(C) 〈α∨

ℓ (−1)〉

Cℓ any PSp2ℓ(C)

〈

∏

j odd

α∨
j (−1)

〉

= 〈−I2ℓ〉

Dℓ even PSO2ℓ(C)

〈

∏

j odd

α∨
j (−1), α∨

ℓ−1(−1)α∨
ℓ (−1)

〉

Dℓ odd PSO2ℓ(C)

〈

∏

j odd≤ℓ−2

α∨
j (−1)α∨

ℓ−1(i)α
∨
ℓ (i

3)

〉

Dℓ any SO2ℓ(C)
〈

α∨
ℓ−1(−1)α∨

ℓ (−1)
〉

Dℓ even HSpin2ℓ(C)

〈

∏

j odd

α∨
j (−1))

〉

Next Lemma shows that in most cases W (S)u can be determined without any

knowledge of u.
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Lemma 3.3 Suppose G and S = J(su)
reg

are not in the following situation:

“G is either PSp2ℓ(C), HSpin2ℓ(C), or PSO2ℓ(C);
[Gs◦, Gs◦] has two isomorphic simple factors G1 and G2 that are not of type A;

the components of u in G1 and G2 do not correspond to the same partition.”

Then, W (S) = W (S)u.

Proof. The element u is rigid in [Gs◦, Gs◦] ≤ Gs◦ and this happens if and only if

each of its components in the corresponding simple factor of [Gs◦, Gs◦] is rigid.

Rigid unipotent elements in type A are trivial [28, Proposition 5.14], therefore

what matters are only the components of u in the simple factors of type different

from A. In addition, rigid unipotent classes are characteristic in simple groups, [2,

Lemma 3.9, Korollar 3.10]. For all Φ different from C and D, simple factors that

are not of type A are never isomorphic. Therefore the statement certainly holds in

all cases with a possible exception when: Φ is of type Cℓ or Dℓ; [G
s◦, Gs◦] has two

isomorphic factors of type different from A; and the components of u in those two

factors, that are of type Cm or Dm, respectively, correspond to different partitions.

Let us assume that we are in this situation. Then, W (S) = W (S)u if and only

if the elements of W (S), acting as automorphisms of Ψs, do not interchange the

two isomorphic factors in question. We have 2 isogeny classes in type Cℓ, 3 in

type Dℓ for ℓ odd, and 4 (up to isomorphism) in type Dℓ for ℓ even.

If Φ is of type Cℓ and G = Sp2ℓ(C) up to a central factor s can be chosen to

be of the form:

(3.4) s = diag(Im, t,−Im, Im, t
−1,−Im)

where t is a diagonal matrix in GLℓ−2m(C) with eigenvalues different from ±1.

Then Π is the union of {α0, . . . , αm−1}, {αℓ, αℓ−1, . . . , αℓ−m+1} and possibly

other subsets of simple roots orthogonal to these. Then WΠ is the direct prod-

uct of terms permuting isomorphic components of type A with the subgroup

generated by σ =
∏m

j=1 sαj+···+αℓ−j
. In this case the elements of Z◦s are of

the form diag(Im, r,−Im, Im, r
−1,−Im), where r has the same shape as t and

σ(Z◦s) = −Z◦s. Thus, WΠ does not permute the two factors of type Cm and

W (S) = W (S)u.

If, instead, G = PSp2ℓ(C) and the sheet is π(S), we may take J = J(π(su))
where s is as in (3.4). Then, σ preserves π(Z◦s) and therefore W (π(S)) 6=
W (π(S))π(u).
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Let now Φ be of type Dℓ and G = Spin2ℓ(C). With notation as in [29], we

may take

(3.5) s =

(

m
∏

j=1

α∨
j (ǫ

j)

)(

l−m−1
∏

i=m+1

α∨
i (ci)

)(

m
∏

b=2

α∨
ℓ−b(d

2ηb)

)

α∨
ℓ−1(ηd)αℓ(d)

with ǫ2 = η2 = 1, ǫ 6= η, and d, ci ∈ C∗.

Here Π is the union of {α0, . . . , αm−1}, {αℓ, αℓ−1, . . . , αℓ−m+1} and possibly

other subsets of simple roots orthogonal to these. Then WΠ is the direct prod-

uct of terms permuting isomorphic components of type A and 〈σ〉 where σ =
∏m

j=1 sαj+···+αℓ−j+1
. The coset Z◦s = Zǫ,η consists of elements of the same form

as (3.5) with constant value of ǫ and η, and Z◦ = Z1,1 consists of the elements of

similar shape with η = ǫ = 1. Then σ(Zǫ,η) = Zη,ǫ, hence σ 6∈ W (S), so W (S)
preserves the components of Ψs of type D and W (S) = W (S)u.

If ℓ = 2q and G = HSpin2ℓ(C) and π : Spin2ℓ(C) → HSpin2ℓ(C) is the

isogeny map we see from Table 1 that Ker(π) is generated by an element k such

that kZǫ,η = Z−ǫ,η, so σ as above preserves π(Z◦s) whereas it does not preserve

the conjugacy class of π(u). Therefore σ ∈ W (π(S)) 6= W (π(S))u.

If G = SO2ℓ(C) and π : Spin2ℓ(C) → SO2ℓ(C) is the isogeny map, then

Ker(π) is generated by an element k such that kZǫ,η = Zǫ,η. In this case σ does

not preserve π(Z◦s), whence σ 6∈ W (π(S)) = W (π(S))u.

If G = PSO2ℓ(C) and π : Spin2ℓ(C) → PSO2ℓ(C), then by the discussion

of the previous isogeny types we see that σ(Zǫ,η) ⊂ Ker(π)Zǫ,η, so σ preserves

π(Z◦s) whence σ ∈ W (π(S)) 6= W (π(S))u. �

Following [2, §5] and according to [8, Proposition 4.7] we define the map

θ : Z◦s → S/G
zs 7→ IndG

L(L · szu)

where L = CG(Z(G
s◦)◦).

Lemma 3.4 With the above notation, θ(zs) = θ(w · (zs)) for every w ∈ W (S)u.

Proof. Let us observe that, since z ∈ Z(L) and Gs◦ ⊂ L there holds Lzs◦ = Gs◦.

In particular, Gs◦ is a Levi subgroup of a parabolic subgroup of Gzs◦. Let UP be

the unipotent radical of a parabolic subgroup of G with Levi factor L and let ẇ be
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a representative of w in NG(T ). By [8, Proposition 4.6] we have

IndG
L (L · (w · zs)u) = G · (w · (zs)uUP )

reg

= G · (zs(ẇ−1 · u)Uẇ−1·P )
reg

= IndG
L(L · (zs(ẇ−1 · u)))

= G ·
(

zs IndGzs◦

Gs◦ (ẇ−1 · (Gs◦ · u))
)

= G ·
(

zs IndGzs◦

Gs◦ (Gs◦ · u)
)

= IndG
L(L · (zsu))

where we have used that L = ẇ · L for every w ∈ W (S)u ≤ W (S) and indepen-

dence of the choice of the parabolic subgroup with Levi factor L, [8, Proposition

4.5]. �

Remark 3.5 The requirement that w lies in W (S)u rather than in W (S) is nec-

essary. For instance, we consider G = PSp2ℓ(C) with ℓ = 2m+1 and s the class

of diag(Im, λ,−Im, Im, λ
−1,−Im) with λ4 6= 1 and u rigid with non-trivial com-

ponent only in the subgroup H = 〈X±αj
, j = 0, . . .m− 1〉 of Gs◦. The element

σ =
∏m

j=1 sαj+···+αℓ−j
lies in W (S) \W (S)u. Taking θ(s) we have

IndG
L(L · su) = G · su

whereas

IndG
L(L · w(s)u) = IndG

L(L · s(ẇ · u)) = G · (s(ẇ · u)),

where ẇ is any representative of w in NG(T ). These classes would coincide only

if u and ẇ · u were conjugate in Gs. They are not conjugate in Gs◦ because they

lie in different simple components. Moreover, Gs is generated by Gs◦ and the

lifts of elements in the centraliser W s of s in W [13, 2.2], which is contained in

W (S). Since λ4 6= 1 we see that the elements of W s cannot interchange the two

components of type Cm in Gs◦. Hence,

θ(s) = IndG
L (L · su) 6= IndG

L(L · w(s)u) = θ(w(s)).

In analogy with the Lie algebra case we formulate the following theorem. The

proof follows the lines of [2, Satz 5.6] but a more detailed analysis is necessary

because the naive generalization of statement [2, Lemma 5.4] from Levi subalge-

bras in a Levi subalgebra to Levi subgroups in a pseudo-Levi subgroup does not

hold.
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Theorem 3.6 Assume G is simple and different from PSO2ℓ(C), HSpin2ℓ(C) and

PSp2ℓ(C), ℓ ≥ 5. Let S = J(su)
reg

, with s ∈ T , Z = Z(Gs◦) and let W (S) be

as in (3.2). The map θ induces a bijection θ between Z◦s/W (S) and S/G.

Proof. Recall that under our assumptions Lemma 3.3 gives W (S) = W (S)u. By

Lemma 3.4, θ induces a well-defined map θ : Z◦s/W (S) → S/G. It is surjective

by [8, Proposition 4.7]. We prove injectivity.

Let us assume that θ(zs) = θ(z′s) for some z, z′ ∈ Z◦. By construction,

Z◦ ⊂ T . By [8, Proposition 4.5] we have

G ·
(

zs
(

IndGzs◦

Gs◦ (Gs◦ · u)
))

= G ·
(

z′s
(

IndGz′s◦

Gs◦ (Gs◦ · u)
))

.

This implies that z′s = σ·(zs) for some σ ∈ W . Let σ̇ ∈ N(T ) be a representative

of σ. Then

θ(zs) = θ(z′s) = G ·
(

(σ · zs)(IndGz′s◦

Gs◦ (Gs◦ · u))
)

= G ·
(

zs
(

Indσ̇−1·Gz′s◦

σ̇−1·(Gs◦)

(

σ̇−1 · (Gs◦ · u)
)

))

= G ·
(

zs
(

IndGzs◦

σ̇−1·(Gs◦)

(

σ̇−1 · (Gs◦ · u)
)))

.

Since the unipotent parts of θ(zs) and θ(z′s) coincide, for some x ∈ Gzs we have

x · (IndGzs◦

Gs◦ (Gs◦ · u)) = IndGzs◦

σ̇−1·(Gs◦)

(

σ̇−1 · (Gs◦ · u)
)

.

The element x may be written as ẇg for some ẇ ∈ N(T )∩Gzs and some g ∈ Gzs◦

[13, §2.2]. Hence,

IndGzs◦

Gs◦ (Gs◦ · u) = ẇ−1 ·
(

IndGzs◦

σ̇−1·(Gs◦)

(

σ̇−1 · (Gs◦ · u)
))

= IndGzs◦

ẇ−1σ̇−1·(Gs◦)

(

(ẇ−1σ̇−1) · (Gs◦ · u)
)

.

Let us put

M := Gzs◦ = 〈T,Xα, α ∈ ΦM〉, L1 := Gs◦ = 〈T,Xα, α ∈ Ψ〉

with ΦM =
⋃l

j=1Φj and Ψ =
⋃m

i=1Ψi the decompositions in irreducible root

subsystems. We recall that L1 and L2 := (ẇ−1σ̇−1) · L1 are Levi subgroups of

some parabolic subgroups of M . We claim that if L1 and L2 are conjugate in M ,

then zs and z′s are W (S)-conjugate. Indeed, under this assumption, since L1 and

10



L2 contain T , there is τ̇ ∈ NM(T ) such that L1 = τ̇ · L2 = τ̇ ẇ−1σ̇−1 · L1, so

τw−1σ−1(Z◦) = Z◦. Then, τw−1σ−1(z′s) = zs and therefore

τw−1σ−1(Z◦s) = τw−1σ−1(Z◦z′s) = Z◦zs = Z◦s.

Hence zs and z′s are W (S)-conjugate. By Lemma 3.3, we have the claim. We

show that if ΦM has at most one component different from type A, then L1 is

always conjugate to L2 in M . We analyse two possibilities.

Φj is of type A for every j. In this case the same holds for Ψi and u = 1. We recall

that in type A induction from the trivial orbit in a Levi subgroup corresponding

to a partition λ yields the unipotent class corresponding to the dual partition [28,

7.1]. Hence, equivalence of the induced orbits in each simple factor Mi of M
forces Φj ∩ Ψ ∼= Φj ∩ w−1σ−1Ψ for every j. Invoking [2, Lemma 5.5], in each

component Mi we deduce that L1 and L2 are M-conjugate.

There is exactly one component in ΦM which is not of type A. We set it to be Φ1.

Then, there is at most one Ψj , say Ψ1, which is not of type A, and Ψ1 ⊂ Φ1.

In this case, w−1σ−1Φ1 ⊂ Ψ1. Equivalence of the induced orbits in each simple

factor Mj of M forces Φj ∩ Ψ ∼= Φj ∩ w−1σ−1Ψ for every j > 1. By exclusion,

the same isomorphism holds for j = 1. Invoking once more [2, Lemma 5.5] for

each simple component, we deduce that L1 and L2 are M-conjugate.

Assume now that there are exactly two components of ΦM which are not of

type A. This situation can only occur if Φ is of type Bℓ for ℓ ≥ 6, Cℓ for ℓ ≥ 4
or Dℓ for ℓ ≥ 8 (we recall that D2 = A1 × A1 and D3 = A3). By a case-by-case

analysis we directly show that σ can be taken in W (S).
If G = Sp2ℓ(C) we may assume that

s = diag(Im, t,−Ip, Im, t
−1,−Ip)

with p, m ≥ 2 and t a diagonal matrix with eigenvalues different from 0 and

±1. Then Z◦s consists of matrices in this form, so zs and z′s are of the form

zs = diag(Im, h,−Ip, Im, h
−1,−Ip) and z′s = diag(Im, g,−Ip, Im, g

−1,−Ip),
where h and g are invertible diagonal matrices. The elements zs and z′s are

conjugate in G if and only if diag(h, h−1) and diag(g, g−1) are conjugate in G′ =
Sp2(ℓ−p−m)(C). This is the case if and only if they are conjugate in the normaliser

11



of the torus T ′ = G′ ∩ T . The natural embedding G′ → G given by

(

A B
C D

)

7→













Im
A B

Ip+m

C D
Ip













gives an embedding of NG′(T ′) ≤ NG(T ) whose image lies in W (S). Hence, zs
and z′s are necessarily W (S)-conjugate. This concludes the proof of injectivity

for G = Sp2ℓ(C).
If G = Spin2ℓ+1(C), then we may assume that

s =

(

m
∏

j=1

α∨
j ((−1)j)

)(

ℓ−p−1
∏

b=m+1

α∨
b (cb)

)(

p
∏

q=1

α∨
ℓ−q(c

2)

)

α∨
ℓ (c)

where m ≥ 4, p ≥ 2, c, cb ∈ C∗ are generic. Here Z◦s consists of elements of the

form
(

m
∏

j=1

α∨
j ((−1)j)

)(

ℓ−p−1
∏

b=m+1

α∨
b (db)

)(

p
∏

q=1

α∨
ℓ−q(d

2)

)

α∨
ℓ (d)

with db, d ∈ C∗. The reflection sα1+···+αℓ
= sε1 maps any y ∈ Z◦s to yα∨

ℓ (−1) ∈
Z(G)Z◦s = Z◦s.

Let us consider the natural isogeny π : G → Gad = SO2ℓ+1(C). Then

π(s) = diag(1,−Im, t, Ip,−Im, t
−1, Ip)

where t is a diagonal matrix with eigenvalues different from 0 and ±1. A similar

calculation as in the case of Sp2ℓ(C) shows that π(zs) is conjugate to π(z′s) by

an element σ1 ∈ W (π(S)) = W (π(S))u. Then, σ1(zs) = kz′s, where k ∈ Z(G).
If k = 1, then we set σ = σ1 whereas if k = α∨

ℓ (−1) we set σ = sα1+···+αℓ
σ1.

Then σ(zs) = z′s and σ(Z◦s) = Z(G)Z◦s = Z◦s. This concludes the proof for

Spin2ℓ+1(C) and SO2ℓ+1(C).
If G = Spin2ℓ(C), up to multiplication by a central element we may assume

that

s =

(

ℓ−p−1
∏

j=m+1

α∨
j (cj)

)(

p
∏

q=2

α∨
ℓ−q((−1)qc2)

)

α∨
ℓ−1(−c)α∨

ℓ (c)
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where m, p ≥ 4, c, cj ∈ C∗ are generic. The elements in Z◦s are of the form

(

ℓ−p−1
∏

j=m+1

α∨
j (dj)

)(

p
∏

q=2

α∨
ℓ−q((−1)qd2)

)

α∨
ℓ−1(−d)α∨

ℓ (d)

with dj, d ∈ C∗. We argue as we did for type Bℓ, considering the isogeny π : G →
SO2ℓ(C).The Weyl group element sαℓ

sαℓ−1
maps any y ∈ Z◦s to yα∨

ℓ−1(−1)α∨
ℓ (−1) ∈

Ker(π)Z◦s = Z◦s. The group π(Z◦s) consists of elements of the form

diag(Im, t,−Ip, Im, t
−1,−Ip)

where t is a diagonal matrix in GL2(ℓ−m−p)(C). Two elements

π(zs) = diag(Im, h,−Ip, Im, h
−1,−Ip),

π(z′s) = diag(Im, g,−Ip, Im, g
−1,−Ip)

therein are W -conjugate if and only if diag(1, h, 1, h−1) and (1, g, 1, g−1) are con-

jugate by an element σ1 of the Weyl group W ′ of G′ = SO2(ℓ−m−p+1)(C). More

precisely, even if h and g may have eigenvalues equal to 1, we may choose σ1 in

the subgroup of W ′ that either fixes the first and the (ℓ−m− p+ 2)-th eigenval-

ues or interchanges them. Considering the natural embedding of G′ into SO2ℓ(C)
in a similar fashion as we did for SO2ℓ(C), we show that σ1 ∈ W (π(S)). This

proves injectivity for SO2ℓ(C). Arguing as we did for Spin2ℓ+1(C) using sαℓ
sαℓ−1

concludes the proof of injectivity for Spin2ℓ(C). �

The translation isomorphism Z◦s → Z◦ determines a W (S)-equivariant map

where Z◦ is endowed with the action w • z = (w · zs)s−1, which is in general not

an action by automorphisms on Z◦. Hence, S/G is in bijection with the quotient

Z◦/W (S) of the torus Z◦ where the quotient is with respect to the • action.

Remark 3.7 Injectivity of θ does not necessarily hold for the adjoint groups G =
PSp2ℓ(C), PSO2ℓ(C) and for G = HSpin2ℓ(C). We give an example for G =
HSpin20(C), in which W (S) = W (S)u and Gs◦ is a Levi subgroup of a parabolic

subgroup of G. Let π : Spin20(C) → G be the central isogeny with kernel K as

in Table 1. Let u = 1 and

s = α∨
1 (a)α

∨
2 (a

2)α∨
3 (a

3)α∨
4 (b)α

∨
5 (c)α

∨
6 (d

−2e2)α∨
7 (e)α

∨
8 (d

2)α∨
9 (d)α

∨
10(−d)K
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with a, b, c, d, e ∈ C∗ sufficiently generic. Then, Gs◦ is generated by T and the

root subgroups of the subsystem with basis indexed by the following subset of the

extended Dynkin diagram:

•− • − ◦ − ◦ − ◦ − ◦ − •− ◦ − •
| |
◦ •

Here Z◦ is given by elements of shape:

α∨
1 (a1)α

∨
2 (a

2
1)α

∨
3 (a

3
1)α

∨
4 (b1)α

∨
5 (c1)α

∨
6 (d

−2
1 e21)α

∨
7 (e1)α

∨
8 (d

2
1)α

∨
9 (d1)α

∨
10(−d1)K

with a1, b1, c1, d1, e1 ∈ C∗. Let

zs = α∨
5 (c)α

∨
6 (d

2)α∨
7 (−d2)α∨

8 (d
2)α∨

9 (d)α
∨
10(−d)K ∈ Z◦sK

obtained by setting a1 = b1 = 1, c1 = c, d1 = d and e1 = −d2, and

z′s = α∨
5 (−c)α∨

6 (d
2)α∨

7 (−d2)α∨
8 (d

2)α∨
9 (d)α

∨
10(−d)K ∈ Z◦sK,

obtained by setting a1 = b1 = 1, c1 = −c, d1 = d and e1 = −d2. The subgroup

M := Gzs◦ = Gz′s◦ is generated by T and the root subgroups of the subsystem

with basis indexed by the following subset of the extended Dynkin diagram:

•− • − • − ◦ − ◦ − ◦ − •− • − •
| |
• •

For σ =
∏4

j=1 sαj+···+α10−j
we have σ · zs = z′s. We claim that zs and z′s are not

W (S)-conjugate. Equivalently, we show that σW zsK ∩W (S) = ∅, where W szK

is the stabiliser of zs in W . Let σw be an element lying in such an intersection. We

observe that if σw ∈ W (S), then σw(Gs◦) = Gs◦ hence σw cannot interchange

the component of type 3A1 with the component of type A2 therein. Thus, it cannot

interchange the two components of type D4 in M . However, by looking at the

projection π′ onto G/Z(G) = PSO10(C), we see that zsZ(G) is the class of the

matrix

diag(I4, c, c
−1d2,−I4, I4, d

−2c, c−1,−I4)

which cannot be centralized by a Weyl group element interchanging these two

factors if c and d are sufficiently generic. A fortiori, this cannot happen for the

class zsK. Hence, zs and z′s are not W (S)-conjugate.
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Let now M1 and M2 be the simple factors of M corresponding respectively

to the roots {αj , 0 ≤ j ≤ 3}, and {αk, 7 ≤ k ≤ 10}, let L1 = M1 ∩ Gs◦ and

L2 = M2 ∩Gs◦. Then,

θ(zs) = IndG
L(L · zs) = G ·

(

zs(IndM
Gs◦(1))

)

= G · (zs(IndM1

L1
(1))(IndM2

L2
(1)))

and

θ(z′s) = IndG
L (L · z′s) = G ·

(

z′s(IndM
Gs◦(1)

)

= G · (z′s(IndM1

L1
(1))(IndM2

L2
(1))).

Since σ(zs) = z′s we have, for some representative σ̇ ∈ N(T ):

θ(z′s) = G ·
(

zs(Indσ̇−1·M1

σ̇−1·L1
(1))(Indσ̇−1·M2

σ̇−1·L2
(1)))

)

= G ·
(

zs(IndM2

σ̇−1·L1
(1))(IndM1

σ̇−1·L2
(1)))

)

.

By [23, Example 3.1] we have IndM2

σ̇−1·L1
(1) = IndM2

L1
(1) and IndM1

σ̇−1·L2
(1) =

IndM1

L1
(1) so θ(zs) = θ(z′s).

Remark 3.8 The parametrisation in Theorem 3.6 cannot be directly generalised

to arbitrary Jordan classes. Indeed, if u ∈ L is not rigid, then L · u is not neces-

sarily characteristic and it may happen that for some external automorphism τ of

L, the class τ(L · u) differs from L · u even if they induce the same G-orbit. Then

the map θ is not necessarily injective.

4 The quotient S//G

In this section we discuss some properties of the categorical quotient S//G =
Spec(C[S])G for G simple in any isogeny class. Since S//G parametrises only

semisimple conjugacy classes it is enough to look at the so-called Dixmier sheets,

i.e., the sheets containing a dense Jordan class consisting of semisimple elements.

In addition, since every such Jordan class is dense in some sheet, studying the

collection of S//G for S a sheet in G is the same as studying the collection of

J(s)//G for J(s) a semisimple Jordan class in G.

The following Theorem is a group version of [2, Satz 6.3], [17, Theorem

3.6(c)] and [27, Theorem A].

Theorem 4.1 Let S = J(s)
reg

⊂ G.
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1. The normalisation of S//G is Z(Gs◦)◦s/W (S).

2. The variety S//G is normal if and only if the natural map

(4.6) ρ : C[T ]W → C[Z(Gs◦)◦s]W (S)

induced from the restriction map C[T ] → C[Z(Gs◦)◦s] is surjective.

Proof. 1. The variety Z(Gs◦)◦s/W (S) is the quotient of a smooth variety (a

shifted torus) by the action of a finite group, hence it is normal. Every class in

J(s) meets T and T ∩ J(s) = W · (Z(Gs◦)◦s). Also, two elements in T are

G-conjugate if and only if they are W -conjugate, hence we have an isomorphism

J(s)//G ≃ W · (Z(Gs◦)◦s)/W induced from the isomorphism G//G ≃ T/W .

We consider the morphism γ : Z(Gs◦)◦s/W (S) → W · (Z(Gs◦)◦s)/W in-

duced by zs 7→ W · (zs). It is surjective by construction, bijective on the dense

subset (Z(Gs◦)◦s)reg/W (S) and finite, since the intersection of W · (zs) with

Z(Gs◦)◦s is finite. Hence γ is a normalisation morphism.

2. The variety S//G is normal if and only if the normalisation morphism is

an isomorphism. This happens if and only if the composition

Z(Gs◦)◦s/W (S) ≃ S//G ⊆ G//G ≃ T/W

is a closed embedding, i.e., if and only if the corresponding algebra map between

the rings of regular functions is surjective. �

5 An example: sheets and their quotients in type G2

We list here the sheets in G of type G2 and all the conjugacy classes they contain.

We shall denote by α and β, respectively, the short and the long simple roots.

Since G is adjoint, by [7, Theorem 4.1] the sheets in G are in bijection with G-

conjugacy classes of pairs (M,u) where M is a pseudo-Levi subgroup of G and u

is a rigid unipotent element in M . The corresponding sheet is J(su)
reg

where s is

a semisimple element whose connected centralizer is M . The conjugacy classes

of pseudo-Levi subgroups of G are those corresponding to the following subsets

Π of the extended Dynkin diagram:

1. Π = ∅, so M = T , u = 1, s is a regular semisimple element and S consists

of all regular conjugacy classes;
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2. Π = {α}. Here [M,M ] is of type Ã1, so u = 1 and s = α∨(ζ)β∨(t2) =
(3α+ 2β)∨(ζ−1) for ζ 6= 0, ±1;

3. Π = {β}. Here [M,M ] is of type A1 so u = 1 and s = α∨(ζ2)β∨(ζ3) =
(2α+ β)∨(ζ) for ζ 6= 0, 1 e2πi/3, e−2πi/3;

4. Π = {α0, β}. Here [M,M ] is of type A2 so u = 1; the corresponding

s = (2α+ β)∨(e2πi/3) is isolated and S = G · s;

5. Π = {α0, α}. Here [M,M ] is of type Ã1 ×A1 so u = 1, the corresponding

s = (3α+ 2β)∨(−1) is isolated and S = G · s;

6. Π = {α, β} so L = G. In this case we have three possible choices for u
rigid unipotent, namely 1, xα(1) or xβ(1) (cfr. [28]). Each of these classes

is a sheet on its own.

The only sheets containing more than one conjugacy classes are the regular

one S0 = Greg corresponding to Π = ∅ and the two subregular ones, correspond-

ing to Π1 = {α} and Π2 = {β}. For S0 we have Z◦s = T , W (S) = W so S0/G
is in bijection with T/W and S0//G ≃ G//G which is normal. For S1 and S2 we

have:

S1 = J((3α + 2β)∨(ζ0))
reg

=
(

⋃

ζ2 6=0,1G · (3α + 2β)∨(ζ)
)

∪ IndG
Ã1
(1) ∪G ·

(

(3α + 2β)∨(−1)IndA1×Ã1

Ã1
(1)
)

=
(

⋃

ζ2 6=0,1G · (3α + 2β)∨(ζ)
)

∪G · ((xβ(1)xα0
(1)) ∪G · (3α + 2β)∨(−1)xα0

(1))

for ζ0 6= 0,±1 and

S2 = J((2α + β)∨(ξ0))
reg

=
(

⋃

ξ3 6=0,1G · (2α + β)∨(ξ)
)

∪ IndG
A1
(1) ∪G ·

(

(2α + β)∨(e2πi/3)IndA2

A1
(1)
)

=
(

⋃

ξ3 6=0,1G · (2α + β)∨(ξ)
)

∪G · (xβ(1)xα0
(1)) ∪G ·

(

(2α + β)∨(e2πi/3)xα0
(1)
)

for some ξ0 6= 0, 1, e±2πi/3.

In both cases M is a Levi subgroup of a parabolic subgroup of G. By Lemmata

3.1 and 3.3 we have W (S1) = W (S1)
u = 〈sα, s3α+2β〉 and W (S2) = W (S1)

u =
〈sβ, s2α+β〉. Also Z(M)◦ = Z(M)◦s in both cases, so

S1/G ≃ (3α+ 2β)∨(C×)/〈sα, s3α+2β〉 ≃ (3α+ 2β)∨(C×)/〈s3α+2β〉

S2/G ≃ (2α+ β)∨(C×)/〈sβ, s2α+β〉 ≃ (2α + β)∨(C×)/〈s2α+β〉,
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where the ≃ symbols stand for the bijection θ.

Let us analyze normality of S1//G. Here, Z(M)◦ = (3α + 2β)∨(C∗) ≃ C∗,

so C[Z(M)◦]W (S) = C[ζ + ζ−1]. On the other hand, since G is simply connected,

C[T ]W = (CΛ)W is the polynomial algebra generated by f1 =
∑

γ∈Φ

γ short

eγ and

f2 =
∑

γ∈Φ

γ long

eγ , [5, Ch.VI, §4, Théorème 1] Then,

ρ(f1)((3α+2β)∨(ζ)) = f1((3α+2β)∨(ζ)) =
∑

γ∈Φ

γ short

ζ (γ,(3α+2β)∨) = 2+2ζ+2ζ−1

so the restriction map is surjective and S1//G is normal.

Let us consider normality of S2//G. Here, Z(M)◦ = (2α + β)∨(C∗) ≃ C∗,

so C[Z]Γ = C[ζ + ζ−1]. Then,

ρ(f1)(2α+β)∨(ζ) = f1((2α+β)∨(ζ)) =
∑

γ∈Φ

γ short

ζ (γ,(2α+β)∨) = ζ2+ζ−2+2(ζ+ζ−1)

whereas

ρ(f2)(2α+ β)∨(ζ) = f2((2α+ β)∨(ζ)) =
∑

γ∈Φ

γ long

ζ (γ,(2α+β)∨) = 2 + 2ζ3 + 2ζ−3.

Let us write y = ζ + ζ−1. Then, (ζ2 + ζ−2) = y2 − 2 and ζ3 + ζ−3 = y3 − 3y
so Im(ρ) = C[y2 + 2y, y3 − 3y] = C[(y + 1)2, y3 + 3y2 + 6y + 3 − 3y] =
C[(y + 1)2, (y + 1)3]. Hence, ρ is not surjective and S2//G is not normal.

We observe that Im(ρ) is precisely the identification of the coordinate ring of

S2//G in C[T ]W . We may thus see where this variety is not normal. We have:

Im(ρ) = C[(y+1)2, (y+ 1)3] ∼= C[Y, Z]/(Y 3 −Z2) so this variety is not normal

at y+1 = 0, that is, for ζ+ ζ−1+1 = 0. This corresponds precisely to the closed,

isolated orbit G·((2α+β)∨(e2πi/3))xα0
(1) = G·((2α+β)∨(e−2πi/3))xα0

(1). This

example shows two phenomena: the first is that even if the sheet corresponsing to

the set Π2 in Lie(G) has a normal quotient [6, Theorem 3.1], the same does not

hold in the group counterpart. The second phenomenon is that the non-normality

locus corresponds to an isolated class in S2. In a forthcoming paper we will

address the general problem of normality of S//G and we will prove and make

use of the fact that if the categorical quotient of the closure a sheet in G is not

normal, then it is certainly not normal at some isolated class.

18



References

[1] T. ARAKAWA, A. MOREAU, Sheets and associated varieties of affine vertex

algebras, Adv. Math. 320, , 157–209, (2017).
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