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bDpto Lenguajes y Sistemas Informáticos, Universidad de Alicante, San Vicente del Raspeig, Alicante,5

Spain6

Abstract7

This paper presents a new algorithm that can be used to compute an approximation to

the median of a set of strings. The approximate median is obtained through the suc-

cessive improvements of a partial solution. The edit distance from the partial solution

to all the strings in the set is computed in each iteration, thus accounting for the fre-

quency of each of the edit operations in all the positions of the approximate median. A

goodness index for edit operations is later computed by multiplying their frequency by

the cost. Each operation is tested, starting from that with the highest index, in order to

verify whether applying it to the partial solution leads to an improvement. If success-

ful, a new iteration begins from the new approximate median. The algorithm finishes

when all the operations have been examined without a better solution being found.

Comparative experiments involving Freeman chain codes encoding 2D shapes and the

Copenhagen chromosome database show that the quality of the approximate median

string is similar to benchmark approaches but achieves a much faster convergence.

Key words: approximate median string, edit distance, edit operations8

1. Introduction9

Extending the concept of “median” to structural representations such as strings has10

been a challenging issue in Pattern Recognition for some time, as it is shown in the11

review presented in Jiang et al. (2004). This problem arises in many applications such12
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as 2D shape representation and prototype construction (Jiang et al., 2000; Bunke et al.,13

2002), the clustering of strings (Lourenço and Fred, 2005), Self-Organized Maps of14

strings (Kohonen, 1998; Fischer and Zell, 2000) or the combination of multiple source15

translations (González-Rubio and Casacuberta, 2010).16

Formally, given a set S = {S 1, S 2, ..., S n} of strings over the alphabet
∑

and a17

distance function D(S i, S j) which measures the dissimilarity between strings S i and S j,18

the distance from a string S ′ to all the strings in S can be computed by the expression19

(1).20

S OD(S ′) =
∑
S i∈S

D(S ′, S i) (1)21

The median string is the string Ŝ ∈
∑∗ that minimizes (1). This string is also22

denoted as the generalized median string. A common approximation to the true median23

string is the set median, a string in S which minimizes (1). It is not necessary for either24

the median string or the set median to be unique.25

An exact algorithm to compute the median of a set of strings was proposed by26

Kruskal (1983). However, in most practical applications this is not a suitable approach27

due to the high computational time requirements. As Casacuberta and Antonio (1997)28

and Nicolas and Rivals (2005) pointed out, there are various formulations of this prob-29

lem within the NP-Complete class. Several approximations have therefore been pro-30

posed. One approach that has been studied by several authors is that of building the31

approximate median by using the successive changes of an initial string. One or more32

pertubations can be applied at a time, as in the works of Martı́nez-Hinarejos et al.33

(2003) and Fischer and Zell (2000), respectively. The results of empirical testing show34

that the first approach leads to high quality approximations but requires more computa-35

tional time. The principal motivation of this work is to describe a new algorithm able to36

compute a quality approximation to the median string like that of Martı́nez-Hinarejos37

et al. (2003), but requires significantly less computational effort. In Section 2 some38

related works are examined. Section 3 describes the proposed approach and provides39
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an analysis of the computational cost bounds for the algorithm. Various comparative40

experiments are described in Section 4. Finally, Section 5 shows our conclusions and41

some lines for further research.42

2. Related works43

Many approximate solutions have been described since Kruskal (1983) proposed44

an exact algorithm that could be used to compute the median string for a given set S45

of N strings of a length of l and the Levenshtein (Levenshtein, 1966) metric. This al-46

gorithm runs in O(lN) proportional time. A number of heuristics therefore address this47

difficulty by reducing the size of the search space. Some authors, such as Olivares and48

Oncina (2008), have studied the approximation to the median string not only under the49

Levenshtein edit distance but also under the stochastic edit distance (Ristad and Yian-50

ilos, 1998). In other works, the search for the approximate median is not performed51

directly in the string space but in a vectorial space in which the strings are embedded;52

this is the approach studied in Jiang et al. (2012) which also relies on the weighted53

median concept described by Bunke et al. (2002).54

One general strategy is to construct the approximate median letter by letter from55

an initial empty string. It is necessary to define a goodness function to decide which56

symbol is the next to be appended. The greedy procedure described in Casacuberta57

and Antonio (1997) implements this approach. An improvement to the aforementioned58

method is described in Kruzslicz (1999) through the use of a refined criterion which59

allows the next letter to be selected. Another approach that has been studied by several60

authors is that of building the approximate median by using successive perturbations of61

an initial string. Two important issues regarding this kind of method are; how to select62

a perturbation leading to an improvement and how to make the algorithm converge63

faster without spoiling the results. Another interesting topic is that of studying the64

effect of performing modifications one by one or simultaneously. Kohonen (1985)65
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starts from the set median and systematically changes the guess string by applying66

insertions, deletions and substitutions in every position. In Martı́nez-Hinarejos et al.67

(2003) the authors propose to improve a partial solution Ŝ generating new candidates68

by applying all possible substitutions, insertions or deleting the symbol at a position i.69

The new partial solution is the string, selected from all the new candidates and Ŝ , which70

minimizes (1). This procedure is repeated for every position i. The effect of choosing71

a different initial string as the set median or a greedy approximation is also studied.72

Theoretical and empirical results show that this method is capable of achieving very73

good approximations to the true median string. Note that these methods do not define74

a criterion to compare the operations in order to select which one can lead to better75

results in each case. In Martı́nez-Hinarejos et al. (2002) authors describe alternatives76

to speed up the computation of the approximated median string. Based on information77

provided by the weight matrix used to compute the edit distance, certain operations are78

preferred instead of others. For example, not all possible substitutions are tested but79

only the two closest symbols to the one in the analysed position.80

Some heuristic knowledge that can help to assess how promising a modification81

will be are included in Fischer and Zell (2000) and Mollineda (2004). The quality of82

a partial solution Ŝ is evaluated by computing its distance from every string in the set.83

Thus, it is also possible to discover the sequences of edit operations. In an attempt to84

speed up the convergence of the search procedure, these authors propose the simultane-85

ous performance of several modifications by applying the most frequent edit operation,86

including “do nothing” in each position of the partial solution. This process is repeated87

while modifications increase the quality of the partial solution.88

This approach has two potential drawbacks: applying the most common operation89

in every position does not guarantee the best results and although it might be relatively90

simple to figure out how applying just one operation will affect S OD(Ŝ ), this does not91

hold when several changes are made at the same time. For example, let Ŝ be a partial92
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solution and opi be an edit operation which occurs several times when computing the93

distance from a partial solution to strings in S . Opi thus determines a subset S YES ⊆ S94

of those strings in which opi occurs when computing the distance from Ŝ . There is95

also another set S NO = S − S YES . Let Ŝ ′ be a new solution after applying opi to Ŝ .96

Intuitively, it may be expected that the distance from Ŝ ′ to strings in S YES decreases97

regarding Ŝ . A formal discussion of this result can be found in Bunke et al. (2002).98

The effect on the strings in S NO clearly needs to be taken into account. Since sets in-99

duced by each operation may be different when applying multiple operations, it might100

be very difficult to characterize the effect on S OD(Ŝ ). Empirical results, which will101

be discussed later, suggest that those methods that apply multiple perturbations at the102

same time are able to find a better approximation to the set median quickly. How-103

ever, approaches which perform modifications one by one, such as Martı́nez-Hinarejos104

et al. (2003), significantly outperform the former methods with respect to the average105

distance to the set of the approximate median computed.106

3. A new algorithm for computing a quality approximate median string107

As noted earlier, a general scheme that can be used to search for an approximate108

median string is:109

- select an initial coarse approximation to the median as the set median.110

- generate a new solution by performing some modifications to the current solu-111

tion.112

- repeat while a particular modification leads to an improvement or another stop113

condition holds.114

The works commented on Section 2 suggest that when it is necessary to find a115

quality approximation to the median string, applying modifications one by one would116

appear to be a better strategy. The theoretical results in Jiang and Bunke (2002) and117

5



Martı́nez-Hinarejos (2003) show that the approximation computed by the algorithm118

proposed in Martı́nez-Hinarejos et al. (2003) is very close to the lower bound obtained119

for the value of S OD(Ŝ ) for the true median.120

3.1. Computing the approximate median string121

The algorithm in Martı́nez-Hinarejos et al. (2003) tests every possible operation in122

each position of the partial solution and it might therefore be very useful to study how123

to reduce the size of the search space without spoiling the quality of results, which is124

one of the principal motivations of this work. The proposed algorithm is based on two125

main ideas:126

- selecting the appropriate modification by paying attention to certain statistics127

from the computation of the edit distance from the partial solution to every string128

in the set.129

- applying modifications one by one.130

Heuristic information could help to avoid testing a number of useless solutions,131

which would reduce the amount of times that S OD(Ŝ ) is evaluated. Another distinctive132

feature is that if the best operation according to the goodness index does not lead to an133

improvement, other low ranked operations can be tested.134

The AppMedianString procedure outlines how to compute the approximate median135

string.136

3.2. Selecting the best edit operation137

In our case, the most suitable edit operation in step t will be selected by examining138

two approaches. The first simply implies ranking operations by their frequency while139

computing the edit distance from the partial solution to strings in the set, as in Fischer140

and Zell (2000). Note that the selected operation is that with the best overall ranking,141

not the most frequent in a specific position. However, under a more general weighting142
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Function AppMedianString(S,R) :Ŝ
/* S: instance set to compute the approximate median. */
/* R: initialization string. */

R′ = R;
repeat

Ŝ = R′;
foreach instance si ∈ S do

compute D(R′, si);
obtain that QR′

si is the minimum cost edit sequence needed to transform
R′ into si;

update statistics for the operation in each position j of R′;
end foreach
let Op be an operation queue sorted by its goodness index;
/* Generate new candidates R′ while none of them improve Ŝ */

while
∑

si∈S D(Ŝ , si) ≤
∑

si∈S D(R′, si) and Op , ∅ do
opi = Op.dequeue;
obtain a new candidate R′ applying opi to Ŝ ;

end while
until no operation opi applied to Ŝ improve the result;
return Ŝ ;

scheme for edit operations, the frequency might not be the best assessment of how143

promising a transformation is. We therefore propose the use of Frequency × Cost as144

a goodness index. For example, let Ŝ t be the candidate solution and S = {S 1, S 2, S 3}.145

Without a loss of generality, let us suppose that the best ranked edit operation (op1)146

is a substitution with a frequency of 2, and cost of 1. Let us also suppose that there147

is another substitution (op2) with a frequency of 1 but with a cost of 3. From the148

results in Bunke et al. (2002) we obtain that an Ŝ t+1 built by applying op1 will satisfy149

D(Ŝ t+1, S 1) = D(Ŝ t, S 1) − 1 and D(Ŝ t+1, S 2) = D(Ŝ t, S 2) − 1. Regardless of the value150

of D(Ŝ t+1, S 3) it can be expected that S OD(Ŝ ) will decrease by 2. A similar analysis151

shows that the application of op2 leads to a reduction of 3.152

3.3. An illustrative example153

The following example illustrates the algorithm’s behavior. Let Ŝ t = {5, 5, 0}, S 1 =154

{3, 1, 1, 2} and S 2 = {0, 6, 1, 6}. The substitution of a symbol a for b obtain the cost155
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min{|a−b|, 8−|a−b|}, while insertions and deletions obtain the cost of 2. Table 1 shows156

the computation of the edit distance from Ŝ t to S 1 and S 2. In the first case, this results157

in one of the optimal edit sequences {s(5, 3), s(5, 1), s(0, 1), i(2)}. D(Ŝ t, S 2) results in158

{s(5, 0), s(5, 6), s(0, 1), i(6)}. Table 2 shows an edit operation ranked by its frequency.159

Note how a different goodness index leads to a different ranking. Applying the best160

operation s(0, 1) in position 3 results in Ŝ t+1 = {5, 5, 1}, which improves S OD(Ŝ )161

since D(Ŝ t+1, S 1) = 8 and D(Ŝ t+1, S 2) = 6. If the best operation does not lead to162

an improvement, then the second best option must be tested, and so on. Note that in163

the list of perturbations there may be different operations related to the same position.164

This option does not occur in Fischer and Zell (2000) and Mollineda (2004). The165

process is repeated by starting from the new solution while some operations lead to166

a better approximation. The example above also shows how ranking by Frequency ×167

Cost can lead to better results. As explained previously, by applying s(0, 1) we obtain168

S OD(Ŝ t+1) = 14. The last column in the Table 2 shows that the operations may be169

ranked differently. In this case, s(5, 1) in position 2 is the operation with the best170

goodness index. If it were to be applied, then Ŝ t+1 = {5, 1, 0} and thus D(Ŝ t+1, S 1) = 5171

and D(Ŝ t+1, S 2) = 5, which is S OD(Ŝ t+1) = 10.

Table 1: Computation of the edit distance cost from Ŝ t = {5, 5, 0} to S 1 = {3, 1, 1, 2}
and S 2 = {0, 6, 1, 6}. Substitutions of a symbol a by a symbol b have cost min{|a −
b|, 8 − |a − b|} while deletions and insertions have cost of 2. An optimal path is shaded
in order to follow the best cost operations easily and visually.

(a)

3 1 1 2
0 2 4 6 8

5 2 2 4 6 8
5 4 4 6 8 9
0 6 6 5 7 9

(b)

0 6 1 6
0 2 4 6 8

5 2 3 3 5 7
5 4 5 4 6 6
0 6 4 6 5 7

172
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Table 2: Ranking of edit operations

Operation Position Frequency Frequency × Cost
s(0,1) 3 2 2
s(5,0) 1 1 3
s(5,1) 2 1 4
s(5,6) 2 1 1
s(5,3) 1 1 2
i(2) 3 1 2
i(6) 3 1 2

3.4. Computational cost analysis173

The procedure used to compute the approximate median string needs to compute174

the distance from the partial solution to every string in the set. Under the Levenshtein175

edit distance this can be carried out in time O(l2) by using the dynamic programming176

algorithm presented in Wagner and Fischer (1974), where l is the length of the longest177

string. The foreach statement loops N times, and the first stage of the algorithm thus178

requires a time that is proportional to O(N × l2). Assuming that no perturbations im-179

prove the solution, the inner while loop needs to examine the whole queue Op.180

Let |
∑
| be the size of the alphabet; min{N, |

∑
|} substitutions are possible for each181

of the l symbols in Ŝ , this is the maximum number of substitutions, and there are182

thus O(l × min{N, |
∑
|}) potential substitutions. The same result holds for insertions.183

Only l deletions are possible. A pessimistic upper bound to |Op| is therefore O(2 ×184

l × min{N, |
∑
|} + l). In the worst case, each operation in Op involves computing the185

distance from R′ to all the strings, which requires O(N × l2). Under these assumptions,186

inner while takes a time proportional to O(N× l3×min{N, |
∑
|}). Let k be the number of187

times that the outer repeat loops, thus the algorithm requiresO(k×N×l3×min{N, |
∑
|}),188

which is the same time required by the algorithm described by Martı́nez-Hinarejos189

et al. (2001). However, in practice the proposed approach behaves much better as it is190

suggested by the results discussed in Section 4.191
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4. Experimental results192

Experiments were carried out to evaluate the performance of the proposed approach193

when computing an approximate median string. The strings over two sets of symbols194

were tested to ensure independent results with regard to the alphabet.. In the first case,195 ∑
= {0, 1, 2, 3, 4, 5, 6, 7, λ}, corresponding to the directions of Freeman chain codes196

(Freeman, 1974) where λ denotes the empty symbol used for deletions and insertions.197

Edit operation costs were fixed in a manner similar to that of Rico-Juan and Micó198

(2003), that is, a cost of 2 for deletions and insertions and min{|a − b|, 8 − |a − b|}199

for substitutions. The strings in each set are not randomly generated but are a chain200

code representation of the contours from two widely known 2D shape databases, the201

NIST-3 Uppercase Letters and the USPS Digits , (Jain and Zongker, 1997; Garcı́a-Dı́ez202

et al., 2011; Rico-Juan and Iñesta, 2012), with 26 and 10 classes, respectively. Four203

independent samples of 20 instances per class were drawn for a total of 144 different204

sets. Our approach was used to compute an approximate median for each of them.205

The proposed algorithm, referred to as JR-S was compared to the methods proposed by206

Fischer and Zell (2000) and Mollineda (2004) which performs several modifications207

at the same time, and that of Martı́nez-Hinarejos (2003) which modifies the partial208

solution in a one by one manner.209

In a second test, strings were drawn from the chromosomes dataset used by Martı́nez-210

Hinarejos et al. (2003). This time
∑
= {a, b, c, d, e,=, A, B,C,D, E, λ}, and the cost of211

each operation was computed as in Martı́nez-Hinarejos et al. (2003). Four samples of212

20 instances were again selected for each of the 22 classes.213

Tables 3 and 4 show the results for each set in the respective databases. In each214

case we computed the ratio S OD(Ŝ )
S OD(S M) , where S M is the set median, in order to facilitate215

the comparison of the results of different algorithms and datasets. The lower it is, the216

better the approximation to the true median found by the algorithm is. In each case “ε”,217

“S M” or “S G” refer to the initial string, that is, the empty string, the set median and218
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the greedy initialization proposed by Casacuberta and Antonio (1997). Since all the219

algorithms in the test work in an iterative manner, the number of distances computed220

by each approach that evaluates S OD(Ŝ ) was also studied. The graphics in Figure 1 and221

2 show the average value for S OD(Ŝ )
S OD(S M ) and the average number of distances computed222

by each approach in all the experiments.223

Besides, a third experiment was carried out to compare the results with respect224

to the true median. In this case, we collected four sets of 20 random generated strings225

over the alphabet
∑
= {0, 1, 2, 3, 4, 5, 6, 7, λ}with length varying from 3 to 8. Operation226

costs were fixed as explained before. Table 5 shows results on this simple database.227

As mentioned previously, the results confirm that applying perturbations to the par-228

tial solution one by one leads to a much better quality approximation to the true median229

in terms of S OD(Ŝ ). In every set, either the proposed approach or Martı́nez-Hinarejos230

(2003) provides the most precise approximation. In general, the solutions computed231

with JR-S are equivalent to or even better than those attained with Martı́nez-Hinarejos232

(2003) but, as Tables 3 and 4 show, the proposed approach is, on average, about 10233

times faster than Martı́nez-Hinarejos (2003) in terms of the computed distances. In234

some cases ranking the operations by Frequency × Cost instead Frequency can lead to235

slightly better approximations, but in general, it also requires the computation of addi-236

tional distances. On the other hand, although its results are not so good in terms of the237

approximate median quality in the methods of Fischer and Zell (2000) and Mollineda238

(2004), only a few distances are needed to notably improve the set median. In both239

cases, it would appear that the algorithm gets stuck in a local minimum after a small240

number of iterations.241

A comparison in terms of running time was also included, as Figure 3 shows. The242

experiments were performed in a computer with an Intel X5355-2.66 GHz CPU (4243

cores) and 8 Gb RAM. It can be observed that algorithms introduced by Fischer and244

Zell (2000) and Mollineda (2004) are in average about 30 times faster than ours. On the245
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other hand, the proposed approach runs near 8 times faster than the methods described246

by Martı́nez-Hinarejos et al. (2003).247
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Figure 1: 1a shows the average for S OD(Ŝ )
S OD(S M ) in all experiments. This measure represents

the quality of the results. The chart in 1b shows the average number of distances (in
thousands) (Freeman chain codes set). In both cases, less value is better.

5. Conclusions and Future work248

A new approach to compute a quality approximation to the median string has been249

presented. The algorithm builds an approximate median through the successive re-250

finements of a partial solution. Modifications are applied one by one in a manner251

similar to that of Martı́nez-Hinarejos et al. (2003), and empirical results show that252

this approach leads to better approximations than those methods which apply several253

perturbations simultaneously, although the latter runs much faster. Comparisons with254

Martı́nez-Hinarejos (2003) show that the proposed algorithm is able to compute high-255

quality approximations to the true median string but requires significantly less com-256

putation and is about 10 times faster, which makes it highly suitable for applications257

that require a precise approximation. As pointed out in Section 2, an operation opi258

determines two subsets S YES and S NO from S . Applying opi to Ŝ results in new string259

Ŝ ′ such as the distance from strings in S YES to Ŝ ′ will decrease. Further research260
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Figure 2: 2a shows the average for S OD(Ŝ )
S OD(S M ) in all experiments. This measure represents

the quality of the results. The chart in 2b shows the average number of distances (in
thousands) (Copenhagen chromosomes set). In both cases, less value is better.

may address to better characterize how the distance from Ŝ ′ to strings in S NO behaves261

without computing those distances, but using information gathered when computing262

the distances to Ŝ . This can help to select the best operation to reduce the number263

of distances computed without spoiling the approximation quality. Another subject of264

interest is to analyse how the choice of a different optimal path will affect results, since265

a different ranking might be obtained.266
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Table 5: Comparison of the average distance from the approximated median to each
string in the set respect the true median. (Synthetic data)
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Synthetic 1 6.5 6.9 7.7 6.8 6.9 6.9 6.5 6.5 6.8 6.5 6.5 6.5
Synthetic 2 7.9 8.4 8.6 8.3 8.4 8.4 8.1 8.1 8.1 8.1 8.1 8.1
Synthetic 3 8.0 8.5 8.3 8.4 8.5 8.5 8.2 8.0 8.0 8.0 8.0 8.0
Synthetic 4 7.3 7.6 7.6 7.6 7.6 7.6 7.3 7.3 7.4 7.3 7.3 7.3

Average 7.4 7.8 8.0 7.8 7.9 7.8 7.5 7.4 7.6 7.4 7.5 7.5
σ 0.6 0.7 0.4 0.6 0.7 0.7 0.7 0.7 0.5 0.7 0.7 0.7
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