
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Parallel relaxed and extrapolated algorithms for
computing PageRank

Josep Arnal · Héctor Migallón · Violeta
Migallón · Juan A. Palomino · José
Penadés

Received: date / Accepted: date

Abstract In this paper parallel Relaxed and Extrapolated algorithms based
on the Power method for accelerating the PageRank computation are pre-
sented. Different parallel implementations of the Power method and the pro-
posed variants are analyzed using different data distribution strategies. The
reported experiments show the behavior and effectiveness of the designed
algorithms for realistic test data using either OpenMP, MPI or an hybrid
OpenMP/MPI approach in order to exploit the benefits of shared memory
inside the nodes of current SMP supercomputers.

Keywords PageRank · Parallel algorithms · Power method · Relaxation and
extrapolation

1 Introduction

The PageRank algorithm for determining the importance of Web pages has
become a central technique in Web search. PageRank is essentially the sta-
tionary distribution vector of a Markov chain whose transition matrix is a
convex combination of the Web link graph and a certain rank 1 matrix. Due
to the large size and sparsity of the matrix, methods based on decomposi-
tion are considered infeasible; instead, iterative methods are used, where the

This research was partially supported by the Spanish Ministry of Science and Innovation
under grant number TIN2011-26254.

J. Arnal · V. Migallón · J. A. Palomino · J. Penadés
Departamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Ali-
cante, 03071 Alicante, Spain
E-mail: violeta@dccia.ua.es

H. Migallón
Departamento de F́ısica y Arquitectura de Computadores, Universidad Miguel Hernández,
03202 Elche, Alicante, Spain

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32319164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Josep Arnal et al.

computation is dominated by matrix-vector products; see e.g., [1]. Tradition-
ally, PageRank has been computed using the Power method. Several methods
to accelerate the Power method have been developed such as extrapolation
methods, block-structure methods or adaptive methods; see e.g., [7], [8], [9],
[16] and the references cited therein. In recent years opportunities for parallel
execution have broadened their scope. By using the linear system formulation
of the PageRank problem, in [5] parallel algorithms for computing PageRank
based on Krylov subspace iterative methods are analyzed. In [4] an inner-
outer algorithm is investigated. The proposed technique is a preconditioning
approach based on the observation that the smaller the damping factor is,
the easier it is to solve the problem. This inner-outer method compares fa-
vorably with other widely used schemes. Moreover its parallel implementation
achieves a substantial gain with respect to the Power method especially when
the damping factor is close to 1; other related works can be found e.g., in [10],
[13] and [14].

In this paper parallel Relaxed and Extrapolated algorithms based on the
Power method that accelerate its convergence are presented. The remainder of
the paper is structured as follows. In Section 2 we provide a brief description
of the PageRank problem and we introduce the Power method and some accel-
eration methods based on the extrapolation technique. In Section 3, parallel
algorithms based on the Power method using relaxation and/or extrapola-
tion are introduced. The numerical experiments performed in Section 4 show
the behavior of these algorithms using different data distribution strategies
on both shared and distributed memory multicore architectures. Finally, in
Section 5 we give some conclusions.

2 Computing the PageRank

PageRank [12] is a probability distribution used to represent the likelihood
that a person randomly clicking on links will arrive at any particular page.
The PageRank problem can be seen as a matrix problem. Let G = [gij]

n
i,j=1

be a Web graph adjacency matrix with elements gij = 1 when there is a link
from page j to page i, with i �= j, and zero otherwise. Here n is the number
of Web pages. From this matrix we can construct a transition matrix P =
[pij]

n
i,j=1 as follows: pij =

gij
cj

if cj �= 0 and 0 otherwise, where cj =
∑n

i=1 gij ,

1 ≤ j ≤ n, represents the number of out-links from a page j. For pages with
a nonzero number of out-links, i.e., cj �= 0 for all j, 1 ≤ j ≤ n, the matrix P
is column stochastic. Thus each element of this matrix has values between 0
and 1, and the sum of the components of each column is 1. In this case the
PageRank vector can be obtained by solving Px = x. Since we are interested
in a probability distribution, the sum of the components of x is assumed to
be one. Algorithm 1 shows the original Power method [15] for the PageRank
computation where e = (1, 1, . . . , 1)T . Note that we use the L1 norm ‖x‖1 =∑n

i=1 |xi|. When the matrix P ≥ 0 is irreducible (i.e., its graph is strongly
connected) and stochastic, its largest eigenvalue in magnitude is λmax = 1.

Parallel relaxed and extrapolated algorithms for PageRank 3

Algorithm 1: Power method.

Initialization x0 = e
n
, k = 0;

repeat
xk+1 = Pxk;

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ε;

Thus, Algorithm 1 converges to the eigenvector corresponding to λmax = 1,
and when normalized, it is the stationary probability distribution over pages
under a random walk on the Web. However, the Web contains many pages
without out-links, called dangling nodes. Dangling pages present a problem
for the mathematical PageRank formulation because in this case the matrix P
is non-stochastic and then Algorithm 1 can not be used. Moreover, the matrix
irreducibility is not satisfied for a Web graph. In order to overcome these
difficulties, Page and Brin [12] change the transition matrix P to a column
stochastic matrix P̄ = α(P + vdT)+ (1−α)veT , where d ∈ �n is the dangling
page indicator defined by di = 1 if and only if ci = 0 and the vector v ∈ �n is
some probability distribution over pages. This model means that the random
surfer jumps from a dangling page according to a distribution v. For this reason
v is called a teleportation distribution. Originally uniform teleportation v = e

n
was used. Consequently, v is also known as a personalization vector. Then,
setting α such that 0 < α < 1 the matrix P̄ is column stochastic, irreducible
and it preserves the L1 norm, that is, ‖P̄x‖1 = ‖x‖1 and therefore we can
reformulate Algorithm 1 using the matrix P̄ . That is, Algorithm 1 is utilized
in order to solve the stationary distribution of the ergodic Markov chain defined
by P̄ , P̄x = x, obtaining the corresponding algorithm: Note that although the

Algorithm 2: Power method for solving P̄x = x.

Initialization x0 = e
n
, k = 0;

repeat
xk+1 = αPxk;

γ = ‖xk‖1 − ‖xk+1‖1;
xk+1 = xk+1 + γv;

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ε;

matrix P̄ is dense, Algorithm 2 has been designed such that it is not necessary
to construct explicitly the matrix P̄ .

A key parameter in this model is the damping factor α that determines the
weight given to the Web link graph in the model. In the original formulation
of PageRank [12] the Power method was applied using α = 0.85. However,
a higher value of α (close to 1) yields a model that is mathematically closer

4 Josep Arnal et al.

to the actual link structure of the Web but makes the computation more
difficult [6]. This parameter α controls the asymptotic rate of convergence and
as α → 1, the expected number of iterations required for convergence increases
dramatically and new approaches for accelerating the PageRank computation
are required. In fact, the calculation of many PageRank vectors with different
values of α looks promising for the design of anti-spam mechanism [17].

The extrapolation algorithms [6] accelerate the convergence of PageRank
by using successive iterates of the Power method to estimate the nonprinci-
pal eigenvectors of the hyperlink matrix, and periodically subtracting these
estimates from the current iterate of the Power method. In [9] a quadratic
extrapolation algorithm, based on the same idea as Aitken extrapolation, was
presented. This work assumed that none of the nonprincipal eigenvalues of
the hyperlink matrix were known. The Extrapolation Power methods treated
here exploit the knowledge of eigenvalues of the hyperlink matrix. Moreover,
the extrapolation needs to be applied only once; see e.g., [6]. Note that if

Algorithm 3: Extrapolation Power method.

Initialization x0 = e
n
, k = 0;

repeat
xk+1 = αPxk;

γ = ‖xk‖1 − ‖xk+1‖1;
xk+1 = xk+1 + γv;

if k + 1 == r + 2 then xk+1 = xk+1−αrxk+1−r

1−αr ;

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ε;

r = 1 a simple extrapolation is used at iteration 3, while if r = 2 a quadratic
extrapolation is applied once at iteration 4.

3 Parallel Algorithms

In order to design the parallel algorithms, we consider that P is partitioned
into p row blocks. Each block Pi, 1 ≤ i ≤ p, is a matrix of order ni × n,
with

∑p
i=1 ni = n. Analogously, we consider the vectors xk and v partitioned

according to the block structure of P . Obviously, the Power method for solving
P̄ x = x can be executed in parallel. In this case each process actualizes a
block of the vector xk+1 and a synchronization of all processes is performed
at each iteration in order to construct the global iterate vector xk+1. Due
to this synchronization, we can use the formulation of Algorithm 2 because
the property of preserving the L1 norm remains valid. Taking into account
that the Power method is equivalent to use a Jacobi type splitting for solving
the linear system (I − P̄)x = 0, in order to improve the rate of convergence
we could use a relaxed Jacobi type splitting. Thus, a relaxation parameter

Parallel relaxed and extrapolated algorithms for PageRank 5

Algorithm 4: Parallel Power method.

Initialization x0 = e
n
, k = 0;

repeat
for i = 1, 2, . . . , p, do in parallel

xk+1
i = αPixk;

γ = ‖xk‖1 − ‖xk+1‖1;
(1)xk+1

i = xk+1
i + γvi;

end

xk+1 = [xk+1
1 , . . . , xk+1

p];

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ε;

β > 0 can be introduced and replace the computation of xk+1
i in (1) with the

equation xk+1
i = β(xk+1

i + γvi) + (1− β)xk
i . Clearly, with β = 1 equation (1)

is recovered. In the case of β �= 1 we have a parallel Relaxed Power method.
Note that the relaxation parameter needs to be chosen in such a way that the
convergence of the method is assured. In order to accelerate the convergence of
Algorithm 4 we also propose parallel Relaxed Extrapolated algorithms based
on Algorithm 3 as follows. In Algorithm 5 the relaxation is applied only after
the extrapolation is performed. Note that the computation of ‖xk+1‖1 and

Algorithm 5: Parallel Relaxed Extrapolated Power method.

Initialization x0 = e
n
, k = 0;

repeat
for i = 1, 2, . . . , p, do in parallel

xk+1
i = αPix

k;

γ = ‖xk‖1 − ‖xk+1‖1;
xk+1
i = xk+1

i + γvi;

if k + 1 == r + 2 then xk+1
i =

xk+1
i −αrxk+1−r

i
1−αr ;

(2)if k + 1 > r + 2 then xk+1
i = βxk+1

i + (1− β)xk
i ;

end

xk+1 = [xk+1
1 , . . . , xk+1

p];

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ε;

δ in Algorithms 4 and 5 is also performed in parallel in such a way that
each process i computes the portions ‖xk+1

i ‖1 and ‖xk+1
i − xk

i ‖1 followed by
a reduction of these values. For the sake of simplicity, we have omitted these
computations from the formulation of Algorithms 4 and 5. We would like to
point out that if β = 1 in equation (2), Algorithm 5 reduces to the parallel
counterpart of Algorithm 3.

6 Josep Arnal et al.

4 Experimental setup and results

We have implemented the algorithms described here on an HPC cluster of 26
nodes HP Proliant SL390s G7 connected through a network of low-latency
QDR Infiniband-based. Each node consists of two Intel XEON X5660 hexa-
core at up to 2.8 GHz and 12MB cache per processor, with 48 GB of RAM.
The operating system is CentOS Linux 5.6 for x86 64 bit. The parallel envi-
ronment has been managed using both MPI (Message Passing Interface) [3]
and OpenMP (Open Multi-Processing) [11]. That is, an hybrid MPI/OpenMP
implementation has been designed by combining various OpenMP threads for
each MPI process. That is, MPI is used for data distribution, and OpenMP in
order to perform the computation inside the cores of each node. Concretely, let
p be the number of processes performed, p = s∗ c indicates that s nodes of the
parallel platform have been used and for each one of these nodes, c OpenMP
threads have been considered. Therefore, we use a philosophy of distributed
shared memory using p = s × c processes or threads. Particularly, if s = 1
the algorithms are executed in shared memory by using p = c threads on a
single node. Conversely, if c = 1, we are working on distributed memory using
p = s nodes. In order to test the algorithms treated here we have used three
datasets of different sizes, available from the Laboratory for Web Algorithmics
(http://law.dsi.unimi.it). These transition matrices have been generated from
a web-crawl [2]. Table 1 summarizes the main characteristics of the graphs

Graph Nodes (n) Arcs (nnz) Dang. nodes Density Memory
it-2004 41,291,594 1,150,725,436 12.76% 27.87 4.75 GB

webbase-2001 118,142,155 1,019,903,190 23.41% 8.63 5.12 GB
uk-2007-05 105,896,555 3,738,733,648 12.23% 35.31 15.11 GB

Table 1 Graphs collection; n = number of nodes (matrix size), nnz = number of
arcs (nonzero elements of the matrix), Dang. nodes=percentage of dangling nodes, Den-
sity=arcs/nodes, Memory = memory requirements using CSR′ format.

used in this work. Note that, as the dimension of the link matrix grows, its
relative sparseness increases as well. To compute PageRank for large domains
there is no possible way to work with the matrix in its full format, the memory
requirements would be too high. Therefore, a sparse matrix format is needed
in order to store the matrices. Concretely, the Compressed Sparse Row (CSR)
format was used, which is one of the most extensively used storage scheme for
general sparse matrices, with minimal storage requirements. We represent the
two vectors of indexes of the CSR format by integers without sign of 32 bits,
while the values and the iterate vectors are represented by means of double
precision floating point with 64 bits. The memory requirements (bits) needed
to store a matrix with the original CSR format can be computed by the follow-
ing expressionMCSR = 32(n+1)+32nnz+64nnz ≈ 32(n+3nnz) bits. Taking
into account that, for each column of the matrix, all nonzero elements are equal
to a fixed value, it is stored once in an ordered vector. In this way the memory

Parallel relaxed and extrapolated algorithms for PageRank 7

requirements to store the matrix are MCSR′ = 32(n + 1) + 32nnz + 64n ≈
32(3n+ nnz) bits. For example, for the uk-2007-05 matrix with 105, 896, 555
rows and 3, 738, 733, 648 nonzero elements, the original CSR format requires
42 GB of memory while the modification considered here requires 15.11 GB.
Generally, this modified CSR format (CSR′) [10] has involved a reduction of
memory requirements of about 63− 73%.

Implementing the PageRank calculations in a parallel environment opens
several possibilities of data partitioning (i.e., how the data are divided among
nodes) and load balancing (i.e., to ensure that all nodes perform similar
amount of work). The most expensive operation performed in the calculation
of the PageRank values is a matrix-vector multiplication. This is a perfectly
parallel operation with several possible methods for partitioning both the ma-
trix and the vector. We have considered two different methods for partitioning
the link matrix among nodes. The first method we have chosen is a row-wise
distribution (row-wise partitioning) where each node gets the same amount of
rows. However, the number of nonzero elements per row of the link matrix used
to calculate PageRank can differ immensely. In order to balance the calcula-
tions we consider a second matrix distribution strategy where each node has to
handle the same amount of nonzero elements (nonzero elements partitioning).
Algorithm 6 describes these distribution strategies, where ωn, ωnnz ∈ � such
that ωn +ωnnz = 1 attach a weight to the number of rows and to the number
of nonzero elements, respectively. In this algorithm, n represents the number

Algorithm 6: Partitioning method.

umbral = nωn+nnzωnnz
s

;

PART0 = cont = j = 0;
for i = 1, 2, . . . , s− 1, do

while cont ≤ umbral do
j = j + 1;
cont = cont+ (ωn + nnzjωnnz);

end
j = j − 1;
PARTi = j;
cont = 0;

end
PARTs = n;

of rows of the matrix, nnzj is the number of nonzero elements in the j-th row
with nnz =

∑n
j=1 nnzj, s is the number of partitions to be performing and the

vector [PART0, . . . , PARTs] stores the indexes of the partitions. When ωn = 1
and ωnnz = 0, a row-wise distribution is considered, while when ωn = 0 and
ωnnz = 1, Algorithm 6 performs a nonzero elements partitioning.

Of the algorithms we have discussed here for accelerating the convergence
of PageRank, the combining of relaxation and extrapolation performs the best
empirically. Figures 1 and 2 compare the convergence rates for the Power
method and the Relaxed (REL) and/or Extrapolated (EXT) methods set-

8 Josep Arnal et al.

40

50

60

70

80

90

100

110

E-08

E-07

E-06It
e

ra
ti

o
n

s

(a) Number of iterations.

0

5

10

15

20

25

E-06

E-07

E-08

%
 R

e
d

u
ct

io
n

(b) Reduction with respect to the Power
method (%).

Fig. 1 Comparison of convergence rates for computing PageRank, α = 0.85, webbase-2001.

400

600

800

1000

1200

1400

E-08

E-07

E-06

It
e

ra
ti

o
n

s

(a) Number of iterations.

0

10

20

30

40

50

E-06

E-07

E-08

%
 R

e
d

u
ct

io
n

(b) Reduction with respect to the Power
method (%).

Fig. 2 Comparison of convergence rates for computing PageRank, α = 0.99, webbase-2001.

ting a global convergence scheme and varying the stopping criterion for the
webbase-2001 matrix. When α = 0.85, the proposed Relaxed Extrapolated
(RELEXT) methods reduce the number of iterations needed to reach resid-
uals of 10−8, 10−7 and 10−6 by 18%, 20% and 21%, respectively. By using
α = 0.85, for the webbase-2001 matrix, only between 62 and 89 Power iter-
ations are needed for convergence giving a satisfactory approximation to the
exact solution. However, for values of α close to 1 such as α = 0.99, the Power
method converges slowly needing 904, 1131 or 1358 iterations, depending on
the required tolerance (ε). In these cases, the RELEXT methods proposed here
improve convergence considerably relative to the Power method by reducing
the number of iterations needed to reach residuals of 10−8, 10−7 and 10−6 by
35.4%, 40.6% and 45.8%, respectively. Note that the Simple Extrapolation
(r = 1) is not effective (see Figure 1(a)) and slows down the convergence of
the Power method. It is due to the fact that the Simple Extrapolation assumes
that α is the only eigenvalue of modulus α and this is inaccurate; see e.g., [6].
On the other hand, the choice of r is very dependent of the condition number of
the problem. Our experience indicates that, for our datasets, a good choice of
the values of r for a well-conditioned problem (α = 0.85) in the Extrapolated
Power method is r = 6, while for values of α close to 1 (such as α = 0.99) small
values of r get poor results and it should be chosen greater than or equal to

Parallel relaxed and extrapolated algorithms for PageRank 9

α = 0.85 ε = 10−8 ε = 10−7 ε = 10−6

Matrix REL EXT RELEXT REL EXT RELEXT REL EXT RELEXT
webbase-2001 6.7 15.7 18.0 7.5 17.5 20.0 8.1 17.7 21.0

it-2004 3.4 14.9 16.1 5.1 16.7 17.9 5.0 16.7 18.3
uk-2007-05 1.2 13.3 13.3 0.0 12.3 12.3 0.0 12.5 14.3
α = 0.99 ε = 10−8 ε = 10−7 ε = 10−6

Matrix REL EXT RELEXT REL EXT RELEXT REL EXT RELEXT
webbase-2001 26.4 21.9 35.4 28.8 22.4 40.6 31.7 21.9 45.8

it-2004 21.6 19.0 31.2 23.4 19.8 36.2 25.8 21.2 41.2
uk-2007-05 10.2 14.0 19.0 11.0 14.8 21.7 12.1 17.2 27.2

Table 2 Reduction in the number of iterations of the best Relaxed and/or Extrapolated
methods with respect to the Power method (%).

50, obtaining the best results for r between 100 and 300. On the other hand, in
both cases, good choices of β for the Relaxed Power method are between 0.97
and 0.99. Combining the relaxation and extrapolation such as is indicated in
Algorithm 5, for α = 0.85, the best results have been obtained for r = 6 and
β between 0.97 and 0.99, and for α = 0.99 the best results have been obtained
for r = 100 and β between 0.98 and 0.99. Table 2 shows the reduction in the
number of iterations achieved by the best Relaxed and/or Extrapolated meth-
ods for the three matrices of Table 1. The stopping criteria used in the rest
of figures have been chosen such that ε = 10−8 for α = 0.85 and ε = 10−6 for
α = 0.99. For α = 0.85 and ε = 10−8 the RELEXT methods reduce the num-
ber of iterations relative to the Power method by 16.1% for the it-2004 matrix
and by 13.3% for the uk-2007-05 matrix. While for α = 0.99 and ε = 10−6 the
RELEXT methods reduce the number of iterations by 41.2% for the it-2004
matrix and by 27.2% for the uk-2007-05 matrix. By analyzing the performance
of the data distribution strategies used, we have obtained that, generally, the
nonzero elements partitioning is the best distribution strategy for all the algo-
rithms discussed herein, more specially as the number of processes increases.
Figure 3 and Figure 4 illustrate this fact on shared memory (SM), distributed
memory (DM), and distributed shared memory (DSM). Figure 5 and Figure
6(a) show the time that the described parallel algorithms take for comput-
ing PageRank using nonzero elements partitioning and varying the number of
processes. The performance of these algorithms is affected by the fact that,
at each iteration, the computational cost is not very high, while some com-
munications among processes are required in order to proceed with the next
iteration. Then, in order to deal with larger problems and to use all the avail-
able memory in a distributed system, the best strategy of parallelization needs
to use at the same time the benefits of shared and distributed memory multi-
processors. Usually the best parallel results have been obtained using 1, 2 or
4 threads in each node. Moreover, it seems inappropriate to use more than 8
cores on a single node. Figure 6(b) shows the global time saving achieved for
the it-2004 matrix. Figure 7(a) displays the running time per iteration of the
RELEXT method for the uk-2007-05 matrix and the speed-up per iteration
with respect to the Power method.

10 Josep Arnal et al.

0

50

100

150

200

250

2 4 6 8 12

Number of processes

Row-wise partitioning

Nonzero elements partitioning

T
im

e
 (

s
.)

(a) SM p = 1 ∗ c.

0

50

100

150

200

250

2 4 8 12 20

Number of processes

Row-wise partitioning

Nonzero elements partitioning

T
im

e
 (

s
.)

(b) DM p = s ∗ 1.

0

50

100

150

4 8 16 32

Number of processes

Row-wise partitioning

Nonzero elements partitioning

T
im

e
 (

s
.)

(c) DSM p = s ∗ 4.

Fig. 3 Row-wise versus nonzero elements distribution. Parallel Power method, α = 0.85,
webbase-2001.

0

100

200

300

400

500

600

700

800

POWER REL ß=0.98 EXT r=200 RELEXT

ß=0.98, r=200

p=4 (1*4) RW

p=4 (1*4) NE

p=8 (2*4) RW

p=8 (2*4) NE

p=16 (4*4) RW

p=16 (4*4)NE

p=32 (8*4) RW

p=32 (8*4) NE

T
im

e
 (

s.
)

(a) DSM p = s ∗ 4.

0

200

400

600

800

1000 p=2 (1*2) RW

p=2 (1*2) NE

p=2 (2*1) RW

p=2 (2*1) NE

p=4 (1*4) RW

p=4 (1*4) NE

p=4 (4*1) RW

p=4 (4*1) NE

p=8 (1*8) RW

p=8 (1*8) NE

p=8 (8*1) RW

p=8 (8*1) NE

T
im

e
 (

s.
)

(b) SM p = 1∗c and DM p = s∗1. RELEXT
r = 200, β = 0.98

Fig. 4 Row-wise (RW) versus nonzero elements (NE) distribution. Parallel Relaxed and/or
Extrapolated methods, α = 0.99, it-2004.

0

50

100

150

200

250

POWER REL

ß=0.98

EXT r=6 RELEXT

ß=0.98,

r=6

p=2 (1*2)

p=4 (2*2)

p=8 (4*2)

p=16 (4*4)

p=32 (8*4)

T
im

e
 (

s
.)

(a) webbase-2001.

0

20

40

60

80

100

120

140

POWER REL

ß=0.97

EXT r=6 RELEXT

ß=0.97

r=6

p=2 (1*2)

p=4 (2*2)

p=8 (4*2)

p=16 (4*4)

p=32 (8*4)

T
im

e
 (

s
.)

(b) it-2004.

Fig. 5 Parallel Relaxed and/or Extrapolated methods, nonzero elements distribution, α =
0.85.

As it can be seen, reducing the number of iterations, using parallel Ex-
trapolated Relaxed algorithms, comes at the expense of a slight increase in
the work per iteration relative to the parallel Power algorithm. However, this
overhead per iteration is minimal and then these proposed acceleration meth-
ods are beneficial. Concretely, for α = 0.85 the parallel RELEXT algorithms
accelerated the convergence saving between 15% and 20% in the time needed
by the parallel Power method to reach a residual of 10−8. For α = 0.99, the
time saving of these algorithms with respect to the parallel Power method to

Parallel relaxed and extrapolated algorithms for PageRank 11

0

200

400

600

800

1000

1200

1400

p=2 (2*1)

p=4 (4*1)

p=8 (8*1)

p=16 (8*2)

p=32 (8*4)
T

im
e

 (
s.

)

(a) Total running times.

0

10

20

30

40

50

p=2

(2*1)

p=4

(4*1)

p=8

(8*1)

p=16

(8*2)

p=32

(8*4)

EXT r=200

EXT r=100

REL ß=0.98

REL ß=0.99

RELEXT ß=0.98 r=200

RELEXT ß=0.99 r=200

RELEXT ß=0.98 r=100

RELEXT ß=0.99 r=100

T
im

e
 r

e
d

u
ct

io
n

 (
%

)

(b) Percentage of time reduction with re-
spect to the parallel Power method.

Fig. 6 Parallel Relaxed and/or Extrapolated methods, nonzero elements distribution, α =
0.99, it-2004.

0

2

4

6

8

10

12

p=2

(1*2)

p=4

(2*2)

p=8

(4*2)

p=16

(4*4)

p=32

(8*4)

RELEXT t. per iteration (s.)

POWER t. per iteration (s.)

Speed-up per iteration

(a) Times and speed-up per iteration, α =
0.85, uk-2007-05.

0%

20%

40%

60%

80%

100%

120%

140%

160%

p=2 (2*1)

p=4 (4*1)

p=8 (8*1)

p=16 (8*2)

p=32 (8*4)

E
ff

ic
ie

n
cy

(b) Efficiency, α = 0.99, it-2004.

Fig. 7 Efficiency of the parallel Relaxed and/or Extrapolated methods, nonzero elements
distribution.

ε = 10−3 ε = 10−5 ε = 10−7

POWER It. 145 531 964
In/Out It. gain 13.8% 12.8% 11.1%
In/Out time gain 15.8% 15.3% 13.7%
RELEXT It. gain 18.6% 31.8% 21.7%
RELEXT time gain 22.2% 34.3% 26.4%

Table 3 RELEXT versus In/Out methods, α = 0.99, SM p = 1 ∗ 8, uk-2007-05.

reach a residual of 10−6 was more significant obtaining a time reduction be-
tween 40% and 50% for the webbase-2001 and it-2004 matrices and between
25% and 30% for the uk-2007-05 matrix. A considerable speed-up has been ob-
tained (see Figure 7(b)), specially when α is close to 1. Concretely, the global
efficiencies achieved in this case for the best RELEXT algorithms setting the
sequential Power method as reference algorithm were about 140%− 150% for
p = 2, 120%− 130% for p = 4, 105%− 108% for p = 8, 73%− 75% for p = 16,
and 45% − 50% for p = 32. To conclude the analysis of the effectiveness
of the parallel RELEXT algorithms, we have compared them with the inner-
outer (In/Out) iterative algorithms proposed in [4]. Table 3 illustrates the gain
obtained by both methods in relation to the Power method. As it can be seen,

12 Josep Arnal et al.

our parallel RELEXT algorithms accelerate the PageRank computation more
significantly than these inner-outer algorithms.

5 Conclusions

We have made an analysis of parallel algorithms based on the Power method
and the use of relaxation and/or extrapolation techniques for accelerating the
computation of PageRank. Two strategies of data distribution have been used:
row-wise partitioning and nonzero elements partitioning. An hybrid implemen-
tation has been designed by combining various OpenMP threads for each MPI
process. The results show that the best strategy of data distribution is the
nonzero elements partitioning. Moreover, the proposed parallel Relaxed Ex-
trapolated algorithms have a better convergence rate and can speed up the
convergence time significantly with respect to the parallel Power algorithm.

References

1. Berkhin P (2005) A Survey on PageRank Computing. Internet Math 2(1):73–120
2. Boldi P, Codenotti B, Santini M, Vigna S (2004) Ubicrawler: A scalable fully distributed
Web crawler. Softw Pract Expe 34:711–726

3. Dongarra J, Huss-Lederman S, Otto S, Snir M, Walkel D (1996) MPI: The complete
reference. The MIT Press, Cambridge

4. Gleich D, Gray A, Greif C, Lau T (2010) An inner-outer iteration for computing PageR-
ank. SIAM J Sci Comput 32(1):349–371

5. Gleich D, Zhukov L, Berkhin P (2005) Fast Parallel PageRank: A linear system approach.
In The Fourteenth International World Wide Web Conference. ACM Press, New York

6. Kamvar SD (2010) Numerical Algorithms for Personalized Search in Self-organizing In-
formation Networks. Princeton University Press, New Jersey

7. Kamvar SD, Haveliwala TH, Golub GH (2004) Adaptive Methods for the Computation
of PageRank. Linear Algebra Appl 386:51–65

8. Kamvar SD, Haveliwala TH, Manning CD, Golub GH (2003) Exploiting the Block Struc-
ture of the Web for Computing PageRank. Stanford University Technical Report, SCCM-
03-02

9. Kamvar SD, Haveliwala TH, Manning CD, Golub GH (2003) Extrapolation Methods for
Accelerating PageRank Computations. In Twelfth International World Wide Web Con-
ference 261–270

10. Migallón H, Migallón V, Palomino JA, Penadés J (2010) Parallelization Strategies
for Computing PageRank. In Proceedings of the Seventh International Conference on
Engineering Computational Technology, Civil-Comp Press, Stirlingshire, UK, Paper 29,
doi:10.4203/ccp.94.29

11. OpenMP official site (2008) openmp.org
12. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: Bring-
ing order to the Web. Technical Report, Stanford Digital Library Technologies Project

13. Rungsawang A, Manaskasemsak B (2012) Fast PageRank Computation on a GPU Clus-
ter. In 20th Euromicro International Conference on Parallel, Distributed and Network-
based Processing 450–456

14. Rungsawang A, Manaskasemsak B (2006) Parallel adaptive technique for computing
PageRank. In Proceedings of the 14th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP’06 15–20

15. Wilkinson JH (1998) The algebraic eigenvalue problem. Oxford University Press, Oxford
16. Wu G, Wei Y (2010) An Arnoldi-Extrapolation algorithm for computing PageRank. J
Comput Appl Math 234:3196–3212

17. Zhang H, Goel A, Govindan R, Mason K, Van Roy B (2004) Making Eigenvector-Based
Reputation Systems Robust to Collusion, Lect Notes Comput Sc 3243:92–104

