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Abstract: The main goal of this article is to investigate techniques that can quickly lead to successful social
systems by boosting network connectivity. This is especially useful when starting new online communities
where the aim is to increase the system utilization as much as possible. This aspect is very important
nowadays, given the existence of many online social networks available on the web, and the relatively
high level of competition. In other words, attracting users’ attention is becoming a major concern, and
time is an essential factor when investing money and resources into online social systems. Our study
describes an effective technique that deals with this issue by introducing the notion of mermaids, special
attractors that alter the normal evolutive behavior of a social system. We analyze how mermaids can
boost social networks, and then provide estimations of fundamental parameters that business strategists
can take into account in order to obtain successful systems within a constrained budget.
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1. Introduction

Social networks are nowadays among the most important and successful online systems. Since 2010,
when Facebook became the most visited site in the US beating all other players including Google, we have
witnessed an enormous growth of the social world, with many social systems arising, and also with many
other online systems adding social functionalities. This huge growth has also correspondingly brought
lot of competition, making it very hard to build new successful social networks. It is therefore of crucial
importance to study how social systems can blossom, maximizing their chances of success.

In this study, we analyze online social networks viewing them as complex systems: Whereas in a
previous paper (cf. [1]) we studied complex systems along their spatial informational axes, this paper
instead tackles the other informative axis, time. We focus on the temporal dynamics of social networks,
so keeping fixed the spatial axes and investigating how networks evolve as time passes by. In particular, the
analysis presented focus on the evolution of online social systems, and corresponding suitable strategies
that allow for their successful development. However, we think that the models are general enough that
they can easily fit other complex networks as well.

Previous studies ([2,3]) suggested that online interaction is driven by the same needs as face-to-face
interaction, and should not be regarded as a separate arena but as an integrated part of modern social life
(cf. [3]). Thus, communicative actions taken by members of online communities can be expected to share
many features with the web of human acquaintances and romances in the offline social world. Indeed,
for many people in contemporary western societies, interaction on the Internet is as real as any other
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interaction (e.g., see [4]). For these reasons, the formation, the dynamics, and the general evolution over
time of online the social networks can provide important information for enhancing our understanding
of social networks. This has been confirmed by several works (e.g., [2,5,6]) that shed new light on the
hidden rules behind social mechanism like creation, maintenance, dissolution, and reconstitution of
interpersonal ties.

Researchers that study these communities heavily use digital traces that virtual users leave while
using social networks. Even though these datasets are usually owned by private companies, we are
increasingly seeing new trends toward openness of data, for example by letting people access sampled
subsets of the entire dataset (Twitter for example allows us to get a sample of roughly 1–2% of all users’
tweets, friendship relations, etc.) or by releasing anonymized data for mining or edge prediction challenges.
Firstly, this is beneficial for the scientific community that is able to work with this social network in this
new challenging area and secondly to propose research that is not limited by the number of persons
involved in the experiments, as it is the case for many offline social studies.

The most studied social mechanisms include random wiring, triadic closure, and preferential
attachment (the latter is usually used to describe situations other than the evolution of social networks).
The first model assumes that the social networks evolve without being constrained by exogenous or
endogenous factors like geographical proximity, socio-demographics, belonging to topic-specific sub
communities (homophily), technological differences, etc. Every couple of people are linked in a random
fashion. The second one, also known as the friend of a friend’s rule (or triadic closure), states that two
friends of a person are more likely to know each other compared to two randomly chosen persons. In the
latter model, new nodes establish links with existing nodes proportional to their current connectivity.
Because of that, the older nodes will have a higher degree compared to the younger.

The main goal of this study regarding the temporal dimension of complex networks is to identify
strategies, specifically in online social networks, that can drive network evolution. This is done by
introducing special nodes (the so-called mermaids) acting as “super-attractors” that, when added into the
social system, trigger a boost in network connectivity, making for a richer and more interactive community.
We study the use of this novel tool by also considering its use within practical scenarios: Using a financial
technology setting, we look for the best business strategies that can be used when operating within a
certain set budget, predicting the best configurations in term of number of mermaids, attractiveness
(i.e., the ability to create new links), and length of time these nodes are effective.

In the following sections we first touch on some related works, and then describe more formally
the characteristics of the evolution models proposed, and in particular the network growth with
mermaids. Next, we report on the encouraging results obtained by simulating two online social networks
(VirtualTourist.com and Communities.com), show the benefit that special mermaid nodes can bring to
enhance growth and, last but not least, identify the best usage strategies.

2. Related Works

The dynamics of social networks have been extensively studied in a wide variety of contexts.
For instance, [7] analyzed the properties of the Flick and Yahoo! social networks, [8] studied scientist
collaborations and mobile phone users, [9] studied meme propagation in Facebook, [10] studied the
relationship between offline and online social interactions, and [11] studied mathematical posts in
Stack Exchange.

All these studies have investigated both the properties of the specific networks, and also tuned
various models of network growths (see [12,13]).

In this paper we deal instead with a different aspect of social network evolution: We do not try to find
new models of temporal evolution that can reconstruct existing networks, but instead focus on the novel
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problem of finding strategies for faster network evolution. We tackle the practical issue of generating
successful social systems by introducing the concept of mermaids, that is to say, special attractors that
accelerate the efficiency of the system. Mermaids are actors introduced on top of a social network that are
under the control of the network owner and act under specific rules. They can be impersonated by using
persons specifically hired for that purpose, although (according to the nature of the social network) they
might be also impersonated by using specially developed online social bots ([14]), or even using hybrid
techniques like bots supervised by humans ([15]). Note existing social bots have different purposes than
mermaids, namely to increase the number of followers and to spread information (and sometimes also
misinformation, cf. [16]).

We analyze the use of mermaids within the business perspective of financial technology (see for
instance [17–20]). This means that we consider the practical scenario of having a predefined budget
constraint, and then proceed to study what the best strategies are in order to maximize the successful
effects (in other words, to minimize the cost/benefit ratio).

3. Network Growth Models

In this section, we describe the details of the network growth models we investigated in this paper.
We start from an empty network and, by repeatedly apply rules at local level, make the network evolve
and (eventually) reach an equilibrium state.

We already know that many real-world systems such as power grids, communication networks,
biochemical interaction, as well as social networks can be modeled as graphs (cf. [21]). Using standard
graph theory notation, we will consider online social networks as unweighted undirected graphs G =

(V, E), where V are the vertices and E the edges. Nodes ui ∈ V represent users while edges (ui, uj) ∈ E
mutual friendship relations between them. The evolution of a graph G = (V, E) is conceptually represented
by a series of graphs G1, · · · , Gt, so that Gi = (V, Ei) is the graph at step i. Since G1, · · · , Gt represent
different snapshots of the same graph, we have Ei ⊆ E.

Note that it remains an open problem to have a fully detailed history of a social network: This is due
to many reasons such as, for example, the unfeasibility of data gathering, or restrictions when crawling a
web site. Indeed, if we want to consider big social network datasets with millions of users, the process
of retrieving all the actions users perform could be a very difficult task caused by the large amount of
dataset modification occurring at the same time (we obviously assume not to have direct access to the
website dataset).

These limitations prompted us to take another path to reach our goal. Instead of searching and
waiting for the gold datasets that contains the complete dynamics of a social systems, we propose to
simulate it by using some basic and advanced growth rules that could be potentially applied to all kind
of complex systems. In this framework, the assumptions that we will make is to have a snapshot of a
complex system in an equilibrium state and that the growth dynamics is not free but it is constrained to the
dataset snapshot that we have. This means that (unless stated otherwise) during simulations all the edges
available to be picked up are those present in the referring snapshot graph; any other edge is not allowed
in the simulation process. This way, the final graph Gt will be always equal to the referring network.

In this phase of our research, we will not consider links or nodes removal, therefore E1 ⊆ E2 ⊆ · · · ⊆
Et. This choice is motivated by the observation that in online social networks there are fewer removals
than there are users and friendships relations (see for instance [22]).

Simple network dynamics simulations need at least two parameters. The first is the definition of the
order with which edges will be inserted into the network (the order will influence the overall connection
pattern) and the second one defines how many edges will be added at each step. Network connectivity
evolves according to the following three rules:
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• Random order. Every edge will have the same probability p = 1
|E|−|Ei |

to be selected during the growth
process. This rule, as many studies showed, is far from real. However, it is a good candidate for a
baseline.

• Aristocratic order. This rule is based on the preferential attachment process (cf. [23,24]) where older
nodes have a higher probability of attracting new links. The process selects edges by choosing a
source node, according to the degree, and a target node, randomly chosen on the available neighbors’
list of nodes. By randomly choosing target nodes, low degree nodes can acquire new links as well.
More formally, the probability of selecting the source node is the following:

pu =
1 + deg(u) · α

∑j∈V(1 + deg(j) · α)

where α is a scale factor that increase or decrease the influence of degree on the final probability value,
deg(u) is the node degree.

• Social order. This rule is inspired by the local clustering of small world networks (also known as
triadic closure), and in particular from the observation that two friends of a person are likely to know
each other (see [25]). This rule considers it more likely that the edges that close triangles will be
selected. Edges that make more than one triadic closure are inserted sooner into the network than
others. More formally, the probability of edge (u, v) of being selected is the following:

pu,v =
1 + soc(u, v) · α

∑j 6=k∈V(1 + soc(j, k) · α)

where soc(i, j) is the number of times edge (i, j) closes triangles (see for example Figure 1). As for the
previous rule, α tunes the effect of triadic closures on a final probability value.

Figure 1. Example of social rule. The figure represents a hypothetical snapshot of graph G at time
t during network evolution. Straight links indicate already existing edges whereas the dashed lines
indicate the ones that will be added in the following steps. Edge (a, c) closes three triads (a, d)(d, c),
(a, b)(b, c), and (a, f )( f , c), whereas (d, f ) and (b, e) only close two and one triangle respectively. Therefore,
the probability of been selected at time t + 1 is 0.5, 0.33 and 0.16 respectively.

3.1. Evolutionary Models: Serial and Parallel

Although the previous three rules are sufficient to define the order with which nodes will be connected,
it is also necessary to define how many edges are inserted into the network at every time step. One trivial
solution is the serial (also called inertial) setting: We add an edge every time slot, so that in a network
composed by m edges the simulation will last m simulated time units. This represents the baseline in
our experiments (see Section 5.2) and it is crucial for reporting which rules achieve best when the system
behavior will be unfolded.

However, since the previous dynamics might be realistic only in specific situations (for instance in the
initial part of a network evolution), we also consider simulations where more than one edge are allowed



Future Internet 2020, 12, 25 5 of 30

to be inserted at the same time. We assumed that the number of edges added changes as a function
of network efficiency Eglob (cf. [26]). This model, that we call parallel (alternatively called accelerated),
is described in Algorithm 1.

The algorithm accepts as input: (i) a graph G = (V, E) and (ii) a rule rn = {random|aristocratic|social}.
It starts from an empty graph G′ that has the same nodes as G and no edges. The algorithm deals with
parallel edges creation by selecting at each time a subset F such that F ⊆ E to be added to G′. Since the
edges can be added into the network only once, E will be updated adequately with the remaining edges.
The number of connections selected varies according to the following formula:

e = 1 +
⌊

C · E(Gt−1)

E(Gideal)
· (nart−1 − 1)

⌋
(1)

where Gideal is the ideal network in which all edges exist K|V|, nari−1 is the number of edges that has to
be inserted into the network, C is a constant factor and E(Gt−1) is the global efficiency of the network
G at step t− 1. At the beginning, few nodes will be inserted because of low efficiency and, as soon as
the network grows and many people are involved in the network, more edges will be chosen and added
concurrently. The ”1+” factor at the beginning of Equation (1) allows the ability to pick at least one edge
at each step, which is fundamental to allow a minimal growth in the initial phase. The C factor is used
to tune the effect of efficiency in the number of chosen edges. We studied the effect of C on the network
growth and we found out that it only expands (C < 1) or shrinks (C > 1) the time needed to get target
efficiency, without considerably altering the curve behavior (see Figure 2). For this reason, we decided to
use C = 1 in all our experiments and simulations.

Figure 2. How the scale parameter C influences the global efficiency curve. It directly impacts the time
span needed to get the referring network Eglob.

Algorithm 1: Parallel networks simulation
input : G = (V, E), rn

1 G′ = (V, E′ = ∅)

2 while E 6= ∅ do
3 F = Choose e edges from E with method rn

4 E = E− F
5 E′ = E′ ∪ F
6 calculates statistics on G′

7 e = Number of edges as a function of Eglob(G′)
8 end
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4. Mermaids

The aim of this section is to introduce the concept of a mermaid—a way to successfully drive network
evolution and boost connectivity. The idea is to support the natural evolution of a network by introducing
special nodes (the mermaids) that act as “helpers”, and that are used to quicken the process of network
growth. The owner of a social system that wants to quickly reach a successful status can act with this
kind of artificial boosters in order to modify the natural evolution process of the network and making it
grow faster. This is especially important in today’s online world, where the importance of social systems is
well-known and thus competition is fierce.

Mermaids are therefore special members of a social network that are in fact hired by the owners
so to get speed-up and make the network successful. As said in Section 2, mermaids can operationally
correspond to real people that are accordingly hired, or in some cases even to online bots, although the
success of this second option depends on the features of the social system itself: For instance, if the social
system is based on sustained personal interactions like chats or personalized images and videos, bots
might not be sophisticated enough to sustain such complexity (at least in the present days). Whether
human or artificial, every mermaid pursues the same goal: to boost the network growth of the system, so
as to rapidly get a successful social environment.

We are therefore interested in practical strategies that can guide proper use of mermaids. In the
following, we define the rules of operations defining the basic concept of mermaid, and also consider their
use in terms of financial technology, that is to say by also considering the impact that mermaids have with
respect to limited financial resources. In order to do so, we define the cost of use for mermaids, in order to
then explore what the best strategy that fits a specific budget situation is.

4.1. Handling Mermaids

We define mermaids as external nodes (in the sense that they are new to the “normal” network of
users) whose goal, as previously said, is to interact with normal users and stimulate overall network
utilization (i.e., people engagement in online social networks) and increase efficiency. Informally, we can
therefore distinguish between the “normal” social network (composed by legitimate users), and the extra
boosting components that can be added to the network, taking the form of mermaid actors.

Formally, we denote the mermaids nodes as Vs = {s1, s2, . . . , sm}, and so the new combined graph
(normal graph enriched with mermaids) now becomes Gs = (V ∪Vs, E ∪ Es), the total number of nodes
|V ∪Vs| = n + m and the number of edges |E ∪ Es| (see for instance Figure 3).

Figure 3. Example of online social network with normal users and mermaids Vs = {s1, s2, s3}. Nodes
inside the rounded rectangle belong to the users’ graph. Mermaids aim to connect to nodes of the users’
network in order to increase overall utilization (for instance edge (s1, c)).
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Mermaids acts as special attractors to normal members of the network, and so we parameterize them
by considering their level of attractiveness (how likely normal users are to socially link with a mermaid):
the formal definition is provided later in this subsection. Operationally, this parameter can correspond for
instance to physical beauty, and/or ability of interaction, any quality and skill that makes a mermaid a
special node of attraction in the specific social system.

Last but not least, we are interested in the temporal impact that mermaids have on the system, and so
we also have to consider the time range in which they are operative.

Summing up, we can define a mermaids’ configuration as a tuple µ = (m, a, d) formed by the following
three parameters:

• m specifies the number of mermaids,
• a is the mermaids’ ability of attracting new edges (i.e., to generate interest in the community),
• d is the operational timespan of mermaids.

As mentioned before, in order to develop strategy guidelines for mermaids we are interested in
optimizing the cost/benefit ratio, and therefore see what the best course of action is when dealing with
a specific budget. Therefore, we define a cost of a configuration, Cs(µ), proportional to the previous
parameters, that is:

Cs(µ) = m · a · d (2)

In the following, for the sake of conciseness, we will simply write Cs to indicate the cost Cs(µ) when
the underlying configuration µ is clear from the context.

Combinations of these parameters lead to different costs and ideally to different growth behaviors.
Another important goal of this paper is to understand how the overall network evolution changes as a
function of µ and in particular to test whether increasing the investment on the mermaids (that is, Cs) yields
a proportional benefit to the global efficiency. Furthermore, we study which configuration parameters
attain the best performance under a specific cost setting (see Section 5.2).

In this context, for the remainder of the paper, we make the following assumptions:

• during the network evolution, edges between mermaids {(si, sj)|si ∈ Vs, sj ∈ Vs} are not allowed,
• mermaids {s1, s2, . . . , sm} are active at the beginning of simulation only, i.e., from time t0 to td.

The first assumption is just a separation rule that enables us to better factor the impact of mermaids
on the social network (links among mermaids are all artificial, and as such they could improve the network
statistics without actually being significant from an absolute point of view). In other words, we are
interested in the connections among legitimate users, not those among the mermaids.

The second assumption instead pertains to the focus of this study: We focus on using the mermaid
boosters in the initial (onset) phase of a social network, given the initial growth phase is the most critical.
Further studies might consider relaxing this constraint and studying the effect of the activation in different
time periods, so to act as boosters not only in the initial phase but also as an ongoing way to boost the
network performances.

Mermaids are artificial components added to the social network and, as such, they are under complete
control by the owner of the network: we are free to decide what kind of social rules they use to connect
with the rest of the normal network. Still, mermaids should not behave in strange ways, so not to be
suspicious to the normal users. So, we make them behave as normal users by making them use the classic
social growth rules described in Section 3: the rules by which edges {(s, u)|s ∈ Vs, u ∈ V} will be added
are identical to those for normal users, namely random, aristocratic, and social (see previous section). Given
that these rules are only an approximation of normal user behavior, in the following we also investigate all
the mixed cases, so the combinations of having a certain social rule in action for normal users, and another
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social rule for the mermaids. This way we can investigate whether there are differences in setting a
predefined social rule for mermaids, while possibly having another rule better approximating the behavior
of the other users.

In general, mermaids’ dynamics evolve independently of users’ dynamics. However, an exception
still exists. In fact, a new link in users’ subnetworks could trigger a modification in the likelihood of
mermaids’ edges of being selected, specifically with the social rule. Figure 4 shows some examples.
In particular, Figure 4b shows what happens when a new link (b, c) in users’ network is added: edges
(s1, c),(s2, c),(s3, c) will be more likely to be selected in the following steps because of triadic closure rule.

(a) (b)

Figure 4. Examples of the word of mouth model (a,b). si ∈ Vs and {b, c, e, m} ∈ V. Highlighted links
indicate the edges that have just been added to the network, straight lines are edges inserted in the previous
steps, and dashed ones represent the possible options for new links (and that have a higher probability to
be chosen).

Algorithm 2 describes how simulations are made, by combining the agent-based approach of
mermaids with the normal evolution model of the network. It uses two sets E and Es from which
the edges will be selected, two rules rn and rs (that specify which edge to choose in the users’ and
mermaids’ subnetworks), and a configuration µ. The algorithm has a main loop (line 4) in which two
distinct phases are executed and each one manages users’ and mermaids’ selection of edges (line 5 and 9)
according to rn and rs respectively.

The number of edges selected in the first process (line 5) is calculated similarly as in Algorithm 1
(using Equation (1)) but for the input graph that now becomes G′ = (V ∪Vs, E′) instead of G = (V, E).
In the second phase (line 9), the number of selected edges is set to a constant value and equal to |Vs| · |V| · a.
This means that the total number of links between mermaids and users can be estimated in advance as the
following: Es = |Vs| · |V| · a · d (this number will be reached at time td and will not change afterwards).
The effect of mermaids will be limited to the first d iterations, after that the mermaids will be deactivated
(line 8) and the system will evolve independently by itself.
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Algorithm 2: Accelerated networks simulation with mermaids
input : E,Es, rn, rs, m, a, d

1 G′ = (V ∪Vs, E′ = ∅)

2 p← 1
3 q← a ·m · n
4 while E 6= ∅ do
5 F=Choose p edges from E with method rn

6 E = E− F
7 E′ = E′ ∪ F
8 if s < d then
9 F=Choose q edges from Es with method rs

10 Es ← Es − F
11 E′ ← E′ ∪ F
12 s← s + 1
13 end
14 calculates statistics on G′

15 p = Number of edges as a function of Eglob(G′)
16 end

The attractiveness parameter a quantifies how much a mermaid is able to promote the utilization
(i.e., edges creation) of the online community. It is defined as follows:

a(s) =
q(s)

∑u∈V∪Vs q(u)
(3)

where q(s) is a weight function. In order to meet the requirement that mermaids have a better ability
to establish new friendships, we assigned a doubled weight to them compared to normal nodes
(see Section 5.2).

4.2. Managing Cost

From a business point of view, every system has to deal with costs. In our context, the cost can
be split into two parts. The first, that accounts for mermaids’ cost (think of mermaids as handled by
employees), and the second one that accounts for web site cost. More formally, the following formula
gives an estimation of the managing cost of setting up a network until it reaches a steady state:

f (Cs) = Cs + β · Tmin(Cs) (4)

where Cs is the cost due by using a particular configuration (as defined in Equation (2)), β is the cost by
time units of the web site and Tmin is the minimum timespan needed by the network to evolve toward a
connection pattern with a specific global efficiency (given a configuration which costs Cs).

We are now interested in knowing the points in which the function f has minima. For this reason,
by calculating the first derivative of Equation (4) and solve f ′(Cs) = 0, we find that

f ′(Cs) = 1 + β · T′min(Cs) = 0
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and so the cost is minimum when:
T′min = − 1

β
(5)

We will return to this topic in Section 5.2, where we test how f ’s minimal points change versus
hypothetical values of β.

5. Experimental Results

In this section, we report our experimental analysis. The simulation algorithms were implemented in
Python and C programming languages. All the experiments were conducted on three Linux machines
equipped with an i5 Intel processor and 8Gb of RAM.

5.1. Datasets

We conducted experiments on two real world datasets: the Communities and VirtualTourist online
social networks. Communities (www.communities.com), CM for short, is considered to be the first social
network in the world, as it started in 1996. It is similar to many other social networks like Facebook or
LinkedIn where users meet new people, share photos, and chat with friends. Communities is managed by
users themselves that create customized web pages in which they express passions, loves, and friendships.
Every user can keep track of friends in a friends list, can use guestbooks, blogs, or use photo galleries.
In Communities, users can establish virtual contacts, but unlike real world, these ties could be easily
maintained over distance. This produces a network of virtual social ties that connects the entire world.
Communities lets members create and join communities in order to easily find groups of people sharing
similar interests. Joining a community means being able to chat with other members in the community
forums and chat rooms.User’s locations in Communities are widely distributed and span over 185 nations.

VirtualTourist (www.virtualtourist.com), VT for short, is an online travel-oriented community started
in 1998, in which users share their own travel experiences, suggest and review hotels, write comments and
opinions on forums, find places to visit, share photos and videos, and is considered to be the ancestor of
TripAdvisor (with more emphasis on social networking). It is a community of people that love traveling
around the world. In VirtualTourist, users can meet new people and create a network of social virtual
friendships as well.

Both analyzed networks were collected by crawling web pages of the sites as time of 2005 and 2006
(cf. [27,28]). Publicly available profiles and friendships were parsed and anonymized. At that time, there
were approximately 700 thousand users in VT, 650 of which are singletons (92.4% of the total), i.e., users
that have joined the service but have never made a connection with another user. Conversely, 57 thousand
users have at least one friend (approximately 7.6% of the total). There were more than 200 thousand social
ties at that time. The VT network has a giant component, a group of users who are pair-wisely connected
through paths in the social network, formed by 53034 nodes (92% of the total nodes with degree greater
than zero). The rest of the network is formed by 2077 small (less than 14 nodes each) isolated communities
(also called middle region [29]) that are disconnected from the giant component.

In Communities, there were about 30 thousand registered users, 18 of which are singletons (60%
of the total) and 12 have more than one friend (about 40%). There exists approximately 60 thousand
friendship links. Apart from singletons, the vast majority of the nodes (about 12131, 92.7% of the total)
of the community belongs to the giant component, whereas the rest to the middle region were small
communities having less than 8 nodes each.

Since social ties are bidirectional in both systems, we mathematically treat those graphs as undirected.
Table 1 summarizes the most important network statistical features. It also contains the metrics calculated
on randomized versions of the same graphs. We note that both networks have a small average shortest path

www.communities.com
www.virtualtourist.com
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L (less than 5 hops between two randomly chosen nodes) and high clustering coefficient C (compared to the
randomized versions, fourth, and fifth columns). High Eglob and Eloc has been detected too. These facts are
evidence for classifying them as small world ([28]). Both networks are formed by many connected clusters,
so average path length and clustering coefficient are calculated on the largest connected component (LLC),
whereas global and local efficiency on the entire network (the latter two quantities work correctly even
for disconnected networks, see [1,30]). Indeed, since cumulative degree distributions Pcum have tails that
decay as a power law with exponents equal to 2.5 and 2.7 (see Figure 5) and maximum degree kmax is
higher compared to the average 〈k〉, they could be classified as scale-free networks.

Table 1. Statistical features of the Communities and Virtualtourist online social networks, together with
randomized versions of the same networks: number of nodes |V|, number of edges |E|, average node degree
〈k〉, maximum degree kmax, average shortest path L and average clustering coefficient C (for the largest
connected component), global efficiency Eglob, local efficiency Eloc, cost, cost over efficiency, exponent of
the cumulative degree distribution γ, number of connected clusters #CC, and the correlation pattern ρ.

Feature Communities Virtual Tourist Randomized CM Randomized VT

|V| 12,479 57,639 12,479 57,639
|E| 60,209 211,415 60,209 211,415
〈k〉 9.64 7.34 9.64 7.34

kmax 656 963 24 21
L 4.18 4.95 4.42 5.72
C 0.1067 0.04425 0.0006 0.0001

Eglob 0.238683 0.201822 0.23296 0.17817
Eloc 0.131466 0.056248 0.00074 0.00013

Cost (density) 0.00077 0.00013 0.00077 0.00013
Cost/Eglob 0.00324 0.00063 0.00332 0.00073

γ 2.5 2.7 ∼0 ∼0
#CC 161 2078 3 43

ρ −0.027 −0.027 −0.002 0.00082

The plots in Figure 6 and the assortativity values ρ in Table 1 suggest that both networks are
disassortative (Pearson correlation equal to −0.59 and −0.30 respectively). This means that, on average,
users with many connections tend to connect to users with few friends (see classification in [31]).
Many other studies found the same correlation pattern in online social networks, like for instance in
the Youtube ([32]), pussokram ([2]) or Cyworld ([33]) networks. Being elite in online social networks
simply means to have many connections and is just a matter of clicks (cf. [34]). However, this assortative
pattern is the opposite compared to the real world where establishing and maintaining friendships require
time and effort and where many other factors might influence the likelihood of being a friend of a person,
such as cultural, economic, and geographical circumstances.
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Figure 5. Cumulative degree distributions Pcum(k) of Communities (left panel) and VirtualTourist
(right panel). k is the degree, and α is the coefficient of the fitting (dashed) line k−α. The Figure clearly
shows a power law behavior in the degree and α is approximately equal to 2.5 and 2.7, respectively.
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Figure 6. Node degree correlations in Communities (left panel) and VirtualTourist (right panel) online
social networks. 〈knn〉 is the average degree of first neighbors. Figures show a negative correlation. In fact,
Pearson correlation is equal to −0.59 and −0.30 respectively. The inset graphs contain the same data but
plotted in linear axes.

5.2. Results

We now evaluate our models by simulating the network evolution with respect to suitable
configurations µ. We selected the global efficiency as the main statistical feature that has been tracked
during the experiments. A configuration is defined as a tuple composed by (i) the number of mermaids m
used, (ii) the mermaids’ attractiveness a, and (iii) the length of time d in which the mermaids are active
(starting from t0). We decided to employ 6 or 12 mermaids and to use those special nodes for the firsts 10
or 20 initial time units. To estimate the attractiveness as defined in Equation (3), we use a weight function
that is q(u) = 1 for u ∈ V and q(s) = 10 or 20 for s ∈ Vs, in order that these special nodes acquire more
links compared to normal nodes. Table 2 present the estimated attractiveness values of normal users an

and mermaids as, together with the variables used to calculate them. With the previous parameters, we
created a set of 8 configurations and 4 cost levels (listed in Table 3).
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Table 2. Summary of attractiveness values used during network simulations in Communities (first four
rows) and VirtualTourist (last four rows). |V| is the number of nodes, m the number of mermaids, q(s)
is the weight assigned to mermaids, an is the attractiveness of normal nodes, and as is the attractiveness
of mermaids.

|V | m q(s) an as

12,479 6 10 0.000079751 0.000797512
12,479 6 20 0.000079371 0.001587428
12,479 12 10 0.000079371 0.000793714
12,479 12 20 0.000078623 0.001572451
57,639 6 10 0.000017331 0.000173313
57,639 6 20 0.000017313 0.000346266
57,639 12 10 0.000017313 0.000173133
57,639 12 20 0.000017277 0.000345548

Table 3. List of the all possible configurations available with m = 6, 12, a = 10, 20, and d = 10, 20 with the
corresponding costs.

Cs Configurations µ

600 (6,10,10)
1200 (6,10,20) (6,20,10) (12,20,20)
2400 (12,10,20) (12,20,10) (6,20,20)
4800 (12,20,20)

The possible configurations that were planned do not exhaust all the axes along with our simulations
are based. In fact, two more dimensions are needed: the rule that selects edges between normal nodes
and the rule that select edges between mermaids and users (remember from Section 4 we consider the
more general case where the preset social rule of mermaids can also differ from the social rule that better
approximates real user behavior). Since these dynamics are independent but the names of the rules are
still the same, we dub the mermaids’ rules as Broadcast, Word of Mouth, and Preferential models in order to
uniquely distinguish them from the users’ rules.

As said earlier in Section 3, the simulations considered in this paper (unless stated otherwise) are
constrained in the sense that every edge that is added among users must exist in the original network. We decided
to use this approach because other techniques like, for instance, stochastic simulations (Construct and
Link Probability Model) are not well suited to describe big social systems (incurring in computational
issues) and because they usually require setting a high number of initial parameters (incurring in a highly
nontrivial initial settings to be able to simulate an existing original network).

We start by looking at results obtained for serial analysis (see Section 3.1) so as to understand the effect
each rule has in the unfolded network evolution and, subsequently, we consider the more realistic situation
in which more than one edge can be added at the same time (called equivalently accelerated parallel or
simultaneous). Then, in order to evaluate the effectiveness of our methods to detect new instincts in social
systems and to verify whether they are valuable as incentive for network utilization, we test (i) how faster
global efficiency will increase when using mermaids and (ii) whether the growth curve will be altered by
using these special nodes.

We are interested to uncover all these aspects of online virtual communities by trying to answer the
following questions:

Q0 Does each rule behave equally in the inertial (serial) context? What happens in the accelerated context?
Q1 How do the same cost configurations influence efficiency?
Q2 How do parameter variations influence global efficiency?
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Q3 How much do we have to invest in special nodes?

Before delving into the details of the answers for the previous questions, we can delineate a general
discussion about the results for all the growth patterns. In fact, regardless of the configuration adopted,
we found that the S-shaped curve characterizes all the growth pattern of Eglob. It is well known that the
S-shaped curve is at the heart of many diffusion processes and is characteristic of a chain reaction, in which
the number of people who adopt a new behavior follows a logistic-like function (cf. [35]): a slow growth
in the initial stage, a rapid growth for critical mass time, and a rapid flattening of the curve beyond this
point. Because of that, our models and rules could be considered as good candidates for estimating the
real network evolution.

Q0: Unfolded serial setting. Figure 7 shows the unfolded behavior of the systems for the three
proposed rules, namely: random, aristocratic, and social. Each curve represents global efficiency Eglob
of the temporal networks that have been created by adding one edge at time. The plots allow for
interesting observations. First, we note that until one sixth of the complete spectrum, each rule produces
an indistinguishable behavior probably due to weak network structure. After that point, the cumulative
effect of drawing edges in different ways starts to appear. The behavior detected is super-linear for the
aristocratic rule meaning that preferential attachment is an effective way to boost network efficiency in
networks. Conversely, with the social rule we observe a weak sub-linear increase ideally meaning that
triadic closure is not the only key ingredient for network evolution. Linear increase is then detected for
random rule. To avoid the bias of randomness, we made 100 simulations and then the averaged results are
considered. Standard deviations are small and, therefore, are not plotted in favor of clearer plots.

Table 4. Summary of Tmin, i.e., the minimum number of simulated steps to get the original Eglob, for all
accelerated simulations in Communities (CM), VirtualTourist (VT), and randomized version of both
networks. Random (rnd), aristocratic (ari), and social (soc) rules are considered.

CM VT

rnd soc ari rnd soc ari

Normal 1384 1333 1931 3130 2996 7505
Randomized 2585 2571 2294 13,718 13,704 12,003
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Figure 7. Effect of serial network simulation for Communities (left panel) and VirtualTourist (right panel).
After an initial time span (approximately one sixth of the entire simulation time), the preferential attachment
rule (aristocratic) outperforms the others.

Even though preferential attachment seems to perform better than other rules in serial evolution, this
does not necessarily hold in other settings like accelerated (parallel) simulations. In fact, as Figure 8 shows,
the random and social rules turn out to be 30% and 60% (CM and VT) faster in reaching the maximum
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Eglob compared to the preferential attachment (see Table 4 that contains the minimum time needed (Tmin)
to get the original global efficiency). This is probably due to a combined effect of topological structure
and rule applied. In fact, online social networks, like social networks in general (cf. [25]), are formed by
weak ties that are responsible for keeping subcommunities together and preserving the global reachability
among nodes. According to preferential attachment, nodes with high degree are more likely to acquire new
links. However, weak ties are not necessarily connected to hubs, meaning that they will not be selected at
the beginning, maintaining low the global efficiency.
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Figure 8. Effect of parallel network simulation for Communities (left panel) and VirtualTourist
(right panel). These plots help us to understand how parallel links’ creation modifies the dynamics
of online social systems. Surprisingly, preferential attachment (that outperforms other rules in inertial
setting) is the slowest, obtaining bad performance in terms of time needed to reach the target efficiency.
Curves start at simulation time t0, but we cropped the points for low values of Eglob for graphical clarity.
Standard deviations are very small and are not plotted for graphical reasons.

In order to verify whether the network topology affects the overall behavior, we applied the same
rules on randomized version of the networks. Surprisingly, as Figure 9 and Table 4 show, the preferential
attachment rule that previously was the slowest, now is 11% and 12% (CM and VT) faster than the others.
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Figure 9. Effect of simultaneous network simulation in randomized version of Communities (left panel)
and VirtualTourist (right panel). Curve starts at simulation time t0, but we cropped the points for low
values of Eglob for graphical clarity. Standard deviation is very small and therefore is not plotted.

The explanation of this phenomenon is again dependent on the specific topological structure of the
random networks. The main characteristic of these networks is that global connectivity is not based on
the weak ties, but instead by scattered edges that connects randomly chosen nodes. As a consequence,
the preferential attachment effect will be now strongly limited by the degree homogeneity of these
networks and consequently the likelihood of selecting long-range edges is higher, bringing together far
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away substructures, yielding a fast increase of efficiency. Indeed, by comparing Figures 8 and 9 we found
that the topological structure strongly influences the overall simulated time. In fact, the simulations on
artificial random networks are up to two times slower.

Q1: Same cost configurations. The following set of figures (from Figures 10–16) represents how the
same cost configurations affect the global efficiency. In particular, we consider the cost levels Cs that have
at least two configurations µ, namely 1200 and 2400. Table 3 collects all the possible configurations with a
specific cost.

A single simulation’s run needs three parameters: a configuration and two rules. The first rule
specifies the dynamics of users and the second one of the mermaids. In order to limit the bias due to
the randomness of selecting the edges, we decided to repeat the same simulation 100 times and get the
averaged results. However, the (simulated) timespan needed to get the target efficiency might vary in
every run, making the calculation of averages not so straightforward. For this reason, we extended the
timespan so that every simulation fit to the longest. In this way, we were able to average the y values
at fixed x intervals. We found that when the spread of the timespan values is large (see for instance
Figure 13c) and specifically with some Cs of the VirtualTourist dataset, the method we used for averaging
the results could create averaged behaviors that seems like stepping functions. We think this issue could
be easily figured out by increasing the number of simulations.

Figure 10 shows that only one specific configuration performs better compared to the others,
and in particular the one that has the higher value of attractiveness. Surprisingly, this result is also
quite general because it holds no matter what cost level or selected rule and regardless of the chosen
mermaids’ dynamics.
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Figure 10. The figures describe the benefit of higher attractiveness for the same cost configurations of
the Communities online social network. In particular, we selected broadcast model, random (top panels),
and aristocratic (bottom panels) rules. Two cost levels have been considered: Cs = 1200 (left panels) and
Cs = 2400 (right panels). Configurations (6, 20, 10) and (12, 20, 10) outperform the others and in this case
network efficiency will start to increase earlier, regardless of the growing rule of the users’ network.
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Figure 11. Comparison between the same cost of configurations of the Communities online social network.
We consider two cost level Cs = 1200 (left panels), Cs = 2400 (right panels), and random, aristocratic,
and social rules. All plots refer to the word of mouth model. We clearly see that network efficiency increases
faster in configurations that have a higher value of attractiveness, no matter what cost level or rule has
been selected.
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Figure 12. Accelerated analysis with mermaids, random, and aristocratic, social rules, preferential model,
for the Communities social network with cost Cs = 1200 (left panels) and Cs = 2400 (right panels).
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Figure 13. Spread of Eglob curves over multiple runs of simulations (aristocratic rule) on the same VT
dataset, with same cost configurations: µ = (6, 10, 20) in left panel (a), µ = (6, 20, 10) in center panel (b),
µ = (12, 10, 10) in right panel (c).
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Figure 14. Behavior of the network’s Eglob with two different cost levels: Cs = 1200 (left panels) and
Cs = 2400 (right panels) for the VirtualTourist social network, broadcast model. In total, six configurations
are considered. The one that has higher attractiveness is the favored one because can reach the efficiency of
the original network faster than the others.

 0

 0.05

 0.1

 0.15

 0.2

 0  200  400  600  800  1000 1200 1400

E
g
lo

b

Step

random

(12,10,10)
(6,10,20)
(6,20,10)

 0

 0.05

 0.1

 0.15

 0.2

 0  40  80  120  160  200

E
g
lo

b

Step

random

(12,10,20)
(12,20,10)
(6,20,20)

 0

 0.05

 0.1

 0.15

 0.2

 0  200  400  600  800  1000 1200 1400

E
g
lo

b

Step

aristocratic

(12,10,10)
(6,10,20)
(6,20,10)

 0

 0.05

 0.1

 0.15

 0.2

 0  40  80  120  160  200

E
g
lo

b

Step

aristocratic

(12,10,20)
(12,20,10)
(6,20,20)

Figure 15. Cont.
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Figure 15. Same cost configurations for VirtualTourist, Cs = 1200 (left panels) and Cs = 2400 (right
panels), word of mouth model. For each cost Cs, three configurations are then considered. In all experiments,
the configuration that performs better is the one that has fewer mermaids and higher attractiveness (or
equivalently that last more). In accordance with the results of accelerated analysis with no mermaids
(Figure 7), random and social rules attain the target efficiency in fewer steps than the aristocratic rule.
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Figure 16. Accelerated analysis with mermaids, random, aristocratic, and social rules, preferential model, in
the VirtualTourist social network with cost equal to Cs = 1200 (left panels) and Cs = 2400 (right panels).
We clearly see that the configurations with higher attractiveness reach faster the target efficiency, regardless
of the users’ growing rules.
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Q2: Parameters variation. In the following experiments, we investigated the effects of parameters’
variation in configurations. In particular, we fixed the number of mermaids (m = 6 and m = 12)
and checked the performance of other configurations compared to the baseline (that are (6, 10, 10) and
(12, 10, 10) respectively).

The plots presented are grouped by network (Communities and VirtualTourist). Figures 17–19 show
the results obtained for Communities and consider different mermaids’ dynamics, namely broadcast, word
of mouth, and preferential. Table 5 then summarizes the Tmin for all the various configurations. Conversely,
Figures 20–22 refer to VirtualTourist, and Table 6 summarizes the corresponding Tmin’s.

All the plots presented in this section clearly show that increasing Cs results in shrinking times
to obtain the target efficiency. This is a very interesting result because it confirms the effectiveness of
employing more mermaids in order to boost network engagement and in particular to lower the threshold
after which the connectivity spreads all over the network. Indeed, another interesting observation could
be made. We note that even though increasing Cs always triggers a broader connectivity distribution,
the benefit is not proportional to Cs. For instance, quadrupling Cs, the simulated time shrinks less
than four times. The question Q3 will account for quantitatively defining this benefit. Remarkably, the
observed effects are universal in the sense that they hold regardless of the network and the considered
rule, suggesting their validity in a wide class of social networks.
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Figure 17. Accelerated analysis with mermaids, broadcast model (for mermaids’ dynamics), Communities
online social network, fixing m = 6 (top panels), and m = 12 (bottom panels). Three cost levels are then
considered for each plot.
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Figure 18. Accelerated analysis with mermaids fixing m = 6 (top plots) and m = 12 (bottom plots),
random, aristocratic, and social rules, word of mouth model (for mermaids’ dynamics). Communities online
social network.
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Figure 19. Accelerated analysis with mermaids fixing the number of mermaids to m = 6 and m = 12,
random, aristocratic, and social rules. The mermaids’ dynamics evolve according to the preferential model.
Communities online social network.
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Table 5. Summary of the average Tmin in all configurations of the number of mermaids (m), attractiveness
(a), and length of time (d) of accelerated analysis with and without mermaids. Mermaid’s dynamics are
broadcast (bro), word of mouth (word) and preferential (pref), combined with users’ dynamics random
(rnd), aristocratic (ari) and social (soc). Communities online social network.

CM bro rnd bro ari word rnd word ari word soc pref rnd pref ari pref soc

(no mermaids) 1381 1930 1381 1930 1328 1381 1930 1328
(6,10,10) 112.92 128.16 111.66 126.95 113.01 106.82 118.48 108.16
(6,10,20) 73.10 73.67 73.80 73.80 74.93 72.45 71.28 74.20
(6,20,10) 68.28 68.29 68.61 68.61 69.90 67.38 66.88 69.08
(6,20,20) 58.14 56.75 58.52 56.65 59.09 57.61 55.02 59.22
(12,10,10) 72.35 73.32 72.07 74.23 73.34 70.51 70.39 72.34
(12,10,20) 60.29 58.69 60.44 58.09 62.01 59.25 56.70 60.70
(12,20,10) 55.08 52.73 55.21 52.92 56.12 53.90 51.90 55.60
(12,20,20) 49.44 47.90 50.05 48.60 50.81 49.23 47.11 50.66
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Figure 20. Effect on parameters’ variation on the configurations fixing the number of mermaids to m = 6
(top panels) and m = 12 (bottom panels). Four cost levels are then considered in each plot, from 600 to
4800. Broadcast model, VirtualTourist online social network.
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Figure 21. Accelerated analysis with mermaids fixing m = 6 and m = 12, random, aristocratic, and social
rules, word of mouth model (for mermaids’ dynamics), VirtualTourist online social network.
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Figure 22. Accelerated analysis with mermaids fixing m = 6 and m = 12, with random, aristocratic,
and social rules, preferential model (for mermaids’ dynamics), VirtualTourist online social network.

Q3: Trade-off between the benefit of investing on mermaids and the cost. In the plots presented
previously, we described how the timespan needed to get the reference efficiency varies according to
Cs. Figures 23 and 24 (rightmost panels) show Tmin as a function of Cs and this allows to describe more
quantitatively the benefit of investing on mermaids. In fact, plots clearly show that this is not linear
as one might guess, instead it is inversely proportional as Cs. We think this is probably due to the
system saturation. In other words, the network is not able to respond to high level of exogenous stimuli
from mermaids resulting in performances that are comparatively similar to those obtained with lower
cost configurations.
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Table 6. Summary of the average Tmin in all configurations (m, a, d) of accelerated analysis with and
without mermaids. Mermaid’s dynamics are broadcast (bro), word of mouth (word) and preferential (pref),
combined with users’ dynamics random (rnd), aristocratic (ari) and social (soc). VirtualTourist online social
network.

VT bro rnd bro ari word rnd word ari word soc pref rnd pref ari pref soc

(no mermaids) 3120 7496 3120 7496 2987 3120 7496 2987
(6,10,10) 1051.37 2272.84 1041.35 2215.34 999.88 752.16 1607.41 771.30
(6,10,20) 283.12 461.48 262.40 428.12 264.58 243.19 375.16 242.17
(6,20,10) 293.92 512.32 276.52 454.18 276.97 253.02 392.34 245.84
(6,20,20) 137.42 163.84 134.42 156.91 136.71 130.49 148.74 132.45
(12,10,10) 431.78 807.28 432.89 725.23 415.61 311.19 521.40 333.13
(12,10,20) 147.04 180.44 144.94 174.75 146.64 138.53 163.60 140.48
(12,20,10) 145.96 184.40 143.78 178.64 146.17 137.33 168.59 138.82
(12,20,20) 98.46 98.70 96.63 95.89 98.95 94.74 93.39 96.72
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Figure 23. Scatter plots between cost Cs and Tmin in Communities. Tmin represents the minimum number
of steps (in simulated time units) necessary to get the target efficiency (Eglob). We consider three thresholds:
half efficiency (leftmost column), one third (centermost column), and no threshold (rightmost column).
Every row represents a different mermaids’ model namely broadcast, word of mouth, and preferential.

In order to test whether this finding holds when considering threshold values of efficiency, we
investigated the time needed to get half Eglob and one third Eglob. Surprisingly, as the figures show (left
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most and centermost panels), the benefit is still inversely correlated to Cs. This means that the efficiency
growth behavior is quite regular.

In Section 4.2 we introduced Equation (4) that accounts for the cost of running a social network
and we analytically found that f (Cs) is minimum when Equation (5) holds. Since in real contexts β, i.e.,
the hypothetical cost of running a web service, is influenced by many factors, a unique value might not
exist. For this reason, we tried many combinations of β that meet Equation (5). To obtain those values we
calculate the first discrete derivative of Tmin(Cs) (different threshold values are then considered). Table 7
lists all the values of β we examined in our experiments. Table 8 shows the total cost Ct as a function of Cs

and for different threshold values. This is a very interesting finding because, once the cost per unit time of
a web service is known, our method can estimate the Cs that accounts for the minimum Ct. Indeed, since
many configurations can have the same cost, the one that has the higher value of attractiveness will be the
one that reach faster the target efficiency (see question Q1).

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500

C
s

Tmin

rnd broad

ari broad

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500

C
s

Tmin

rnd broad

ari broad

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500  3000

C
s

Tmin

rnd broad

ari broad

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500

C
s

Tmin

rnd wom

ari wom

soc wom

 0

 1000

 2000

 3000

 4000

 5000

 0  400  800  1200  1600  2000  2400

C
s

Tmin

rnd wom

ari wom

soc wom

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500  3000

C
s

Tmin

rnd wom

ari wom

soc wom

 0

 1000

 2000

 3000

 4000

 5000

 0  400  800  1200  1600

C
s

Tmin

rnd pref
ari pref

soc pref

 0

 1000

 2000

 3000

 4000

 5000

 0  400  800  1200  1600

C
s

Tmin

rnd pref
ari pref

soc pref

 0

 1000

 2000

 3000

 4000

 5000

 0  500  1000  1500  2000  2500  3000

C
s

Tmin

rnd pref
ari pref

soc pref

Figure 24. Scatter plots between cost Cs and Tmin in VirtualTourist. Tmin represent the minimum number of
steps (in simulated time units) necessary to get the target efficiency (Eglob). We consider three thresholds:
half (leftmost column), one third (centermost column) and full (rightmost column) efficiency. Every row
represents a different mermaids’ model, namely broadcast, word of mouth, and preferential.
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Table 7. Summary of T′min(Cs) and β calculated for different threshold values of E(G) and Cs.

T′min(1200) β T′min(2400) β T′min(4800) β

1/1 · E(G) −0.05875 17.02 −0.01104 90.56 −0.001145 872.72
1/2 · E(G) −0.055 18.12 −0.0094 106.38 −0.000416 2400
1/3 · E(G) −0.054 18.23 −0.0092 108.10 −0.0003 3333

Table 8. Total cost Ct = Cs + β · Tmin(Cs) as a function of Cs and different values of β. First row, from left to
right: β = 18.12 (a), 106.38 (b), and 2400 (c) for half Eglob. Second row: β = 18.23 (d), 108.10 (e), and 3333 (f)
for one third of the efficiency. Third row: β = 17.02 (g), 90.56 (h), and 872.72 (i) with no threshold at all.
Once β is known, our method estimates the best Cs to obtain the minimum cost. For instance, suppose that
the cost per unit time β is approximately equal to 90 (with no threshold on Eglob), the configurations that
achieve the minimum cost are those with Cs ∈ [1200, 2400]. Indeed, since there are many configurations
with the same cost level, the ones that perform better (outlined in bold) are those with the higher value
of attractiveness.

(a) (b) (c)

Cs Ct Cs Ct Cs Ct

600 1732 600 7248 600 150,600
1200 1732 1200 4327 1200 71,760
2400 2728 2400 4327 2400 45,888
4800 5110 4800 6621 4800 45,888

(d) (e) (f)

Cs Ct Cs Ct Cs Ct

600 1700 600 7126 600 201,833
1200 1700 1200 4168 1200 92,733
2400 2698 2400 4168 2400 56,933
4800 5085 4800 6490 4800 56,933

(g) (h) (i)

Cs Ct Cs Ct Cs Ct

600 2314 600 9724 600 88,527
1200 2314 1200 7132 1200 58,363
2400 3289 2400 7132 2400 48,000
4800 5642 4800 9283 4800 48,000

6. Conclusions

In this article we have dealt with the problem of temporal evolution of social networks, trying to shed
light on the effective strategies that can trigger a successful system evolution.

To date, many models of network growth have been proposed, especially in the context of social
networks. For instance, some researchers observed that new social ties are driven by randomness.
Because of that, some classical models are based on random wiring rules, whereas others are based
on preferential attachment (i.e., the rate with which older nodes acquire new links is faster than new nodes)
or on triadic closure rule (also known as friend’s friend rule, that is, two friends of a person are more likely
to know each other compared to two randomly chosen people).

Even though the previous classical growth models are well known and applied in social networks as
well as in many other complex networks’ settings, we focused on what can be the fundamental ingredients
for a successful network evolution (considerably boosting connectivity). In particular, we identified an
important strategical tool by using a new set of special nodes, called “mermaids”, whose aim is to increase
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network utilization by establishing new links with existing nodes. We then proceeded to identify what
the best strategies are to use this tool when also considering the cost factor and dealing with a predefined
budget constraint.

The main questions we raised in this paper are the following: Are the mermaids beneficial as a way to
widely spread the adoption of new online social systems? How is the global network behavior shaped by
employing special nodes? Does the serial model (i.e., one edge added at time) or the simultaneous model
(i.e., the number of edges added varies dynamically according to the current efficiency) achieve the best
performance? How do the same cost configurations influence network efficiency? How much does it cost
to use the mermaids?

We systematically simulated two online communities with different sizes and topics demonstrating
the effectiveness of mermaids to drive social evolution and boost community engagement in general.
Indeed, simulations were performed as a function of the mermaids configurations composed by three
main parameters: the number of mermaids, attractiveness, and time span of the mermaids’ utilization. We
found that at the same cost, the configurations that attain the best results are those with high attractiveness,
regardless of the online social network considered. Therefore, the best strategy to use mermaids when
operating within a set budget is to primarily focus on the attractiveness parameter, and consequently
adjust the number of mermaids and their operational time.

Several other interesting features could be explored as a natural extension of this paper. For instance,
it could be of great importance to investigate whether the identified strategies are universally applicable
to any online (and also non-online) social network. Another important direction in the context of social
modeling could be to study not only how Eglob varies with different configurations and parameters but
also to consider other fundamental features such as local efficiency, assortativity, centrality, etc., in order to
develop a deeper insight on boosted network evolution.
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