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On the existence of oscillating solutions

in non-monotone Mean-Field Games

Marco Cirant

December 17, 2018

Abstract

For non-monotone single and two-populations time-dependent Mean-Field Game systems
we obtain the existence of an infinite number of branches of non-trivial solutions. These
non-trivial solutions are in particular shown to exhibit an oscillatory behaviour when they
are close to the trivial (constant) one. The existence of such branches is derived using
local and global bifurcation methods, that rely on the analysis of eigenfunction expansions
of solutions to the associated linearized problem. Numerical analysis is performed on two
different models to observe the oscillatory behaviour of solutions predicted by bifurcation
theory, and to study further properties of branches far away from bifurcation points.

AMS-Subject Classification. 35K55, 35B32, 35B36, 49N70.

Keywords. Multi-population Mean-Field Games, Bifurcation, Instability.

1 Introduction

We consider a system of partial differential equations arising in finite-horizon Mean-Field Games
(briefly, MFG) with two populations of agents of the form{

−∂tui − σ∆ui + 1
2 |∇ui|

2 = Vi(m1,m2),

∂tmi − σ∆mi − div(∇uimi) = 0, in QT = Ω× (0, T ), i = 1, 2,
(1)

endowed with Neumann boundary data

∂νui = ∂νmi = 0 on ∂Ω× (0, T ), i = 1, 2,

and initial-final conditions

mi(x, 0) ≡ |Ω|−1, ui(x, T ) ≡ 0 on Ω, i = 1, 2. (2)

Here, σ > 0, Ω is a smooth bounded domain of RN , and the parameter T > 0 is the horizon
of the game; the unknown m(t) = (m1(t),m2(t)) is a vector of probability densities on Ω and
represents the evolution of the distributions of typical agents, Vi is the function associated to
their running costs, and u is the vector of their value functions. MFG systems of PDEs have been
introduced in the pioneering works [25, 26] to describe Nash equilibria of games with an infinite
number of identical agents; we refer to [4, 7, 21, 22, 28] and references therein for additional
details on the theory of MFG. If players belong to two or more different groups (populations),
then one is naturally led to consider MFG systems of the form (1). The systematic study of this
setting started with the early works [11, 17, 24], see also [5, 9, 20].
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Up to now, uniqueness of solutions to (1) is known in two different regimes. The first one
has been discussed in [11]; it is a straightforward generalization of the monotonicity condition
by Lasry-Lions [26], and reads∑

i=1,2

∫
Ω

(
Vi(m(x))− Vi(m̄(x))

)
(mi(x)− m̄i(x))dx ≥ 0 ∀m, m̄ ∈ C(TN ). (3)

Heuristically, this condition imposes aversion to crowd within each population, and this effect to
be dominant with respect to effects due to interactions between different populations. Another
uniqueness regime was discussed in [28], and has been recently revived in [2, 3, 13]: it occurs
under the “smallness” of some data. A typical example of this case is that the time horizon
T be small enough. Roughly speaking, if the horizon is short agents do not have enough time
to reach an equilibrium that is far from their initial state. Both regimes turn out to be quite
special in many applications. First, the main cause of dynamics in multi-population models is
indeed interaction between populations; secondly, many interesting phenomena are unveiled if
the system has enough time to evolve, showing in the long run its own typical features.

In this paper, we consider (1) in a “non-monotone” case, namely without (3) in force. The
purpose of this work is to prove first that without (3), the MFG system (1) admits in general
multiple solutions. Secondly, that for time horizons T ε, which can be arbitrarily large, there
are families of (small amplitude) solutions (uεi ,m

ε
i ) that exhibit an oscillatory behaviour in time,

namely such that mε
i (x, t) = 1+εψ(x) sin(2πt/τ)+o(ε) as ε→ 0, where τ is an “intrinsic” period

that depends on Vi,Ω, σ and not on T . Finally, some numerical analysis is performed to show
that at least in some examples, a “periodic” structure in time survives beyond the perturbative
regime ε→ 0.

If Vi ∈ C1, a simple Taylor expansion shows that (3) holds if the symmetrization of the
Jacobian matrix JV (·) is everywhere positive semi-definite. Here, we will suppose instead that

•Vi ∈ C∞((0,+∞)× (0,+∞)) are bounded on R2,

• JV := JV (1, 1) =

[
∂m1V1(1, 1) ∂m2V1(1, 1)
∂m1V2(1, 1) ∂m2V2(1, 1)

]
has real eigenvalues (a1, a2) with opposite signs, i.e. a1 < 0 ≤ a2.

(4)

Moreover, we will not make any assumption on the smallness of T .
We will focus on two different models that fall into (4). To describe them (and our assumption

(4) itself), let us consider the simple situation{
V1(m1,m2) = α1g(m1) + γg(m2),

V2(m1,m2) = γg(m1) + α2g(m2),
(5)

where α1, α2, γ ∈ R and g(·) is a smooth, bounded and increasing function such that g′(1) = 1.
Then,

JV =

[
α1 γ
γ α2

]
,

and (4) basically holds whenever α1α2 ≤ γ2. Since the coefficients αi determine self-interaction
costs within each population, and γ is related to the cost of interaction between players of
different populations, (4) somehow requires that the latter cost has a stronger effect than the
former. Anyhow, (4) also includes a “decoupled” case, that occurs in the example (5) when γ = 0,
namely when the two populations do not interact within each other. Here, one should impose
α1 < 0 and α2 ≥ 0. This means that the first population aims at aggregation (the cost of a
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typical player is decreasing with respect to the densitym1), while players of the other one prefer to
avoid crowded regions. System (1) then consists of two decoupled MFG systems for (u1,m1) and
(u2,m2); the latter enjoys uniqueness of solutions, while the former is so called “non-monotone”
or “focusing”. The “non-monotone” setting has been recently considered in [10, 12, 15, 19],
and exhibits a much more complicated behaviour than the monotone one (existence of several
solutions, concentration, ...). Since the study of the non-monotone case is still at an early stage,
we believe that an analysis of the decoupled system can be of interest on its own. We will consider
this single-population, non-monotone problem in Section 3.1.

We will also focus on a truly two-population model, inspired by the work of T. Schelling on
urban settlements [1], and somehow resembling (5) with α1α2 ≤ γ2 and αi, γ > 0, that is when
the two populations tend to avoid each other. In [1], some numerical experiments indicated the
possible existence of solutions that are unstable in time, namely oscillating between different
states; that numerical insight has been one of the main motivations of the present work, and is
carried over here in Section 3.2.

Let us discuss the choice of the initial-final data (2), that will be fixed throughout the paper.
Assuming without loss of generality that |Ω| = 1, we have

mi(·, 0) ≡ 1 on Ω.

Then, for all T > 0, (1) has the trivial solution (ū, m̄) = ((T − t)V1(1, 1), (T − t)V2(1, 1), 1, 1).
In other words, the constant state is a stable in time equilibrium for every choice of T . Here,
we ask whether or not there exist equilibria where the populations move away from the constant
state as T varies. More precisely, denoting by S the closure of the set of non-trivial (classical)
solutions to (1), namely

S := cl{(u,m, T ) ∈ [C4+α,2+α/2(QT )]4×(0,∞) : (u,m) is a solution to (1) and (u,m) 6= (ū, m̄)},

we aim at giving a description of the set S (here, α ∈ (0, 1) is fixed, and C4+α,2+α/2(QT ) denotes
the standard Hölder parabolic space, see Section 2.1). Since for all T , (1) has an explicit solution
which is the trivial one, it is natural to treat T as a parameter, and to fit the problem into a
bifurcation framework, namely to search for (connected) subsets of S containing (ū, m̄, T ∗) for
some T ∗; such a T ∗ will be called a bifurcation point. Based on topological methods, we will
implement here the classical tools of local and global bifurcation (see, e.g., [23]). To do so, one
has first to consider solutions of (1) as fixed points of a non-linear operator G(x,m). Then, for T ∗

to be a bifurcation point, it is necessary that the linearized operator around the trivial solution
has a non-trivial kernel. This property becomes sufficient if some additional “transversality”
condition involving derivatives of G holds. The study of the linearized operator will be carried
out analyzing expansions of the variables that are based on eigenfunctions of the (Neumann)
Laplacian. Global bifurcation methods will then lead to the existence of continua C ⊂ S, or
branches, of non-trivial solutions emanating from critical bifurcation times T ∗. Finally, local
bifurcation results will give an explicit parametrization of Cn close to T ∗, that will provide a
rather precise qualitative description of solutions. We point out that bifurcation techniques have
been used extensively to study several nonlinear scalar PDEs and systems of PDEs, but their
implementation in MFG is rather new; as far as we know, they have been used only in [16] to
study stationary problems.

Before stating the main result of this paper, let us denote by (λk)k≥0 the non-decreasing
sequence of eigenvalues of −∆ with homogeneous Neumann boundary conditions, namely λk be
such that {

−∆ψk = λkψk in Ω,

∂nψk = 0 on ∂Ω,
(6)
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for some eigenvector ψk ∈ C∞(Ω); let (ψk)k≥0 be renormalized such that it constitutes an
orthonormal basis of L2(Ω). Note that the first eigenvalue λ0 is zero, with associated constant
eigenfunction ψ0.

Denote also by Ξ a 2×2 invertible square matrix whose columns are the eigenvectors associated
to a1 and a2, so that [

a1 0
0 a2

]
= Ξ · JV · Ξ−1. (7)

We have the following existence result.

Theorem 1.1. Suppose that (4) holds, that λ1 is a simple eigenvalue of (6), σ2λ1 < −a1 < σ2λ2,
and that T ∗n > 0 satisfies

T ∗n =
1√

λ1(−a1 − σ2λ1)

nπ − arctan

 1

σ

√
−a1 − σ2λ1

λ1

 (8)

for some n ∈ N. Then, (ū, m̄, T ∗n) ∈ S. Let Cn be the connected component of S to which
(ū, m̄, T ∗n) belongs. Then

i) Cn contains some (ū, m̄, T̃ ), where T ∗n 6= T̃ , or

ii) Cn is unbounded.

Finally, Cn is a continuously differentiable curve in a neighbourhood of T ∗n , parametrized by

T = T ∗n +O(ε), (m1(x, s),m2(x, s)) = (1, 1) + εψ1(x)Ξ ·
[
sin
(√

λ1(−a1 − σ2λ1) s
)
, 0
]T

+o(ε).

(9)

The theorem states the existence of continua Cn, or branches, that emanate from the trivial
solution. Such continua can be either unbounded in C4+α,2+α/2× (0,+∞) (that is, there are se-
quences (uj ,mj , Tj) ⊂ Cn such that Tj +‖(uj ,mj)‖[C4+α,2+α/2(QT )]4 →∞ as j →∞), or collapse
back to another bifurcation point. See, e.g., Figure 1. Though in our numerical experiments the
second possibility does not seem to occur (see Figures 3, 6, 10), namely all branches appear to
be unbounded, we are not able at this stage to say whether or not this is a general fact.

Let us comment on the local parametrization (9), that describes non trivial solutions m
close to bifurcation points: m can be seen as a perturbation of the trivial state (1, 1), with
split space-time dependance, of the form ψ1(x) sin(2πs/τ). We observe that the period τ =
2π(λ1(−a1 − σ2λ1))−1/2 does not depend on n, and T ∗n reads

T ∗n =
τ

2
(n− δ),

for some δ = δ(σ,Ω, a1) < 1/2. This means that, for T close to T ∗n , (1) has solutions such that
m, starting at s = 0 from the constant state, switches n− 1 times between (approximately) the
profiles 1 + εψ1(x) and 1 − εψ1(x) as s increases. This instability between different states will
be evident in numerical simulations that will be presented in the second part of this work. We
observe that this oscillatory behaviour is quite in contrast with the stability of the “monotone”
case, where the unique equilibrium m is expected to converge to a unique stable state as T →∞,
see [8]. Note that T ∗n → ∞ as n → ∞, therefore one can find solutions mε

i on (0, T ε) ≈ (0, T ∗n)
exhibiting an arbitrarily large number of small oscillations.

Some numerical analysis will be carried out not only to visualize the shape of solutions
predicted by Theorem 1.1 in particular models, but also to have a clue of their qualitative
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behaviour when T is not close to bifurcation points, that is, far from T ∗n . Some properties will be
pointed out, e.g. the conservation of the number of oscillations (in time) among every branch,
but we stress that rigorous proofs of such observations are not available at this stage. Still,
numerical insights can be matter of future work.

Theorem 1.1, and in particular the representation formula (9) in the perturbative regime
ε → 0 (i.e. T → T ∗n), suggest that there might be truly periodic in time solutions to the MFG
system (1) defined over (−∞,∞). This is the matter of a subsequent work [14], that uses several
ideas proposed in the present paper. We mention that when the time horizon is the whole
line (−∞,∞), solutions to the linearized system consist generally of a vector space with even
dimension, that prevent the use of bifurcation results involved here. This issue is circumvented
using the special variational (Hamiltonian) structure of (1) in particular cases. Note that periodic
solutions can be also obtained from travelling wave solutions if the state space Ω with Neumann
conditions is replaced by a space-periodic environment (i.e. the flat torus). In this direction,
results on so-called congestion problems appeared in [18], see also [29].

We finally note that (1) is a MFG system with quadratic Hamiltonians, so it has a very special
structure (see [26, 7]). Actually, the existence statement of Theorem 1.1 holds (under suitable
assumptions) if the Hamiltonians have a more general form H(x, p); the key point is that, to
perform a bifurcation analysis, one needs this special structure only locally, that is, close to the
trivial state ū. In particular, it is basically sufficient to have ∇H(·, 0) = 0 and D2H(·, 0) = κI
on Ω for some κ > 0. This possible generalization will be discussed in Remark 2.14, among other
considerations on further relaxations of the standing assumptions.

The paper is organized as follows. Section 2 is devoted to the bifurcation analysis for (1),
and the proof of Theorem 1.1. In Section 3, some applications to two different models will be
presented, with a discussion on several observations based on numerical evidences.

Acknowledgements. This work has been partially supported by the Fondazione CaRi-
PaRo Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field
Games”.

2 Bifurcation analysis

2.1 Notations and preliminaries

Let QT := Ω × (0, T ), and for all k ∈ N, 0 < β < 1, let C2k+β,k+β/2(QT ) be set of continuous
functions on QT having derivatives ∂rtD

ω
xu that are β-Hölder continuous in the x-variable and

β/2-Hölder continuous in t-variable for 2r + |ω| ≤ 2k (see, e.g., [27]). For brevity, Q := Q1.
We will denote by ν : ∂Ω → RN the outer normal vector field at ∂Ω. For a linear operator

L, N(L) and R(L) will be its kernel and its image respectively. Finally, (λk, ψk) will be the
eigenpairs of (6).

We will use the following version of the global Rabinowitz Bifurcation Theorem. Let X be a
Banach space, and F ∈ C(X ×R, X). Denote by S the closure of the set of nontrivial solutions
of

F(x, λ) = 0

in X × R.

Theorem 2.1. Assume that F(x, λ) = x−G(x, λ), where G : X×R→ X is a compact mapping
1, DxF(0, ·) = I − DxG(0, ·) ∈ C(R, L(X,X)) and it is differentiable. Suppose that zero is a

1that is, G is continuous, and the image under G of any bounded subsubset of X × R has compact closure in
X.
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geometrically simple (isolated) eigenvalue of DxF(0, λ0), and

D2
xλF(0, λ0)[v0] /∈ R(DxF(0, λ0)), (10)

where v0 is the element spanning N(DxF(0, λ0)). Then, (0, λ0) ∈ S.
Let C be the connected component of S to which (0, λ0) belongs. Then

i) C is unbounded, or

ii) C contains some (0, λ1), where λ0 6= λ1.

For a proof of Theorem 2.1 we refer to [23], Theorem II.3.3, and the discussion after Theorem
II.4.4 (in particular, p. 213).

Remark 2.2. If F ∈ C2(X × R, X), C in Theorem 2.1 is a continuously differentiable curve in a
neighbourhood of (0, λ0), parametrized by

s 7→ (x, λ) = (sv0 + sψ(s), λ0 + ϕ(s)),

where ϕ(0) = 0, ψ(0) = 0, see [23, Theorem I.5.1, Corollary I.5.2].

Throughout this section, we will set σ = 1 for simplicity, the analysis for different values of
σ > 0 being identical (see Remark 2.11).

To treat (1) with bifurcation methods, we shall do first a change of variables that involves a
time rescaling. In particular let, on Ω× [0, 1],{

ui(x, t) := ui(x, T t)− ūi(x, T t) = ui(x, T t) + T (t− 1)Vi(1, 1),

mi(x, t) := mi(x, T t)− m̄i(x, T t) = mi(x, T t)− 1.

Then, (1) becomes{
− 1
T ∂tui − σ∆ui + 1

2 |∇ui|2 = Vi(1 + m1, 1 + m2)− Vi(1, 1), in Q, i = 1, 2,
1
T ∂tmi − σ∆mi −∆ui − div(∇ui mi) = 0

(11)

with boundary conditions {
∂νui = ∂νmi = 0 on ∂Ω× (0, 1),

mi(x, 0) = ui(x, 1) = 0 on Ω.

Note that the space-time domain is fixed in (11), and T appears as a parameter in the equations.
Moreover, (u,m) ≡ (0, 0, 0, 0) is the trivial solution for all T .

We will consider solutions to (11) as fixed points of a non-linear functional. For any fixed
α ∈ (0, 1), let

X := {(m1,m2) ∈ C4+α,2+α/2(Q)×C4+α,2+α/2(Q) : ∂νmi = 0 on ∂Ω× (0, 1) and mi(·, 0) = 0 on Ω}.

For any m ∈ X,T > 0, define the mapping µ = G(m , T ) in such a way that µ is the classical
solution of

− 1
T ∂tui −∆ui + 1

2 |∇ui|2 = Vi(1 + m1, 1 + m2)− Vi(1, 1), in Q,
1
T ∂tµi −∆µi −∆ui − div(∇ui µi) = 0,

∂νu = ∂νµ = 0 on ∂Ω× (0, 1),

µ(x, 0) = u(x, 1) = 0 on Ω.

(12)
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It is clear that solutions to (11) (and therefore to (1)) are fixed points of G, or, in other
words, zeroes of the following functional

F(m , T ) := −m + G(m , T ) ∀(m , T ) ∈ X × (0,∞).

Note that F(0, T ) = 0 for all T > 0, so it is natural to treat T as a bifurcation parameter.
With this point of view in mind, we aim at applying Theorem 2.1. We begin by showing

that, for small T , (11) has only the trivial solution, namely G has just a trivial fixed point.

Lemma 2.3. There exists T > 0 such that if (11) has a (classical) non-trivial solution (u,m , T ),
then T > T .

Proof. By [2, Corollary 3.1], there exists T > 0 such that (1), and therefore (12), has a unique
classical solution for all T ≤ T . Since (1) has the trivial solution for all T > 0, a non-trivial
solution may exist only if T > T .

We now show that F is a so-called compact perturbation of the identity.

Lemma 2.4. G : X × (0,∞)→ X is a compact mapping, and DmG(0, ·) ∈ C(R, L(X,X)).

Proof. We claim that, by standard parabolic regularity, G(m , T ) ∈ C6+α,3+α/2(Q)×C6+α,3+α/2(Q)
for all (m , T ) ∈ X× (0,∞). In particular, any bounded set of the form Y × (t0, t1) ⊂ X× (0,∞),
t0 > 0, is mapped by G into a bounded subset of C6+α,3+α/2(Q)×C6+α,3+α/2(Q), whose closure
is compact in X. Indeed, if (m , T ) ∈ Y × (t0, t1), ∇ui are bounded in some Hölder space by [27,
Theorem XIII.13.15] and [27, Theorem XIII.13.16]. Parabolic regularity for linear equations in
divergence and non-divergence form (see, e.g., [27, Theorem IV.4.30] and [27, Theorem IV.4.31])
then yields the claim. Continuity of G follows by stability of the Hamilton-Jacobi-Bellman and
Fokker-Planck equations in (12), which is a standard by-product of parabolic regularity and
respective uniqueness of solutions.

By computation (and again stability of linear parabolic equations with respect to their co-
efficients), G is Gâteaux differentiable at every (m , T ) ∈ X × (0,∞), and z = DmG(m , T )[h]
satisfies
− 1
T ∂tvi −∆vi +∇ui · ∇vi = ∂m1Vi(1 + m1, 1 + m2)h1 + ∂m2Vi(1 + m1, 1 + m2)h2, in Q,

1
T ∂tzi −∆zi −∆vi − div(∇vi µi)− div(∇ui zi) = 0,

∂νvi = ∂νzi = 0 on ∂Ω× (0, 1),

zi(x, 0) = vi(x, 1) = 0 on Ω.

By continuity of m 7→ (u, µ) (uniform w.r.t ‖h‖C4+α,2+α/2(Ω)×C4+α,2+α/2(Ω) = 1) and stability of
the equations , G is also Fréchet differentiable. Note finally that z = DmG(0, T )[h] satisfies

−∂tvi − T∆vi = T [∂m1
Vi(1, 1)h1 + ∂m2

Vi(1, 1)h2], in Q,

∂tzi − T∆zi − T∆vi = 0,

∂νvi = ∂νzi = 0 on ∂Ω× (0, 1),

zi(x, 0) = vi(x, 1) = 0 on Ω.

(13)

and continuity of the differential DmG can be easily verified.
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2.2 The linearized system

The application of Theorem 2.1 relies on the study of the linearization of (11). We will in
particular analyse the linearized system (13) using expansions over the eigenfunctions ψk(x) of
the Neumann −∆ (as in (6)): every mi admits a unique representation in terms of time-dependent
coefficients mi,k(t) :=

∫
Ω

mi(x, t)ψk(x)dx, that is,

X = {(m1,m2) ∈ C4+α,2+α/2(Q)× C4+α,2+α/2(Q) : mi(x, t) =
∑
k≥0

mi,k(t)ψk(x),

for some (mi,k)k≥0 ⊂ C2+α/2([0, 1]) s.t. mi,k(0) = 0 ∀i = 1, 2, k ≥ 0}. (14)

In the sequel, we will identify an f ∈ C4+α,2+α/2(Q) with its associated sequence of coefficients
(fk)k≥0 ⊂ C2+α/2([0, 1]).

Note that, setting z = Ξ · z̄, v = Ξ · v̄ and h = Ξ · h̄ (in general, we will use the notation
x = Ξ · x̄ for any vector in x ∈ R2, treating x, x̄ as column vectors), then (13) decouples, and
becomes equivalent to 

−∂tv̄i − T∆v̄i = Taih̄i, in Q,

∂tz̄i − T∆z̄i − T∆v̄i = 0,

∂νvi = ∂νzi = 0 on ∂Ω× (0, 1),

zi(x, 0) = vi(x, 1) = 0 on Ω,

(15)

where ai, Ξ are as in (7). Let

L(T ) := DmF(0, T ) = I −DmG(0, T ).

Lemma 2.5. For any z, h̃ ∈ X, we have that z = L(T )[h̃] if and only if, setting h = h̃− z, hi,k
satisfies{
h′′i,k(t) = T 2λ2

khi,k(t) + T 2λk[∂m1
Vi(1, 1)(h1,k(t) + z1,k(t)) + ∂m2

Vi(1, 1)(h2,k(t) + z2,k(t))],

hi,k(0) = 0, h′i,k(1) + Tλkhi,k(1) = 0

(16)
for all k ≥ 0, i = 1, 2.

Note that, in a slightly more compact form, (16) reads{
h′′k(t) = T 2λ2

khk(t) + T 2λk JV · (hk(t) + zk(t)) in (0, 1),

hk(0) = 0, h′k(1) + Tλkhk(1) = 0

Proof. Note that h is such thatDmG(0, T )[h+z] = h, hi(·, 0) = 0 on Ω and ∂νhi = 0 on ∂Ω×(0, 1).
Recalling that (−∆u)k = ukλk, if gi,k := [∂m1Vi(1, 1)(h1,k+z1,k)+∂m2Vi(1, 1)(h2,k+z2,k)], then
projecting (13) onto ψk yields

−v′i,k + Tλkvi,k = Tgi,k, in (0, 1),

h′i,k + Tλkhi,k + Tλkvi,k = 0

hi,k(0) = vi,k(1) = 0

for all k ≥ 0, i = 1, 2. By an easy computation, this system is equivalent to a second order
equation, namely

h′′i,k + Tλkh
′
i,k = −Tλkv′i,k = Tλk(h′i,k + Tλkhi,k + Tgi,k).
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Moreover, hi,k(0) = 0, and 0 = h′i,k(1) +Tλkhi,k(1) +Tλkvi,k(1) = h′i,k(1) +Tλkhi,k(1), and the
statement follows.

Lemma 2.6. We have that w = L′(T )[h̃] := DmTF(0, T )[h̃] if and only if w satisfies{
−w′′k(t) = 2Tλ2

kh̃k + 2TλkJV · h̃k − 2Tλ2
kzk − T 2λ2

kwk in (0, 1),

wk(0) = 0, w′k(1) + Tλkwk(1) = λk(h̃k(1)− zk(1))

for all k ≥ 0, where z = L(T )[h̃].

Proof. Follows by differentiating (16) (in its compact form).

Lemma 2.7. The kernel N(L(T )) is spanned by h0, h1, . . ., where

hj(x, t) = ψkj (x)Ξ ·
[
sin
(
T
√
λkj (−a1 − λkj ) t

)
, 0
]T

on Q

are defined by the eigenvalues 0 < λkj < a1 that satisfy the equation

tan
(
T
√
λkj (−a1 − λkj )

)
= −

√
−a1 − λkj

λkj
. (17)

Note that the set of λkj satisfying (17) is finite, since λk →∞ as k →∞.

Proof. By Lemma 2.5, L(T )[h] = 0 if and only if, for all k ≥ 0, i = 1, 2,{
h′′i,k(t) = T 2λ2

khi,k(t) + T 2λk[∂m1
Vi(1, 1)h1,k(t) + ∂m2

Vi(1, 1)h2,k(t)] in (0, 1),

hi,k(0) = 0, h′i,k(1) + Tλkhi,k(1) = 0.
(18)

We use the linear transformation on R2 induced by Ξ to decouple the system: the coefficients h̄k
associated to h̄ = Ξ−1h satisfy{

h̄′′i,k(t) = T 2λk(λk + ai)h̄i,k(t) in (0, 1),

h̄i,k(0) = 0, h̄′i,k(1) + Tλkh̄i,k(1) = 0.
(19)

For any i, k, this second order equation does not have non-trivial solutions if λk + ai ≥ 0, so
h̄2,k ≡ 0 for all k. On the other hand, it is possible to check that h̄1,kj (t) = A sin(ω t)+B cos(ω t)

is a non-trivial solution if and only if ω = T
√
λkj (−a1 − λkj ), B = 0 and (17) holds.

Lemma 2.8. z ∈ R(L(T )) if and only if∫ 1

0

[Ξ−1
11 z1,kj (t) + Ξ−1

12 z2,kj (t)] sin
(
T
√
λkj (−a1 − λkj ) t

)
dt = 0

for all λkj satisfying (17).

Proof. Denote by K = Ka,k,T the inverse of the one-dimensional Laplacian on (0, 1) with Robin
conditions, i.e. u = K[f ] if and only if (in the weak sense)

u′′(t) = T 2(λk + a1)λkf(t) in (0, 1), u(0) = 0, u′(1) + Tλku(1) = 0.

Note that this operator is bounded, linear, self-adjoint and compact on L2((0, 1)).
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By Lemma 2.5, z ∈ R(L(T )) if and only if there exists h that satisfies{
h′′k(t) = T 2λ2

khk(t) + T 2λk JV · (hk(t) + zk(t)) in (0, 1),

hk(0) = 0, h′k(1) + Tλkhk(1) = 0

for all k. Passing to the transformed variables h̄, z̄, the system reads{
h̄′′i,k(t) = T 2(λk + ai)λkh̄i,k(t) + T 2λkaiz̄i,k(t) in (0, 1),

h̄i,k(0) = 0, h̄′i,k(1) + Tλkh̄i,k(1) = 0

The set of equations with i = 2, k ≥ 0 has solutions h̄2,k, since λk + a2 ≥ 0. For i = 1 and any
fixed k, the problem can be restated in finding h̄1,k so that

h̄1,k = K[h̄1,k] +
a1

(λk + a1)
K[z̄1,k],

that is possible if and only if K[z̄1,k] ∈ R(I − K). By the Fredholm alternative, R(I − K) =
N(I−K)⊥. One then verifies that N(I−K) is made up of solutions to (19), so K[z̄1,k] ∈ R(I−K)
if and only if

0 =

∫ 1

0

K[z̄1,k](t) sin
(
T
√
λkj (−a1 − λkj ) t

)
dt =∫ 1

0

z̄1,k(t)K
[
sin
(
T
√
λkj (−a1 − λkj ) ·

)]
(t)dt =

∫ 1

0

z̄1,k(t) sin
(
T
√
λkj (−a1 − λkj ) t

)
dt,

whenever λkj satisfies (17) (otherwise K[z̄1,k] ∈ R automatically), that concludes the proof.

2.3 Global bifurcation

We are ready to prove the main result of this section, concerning global bifurcation for (11). The
proof of Theorem 1.1 will directly follow by going back to the unknowns u,m.

Theorem 2.9. Suppose that λ1 is a simple eigenvalue, λ1 < −a1 < λ2, and that T ∗ > 0 satisfies

tan
(
T ∗
√
λ1(−a1 − λ1)

)
= −

√
−a1 − λ1

λ1
. (20)

Then, (0, T ∗) ∈ S. Let C be the connected component of S to which (0, T ∗) belongs. Then

i) C contains some (0, T1), where T ∗ 6= T1, or

ii) C is unbounded.

Remark 2.10. If T does not satisfy (20), the linearized system associated to (ū, m̄) does not have
non-trivial solutions; using the jargon introduced in [6], (ū, m̄) is then a stable solution, so it is
in particular isolated.

Proof. We will apply Theorem 2.1. We have to check that zero is a geometrically simple (isolated)
eigenvalue of DmF(0, T ∗) and the transversality condition (10). The first assertion comes from
Lemma 2.7, since λ1 is a simple eigenvalue and λ1 < −a1 < λ2. Moreover, N(DmF(0, T ∗)) is
spanned by

h0(x, t) = ψ1(x)Ξ ·
[
sin
(
T
√
λ1(−a1 − λ1) t

)
, 0
]T
.

10



Since DmF(0, T ∗)[h0] = 0, by Lemma 2.6 we have that w = L′(T ∗)[h0] if and only if{
−w′′k(t) = 2T ∗λ2

kh
0
k + 2T ∗λkJV · h0

k − (T ∗)2λ2
kwk in (0, 1),

wk(0) = 0, w′k(1) + T ∗λkwk(1) = λkh
0
k(1).

(21)

that is, via the linear transformation Ξ,{
−w̄′′i,k(t) = 2T ∗(λk + ai)λkh̄

0
i,k − (T ∗)2λ2

kw̄i,k in (0, 1),

w̄i,k(0) = 0, w̄′i,k(1) + T ∗λkw̄i,k(1) = λkh̄
0
i,k(1).

(22)

We focus on the set of equations with i = 1. Note that h̄0
1,k ≡ 0 for all k ≥ 2, so w̄1,k ≡ 0 for all

k ≥ 2. On the other hand, recall that η(t) := h̄0
1,1(t) = sin(T ∗

√
λ1(−a1 − λ1) t) satisfies{

η′′(t) = (T ∗)2(λ1 + a1)λ1η(t) in (0, 1),

η(0) = 0, η′(1) + T ∗λ1η(1) = 0,
(23)

We now multiply the equation in (22) (with i, k = 1) by η, the equation in (23) by w̄1,1, integrate
by parts on (0, 1) and sum to get

−w̄′1,1η(1) + w̄′1,1η(0) + w̄1,1η
′(1)− w̄1,1η

′(0) = 2T ∗(λ1 + a1)λ1

∫ 1

0

η2dt+ (T ∗)2λ1a1

∫ 1

0

w̄1,1ηdt.

Using then the boundary conditions,

−(T ∗)2λ1a1

∫ 1

0

w̄1,1ηdt = 2T ∗(λ1 + a1)λ1

∫ 1

0

η2dt+ λ1η
2(1).

Evaluating the last expression, by (20) one has

−(T ∗)2a1

∫ 1

0

w̄1,1(t) sin(T ∗
√
λ1(−a1 − λ1) t)dt = T ∗(λ1 + a1) < 0,

so by Lemma 2.8
L′(T ∗)[h0] = w /∈ R(L(T ∗)),

that is the sufficient condition for T ∗ to be a bifurcation point.
Finally, we observe that G is a compact operator on X × (0,∞), while Theorem 2.1 requires

it to be compact on X×R. We may circumvent this as follows. By Lemma 2.3, (12) has only the
trivial solution for all T ≤ T . In (12), we may then replace T by ϕ(T ), where ϕ : R→ (0,∞) is a
positive and increasing smooth function such that ϕ(T ) = T for all T > T , so G becomes compact
on X × R and coincides with its original definition for all T > T . Since there are no non-trivial
solutions whenever ϕ(T ) ≤ T (and no bifurcation points, i.e. T ∗ > T ), the previous analysis
holds, and Theorem 2.1 applies. Moreover, if (m , τ) is a non-trivial solution of m = G(m , τ), then
ϕ(τ) > T , so ϕ(τ) = τ and (m , τ) is really a solution to (12).

Remark 2.11. It is straightforward to check that G is C2(X × R, X), so by Remark 2.2, C is a
continuously differentiable curve in a neighbourhood of (0, T ∗), parametrised by

T = T ∗ +O(ε), (m1,m2) = (0, 0) + ε(m∗1 ,m∗2 ) + o(ε),

11



T

‖(u,m)‖

(ū, m̄)
T ∗1

C2

T ∗2

T

C1

T ∗3

Figure 1: A sample bifurcation diagram: the horizontal dashed line represents trivial solutions (ū, m̄), that exist
for every T > 0. From the line of trivial solutions, branches (continua) Cn of non-trivial solutions emanate at
certain values T ∗n (in red). Theorem 2.9 states that a dichotomy occurs: i) branches may connect two different
bifurcation points (as for C2), or ii) branches are unbounded (as for C1). Note that unbounded branches must
contain sequences with T → ∞ (see Proposition 2.12). Moreover, no non-trivial branch can enter the filled
rectangle X × (0, T ). Indeed, in view of Lemma 2.3, any non-trivial solution exists for T > T only. The reader
may compare this sample diagram with diagrams in Figures 3, 6, 10, that have been obtained by numerical
explorations of (1).

where (m∗1 (x, t),m∗2 (x, t)) = ψ1(x)Ξ ·
[
sin
(
T
√
λ1(−a1 − λ1) t

)
, 0
]T

.

Going back to the unknowns (m1,m2), this means that (1) has a branch of nontrivial solutions

T = T ∗ +O(ε), (m1(x, s),m2(x, s)) = (1, 1) + εψ1(x)Ξ ·
[
sin
(√

λ1(−a1 − λ1) s
)
, 0
]T

+ o(ε).

Note that, if σ 6= 1, the same arguments lead to bifurcation times T ∗ that satisfy

tan
(
T ∗
√
λ1(−a1 − σ2λ1)

)
= − 1

σ

√
−a1 − σ2λ1

λ1
,

with branches having local parametrisation

(m1(x, s),m2(x, s)) = (1, 1) + εψ1(x)Ξ−1
[
sin
(√

λ1(−a1 − σ2λ1) s
)
, 0
]T

+ o(ε).

We are now in the position to prove the main global bifurcation result of this paper.

Proof of Theorem 1.1. The statement directly follows by Theorem 2.9 and Remark 2.11, noting
that (u,m) 7→ (u,m) is a continuous bijection on X × (0,∞). The bifurcation condition (8) is
simply derived by taking the inverse of z 7→ tan z in (20).

Finally, by parabolic regularity we can show that if C is an unbounded branch, that is if C
does not connect two different bifurcation points, then it must be unbounded in the direction
T → +∞, in the following sense (see also Figure 1).

Proposition 2.12. Let C be as in Theorem 2.9. Then,

i) C contains some (0, T1), where T ∗ 6= T1, or

ii) C contains sequences with T → +∞.

Proof. By contradiction, suppose that both i) and ii) are false, in particular that there exists

T̂ > 0 such that for all (m , T ) ∈ C, T ≤ T̂ . Since C consists of non-trivial solutions, it also

holds true that T ∈ (T , T̂ ) by Lemma 2.3. Since m = G(m , T ), arguing as in the first part of the
proof of Lemma 2.4 we conclude by parabolic regularity that m belongs to a bounded set of X
(recall that (4) is in force, in particulart Vi are bounded on R2), so C is bounded in X ×R. This
contradicts Theorem 2.9, since if i) is false, then C must be unbounded.

12



2.4 Additional remarks

Remark 2.13. On the assumption σ2λ1 < −a1 < σ2λ2 of Theorem 1.1.
As we explained earlier, bifurcation times T ∗ are so that the linearized system (13) has a one

dimensional vector space of non-trivial solutions, that is, N(L(T )) is spanned by a single element.
In Lemma 2.7 it is proved that this happens whenever T satisfies (17); if σ2λ1 < −a1 < σ2λ2,
this equation has solutions if only if kj = 1. Suppose now that

−a1 6= σ2λk ∀k ∈ N,

and, if K is such that σ2λK < −a1 < σ2λK+1, then

λ1, . . . , λK are simple.

Let σ = 1 for simplicity. Then, for any k = 1, . . . ,K fixed, (17) has a family of solutions of
the form

T ∗n,k =
1√

λk(−a1 − λk)

[
nπ − arctan

(√
−a1 − λk

λk

)]
.

Of course, T ∗n,k 6= T ∗m,k for all n 6= m. If it is also true that for some (n, k), T ∗n,k 6= T ∗m,j for all
j = 1, . . . ,K, j 6= k, m ≥ 1, then T ∗n,k becomes a bifurcation point. Indeed, in this case N(L(T ))
is still one dimensional, and the arguments and conclusions of Theorem 2.9 hold. In particular,
there exists a continuum Cn,k branching off from the trivial solution which is either unbounded
or meets again the trivial solution in another bifurcation point. An example of this scenario will
be discussed later (see Section 3.1).

Remark 2.14. The non-quadratic case.
The same bifurcation methods apply for more general MFG systems with non-quadratic

Hamiltonians Hi(x, p) of the form{
−∂tui − σ∆ui +Hi(x,∇ui) = Vi(m1,m2), in QT , i = 1, 2,

∂tmi − σ∆mi − div(∇pHi(x,∇ui)mi) = 0,
(24)

under the assumption that for some cH , κ1,2 > 0 and for all x ∈ Ω,

i) ∇pHi(x, 0) = 0,

ii) D2
pHi(x, 0) = κiI,

iii) |Hi(x, p)| ≤ cH(1 + |p|2), |p|2|∇pHi(x, p)|+ |∇xHi(x, p)| ≤ cH(1 + |p|3) ∀p.

While iii) is related to a priori estimates needed to have G well-defined and regular, i) - ii)
imply that the linearized system is identical to the linearized system of a quadratic problem of
the form (1). Indeed, the linearized operator z = DmG(0, T )[h] associated to the linearization of
(24) reads {

−∂tvi − σT∆vi = T [∂m1
Vi(1, 1)h1 + ∂m2

Vi(1, 1)h2], in Q,

∂tzi − σT∆zi − κiT∆vi = 0,
(25)

and an identical analysis can be carried over with the additional parameters ki. Let us discuss
briefly the effect of these parameters in a simple model, i.e. a single population setting where
κ1 = κ2 = κ > 0,

V1(m1,m2) = −am1, V2(m1,m2) = 0, a > 0.
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Arguing as in the previous section, a necessary condition for Tn to be a bifurcation point is that

Tn(κ) =
1√

λ1(κa− σ2λ1)

nπ − arctan

 1

σ

√
κa− σ2λ1

λ1


If κ is such that σ2λ1 < κa < σ2λ2, we indeed obtain branches of non-trivial solutions. For this
to happen, k has to be bounded away from zero. If k is large, one may argue as in Remark 2.13,
namely bifurcation of non-trivial solutions from Tn(κ) shows up if some kind of non-resonance
is guaranteed; note that, for any n fixed, Tn(κ) → 0 as κ → ∞. In other words, one may find
branches of non-trivial solutions for small time horizons as soon as D2Hi(0) is large.

Remark 2.15. On the assumption (4).
In the same spirit of Remark 2.14, what really matters for our bifurcation analysis is the

linearization of (1) around the trivial solution (ū, m̄). The analysis carried out in Section 2 is
identical if one replaces (4) by

•Vi = Vi(x,m) ∈ C∞(Ω× (0,+∞)× (0,+∞)) are bounded,

• there exist a1 ≤ a2 with a1 < 0, and an invertible 2× 2 matrix Ξ such that for all x ∈ Ω,[
a1 0
0 a2

]
= Ξ · JmV (x, 1, 1) · Ξ−1.

(26)

Indeed, the linearized system does not change at all under the additional x-dependance of Vi if the
eigenvalues and eigenvectors of JmV (x, 1, 1) do not vary on Ω, and Ξ decouples the linearized
system into two systems that can be treated as (19). The cases of JV (1, 1) having a single
eigenvalue with geometric multiplicity equal to one or complex eigenvalues are more delicate and
require different treatments.

We note that adding an x-dependance does not change the qualitative behaviour of branches
close to bifurcation points, but may alterate significantly the system as soon as (u,m) differs
from the trivial solution (ū, m̄).

Remark 2.16. More than two populations.
The present work deals with two-population models, but the arguments presented could be

adapted to more general systems of the form{
−∂tui − σ∆ui + 1

2 |∇ui|
2 = Vi(m1,m2, . . . ,mM ),

∂tmi − σ∆mi − div(∇uimi) = 0, in QT , i = 1, . . . ,M ,

as soon as JV (1, . . . , 1) has at least one negative eigenvalue. This framework should be even
more rich, and will be matter of future work.

3 Two applications

In this section we consider two different models. For both models, we apply Theorem 2.9 to
obtain the existence of branches of non-trivial solutions, with their explicit parametrization close
to bifurcation times. We then present some numerical experiments to show how solutions behave
along selected branches as T varies. Such analysis has just the aim of observing the behaviour
of solutions for particular choices of the parameters, and by no means is meant to give a general
description of the qualitative properties of solutions to multi-population MFG systems. Still, the
following results highlight different scenarios.
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To simplify the numerical analysis, and better compare the theoretical and experimental
sides, we restrict to space dimension N = 1, i.e.

Ω = (0, 1).

In this setting, Neumann eigenvalues and eigenvectors of −∆ are explicit, namely we have

λk = (kπ)2 ψk(x) = cos(kπx),

and all the eigenvalues are simple.
Numerical solutions will be obtained by finite difference methods. We use the techniques

described in [1], that rely on monotone approximations of the Hamiltonian and on a suitable
weak formulation of the Fokker-Planck equation. Since (1) couples forward and backward in time
equations, it cannot be solved by merely marching in time, so we implement a Newton-Raphson
method for the whole system on QT , mimicking the infinite dimensional equation m = G(m , T ).
For additional details we refer to [1, Section 5] and references therein. We mention that to get
a precise approximation of (1) close to bifurcation points, we need a space-time grid with rather
small steps (see the discussion in Experiment 1); here, we will use a uniform 400 × 400 grid.
Theorem 1.1 suggests that (1) has a rich structure of solutions; the numerical method is indeed
very sensitive to the initial guess m0, that has to be properly chosen to select desired branches.

We finally mention that the radial case Ω = BR could be treated in the same ways, both
from the theoretical and numerical sides.

3.1 A single population model with aggregation

We consider a single population model where

V1(m1,m2) = −a g(m1), V2(m1,m2) = 0, a > 0,

where g(m) is a smooth increasing function such that g(m) = m for all m ∈ [0,M ] (here M > 1 is
fixed) and g is bounded on R (we will see that for suitable M >> 1, solutions have m components
such that ‖m‖∞ ≤M independently on T , so u,m will really be solutions of the model problem
with linear cost V1(m1,m2) = −am1). The cost V2 is trivial, hence we restrict our attention to
the components (u1,m1); here, the system is decoupled and the second population is not playing
any significant role. The coupling V1(·,m2) is decreasing, namely players of the first population
are attracted toward congested areas. Since

JV := JV (1, 1) =

[
−a 0
0 0

]
,

we can rephrase Theorem 1.1 as follows:

Theorem 3.1. Suppose that (σπ)2 < a < 4(σπ)2, and that T ∗n satisfies

T ∗n = − 1

π
√
a− (σπ)2

arctan

(√
a− (σπ)2

σπ

)
+

n√
a− (σπ)2

for some n ∈ N. Then, (ū, m̄, T ∗n) ∈ S. Let Cn be the connected component of S to which

(ū, m̄, T ∗n) belongs. Then Cn contains some (ū, m̄, T̃ ), where T ∗ 6= T̃ , or Cn is unbounded.
Finally, Cn is a continuously differentiable curve in a neighbourhood of T ∗n , parametrized by

T = T ∗n +O(ε), m1(x, s) = 1 + ε cos(πx) sin
(
π
√
a− (σπ)2 s

)
+ o(ε). (27)
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Figure 2: Plot of the function s 7→ sin (2πs/τ), τ = 1, and bifurcation times T ∗1 , T
∗
2 , T

∗
3 .

Let us comment on the previous result, in particular on the expansion (27). The theorem
provides the existence, for T close to T ∗n of a solution to (1) such that m can be written as in
(27): qualitatively, m1 is a perturbation of the constant distribution m̄ ≡ 1 that is approximately
of the form cos(πx) sin (2πs/τ), where the oscillation period (in time) is τ = 2(a − (σπ)2)−1/2.
Let us focus on the time dependance: the final time T = T ∗n + o(ε) has the form

T =
τ

2
(n− δ) + o(ε),

where δ < 1/2 is some constant depending on the data. Therefore, if n = 1, s 7→ sin (2πs/τ)
reaches a maximum and decreases until s = T ∗1 . If n = 2, s 7→ sin (2πs/τ) reaches a maximum,
decreases to a minimum and increases again up to s = T ∗2 . In general, s 7→ sin (2πs/τ) switches
n − 1 times between maxima and minima during the whole time interval [0, T ∗n ], see Figure 2.
This means that m1 switches n− 1 times between the profiles 1 + ε cos(πx) and 1− ε cos(πx) as
s increases, or in other words, m1 performs (a bit less than) n/2 full oscillations in time around
the constant state.

This can be clearly observed in the following numerical experiments.
Experiment 1. We choose the parameters

σ =
1

π
, a = 2,

so that the assumptions of Theorem 3.1 are satisfied. We obtain several families of numerical
solutions in the following way: for any fixed n ∈ N, we expect the existence of a solution of the

form m(x, s) = m̃(x, s) + o(ε), with m̃(x, s) = 1 + ε cos(πx) sin
(
π
√
a− (σπ)2 s

)
, for T close to

T ∗n . We choose m̃ as the initial guess of the Newton method, with ε of order 10−1 (or 10−2), and
increase T starting from T ∗n until the numerical method converges to a non-trivial solution. We
then “follow” the branch by continuation with respect to the parameter T , as in Figure 3.

Typically, the sup-norm of m1 is an increasing function of T . On one hand, the parameter T
can be decreased up to some Tn such that the corresponding solution m1 converges uniformly
to the trivial state; as T approaches Tn, one observes the expected qualitative behaviour in
terms of space-time oscillations, in accordance with (27). See Figure 4. In principle, Tn should
almost coincide with the theoretical bifurcation times T ∗n , but those values are slightly different
in general (see again Figure 3). We believe that this can be explained as follows: T ∗n are such
that the linearized system (13) has a non-trivial solution, and this happens whenever the second
order (in time) system (18) is satisfied. Note that (18) involves also the (space) eigenvalue λk.
It is known that finite difference eigenvalues of the Laplacian do not coincide with eigenvalues of
its continuous counterpart, though the former converge to the latter as the mesh step decreases.
Therefore, bifurcation times of the discretised problem can differ from the continuous one, because
of the gap between discrete and continuous eigenvalues, that is what we observe in our numerical
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Figure 3: Branches of non-trivial solutions, corresponding to C1 . . . , C6. On the y-axis the value of ‖m‖∞ is
plotted. Red circles are the expected bifurcation points from the trivial solution m̄ ≡ 1.

results. However, as space and time steps decrease, we note that Tn indeed converge to the
theoretical values T ∗n .

On the other hand, T can be increased arbitrarily. We are not able to carry out a qualitative
theoretical analysis on the behaviour of solutions far from the bifurcation points, but we observe
the following phenomenon in our numerical results. Along the first branch C1, m1 evolves
quickly into a stable state, until the final horizon T (here max[0,1]m1(·, s) slightly decreases as
s approaches T because the value function u has to achieve the identically zero final cost). This
asymptotic behaviour can be also observed in Figure 3, as ‖m1‖L∞(QT ) reaches a constant in
time value as T increases. The second branch C2, for T large, consists of solutions that are
stable up to time (approximately) T/2, and switch quickly to another stable state up to final
time. Similarly, in C3 solutions switch two times, the third stable state being identical to the
first one. As T increases, m1 becomes substantially stable in time, but shows n−1 rapid changes
of state; apparently, the number of oscillations in time does not vary on Cn. We believe that
such stable states are solutions of the stationary MFG{

−σ∆ui + 1
2 |∇ui|

2 +Hi = Vi(m1(x),m2(x)), in Ω, i =1,2,

−σ∆mi − div(∇uimi) = 0,
∫

Ω
mi = 1.

Experiment 2. We now choose the parameters

σ =
1

π
, a = 5.

Note that π2 = λ1 < 4π2 = λ2 < a < 9π2 = λ3; therefore Theorem 3.1 does not apply directly,
but we may argue as in Remark 2.13. Indeed, λ1 and λ2 are clearly simple eigenvalues. Therefore,
we expect the existence of two families of non-trivial solutions branching off from

T ∗n,1 =
n

2
− 1

2π
arctan(2),

T ∗n,2 =
n

2
− 1

2π
arctan

(
1

2

)
,

since T ∗n,1 6= T ∗m,2 for all n,m. Close to T ∗n,k we expect to find solutions of the form

m(x, s) ≈ 1 + ε cos(kπx) sin (2πs) .

We represent some of these families in Figures 6 and 7. Branches behave qualitatively as in Exper-
iment 1: the space-time structure is preserved as T varies and the long-time regime is analogous.
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Figure 4: From top-left to bottom-right, (space-time) contours of m1 belonging to C1 . . . , C6 respectively, for
T close to the bifurcation times T ∗n . Colours black-blue-violet-yellow vary from maxQT m1 to minQT m1.
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Figure 5: From left to right, (space-time) contours of m1 belonging to C1 . . . , C3 respectively, for large values
of T . Colours black-blue-violet-yellow vary from maxQT m1 to minQT m1.
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Figure 6: Branches of non-trivial solutions, corresponding to C1,2, C2,2, C3,2. On the y-axis the value of ‖m‖∞
is plotted. Red circles and diamonds are the expected bifurcation points T ∗n,1 and T ∗n,2 respectively from the
trivial solution m̄ ≡ 1.
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Figure 7: From left to right, (space-time) contours of m1 belonging to C1,2, C2,2, C3,2 respectively, close to
bifurcation times T ∗n,k. Colours black-blue-violet-yellow vary from maxQT m1 to minQT m1.

Note that as T approaches the bifurcation parameter, in order to continue the branch up the the
bifurcation point one has to decrease T very slowly; in other words, a small perturbation of T
induces on the corresponding solution a significant variation. This is particularly noticeable for
large values of a and for the first branches T1,1, T1,2, etc.

Experiment 3. We go back to the initial choice of the parameters

σ =
1

π
, a = 2,

but consider a MFG system with non-quadratic Hamiltonian, i.e. we discretize (24) with Hi of
the form

Hi(p) =
1

2
|p|γ , γ > 1.

Note that Hi is not even C2 in a neighborhood of zero if γ ∈ (0, 2), so the first variation of (24)
contains a singular part. On the other hand, if γ > 2 the linearization of (24) is well-defined,
but D2Hi(0) =: κ = 0. Therefore, arguing as in Remark 2.14, the linearized system has no
non-trivial solutions for all T , so we do not expect the existence of branches bifurcating from the
trivial solution. Still, if γ is close to two, (24) can be regarded as a small perturbation of the
quadratic problem (11), and one might expect to find some analogies between the two cases.

The strategy to obtain non-trivial solutions is as follows: we start the Newton method using
solutions of the quadratic problem as initial guesses. This method is particularly efficient if T
is not too close to the bifurcation values of the quadratic problem. Once a (discrete) solution
is found, we continue along the parameter T . The sub-quadratic (γ < 2) and super-quadratic
(γ > 2) regimes show dramatically different behaviours, that are represented in Figure 8.

19



0

1

5

0 0.5 1 1.5 2 2.5

T

γ = 2
γ = 1.9
γ = 2.1

Figure 8: Comparison between branches obtained with different values of γ.

If γ = 1.9, for large values of T solutions are somehow close to solutions of the quadratic
problem. As T decreases, branches do not collapse at some T ∗ to the trivial state, but seem to
continue up to T = 0. Actually, this continuation is hard to be carried over to arbitrarily small
time horizons, as m goes to the trivial state very quickly in the sup-norm. Still, m1 remains
numerically bounded away from one even for T very small. This property is shared between all
branches, indicating that there might be a clustering of an infinite number of branches as T → 0
to the trivial solution.

If γ = 2.1, a branch of stable (in time) solutions behaving as solutions of the quadratic
problem is found for large values of T . As T decreases, this branch reaches a turning point and
continues back towards the direction T → ∞. In this direction, mT converges to the trivial
solution as T goes to infinity, but remains non-trivial for all T . In this case, branches cluster
around the trivial solution as T →∞.

Recall that if Hi ∈ C2(RN ) one has uniqueness of solutions for T small, by reasoning as
in Lemma 2.3. This is consistent with numerical results for the case γ > 2. When γ < 2, so
Hi /∈ C2(RN ), numerical simulations suggest that uniqueness for small T may fail.

3.2 A two-populations model

We consider now a truly multi-population model, introduced in [1]. Inspired by the pioneering
work of T. Schelling, the authors develop in the MFG framework a simple model of residential
choice. In this model, preferences of each player are described by couplings Vi of the following
form:

V1(m1,m2) = K1

(
m1

m1 +m2
− α1

)−
, V2(m1,m2) = K2

(
m2

m1 +m2
− α2

)−
,

where (·)− denotes the usual negative part function, Ki > 0, and αi ∈ [0, 1]. In particular, αi
represents the minimum percentage of players of the i-th population among the total amount of
players that is required for an agent of the i-th population to be satisfied. In other words, if the
ratio between m1(x) and m1(x)+m2(x) is above the threshold α1, players of the first population
at position x pay a null cost; otherwise they pay a positive cost, and might be tempted to move
to another spot (the scenario is identical for players of the second population). We refer to
[1] for additional details regarding this model. What we aim to show here is the existence of
solutions with an instable-oscillatory behaviour, that has been pointed out numerically in the
aforementioned work when thresholds ai are larger than 1/2.
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Before presenting numerical experiments, let us set this model into the bifurcation framework
developed in Section 2. We first note that the negative part function is not C1 in a neighborhood
of zero, but it is sufficient to replace it by a regularized version that coincides with (·)− in
R \ (−η, η), with η > 0 very small. We may now proceed to compute JV , and to evaluate it at
(1, 1). Since

(∂m1
V1(m1,m2), ∂m2

V1(m1,m2)) =

{
K1

(
− m2

(m1+m2)2 ,
m1

(m1+m2)2

)
if m1(1− α1)− α1m2 < 0

(0, 0) if m1(1− α1)− α1m2 > 0

(∂m1
V2(m1,m2), ∂m2

V2(m1,m2)) =

{
K2

(
m2

(m1+m2)2 ,−
m1

(m1+m2)2

)
if m2(1− α2)− α2m1 < 0

(0, 0) if m2(1− α2)− α2m1 > 0

we basically distinguish three cases:
1). Both α1, α2 < 1/2, so JV (1, 1) = 0. In this regime, the bifurcation results do not apply,

because the linearized system does not have non-trivial solutions; we then expect the trivial
solution to be isolated for all T . This is reasonable as both V1(m̄) and V2(m̄) are identically
zero, so both the populations are completely satisfied in the constant-trivial state; any variation
or movement would increase the cost.

2). Both α1, α2 > 1/2, so[
−K1+K2

4 0
0 0

]
= Ξ · JV · Ξ−1, Ξ =

[
K1 1
−K2 1

]
,

and Theorem 1.1 applies whenever σ2λ1 <
K1+K2

4 < σ2λ2 (see also Remark 2.13 for larger values
of K1 +K2). Branches of non-trivial solutions exist and originate at T ∗n given by (8); note that,
close to bifurcation points, we have the representation

(m1(x, s),m2(x, s)) = (1 + εK1ψ1(x) sin (2πs/τ) , 1− εK2ψ1(x) sin (2πs/τ)) + o(ε)

where τ = 2π
(
λ1((K1 +K2)/4− σ2λ1)

)−1/2
.

The structure of non-trivial branches is somehow similar to the single population model
with aggregation discussed in Section 3.1. This is evident close to bifurcation points, since the
multi-population linarized system can be decoupled via Ξ in two systems: the first one coincides
with the one that is obtained by linearizing the single population case with aggregation, while
the second one never has non-trivial solutions, so it does not generate bifurcation points. The
oscillating behaviour in the Schelling’s model is then analogous to the one that is observed in
Section 3.1, see Experiment 4.

3). α1 > 1/2 while α2 < 1/2, so the second population (more tolerant) is happy in the trivial
equilibrium, while players of the first population pay a positive cost. Here,[

−K1

4 0
0 0

]
= Ξ · JV · Ξ−1, Ξ =

[
1 1
0 1

]
,

so Theorem 1.1 applies if σ2λ1 < K1/4 < σ2λ2 (see also Remark 2.13 for larger values of K1).
Non-trivial solutions branch off from the trivial ones at some T ∗n , and close to bifurcation points
we have the representation

(m1(x, s),m2(x, s)) = (1 + εψ1(x) sin (2πs/τ) , 1) + o(ε) (28)

where τ = 2π
(
λ1(K1/4− σ2λ1)

)−1/2
. This regime is somehow more peculiar than the previous

setting 2), where both populations are intolerant. In that case, close to bifurcation points we
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Figure 9: Space-time contours of m1,m2 belonging to different branches. Top contours are for solutions close
to bifurcation times, while bottom ones are taken for bigger T .

expect the first population to oscillate approximately between 1+εψ and 1−εψ, while the other
one to oscillate between 1− εψ and 1 + εψ, trying to avoid each other. Here, small oscillations
of the first population are not strong enough to induce the first population to leave the constant
state, at least up to some critical T . On the other hand, if the perturbation from the trivial
state of m1 is significant, m2 will oscillate itself to avoid m1 and decrease its own cost. Far from
bifurcation points, oscillations become significant for both populations. See Experiment 5 for
additional considerations on this regime.

Experiment 4. The parameters are chosen as follows

σ =
1

π
, a1 = 0.7, a2 = 0.55, K1 = 5, K2 = 3.

Players of both populations prefer their spot to be occupied by players of their own population,
but the first one is somehow more racist than the other. In Figure 9 we observe the typical
oscillating behaviour close to and far from bifurcation points. Populations try to avoid each
other; while the first branch of equilibria consists of two profiles for m1 and m2 respectively that
are stable in time, switching between different states arises in other branches; still, the number of
switchings appears to be preserved in every branch. We observe that the population that is more
tolerant is more “spread” on [0, 1], while the other one is more concentrated, i.e. its maximum
is larger.

Experiment 5. The parameters are chosen as follows

σ =
1

π
, a1 = 0.8, a2 = 0.4, K1 = 8, K2 = 8.

With respect to Experiment 4, we point out the following phenomenon. Recall that, close to
bifurcation points, solutions are parametrized by (28). Since a2 < 0.5, if ε is small enough,
V2(m1(x, s),m2(x, s)) is identically zero; this implies that (u2,m2) in (1) must be the trivial
couple (0, 1) on QT , and in turn, (28) becomes

(m1(x, s),m2(x, s)) = (1 + εψ1(x) sin (ωs) + o(ε), 1)

In other words, close to a bifurcation point T ∗, it is not convenient for m2 to leave the constant
state. This is particularly evident in Figure 10 (see the blue line). As soon as T increases,
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Figure 10: The first branch of non-trivial solutions in Experiment 5. Red line is the maximum value ‖m1‖∞
vs. T , while the blue line represents ‖m2‖∞.

‖m1 − 1‖∞ increases, so V2(m1(x, s),m2(x, s)) becomes non-zero on QT . At this point, the
behaviour of the branch changes abruptly: it reaches a turning point (vertical dashed line in
Figure 10), after which m2 becomes truly non-trivial. Following the branch, another turning
point is reached, and the qualitative behaviour of solutions then mimic the one of Experiment 4.
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[22] M. Huang, R. P. Malhamé, and P. E. Caines. Large population stochastic dynamic games: closed-
loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst.,
6(3):221–251, 2006.
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