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Abstract

The electrical grid has been changing in the last decade due to the presence, at the distribution
level, of renewables, distributed generation, storage systems, microgrids, and electric vehicles.
The introduction of new legislation and actors in the smart grid’s system opens new challenges
for the activities of companies, and the development of new energy management systems, mod-
els, and methods. In order to face this revolution, new market structures are being defined as
well as new technologies and optimization and control algorithms for the management of dis-
tributed resources and the coordination of local users to contribute to active power reserve and
ancillary services. One of the main problems for an electricity market operator that also owns the
distribution grid is to avoid congestions and maximize the quality of the service provided. The
thesis concerns the development and application of new methods for the optimization of network
systems (with multi-decision makers) with particular attention to the case of power distribution
networks

This Ph.D. thesis aims to address the current lack of properly defined market structures for the
determination of balancing services in distribution networks. As a first study, to be able to handle
the power flow equation in a computationally better way, a new convex relaxation has been
proposed. Thereafter, two opposite types of market structure have been developed: competitive
and cooperative. The first structure presents a two-tier mechanism where the market operator
is in a predominant position compared to other market players. Vice versa in the cooperative
mechanism (solved through distributed optimization techniques ) all actors are on the same level
and work together for social welfare. The main methodological novelties of the proposed work
are to solve complex problems with formally correct and computationally efficient techniques.
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Chapter 1

Introduction and motivation

The increment of renewables resources use, distributed generation and storage, demand response
programs, and electric vehicles charging stations has led to the necessity of changing the struc-
ture of the electrical grid into a more flexible one. In particularly distributed power production
systems based on renewables, due to uncertainties associated with their presence can create some
problems to the distribution grid, such as power quality losses in the power network, voltage un-
balances, and undesired peaks. Usually, traditional controllable generators are called to compen-
sate these fluctuations, operating at different working points from the optimal ones. This function
for the traditional generators cause efficiency losses (increasing in operational and maintenance
costs) and a decrease of regulation margins for the distribution grid.

Moreover, due to the increase of generation from renewables, large fossil-fueled production
plants are no more installed or reduced in rated power; this affects the capability of the grid
to respond to emergencies. The characteristics of this new smart grid require an increase of the
power reserve to face the sudden request of active/reactive injection/absorption from a Distribu-
tion System Operator (DSO) to compensate for example a sudden drop in the production from a
photovoltaic plant.

Furthermore, the introduction of new legislation and actors (such as aggregators, microgrids, and
active buildings) in the smart grid’s system opens new challenges for the activities of companies,
and for the development of new energy management systems, models and methods. As an ex-
ample, the figure of an aggregator that manages different local consumers and/or producers to
reduce power demand or to increase production makes arise different new possible optimization
problems.

In this paradigm, there are different new challenges both from applications, modeling, and
methodological viewpoints. First of all, new formulations of control and optimization problems
are necessary as a consequence of the development of new technologies and decision frame-
works. As a matter of fact, in addition to classic problems such as power flow management, new
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decision problems based on the cooperation or competition of multi decision-makers should be
defined and solved. The definition of new electricity market mechanisms is a clear example. Be-
sides, since most of the optimization problems in power systems need to include the model of the
electrical grid, i.e the so-called power flow equations (which define a non-linear and non-convex
set), the most important mathematical challenge is to solve these optimization problems for large
scale networks in computationally acceptable timescales.

The last main challenge is related to how to solve the optimization problems in a fast and reliable
way considering uncertainties, privacy features, new technologies, and multiple decision-makers.

The motivations that give rise to this Ph.D. work, come from the recent proposals at the regu-
latory level to introduce power market mechanisms at the distribution level. Allowing the par-
ticipation of distributed resources and the demand response (DR) to the market, both in a single
and aggregate manner, to optimally dispatch energy also at the distribution level. As this is a
completely new topic and without a real legislative framework, the literature is full of works
proposing different market mechanisms for distribution networks. These studies mainly for-
malize decision-making problems based on economic considerations, based on the supply and
demand curves of market participants, partially integrating electricity grid models, sometimes in
a simplified way. Differently from the current literature, this network wants to analyze a market
session related to the quantification of the balancing reserve provided by active market users, i.e.
the Balancing Market (BM). This market typology takes place after the result of the main energy
market where the resources are dispatched. The network operator, the DSO, through technical
and economic considerations, introduces a BM session to quantify the energy reserve aiming
to improve the quality of the overall network service. The focus of this Ph.D. thesis is on the
development of new models and methods for the power distribution network which is experienc-
ing a significant change of paradigm, i.e. from a passive network to an active one, giving rise
to new and never faced problems. In particular, this thesis will focus mainly on multilevel and
distributed architectures for the BM in distribution power grids.

The preliminary work undertaken with the study of the BM begins with the modeling of the
various market participants and formulating performance indicators related to the technologies
present in the entire system (generators and distribution network).

The first important task was to model the distribution grid in a convex way to develop optimiza-
tion algorithms that guarantee the overall optimality of the solution obtained. Since the power
flow equations are nonlinear and define a nonconvex space, it was necessary to formulate a con-
vex relaxation of the above equations ensuring a small distance from the global optimal solution
obtained through a nonlinear solver. In contrast to the current approaches in the literature, which
can formulate convex relaxations only for certain types of networks, the approach proposed in
the thesis manages to describe any type of network, keeping the whole error limited in acceptable
bounds.

The second part of the thesis is devoted to the proposal and development of two possible BM
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structures for distribution networks both based on the resolution of optimization problems: the
first competitive and the second cooperative. The first structure wants to solve the multi decision-
maker problem of the BM in a centralized and competitive way each agent does not cooperate
with the others being completely selfish from the decision point of view. The problem has been
solved through the use of multilevel programming. Finally, the second market structure wants to
solve the problem of BM optimization through distributed optimization. As a matter of fact, the
consensus technique is applied to be able to solve the problem cooperatively, i.e. each decision-
maker cooperates with his neighbors to reach the global optimum.
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1.1 Main contributions

The main contribution of this Ph.D. thesis can be summarized as:

• The statement of a new convex relaxation of the OPF problem based on McCormick en-
velopes. This new model can afford any type of distribution network with an unbalanced
structure and mesh topology, without binding working hypothesis.

• The development of an explicit procedure that states optimal upper and lower bounds for
injected current increasing the quality of the proposed relaxation.

• The statement a new multi decision-maker architecture to describe BMs for a distribution
network, taking into account a new convex relaxation of the electrical grid constraints.

• The development of a bi-level BM structure based on multilevel programming, in which
every low-level market participant shares its KKT conditions to the upper-level problem to
guarantee the optimality of the problem’s solution.

• The development of a distributed algorithm, based on the Proximal Atomic Coordination
(PAC) method, with a clear articulation of conditions for proof of convergence.

• The definition of a cooperative market structure for BM based on distributed optimization

1.2 Thesis’ organization

This thesis is the collection of several research works. The chapters are based on lecture notes,
journal or conference papers, which are either published or currently under review that is reported
at the beginning of each Chapter. This thesis consists of eight Chapters, namely:

• Chapter II presents and discusses the models for the balancing market participants, describ-
ing the mathematical model, the main issues related to this formulation and some possible
approaches

• Chapter III aims to face one of the main problems in power systems, presenting a new con-
vex relaxation for the Optimal power flow problem for unbalanced and mesh distribution
grids

• Chapter IV shows the first possible balancing market approach, namely the competitive
market structure, based on multilevel programming is proposed and tested over a different
testbed
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• Chapter V shows the second possible balancing market approach, i.e. an innovative coop-
erative balancing market structure based on a new distributed optimization algorithm, the
PAC algorithm, developed during the research stage at the Active Adaptive Control (AAC)
Lab at Massachusetts Institute of Technology (MIT).

• Chapter VI includes some concluding remarks and indicates possible future developments.

• Appendix A introduces some mathematical preliminaries and some basics concepts on
power systems and the energy market helpful for the overall understanding of this Ph.D.
thesis.

• Appendix B contains all the proofs regarding the distributed algorithm stated in Chapter V.

• Appendix C contains the data of the test networks used in this thesis.
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Chapter 2

The electric system and Balancing Market
modelling

In this chapter, the basic concepts of the electric system and the electricity market focused on
distribution networks will be introduced. Then, a brief digression will be made to clearly explain
what the Balancing Market (BM) is, which are the possible participants, and how it is integrated
into the various market sessions. After this section, the mathematical models for each market
participant will be presented, highlighting the main characteristics and peculiarities. Like the
last section, the test networks that will be be used to test the proposed algorithms are presented.
for the market, simulations are presented. In particular, networks derived from a modification
of two distribution network benchmarks the IEEE 13 bus and the IEEE 123 bus (i.e. medium
voltage networks managed by a distribution system operator).

2.1 The Electric System

An electric power system is a network of electrical components deployed to supply, transfer, and
use electric power. An example of an electric power system is the grid that provides power to an
extended area. An electrical grid power system can be broadly divided into the generators that
supply the power, the transmission system that carries the power from the generating centers to
the load centers, and the distribution system that feeds the power to nearby homes and industries.
Smaller power systems are also found in industry, hospitals, commercial buildings, and homes.

While in the past the electrical grid was mainly characterized by few bulk production plants, in
the last ten years many small uncontrolled distributed generators were connected to the distri-
bution grid. These new plants lead to new problems such as voltage fluctuations and peaks, an
increase of Joule losses, as described in the introductory section. The electric system can be
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divided on three levels (see Figure 2.1): transmission, distribution and user grids

Figure 2.1: Three level power system

At the transmission level, the leading actor is the transmission system operator (TSO) whose
goal is to manage the electricity market and take care of the transmission of electricity from large
generators to the primary substation, i.e., the connection point with the distribution network.

From the technological point of view, the TSO manages the high voltage (HV) grid that connects
the bulk generators to the primary substations that convert power to lower voltages suitable for
distribution.

The TSO’s role in a wholesale electricity market is to manage the security of the power system in
real-time and to determine power flows based on load flow calculations (the optimal combination
of generation and reserve for each market trading period) and at prices in each network area, it
also handles demand and negotiation concerning power reserves on the network.

The distribution grid refers to the second stage of the electrical grid in which electricity is dis-
tributed to homes, industry, and other end-use products. Distribution is the process of reducing
power to safe customer-usable levels and delivering electric power to the grid. The entire distri-
bution grid includes lines, transformers, and switching and protection circuits that deliver safe
electrical power. The main actor for the distribution grid is the distribution system operator
(DSO) that is the owner of the physical infrastructure and manages the overall system in terms of
quality of service. In recent years, a large number of distributed generators have been installed
in the distribution network, either controllable (e.g. microturbines) or uncontrollable (photo-
voltaic and wind). This new aspect makes it possible to treat the distribution network as an active
network and thus to actively act to improve the overall network service. An example is the in-
troduction of market mechanisms similar to the wholesale energy market, allowing the DSO to
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dispatch generation and energy reserves through the overall network.

The last level is that of users, which includes all active and passive users served by the distribution
network, examples of active users can be microgrids, hybrid systems (photovoltaic with electric
storage), or more merely low-power renewable production plants. These users may provide
ancillary services to the distribution system to be remunerated; some examples may be frequency
adjustment, reactive power regulation, secondary and tertiary reserve, and demand response.

2.1.1 The Energy market for distribution grids

One of the central features of the emerging Smart Grid is a highly transformed distribution grid
with a high penetration of distributed energy resources (DERs). The electricity grid’s hosting
capacity is the primary barrier for further increasing distributed generation (DG). The actual in-
frastructure is designed for mono-directional power flows. As these DERs will be owned and
operated by different stakeholders, the efficient and reliable operation of the distribution grid
requires an overall market structure that allows the procurement and integration of power gen-
eration through DGs, DRs, and storage devices. Despite these recent advances, as the number
of DERs grows and renewable generation continues to increase, the wholesale energy market
alone may not suffice in realizing efficient and reliable power delivery. Thus, a retail market that
oversees the participation of DERs in the distribution grid and implements a suitable mechanism
for their scheduling and compensation is highly necessary.

To this end in recent studies, different market mechanisms are proposed to try to optimally man-
age the distribution network. Many works in literature (better investigated in Chapter 4) define
market structures based on iterative processes, whose convergence only is proven by experimen-
tal results and not mathematically. Therefore these approaches depend on the case study and the
problem structure.

In this thesis, we propose a more general market structure for distribution grid power markets,
depicted in Figure 2.2. There are two main market sessions: the Retail Market and the Balancing
Market (BM). In the Retail Market session, the dispatch of all the resources is performed mainly
based on economic optimization considering the variable prices of the energy acquired from the
transmission grid and the forecast of power generation/consumption of the various generators
and loads. This market session is performed as a day planning. As previously said, being a
purely economic optimization, the various energy prices that the DSO pays to the generators are
defined, but no technical considerations are made.

After the first negotiation phase, the economically optimal working point for the system is es-
tablished. Consequently, balancing energy reserves need to be assessed through the BM session.
Indeed, after purely technical evaluation, the DSO can state that the working point obtained dur-
ing the previous market session is not favorable from the system conditions the point of view
(e.g. too high voltages at nodes or lines close to their thermal limit). Differently from the retail
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market, the BM can be performed both as a day ahead session (after the Retail market negotia-
tion) and as an intra-day market session (e.g. every one hour ) to face with the uncertainties given
by the renewable power production and loads forecasting In other words, the BM creates a new
working point that is better from the quality of service point of view. This new working point is
also advantageous in case of adverse events (e.g. faults on generators/ loads or lines), avoiding
undesired conditions during the normal operation.

From a regulatory point of view, each country has its version of the energy market with more or
less restrictive constraints due to the various particular political/national situations. The mech-
anisms proposed in this Ph.D. thesis want to be as generic as possible and therefore be able to
accommodate the various particular practical cases.

Figure 2.2: The distribution grid market

2.2 Balancing market modeling

The topic of electricity BM design has been given relatively little attention from academic re-
searchers, despite its crucial role in both power markets and power system operations. Balance
management is a power system operation service vital for ensuring the security of supply through
the continuous, real-time balancing of power demand and supply. If the system runs out of bal-
ance, power stability and quality will deteriorate, which may trigger the disconnection of system
components, and ultimately, power blackouts. The proposed BM is thought to be part of the
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overall distribution power market and is devoted to obtaining energy reserves for DSOs to bal-
ance the system in real-time. Energy reserves can be contracted by the DSO with an associated
payment for their availability.

A further important aspect of this Ph.D. thesis is to propose a model also for the figure of the
aggregator. This new market player is a purely economic entity, recently introduced from the
regulatory point of view, representing a group of active users (generators and loads) that alone
could not participate directly in the BM.

Each market participant belongs to the same distribution grid, whose model will be described
in the following. As mentioned in the previous section, for this specific market structure, we
consider three classes of agents:

• Traditional Generators;

• Aggregators;

• Distribution System Operator.

For generality, no specifications are given regarding the cooperation/competition of the various
agents. It is precisely the field of study of this Ph.D. thesis to define new possible market struc-
tures, stating the interaction between the various agents.

Any market participants, i.e. the controllable traditional generators and aggregators that want
to maximize their profit, taking into account the limits of the flexibility they can sell. Instead,
the DSO receives power/price bids from market participants and, decides which bid to accept.
In this thesis renewable generators since are not controllable are considered as given inputs.
It is important to point out to the reader that the output of the BM optimization problem is
the increase/decrease of the amount of active and reactive power of each participant based on
technical and economic choices.

In the following, the notation concerning the agents considered for modeling the BM is specified.
N is defined as the set of grid nodes. Each traditional generator g ∈ GT , with GT the set of
traditional generators, is connected to a single grid node i = Node(g). For any aggregator
a ∈ A, with A the set of aggregators, let C(a) the set of customers aggregated by a. Let
Na = card(C(a)). For any customer c there exists a unique a such that c ∈ C(a). Moreover let
i = Node(c) a map that associates customer c to a grid node i ∈ N . In this way, we can define
Cust(i) = {c ∈ C : Node(c) = i} ∀i ∈ N .

2.2.1 Traditional Generators’ Optimization Problem

The introduction of controllable traditional generators within distribution networks has brought
a revolution in this paradigm. The possibility of precisely regulating the active and reactive
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power in a node allows acting in a capillary way minimizing costs and power quality losses of
the network. The traditional generator that participates in the BM can offer the flexibility of
active and reactive power in both directions since it can increase or decrease both active and
reactive power. If the DSO requires flexibility services, the economically optimal working point
determined by the retail market is changed to a less efficient one. As the new operating point is
economically suboptimal, it implies costs for the generator which requires an economic incentive
to the DSO for this service.

We define:

• P up
g and Qup

g the decision variables regarding the increase of active/reactive power for a
generator g;

• P dw
g and Qdw

g the decision variables regarding the decrease of active/reactive power for a
generator g;

• P da
g and Qda

g as the working point (in terms of active and reactive power) coming from the
Retail market session, considered as input data;

• Cup
g and Cdw

g as the costs [euro/kW] per unit of active power increased/decreased, consid-
ered as input data;

• λP,upg (P up
g ) and λP,dwg (P dw

g ) as the supply functions representing the prices that generator
g requests to the DSO for active power flexibility service.

• λQ,upg (Qup
g ) and λQ,dwg (Qdw

g ) as the supply functions representing the prices that generator
g requests to the DSO for reactive power flexibility service.

The assumption regarding the structure of the supply functions will be clarified in Chapter 4. It is
assumed that the costs incurred by each traditional generator are linear both in case of an increase
and decrease of produced active power. These costs represent not only the price of fuel of the
generator’s prime mover but also maintenance cost and efficiency costs given by the change of
working point. Instead, as regards the payment for the balancing service we introduce different
supply functions (active/reactive power, price) that state the price for the service.

Thus, defining xg =
{
P up
g , P dw

g , Qup
g , Q

dw
g

}
as the overall decision variables of a traditional

generator g, the optimization problem associated to a generator g ∈ GT is:

max
xg
{λP,upg (P up

g )− Cup
g P

up
g − λP,dwg (P dw

g ) + Cdw
g P dw

g + λQ,upg (Qup
g )− λQ,dwg (Qdw

g )} (2.1)

0 ≤ P up
g ≤ P up

g (2.2)

−P dw
g ≤ P dw

g ≤ 0 (2.3)
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Qdw
g ≤ 0 (2.4)

−Qup
g ≤ 0 (2.5)

(P up
g + P da

g + P dw
g )

2
+ (Qup

g +Qda
g +Qdw

g )
2 ≤ S2

g (2.6)

where P up
g and P dw

g are bounds for flexibility (in both directions), note that active sign convention
is used (positive power is generated). Constraints (2.2)-(2.5) define upper and lower bounds
over the decision variables, while (2.6) represents the capability constraint (with S2

g maximum
apparent power), that defines the maximum amount of apparent power exchangeable by each
traditional generator, considering the BM requirements. In the objective function reactive power
has no cost since it is only related to the capability of the generator.

2.2.2 The Aggregator’s Optimization Problem

The user aggregator is an economic entity that participates in the BM. It represents in the BM
a certain energy reserve that is provided by several users but belonging to the same aggregation
perimeter. This agent enters into contracts with its customers and provides a remuneration if
the balancing service (increasing/decreasing of active and reactive power) is provided. Once the
outcomes of the BM are available, the information is shared among the customers. In this case,
two possible scenarios can rise: customers reach an agreement without involving the aggregator
(while keeping privacy) following constraints on the total resource to be supplied; or the energy
is directly requested by the aggregator, which based on the available information distributes the
balancing service between the customers. Nevertheless, this topic does not matter of this thesis
but it has been studied in other papers of the same authors of this thesis [1].

The working structure of an aggregator is depicted in Figure 2.3. The blue box, representing
the BM session, there is the request of balancing service as a result of the bid among the market
participants (the bidirectional arrow represents the interaction of the market and the aggregator
in terms of bids and service assignment). The second box represents the aggregator that after the
market results communicate to its customers the amount of power to be reduced/increased. In
the third part of the figure, there is the local optimal management of the customers.

We define for each aggregator a:

• P up
c and Qup

c the decision variables regarding the increase of active/reactive power for a
customer c;

• P dw
c and Qdw

c the decision variables regarding the decrease of active/reactive power for a
generator c;

• P da
c and Qda

c as the working point (in terms of active and reactive power) coming from the
retail marked session for each customer c, considered as input data;
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Figure 2.3: Aggregator’s interaction with the BM and its customers

• Cup
c and Cdw

c as the costs [euro/kW] per unit of active power increased/decreased for each
customer c, considered as input data;

• λP,upa (P up
c ) and λP,dwa (P dw

c ) as the supply functions representing the prices that aggregator
a request to the DSO for active power flexibility service (referring to all customers in
C(a)).

• λQ,upg (Qup
c ) and λQ,dwg (Qdw

c ) as the supply functions representing the prices that generator
a request to the DSO for reactive power flexibility service (referring to all customers in
C(a)).

The assumption regarding the structure of the supply functions will be clarified in Chapter 4. It is
important to note that the aggregator offers a single bid (i.e. a single supply function) taking into
account each customer in an aggregate manner. As said before, this aspect is not the subject of
the thesis but has been investigated by the authors of the thesis in other papers. Since both small
generators and loads can belong to the same aggregator, these costs for load type customers can
represent the dissatisfaction cost of the load’s users. Thus, defining xc =

{
P up
c , P dw

c , Qup
c , Q

dw
c

}
as the overall decision variables of a customer c of an aggregator a, the optimization problem
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associated to aggregator a is given by:

max
xc c∈C(a)

 ∑
c∈C(a)

λP,upa (P up
c )−

∑
c∈C(a)

Cup
c P

up
c −

∑
c∈C(a)

λP,dwa (P dw
c ) +

∑
c∈C(a)

Cdw
c P dw

c

+
∑
c∈C(a)

λQ,upa (Qup
c )−

∑
c∈C(a)

λQ,dwa (Qdw
c )

 (2.7)

0 ≤ P up
c ≤ P up

c ∀c ∈ C(a) (2.8)

−P dw
c ≤ P dw

c ≤ 0 ∀c ∈ C(a) (2.9)

Qdw
c ≤ 0 ∀c ∈ C(a) (2.10)

−Qup
c ≤ 0 ∀c ∈ C(a) (2.11)

(P up
c + P da

c + P dw
c )

2
+ (Qup

c +Qda
c +Qdw

c )
2 ≤ S2

c ∀c ∈ C(a) (2.12)

where P dw
c and P up

c are the minimum and maximum power for the flexibility of customer c. Con-
straints (2.8)-(2.11) define upper and lower bounds over the decision variables, while (2.12) rep-
resents the capability constraint (with S2

c maximum apparent power), that defines the maximum
amount of apparent power exchangeable by each customer c, considering the BM requirements;
note that active sign convention is used. Also for this decision-maker in the objective function
reactive power has no cost since it is only related to the capability of each customer. it is im-
portant to point out that although the problems of generator and aggregator optimization seem
similar, they have a very different practical meaning. The main differences are two: the first is the
capillarity of regulation that has the aggregator, in fact, representing more nodes of the network
manages to make many offers are accepted by the DSO since it can act directly in more areas
of the network; the second instead concerns the price function that is unique for all components
of the aggregator, then from an economic point of view the evaluation of the function is more
complex (taking into account the characteristics of individual users) than that of generators

2.2.3 The DSO Optimization Problem

The DSO is the owner of the distribution network from the primary substation to the end-users, its
objective is to optimize the operational management of the network. In a more recent perspective,
with a strong presence of intermittent renewable sources on the grid, in addition to the classic
problems (minimization of losses and flow of lines on the grid) the DSO has to face with new
challenges such as the reversal of power flow and voltage regulation by active users. Moreover,
it has to consider power quality indexes of the overall network.
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The DSO represents the arbiter of the BM and has complete knowledge of the distribution net-
work and can thus technically evaluate the level of stress of the network components (generators,
nodes, lines).

As mentioned at the beginning of this chapter, the DSO can evaluate the quality of the actual
working point (through specific indicators) to require flexibility. To this end, we introduce spe-
cific Stress Indexes (SI) defined as follows:

SIGh =
P da
g + P up

g + P dw
g

Pmax
g

∀h ∈ (GT ∪ CTOT ) (2.13)

SIVi =

(
‖Vik‖ − V̂ik

∆V ∗i

)2

∀i ∈ N k ∈ K (2.14)

SICij =

(
Iij,k
I∗ij

)2

∀i, j ∈ Nk ∈ K (2.15)

The terms in (2.13) represents the ratio between the actually generated power and the rated
active power of the generator Pmax

g . The second term (2.14) represents the square of the ratio
between the variation of the voltage at node i (with respect to the nominal value specified by
V̂ik) and a value that expresses a measure of the interval of admissible variations. The third kind
of terms (2.15) represents the square of the ratio between the current in branch (i, j) and the
rated thermal limit. These simple performance indicators allow evaluating the stress state of the
whole system. It is easy to understand that the lower these indices the more easily the system
can withstand deep external perturbations, such as possible failures, sudden changes in power
production. For example, a sudden voltage peak in a node dramatically increases joule losses
with the risk of exceeding the thermal limits of the cables or damaging the generators. Thus,
the objective function of the DSO problem is the weighted sum of economic costs, given by the
purchased flexibility from the market participants, and the overall SI of the network. That is,

min
xg∈GT,xcc∈C(a), a∈A

∑
g∈GT

{
λP,upg (P up

g )− λP,dwg (P dw
g ) + λQ,upg (Qup

g )− λQ,dwg (Qdw
g )
}

+
∑
a∈A

 ∑
c∈C(a)

λP,upa (P up
c )−

∑
c∈C(a)

λP,dwa (P dw
c ) +

∑
c∈C(a)

λQ,upa (Qup
c )−

∑
c∈C(a)

λQ,dwa (Qdw
c )


+αSIsys (2.16)

where
SIsys =

∑
h∈(GT∪Ctot)

SIGh +
∑
i∈N

SIVi +
∑
i∈N

∑
j∈N
i 6=j

SICij (2.17)
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The distribution network is modeled as an unoriented graphG(N,E), withN set of nodes and E
set of branches. Since we are facing real distribution networks we need to consider a multiphase
unbalanced system. Each variable now is a vector with 3 components (one for each phase k ∈ K
with K the set of phases). The network topology is represented by the admittance matrix Y
(more clarifications about the Y matrix construction is given in the Appendix).

The edges are expressed by the 3-phase matrix admittance yi,j ∈ R3×3 (representing the cables
of a link between two nodes), for a cable between nodes i and j ∈ N , in which each element
of the matrix, yk,k′ , represents the magnetic coupling between phases k and k′, such that yk,k′ =
gk,k′ + ibk,k′∀k, k′ ∈ K where K = a, b, c is the set of phases. That is:

yij =

yaaij yabij yacij
yabij ybbij ybcij
yacij ybcij yccij

 ∀i, j ∈ N (2.18)

The power flow equations which describe the sinusoidal steady-state equilibrium of a power
network are given by:

Pi =
∑
j∈N

ViVj(Gij cos(δi − δj) +Bij sin(δi − δj)) ∀i ∈ N (2.19)

Qi =
∑
j∈N

ViVj(Gij sin(δi − δj)−Bij cos(δi − δj) ∀i ∈ N (2.20)

where Gi,j and Bi,j are conductance and susceptance parameters for the branch (i, j), Vi and
δi are the voltage magnitude and phase at node i, respectively. Pi and Qi represents the power
injected at each node that are given by:

Pi =
∑
g∈GT :

i=Node(g)

(
P da
g + P up

g + P dw
g

)
+
∑
a∈A

∑
c∈C(a):
i=Node(c)

(
P da
c + P up

c + P dw
c

)
∀i ∈ N (2.21)

Qi =
∑
g∈GT :

i=Node(g)

(
Qda
g +Qup

g +Qdw
g

)
+
∑
a∈A

∑
c∈C(a):
i=Node(c)

(
Qda
c +Qup

c +Qdw
c

)
∀i ∈ N (2.22)

Constraints (2.21) and (2.21) define the power balance at each node that is the sum of the con-
tributions of generators and load at each node considering the increase/decrease of active and
reactive power given by the BM session. As can be seen, the above equations (2.19) and (2.20)
are nonlinear and nonconvex. The sources of non-convexity are given by the bilinear terms ViVj
and the trigonometric functions. Nonconvexites are a challenging problem because they increase
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the computational burden of an optimization problem. Finding a high-quality convex relaxation
of the power flow equations represents a good result in terms of reducing the run time of the
overall optimization problem. The next chapter will be devoted to the statement of a new convex
relaxation for the optimal power flow (OPF) problem in distribution grids.

2.3 Distribution test networks

Models and methods developed in this Ph.D. thesis will be tested on test networks based on
benchmark IEEE networks and modified for active distribution grids. In this section two of the
used test will be described, namely the IEEE 13 bus and the IEEE 123 bus ([2]), posing particular
attention to the changes adopted for the study of the BM in the distribution network. Each
quantity is expressed in per-unit values [p.u.]. This method, commonly used in power systems
studies, offers computational simplicity by eliminating units and expressing system quantities as
dimensionless ratios. The bases chosen for this example are 1 [MVA] for the apparent power
and 15[kV] for the voltage. All the parameters are reported in the next chapters. The changes
were made to highlight the peculiarities of the developed models. In most of the literature,
the distribution networks examined are very simple and above all have a radial and balanced
typology, which is not true in real systems.

2.3.1 Modified IEEE 13 bus network

For this test case, the BM participants are one traditional generator (belonging to bus 646) and
two aggregators, while node 650 represents the slack bus. The test network has been adapted to
our case employing the following modifications depicted in Figure 2.4:

• at bus 646 there is a traditional generator;

• at bus 684 a small generator belonging to aggregator 1 and a local load are connected;

• bus 634 is composed of a small generator belonging to aggregator 2 and a local load;

• to bus 692 are linked two customers of aggregator 1 and 2;

• two new links are added between nodes 652-680 and 680-692;

• all the switches are in their normal position.

Each quantity is expressed in per unit values [p.u.]. The bases chosen for this example are the
same as the original benchmark network. In Table C.1 the apparent powers at each node and
phase are reported (as in the benchmark data passive sign convention is used).
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Figure 2.4: The Modified IEEE 13 test network.

2.3.2 Modified IEEE 123 bus network

For this second test case, the test network has been adapted to our case using the following
modifications depicted in Figure 2.5:

• at bus 41 and 114 there are traditional generators;

• nodes 42-46 belong to the first aggregator;

• nodes 3-6 belong to the second aggregator;

• nodes 31-33 belong to the third aggregator;

• five new links are added between nodes 19-21, 63-66, 90-92 and 90-88;

• all the switches are in their normal position.

Each quantity is expressed in per-unit values [p.u.]. The bases chosen for this example are the
same as the original benchmark network. In Table C.2 (Appendix C) the apparent powers at each
node and phase are reported (as in the benchmark data passive sign convention is used).
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Figure 2.5: The Modified IEEE 123 test network.

26



Chapter 3

A New Convex Relaxation of the Optimal
Power Flow problem for Distribution Grids
with Unbalanced Structure and Mesh
Topology

This chapter aims to address the problem of the non-convexity of power flow equations high-
lighted in the previous chapter. In fact, before formulating any market structure (competitive or
cooperative), a modelling effort is needed to make the power grid model more mathematically
simple. The activities presented in this chapter have been partially developed during the research
stage at the Active Adaptive Control (AAC) Lab at Massachusetts Institute of Technology (MIT)
under the supervison of Dr. Anuradha Annaswamy, and are also described in [3]. The main
contribution of this Chapter can be summarized as:

• The statement of a new convex relaxation of the OPF problem based on McCormick en-
velopes. This new model can afford any type of distribution network with unbalanced
structure and mesh topology, without binding working hypothesis.

• The development of an explicit procedure that states optimal upper and lower bounds for
injected current increasing the quality of the proposed relaxation.

In order to validate the proposed model an extensive test campaign has been preformed on the
most common benchmarks for distribution grids, i.e. the IEEE 13 and 123 bus networks and a
more recent test case, the IEEE 8500 nodes. Each of these test cases have been modified (adding
distributed generation and new buses to obtain loops) to exploit the peculiarities of the new
model, that is the maximum flexibility in terms of unbalances and topology. The test campaign
aims at studying the potential capabilities of the model. The first wants to study the possibility
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to use the proposed relaxation as a load flow tool: the apparent power at each node (except to the
slack node) is fixed, all the voltages phasors are thus determined and constraints verified. The
second possible purpose of the proposed approach is to be considered as OPF tool considering a
voltage minimization objective function.

The organization of this chapter is as follows. Section I investrigates the actual literature of OPF
convexification, in Section II the OPF problem is described and the new convex relaxation is
defined, Section III describes the preprocessing algorithm designed to obtain optimal upper and
lower current bounds for the optimization problem. In Section IV the proposed model has been
tested in the modified IEEE 13 and 123 bus and 8500 nodes test networks, in terms of feasibility
(as load flow tool) and optimality (as OPF tool).

3.1 Literature Review

As reported in Chapter 2, the new paradigm of the distribution network necessitates to develop
methods and models for optimizing power injections into the grid. The problem related to power
system optimization is called Optimal Power Flow (OPF) [4], which is intrinsically hard to solve
since is a nonlinear and non convex problem. In the recent literature many efforts are made
to find high quality convex relaxations for the OPF [5]. The most popular models, are the bus
injection model (BIM) based on semidefinite programming (SDP) and the branch flow model
(BF) based on second order cone programming (SOCP) [5][6],

The main purpose of this chapter is to define a new formulation for the OPF that can be used
for any general distribution grid (in terms of network topology and unbalanced design). The
motivation to create this model rises from the fact that in the recent literature the most popular
models guarantee an optimal performance only in specific cases such as radial topology and
balanced structure [7] [8]. All of these hypotheses, from a practical point of view, are never
met since the peculiarity of a distribution grid is the unbalanced structure (i.e., the power flow is
different for each phase [9]) and mesh topology.

The idea proposed in the chapter consists in transforming all loads and generations into cur-
rent injection (CI) in order to solve the network as a circuit using Kirchhoff’s and Ohm’s laws.
This concept comes from some methods used in load flow calculation [10] [11]. These methods
use the concept of CI to be able to iteratively solve load flow equations using the voltage value
obtained from the previous iteration. In this way, the problem is linear in the currents and there-
fore can be easily solved. In the present chapter, unlike the above mentioned approaches, we
want to define an optimization problem. Thus, it is not convenient to use an approach based on
an iterative solution. We thus propose to convexify the CI formulation of the OPF through the
McCormick envelopes. This technique, firstly introduced in [12], is mainly used to convexify
bilinear non linear programming problems. The proposed CI formulation is perfectly suitable
to this method, since, adopting the cartesian coordinates for the phasor modelling the only non-
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linearities are given by four bilinear terms. In the recent literature other works have applied
McCormick enevlopes to the OPF [13] [14] and [15], but in a different way and context from the
one presented in this chapter.

The authors of [13] propose the application of the McCormick envelopes to the SDP relaxation
of the power flow equations. Differently from our work this application is only for transmission
grids, and they propose to relax the trigonometric functions that has a limited validity, only in a
certain range of angles. In [14] the authors apply the so called “Meyer and Floudas” envelopes to
trilinear monomials formed by the product of the voltage magnitudes and trignometric terms in
the polar form of the power flow equations. Finally, in [15] the authors consider a novel general
power system modeling approach based on multi-port representation of individual components
with Sparse Tableau Formulation of network constraints based on orthogonal components. Dif-
ferently from the approach proposed in this chapter [14] and [15] propose an application only for
transmission grids with balanced structure.

It is important to point out to the reader that, although many works in the literature are more
mathematically sounding than the CI model (such as BF model and BI model), they have many
limitations from a practical point of view [16] [17]. These restrictions are related to network
topology, balancing structure and large presence of distributed generation. As far as network
topology is concerned, these models are limited by the fact that they can only solve networks with
radial topology. In this case, in order to have a SOCP or SDP relaxation [18][19] it is necessary
to consider the square of voltages and currents, completely losing the information about the
phases. Instead, with the CI model it is possible to solve networks with any type of topology as
the information on the phase is maintained thanks to the presence of the real and imaginary parts
of the phasorial variables. From the point of view of phase balancing, most of the works using
BF as a model for the distribution network assume that the network is perfectly balanced. This
is an extremely strong hypothesis from a practical point of view, since the main peculiarity of a
distribution network is the imbalance at the level of nodal voltages, cables and loads/generation.
Some recent chapters have tried to model a distribution network modifying the BF adapting it
to an unbalanced network as in [20] and [21]. Also in these cases strong hypotheses are made
on the reciprocal unbalance of the phases that are valid only in a small range of cases, namely
neglecting the relative difference between the phasors of each phase. Other chapters [22] suggest
the use of Fortescue’s transformation to deal with multiphase systems in the "sequences" context
instead of in "phases" ones. This approach is useful in transmission networks but it is often not
valid in distribution ones, as the cables are not inverted allowing a decoupling in the admittance
matrix. Finally, as a last limitation of the BF, we must mention the inaccuracy of the relaxation
given by the large presence of distributed generation at the nodes of the network. A precise
description of this restriction is reported in [23], where it is explicitly explained that a condition
for which the relaxation brought by the BF is exact only if there is a limited number of DERs.
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3.2 Formalization of the OPF problem

Electric power transmission needs optimization in order to determine the necessary real and
reactive power flows in a system for a given set of loads, as well as the resulting voltages and
currents in the system. Power flow studies are used both for analyzing the actual state of the grid
and for planning in the day ahead how to face possible disturbances into the system, such as the
loss of a line to maintenance and repairs.

The OPF should be performed for a large number of nodes, by using nonlinear equations for the
electrical grid representation. Generally, to manage such a complex systems the problem is for-
malized by the use of simulation and optimization tools, and of suitable system representations.
The use of the admittance matrix is particularly convenient because it represents at the same time
the network topology and the cable characteristics in order to determine voltages, currents and
power flows through the system. In the following, the proposed OPF formulation is described.
Note that the real and imaginary part of a phasor ẋ are denoted as xR and xI while xH is the
Hermitian of vector x, finally we use the the overbar x and underbar x notation to denote upper
and lower limits for a variable x.

3.2.1 General CI-OPF formulation

The distribution network is modelled as an unoriented graphG(N,E), withN set of nodes of the
grid and E set of branches. Each variable now is a vector with 3 components (one for each phase
k ∈ K withK the set of phases). The cables are expressed by the 3-phase 3×3 matrix admittance
in which each component represents the magnetic coupling that each phase (i.e. k = a, b, c) has
with the other phases (i.e. k = a, b, c). That is:

ẏij =

ẏaaij ẏabij ẏacij
ẏabij ẏbbij ẏbcij
ẏacij ẏbcij ẏccij

 ∀i, j ∈ N
The whole admittance matrix Y is defined as follows:

Y ij =


∑

m:(i,m)∈Ei

ẏim if i = j

−ẏij if i 6= j and (i, j) ∈ E
0 otherwise

The OPF problem aims at minimizing a performance index (related for example to losses, voltage
regulation, energy cost etc.), subject to constraints that describe the physics of the power system.
In this particular formulation, we keep explicitly the current injections definition at each phase
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of each node to obtain the CI-OPF formulation. A general formulation of a 3-phase CI-OPF is
given by:

min
(İ,V̇ ,Ṡ)

f
(
İ , V̇ , Ṡ

)
(3.1)

İ = YV̇ (3.2)

Ṡ = V̇ İH (3.3)

V̇ i ≤ V̇ ≤ V̇ (3.4)

Ṡ ≤ Ṡ ≤ Ṡ (3.5)

where İ , V̇ and Ṡ are the vectors related to currents, voltages and apparent powers in the grid.
In this CI-OPF formulation, (3.1) describes general objective function typical of power systems
minimizing a function of current voltages or power, (3.2) is the nodal analysis relation for an AC
system, while equation (3.3) is the apparent power definition. Finally equations (3.4)-(3.5) are
upper and lower bounds for voltage and apparent power injected at each bus respectively.

In the previous formulation (3.1)-(3.5), notation was abused because all the quantities described
are phasors, i.e. complex numbers. There are two notations to describe a complex number:
polar coordinates, defining the magnitude and phase ẋ = |x|ejδ, and Cartesian coordinates,
defining real and imaginary component ẋ = xR+ jxI . For this purpose, the Cartesian coordinate
representation will be chosen. This representation allows to rewrite the problem (3.1)-(3.5) in a
more manageable formulation.

min
IR,II ,V R,V I ,P,Q

f
(
IR, II , V R, V I , P,Q

)
(3.6)

IR = Re (YV ) (3.7)

II = Im (YV ) (3.8)

Vik
R ≤ V R

ik ≤ Vik
R ∀i ∈ N k ∈ K (3.9)

Vik
I ≤ V I

ik ≤ Vik
I ∀i ∈ N k ∈ K (3.10)

P ik ≤ Pik ≤ P ik ∀i ∈ N k ∈ K (3.11)

Q
ik
≤ Qik ≤ Qik ∀i ∈ N, k ∈ K (3.12)

Pik = V R
ik I

R
ik + V I

ikI
I
ik ∀i ∈ N k ∈ K (3.13)

Qik = −V R
ik I

I
ik + V I

ikI
R
ik ∀i ∈ N k ∈ K (3.14)

where IikR,IikI , VikR,VikI , Pik and Qik are voltages, nodal currents, real and reactive power
injected at phase k of node i (active sign convention is used). It is important to note that any
objective function in the field of power systems is generally convex. From a practical point
of view this assumption is very common and acceptable, because most of the faced problems
(volt/VAR regulation, losses minimization, frequency regulation, energy cost minimization, etc.)
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are quadratic or linear functions of the variables. As can be seen from (3.6)-(3.12) the sources of
non-convexity are given by the bilinear terms V R

i I
R
ik, V I

i I
I
ik, V R

i I
I
ik and V I

i I
R
ik. In the next section

a methodology to achieve convex relaxation of a bilinear form will be introduced.

3.2.2 Relaxation of the CI-OPF problem

Non convex problems are generally transformed into a convex function by relaxing some param-
eters. Note that a convex relaxation reduces the computational burden of the overall problem
at the cost of obtaining a sub optimal solution. Specifically, the convex problem will provide a
lower bound for the optimal solution. Having a tighter relaxation that is still convex will provide
a lower bound that is closer to the solution.

McCormick Envelopes [12] are a type of convex relaxation used in bilinear non linear program-
ming problems. McCormick Envelopes provide an envelope that retains convexity while mini-
mizing the size of the new feasible region. This allows the lower bound solution obtained from
using these envelopes to be closer to the true solution than if other convex relaxations were used.
Tighter envelopes decreases the time needed to solve complex computational problems.

We define the enevlope (MCE{w}) of a bilinear form w = xy defined over a set S ⊂ R3 =
{x, y : x ∈ [x, x], y ∈ [y, y]} as (for a more extensive explanation please see Appendix A):

w ≥ xy + xy − xy (3.15)

w ≥ xy + xy − xy (3.16)

w ≤ xy + xy − xy (3.17)

w ≤ xy + xy − xy (3.18)

Through the envelopes described above it is possible to relax the bilinear terms in equations
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(3.11) and (3.12) to obtain the following set of constraints:

Pik = aik + bik ∀i ∈ N, k ∈ K (3.19)

Qik = −cik + dik ∀i ∈ N, k ∈ K (3.20)

aik ≥ Vi
RIRik + V R

i I
R
ik − ViRIRik ∀i ∈ N, k ∈ K (3.21)

aik ≥ Vi
R
IRik + V R

i I
R

ik − Vi
R
I
R

ik ∀i ∈ N, k ∈ K (3.22)

aik ≤ Vi
RIRik + V R

i I
R

ik − Vi
R
IRik ∀i ∈ N, k ∈ K (3.23)

aik ≤ Vi
R
IRik + V R

i I
R
ik − ViRI

R

ik ∀i ∈ N, k ∈ K (3.24)

bik ≥ Vi
IIIik + V I

i I
R
i − ViIIRik ∀i ∈ N, k ∈ K (3.25)

bik ≥ Vi
I
IIik + V I

i I
I

i − Vi
I
I
I

i ∀i ∈ N, k ∈ K (3.26)

bik ≤ Vi
IIIik + V I

i I
I

i − Vi
I
IRi ∀i ∈ N, k ∈ K (3.27)

bik ≤ Vi
I
IIik + V I

i I
R
i − ViII

I

i ∀i ∈ N, k ∈ K (3.28)

cik ≥ Vi
RIIik + V R

i I
R
i − ViRIRi ∀i ∈ N, k ∈ K (3.29)

cik ≥ Vi
R
IIik + V R

i I
I

i − Vi
R
I
I

i ∀i ∈ N, k ∈ K (3.30)

cik ≤ Vi
RIIik + V R

i I
I

i − Vi
R
IRi ∀i ∈ N, k ∈ K (3.31)

cik ≤ Vi
R
IIik + V R

i I
R
i − ViRI

I

i ∀i ∈ N, k ∈ K (3.32)

dik ≥ Vi
IIRik + V I

i I
R
i − ViIIRi ∀i ∈ N, k ∈ K (3.33)

dik ≥ Vi
I
IRik + V I

i I
R

i − Vi
I
I
R

i ∀i ∈ N, k ∈ K (3.34)

dik ≤ Vi
IIRik + V I

i I
R

i − Vi
I
IRi ∀i ∈ N, k ∈ K (3.35)

dik ≤ Vi
I
IRik + V I

i I
R
i − ViII

R

i ∀i ∈ N, k ∈ K (3.36)

It is noteworthy that in the previous statement of the problem (3.6)-(3.14), no limit was defined
on the current injected to node i. In fact, it is not necessary to have a limit for these variables,
as it is possible collect (3.2) and (3.3) to define the AC power as a function of voltage. Defining
accurate minimum and maximum limits for current injections is not trivial, as the next section
will be dedicated to the statement of an optimization-based approach to define upper and lower
bounds for currents.Thus, the overall optimization problem is given by the minimization of (3.6)
subject to (3.9)-(3.12) and (3.19)-(3.36).
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3.3 Current bounds definition

The convex relaxation of the CI-OPF problem through the McCormick envelopes adds additional
constraints to the problem, concerning the minimum and maximum limits of injected current at
each phase of each node. The purpose of this section is to define a methodology that allows to
define correct upper and lower bound for currents, given the limits on voltages and powers.

In this chapter we propose a heuristic method to determine the optimal upper and lower bounds
for real and imaginary currents based on the solution of a simple nonlinear optimization problem.
For brevity we will present the optimization problem to obtain I

R

ik ∀i ∈ N, k ∈ K. Same
considerations has to be done for IRik, I

I

ik and IIik ∀i ∈ N, k ∈ K.

Specifically I
R

ik corresponds to the solution of the following optimization problem:

max
IRik

IRik (3.37)

Pik = V R
i I

R
ik + V I

i I
I
ik (3.38)

Qik = −V R
i I

I
ik + V I

i I
R
ik (3.39)

V R
i ≤ V R

i ≤ V
R

i (3.40)

V I
i ≤ V I

i ≤ V
I

i (3.41)

P ik ≤ Pik ≤ P ik (3.42)

Q
ik
≤ Qik ≤ Qik (3.43)

The optimization problem (3.37)-(3.43) can be solved analytically. In the following lemma it
is shown the analytical solution of the above problem (for the sake of simplicity we consider a
constant load or generator, the same considerations ca be done for variable generator/load).

Lemma 3.3.1. The optimal solution of problem (3.37)-(3.43) corresponds to the maximum value
of the points obtained by the combination of the following functions calculated in V I

i , V
I

i , V
R
i , V

R

i :

Q2
ik

√
P 2
ik +Q2

ik

V R
ik

(
Q2
ik +

(
Pik −

√
P 2
ik +Q2

ik

)2
) (3.44)

−
P 2
ik

√
P 2
ik +Q2

ik

V I
ik

(
P 2
ik +

(
Qik +

√
P 2
ik +Q2

ik

)2
) (3.45)

PikV
R
ik +QikV

I
ik

V I
ik

2
+ V R

ik
2 (3.46)
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Proof. We can rewrite (3.37) using (3.38) and (3.39) as

IRik =
PikV

R
ik +QikV

I
ik

(V I
ik)

2
+ (V R

ik )
2 (3.47)

Thus (3.37)-(3.43), corresponds at the maximization of (3.47) over the set defined by (3.40)-
(3.43). Performing the gradient of (3.47) we have:

∂IRik
∂V R

ik

=
Pik

((
V I
ik

)2
+
(
V R
ik

)2
)
− 2V R

ik

(
PikV

R
ik +QikV

I
ik

)
(

(V I
ik)

2
+ (V R

ik )
2
)2 (3.48)

∂IRik
∂V I

ik

=
Qik

((
V I
ik

)2
+
(
V R
ik

)2
)
− 2V I

ik

(
PikV

R
ik +QikV

I
ik

)
(

(V I
ik)

2
+ (V R

ik )
2
)2 (3.49)

∂IRik
∂Pik

=
V R
ik

(V I
ik)

2
+ (V R

ik )
2 (3.50)

∂IRik
∂Qik

=
V I
ik

(V I
ik)

2
+ (V R

ik )
2 (3.51)

the optimal points could be inside the set or in on the boundary region, to this end, we analyze
the points in which the gradient is zero. Solving (3.48) with respect to V I

ik we have two solutions:

V R
ik

(
Qik −

√
P 2
ik +Q2

ik

)
Pik

(3.52)

V R
ik

(
Qik +

√
P 2
ik +Q2

ik

)
Pik

(3.53)

putting (3.52) in (3.49)

∂IRik
∂V I

ik

= −
2
(
V R
ik

)2

P 2
ik

(P 2
ikQik − P 2

ik

√
P 2
ik +Q2

ik +Q3
ik −Q2

ik

√
P 2
ik +Q2

ik) (3.54)

as can be seen (3.54) is zero if V R
ik = 0 that is out of the region described by (3.40)-(3.43). So the

optimal solution lies on the boundary region. The boundary region is given by the combination
of the following functions calculated in V I

i , V
I

i , V
R
i , V

R

i :

Q2
ik

√
P 2
ik +Q2

ik

V R
ik

(
Q2
ik +

(
Pik −

√
P 2
ik +Q2

ik

)2
) (3.55)
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−
P 2
ik

√
P 2
ik +Q2

ik

V I
ik

(
P 2
ik +

(
Qik +

√
P 2
ik +Q2

ik

)2
) (3.56)

PikV
R
ik +QikV

I
ik

V I
ik

2
+ V R

ik
2 (3.57)

Since it is possible to find offline the optimal of the currents bounds definition problem it does
not add any computational burden to the overall OPF problem solution. As regards the imaginary
current bounds IIik the function to be minimized/maximized over the set defined by (3.40)-(3.43)
is

IIik =
PikV

I
ik −QikV

R
ik

(V I
ik )

2
+ (V R

ik )
2 (3.58)

the same considerations can be done for (3.58), the points to be considered are:

−
P 2
ik

√
P 2
ik +Q2

ik

V R
ik

(
P 2
ik +

(
Qik −

√
P 2
ik +Q2

ik

)2
) (3.59)

Q2
ik

√
P 2
ik +Q2

ik

V I
ik

(
Q2
ik +

(
Pik −

√
P 2
ik +Q2

ik

)2
) (3.60)

PikV
I
ik −QikV

R
ik

(V I
ik)

2
+ (V R

ik )
2 (3.61)

The proposed procedure can be considered as pre-processing for the optimization problem and
has to repeated only when the boundary conditions are modified, for example after a change in
the forecast of loads/renewables.

Numerical example

In order to show the effectiveness of the presented current limit generator approach a numeric
example is provided. We consider a 3 nodes unbalanced network with radial topology shown in
Figure3.1. The considered 3-phase adimittance matrices for each link are given by:

Y12 =

 0.433− 1.250i −0.184 + 0.462i −0.1 + 0.345i
−0.184 + 0.462i 0.379− 1.184i −0.047 + 0.263i
−0.1 + 0.345i −0.047 + 0.263i 0.335− 1.117i
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Figure 3.1: 3 nodes test network.

Y23 =

 0.527− 0.675i −0.141 + 0.142i −0.202 + 0.16i
−0.141 + 0.142i 0.464− 0.668i −0.103 + 0.130i
−0.202 + 0.16i −0.103 + 0.13i 0.491− 0.671i


The overall conductance and susceptance matrix are

G =



0.346 −0.147 −0.08 −0.346 0.147 0.08 0 0 0
−0.147 0.303 −0.038 0.147 −0.303 0.038 0 0 0
−0.08 −0.038 0.268 0.08 0.038 −0.268 0 0 0
−0.346 0.147 0.08 0.767 −0.26 −0.242 −0.421 0.113 0.161
0.147 −0.303 0.0382 −0.26 0.6747 −0.121 0.113 −0.371 0.082
0.08 0.038 −0.268 −0.242 −0.121 0.66 0.161 0.082 −0.393

0 0 0 −0.421 0.113 0.161 0.42 −0.113 −0.162
0 0 0 0.111 −0.371 0.082 −0.113 0.371 −0.082
0 0 0 0.161 0.0823 −0.393 −0.162 −0.082 0.392



B =



0.999 0.369 0.276 0.998 −0.369 −0.276 0 0 0
0.369 −0.946 0.21 −0.369 0.946 −0.211 0 0 0
0.276 0.21 −0.893 −0.276 −0.211 0.892 0 0 0
0.998 −0.369 −0.276 −1.538 0.483 0.403 0.539 −0.114 −0.128
−0.369 0.9463 −0.211 0.483 −1.481 0.315 −0.114 0.534 −0.105
−0.276 −0.211 0.892 0.403 0.315 −1.429 −0.128 −0.105 0.536

0 0 0 0.539 −0.114 −0.128 −0.54 0.113 0.127
0 0 0 −0.114 0.534 −0.105 0.113 −0.534 0.104
0 0 0 −0.128 −0.105 0.536 0.127 0.1046 −0.536


Active and reactive power at each node are reported in Table 3.1. The quality of the results
obtained from the prepossessing has been tested comparing them with the results of a feasibility
optimization problem (no objective function is considered), fixing all the powers at each node
except for the stack node whose voltage is fixed to 1 [p.u]. The detailed results of this example
are reported in Figures 3.2 and 3.3. The yellow and red lines represent the upper and lower
bounds for each variable obtained by the preprocessing, while the cross mark is the actual value
of the current (respectively for real and imaginary part). As can be seen from this example, the
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Node Phase Pik[kW ] Qik[kV AR]
2 1 -200 -100
2 2 -300 -150
2 3 -500 -300
3 1 -200 -80
3 2 -500 -350
3 3 -100 -20

Table 3.1: Active and Reactive power data for 3 nodes test system

actual currents rely on the bounds obtained through the procedure described in (3.37)-(3.43). The
bounds for the first node are wider because the transformer has an operation range not a fixed
load/generation.

Figure 3.2: Preprocessing results for the 3 node test network, IR.
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Figure 3.3: Preprocessing results for the 3 node test network, II .
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3.4 Case study application

In this section we will test the proposed approach on several case studies. The aim is to show
that the CI OPF problem (i.e. the minimization of (3.6) subject to (3.9)-(3.12) and (3.19)-(3.36))
reach a very similar optimal solution compared with the one obtained with the nonlinear solver
IPOPT [24] for the nonlinear OPF problem (3.1)-(3.5). Test are made on different networks
modifying the IEEE 13 bus, the IEEE 123 bus[25] and the IEEE 8500 nodes [26]. Different
topology and the presence of DR and DERs (active network) have been considered, in order to
exploit the peculiarities of this model (i.e the maximum flexibility to unbalances ad topology
maintaining accuracy in the optimal solution).

The considered networks are:

• IEEE13PR: base case of the IEEE 13 bus system, no changes provided.

• IEEE123PR: base case of the IEEE 123 bus system, no changes provided.

• IEEE8500PR: base case IEEE 8500 nodes

• IEEE13PM: IEEE 13 bus system with mesh topology

• IEEE123PM: IEEE 123 bus system with mesh topology

• IEEE8500PM: IEEE 8500 nodes system mesh topology.

• IEEE13AR: IEEE 13 bus system with DERs

• IEEE123AR: IEEE 123 bus system with DERs

• IEEE8500AR: IEEE 8500 nodes system with DERs.

• IEEE13AM: IEEE 13 combination of active elements and network topology

• IEEE123AM: IEEE 123 combination of active elements and network topology

• IEEE8500AM: IEEE 8500 nodes system combination of active elements and network
topology.

These test cases are the most used in literature to test distribution networks and represent a good
benchmark to face with. In the present chapter we propose two different classes of test: feasi-
bility, namely the classical power flow analysis, and optimality, the solution of a OPF problem.
Both test are important since in future smart grids fast power flow analysis and optimization will
be necessary under the massive presence of renewables, to avoid undesired working conditions.
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3.4.1 Feasibility Test

As a first test it was decided to validate the proposed approach as a feasibility problem, i.e. to
solve the load flow problem. To this end, we fix active and reactive power at each node (except
for the slack of which the voltage at the node is fixed to 1 [p.u]) obtaining as output each nodal
voltage. The aim of this test campaign is to compare the results obtained through the nonlinear
model solved through the nonlinear solver IPOPT and the CI-OPF relaxed model solved with
Gurobi [27]. In both cases MATLAB with YALMIP [28] were used to build the model. Results
obtained on the overall test networks are reported in Table 3.2. Four different metrics are consid-
ered: Vmax% and Vmean% are the maximum absolute and the mean percentage error on node
voltages respectively, RTNL and RTRX are the run time (expressed in seconds) for the nonlinear
and relaxed models.

Network Max% Mean% RTNL [s] RTRX [s]
IEEE13PR 0.069 0.0527 0.19 0.03

IEEE123PR 0.0491 0.0399 1.191 0.1
IEEE8500PR 0.13 0.089 73.2 2.04
IEEE13PM 0,0166 0.0058 0.19 0.02

IEEE123PM 0.0496 0.0403 1.14 0.13
IEEE8500PM 0.159 0.0987 85 3.5

IEEE13AR 0.0269 0.0161 0.26 0.04
IEEE123AR 0.033 0.0253 1 0.22

IEEE8500AR 0.127 0.103 73.2 3.89
IEEE13AM 0.0151 0.0077 0.19 0.04

IEEE123AM 0.0234 0.0182 0.9 0.19
IEEE8500AM 0.0987 0.87 73.2 3.46

Table 3.2: Feasibility test Results

As can be seen from Table 3.2 the two results are very similar, demonstrating that the proposed
approach guarantees an excellent performance if it is used as a load flow tool. As a matter of
fact, the maximum and average errors are of the magnitude of the 1e−2% for all the considered
cases. This value is more than acceptable from a practical point of view. From the computational
point of view, it can be seen that the relaxed model is solved in one order of magnitude less than
the nonlinear one. These results reinforce the effectiveness of the proposed model and the related
preprocessing.

As an example in the following Figure 3.4 it is reported the comparison between the real part
of voltages obtained with the nonlinear problem and the convex relaxation for the IEEE13PR
case. It is noteworthy that figure show that the two solutions are very similar, in fact the solution
obtained with the nonlinear solver, indicated with the circle, is superimposed on that obtained
with the relaxation indicated with the cross.
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Figure 3.4: Results for IEEE 13PR network

3.4.2 Optimality Test

In this section, instead, a comparison will be made regarding the application of the CI-OPF
relaxed model to an optimization problem. In particular, the voltage regulation at each grid node
through the prosumers’ flexibility. Each active user has a regulation range in terms of active and
reactive power. This task is a classic problem for the operational management of a DSO, that
usually aims to keep the voltage as most possible close the reference value at each node to reduce
the overall power losses. The considered objective function is the following:

min
∑
i∈N

∑
k∈K

[(V R
ik − V̂ R

i )2 + (V I
ik − V̂ I

i )2] (3.62)

where V̂ R
i and V̂ I

i are the reference values for the real and imaginary part of the nodal voltage
∀i ∈ N , subject to (3.2)-(3.5)for the nonlinear OPF problem, and (3.9)-(3.12)-(3.19)-(3.36) for
the CI OPF relaxed problem.
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We put V̂ R
i = 1 and V̂ I

i = 0 ∀i ∈ N . Together with the metrics introduced for the feasibility test
we introduced a new one denoted as Gap%; this metric represent the optimality gap between the
result obtained with the CI-OPF model the compared to the "best known" solution obtained with
the nonlinear solver IPOPT. We define the following optimality gap:

Optimality Gap =
OPF solution− CI OPF Relaxed solution

CI OPF Relaxed solution

Results for all the considered test networks are shown in Table 3.3. As can be seen the optimality
gap is around 1% for all the simulations. It is noteworthy that the presented lower bound repre-
sents a very good approximation of the solution, and can be used in practical applications for the
study of distribution grids.

Network Max% Mean% Gap% RTNL[s] RTRX[s]
IEEE13PR 0.079 0.053 0.69 0.15 0.03
IEEE123PR 0.051 0.04 1.11 0.1 0.09

IEEE8500PR 0.965 0.832 0.98 73.2 3.78
IEEE13PM 0,0166 0.0058 0.39 0.12 0.02
IEEE123PM 0.0496 0.0403 1.14 0.5 0.13
IEEE13AR 0.0157 0.0132 1.2451 2.60E-01 0.04

IEEE123AR 0.0375 0.0227 0.9002 1 0.22
IEEE8500AR 0.963 0.75 1.01 87.2 1.23
IEEE13AM 0.014 0.0091 1.1907 0.19 0.04

IEEE123AM 0.0338 0.0226 0.8996 0.9 0.19
IEEE8500AM 0.875 0.65 0.93 88 2.56

Table 3.3: Optimality test results

As far as running time is concerned, from the comparison shown in Table 3.3, it can be seen that
the CI OPF model being a quadratic problem solved much faster than the non-linear problem.
This computational aspect is very important especially for distributed optimization, as the most
popular algorithms of constrained distributed optimization use the Lagrangian to iteratively solve
the optimization problem. These techniques need a first optimization step that has the same
structure as the original problem, so the simpler the formulation of the problem the faster the
convergence.

In summary the proposed convex relaxation has better performances with respect to the ap-
proaches in current literature in terms of the wide range of problems it can face with, in fact it
can solve both with unbalanced structure and meshed topology, problems that SDP and SOCP
approaches cannot solve. Moreover, the computational aspects are very encouraging since the
optimality gap obtained is very small and the run times are reduced with respect to a nonlinear
solver.
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Chapter 4

A new bilevel structure for competitive
Balancing Markets in distribution grids

This Chapter aims to formulate a competitive structure for the Balancing Market in distribution
grids. In this framework, each market player is selfish and wants to maximize its revenues, while
the Distribution System Operator (DSO) seeks to improve the quality of service of its network
by paying as little as possible. The main contributions of the following Chapter are:

• The statement of a new multi decision-maker architecture to describe BMs for a distribu-
tion network, taking into account a new convex relaxation of the electrical grid constraints
for general cases such as unbalanced and meshed networks.

• The development of a bi-level BM structure based on multilevel programming, in which
every low-level market participant shares its KKT conditions to the upper-level problem to
guarantee the optimality of the problem’s solution.

A multi-objective optimization problem is formalized for a distribution grid in which are present
both traditional generators and aggregators of general prosumers. At the lower level, generators
and aggregators want to maximize their profit, taking into account the limits of the flexibility
they can sell. At the higher level, the DSO receives power/price bids from market participants
and, based on technical and economic considerations, decides the overall power to accept. For
the lower-level decision problem, the Karush Khun Tucker (KKT) conditions are developed and
included as constraints within the higher-level optimization problem. The resulting optimization
problem is applied to the test cases defined in Chapter 2, namely the modified IEEE 13 and 123
bus systems. The organization of this chapter is as follows. Section I investigates the actual
literature on the balancing market. Section II defines the equilibrium conditions of each BM
participant, in Section III the new DSO optimization problem is formulated. Finally, in Section
IV the proposed approach is tested on the two test cases described in Chapter 2.
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4.1 Literature review

In this chapter, attention is focused on the necessity for the DSO to allocate reserve energy for
emergencies and/or improve the quality of service. The grid management, at the distribution
level, the uncontrolled installation of renewable energy sources () has led to a lack in the overall
hosting capacity (i.e., the overall quantity of renewables affordable by a distribution network
without creating power quality losses). The characteristics of this new smart grid require an
increase of the power reserve to face the sudden request of active/reactive injection/absorption
from a Distribution System Operator (DSO) to compensate for example a sudden drop in the
production from a photovoltaic plant. One of the main problems for an electricity market operator
that also owns the distribution grid is to avoid congestions and maximize the quality of the service
provided [29]. For this reason, it is important to induce the balancing market (BM) sessions,
after the closure of the retail energy market (REM). As a matter of fact, after the REM sessions,
the DSO should carry out technological evaluations, performing a power flow analysis of the
congestions over the network. For instance, the voltage at a certain node may be too high, or
that some lines are close to their ampacity limit. One possible solution to the aforementioned
problem is to introduce BM sessions through which the market operator acquires flexibility from
the participants to avoid the possible congestions over the network [30].

In this framework, demand response (DR), i.e., the possibility for a traditional load to decrease
the active power absorption for a certain period, is an effective and reliable strategy for the suc-
cessful integration of renewable energy sources, handling the demand curve using load flexibility
whenever the system requires it [31], [32], [33]. A significant portion of DR programs can be
represented by local users and/or prosumers, which, by themselves, cannot participate in the
energy market and offer a reduction of load at a certain price. Microgrids and smart buildings
represent an opportunity to provide regulation and reserve services in both directions since they
can be considered as prosumers [34], [35], [36]. Interconnected buildings can be seen as mi-
crogrids or energy communities that can share thermal and electrical power to satisfy comfort,
economic and technical exigencies.

A new kind of market entity, namely aggregator, can participate in the BM. This market ac-
tor manages different local several plants (customers) which, singularly, could not be able to
participate in the BM, providing an aggregate DR or power curtailment ancillary service to the
distribution grid [37]. This new framework opens new challenges for the development of new
energy management systems, models, and methods.

In the current literature, different optimization problems are formalized for the electricity market
but referred specifically to the transmission grid. In [38], a pricing mechanism is proposed, for-
mulating a non-cooperative game among the multiple market participants, which sets the retail
prices to maximize their profits. There are several papers regarding the new operational manage-
ment strategies for the optimization and control of a distribution network in the presence of DR
aggregators. In particular, it is necessary to define how to schedule load reduction or production
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increase among the different customers to achieve an overall load reduction and/or shifting. As
well as generators and aggregators, electrical storage systems can participate in the BM, as dis-
cussed in [39]. In [40], the energy market is analyzed taking into account the presence of renew-
ables and demand response services. The same authors in [41] propose a distributed optimization
approach for the REM based on the dynamic market mechanism (DMM) approach. Similarly to
what we present in this paper, a hierarchical approach is proposed in [42]. The problem is solved
by developing sensitivity functions for market participants’ payoff for their bidding strategies.
In [43] the authors study the operation of a retailer that aggregates a group of price-responsive
loads and submits block-wise demand bids to the day-ahead and real-time markets, to consider
the long term and short term market dynamics. The work presented in [44] proposes a two-stage
stochastic model for a large-scale energy resource scheduling problem of aggregators, using
Benders’ decomposition method is used to reduce the overall problem’s computational burden.
In [45] customer aggregators are introduced to supply downstream demand most economically.
Aggregators’ flexible energy demand is incorporated into the centralized energy dispatch model
forming a two-level optimization problem where the system operator maximizes social welfare
minimizing the energy purchase cost. In [46] and [47] the authors study jointly energy storage
systems and DR analyzing their impact and possible use in a smart grid. In [48] the authors focus
attention on the integration of residential users because they are in huge numbers and relatively
small power loads. It is showed that residential users can receive financial benefits from reserve
provision. A hierarchical structure of users is adopted together with a game-theoretic approach.
In [49] authors focus attention on plug-in Electric vehicles in a district and on how they can help
in demand-side management. In the experiments, the results show that the proposed system can
reduce a significant amount of both electricity cost and peak power.

A crucial point is the flexibility potential estimation of different types of consumers for day-
ahead and real-time ancillary services provision taking into account customers’ reactions to the
price signals [50]. Moreover, the use of incentive-based payments as price offer packages is
recommended to implement demand response [51]. As well as the scheduling of an aggregator’s
customers, it is fundamental to design the optimal set of customers for an aggregator. In this
framework, authors in [52] study the impact of consumer behavior on the portfolio design of a
DR aggregator, developing an optimization model.

Differently from the current literature the proposed market structure, three classes of agents are
considered: traditional generators, aggregators, and the market operator that in this case coin-
cides with the DSO. We define a multilevel (two in this case) market architecture. At the upper
level, there is the DSO that acquires the minimum amount of ancillary services to have an ac-
ceptable operating condition, while at the lower one there are the generators and aggregators
that want to maximize their revenues in terms of services provided to the DSO. The main dif-
ference with the current literature lies in the accuracy in modeling both the economic entities
(through supply functions) and the distribution grid, by the definition of appropriate KPIs for the
service quality and accurate power flow modeling described in Chapter 3. The assumption that
any lower-level decision maker optimizes its objective is converted into equilibrium constraints
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([53]) for the higher optimization problem. More specifically, the Karush Khun Tucker (KKT)
conditions for the lower level problems are included as constraints within the higher-level opti-
mization problem. This ensures that the decisions are taken by the DSO take into account the
optimal behavior of lower-level decision-makers. It is important to note that, no negotiation in
this model is foreseen between and market participants. Actually, in the current literature (see
for example ([54])), iterative market structures are proposed. From our point of view, these ap-
proaches are not realistic ([55]), since the most actual market structures are based on a single
decision process. In summary, the innovation of the proposed approach is :

• The definition of a multiobjective and multi decision-maker market structure for the BM
in distribution grids that considers both technical and economical aspects.

• The formalization of a bilevel optimization problem for the balancing reserve definition
for general distribution grids taking into account multi-phase and unbalanced settings

4.2 The proposed bilevel competitive Balancing Market struc-
ture

The scheme of the bi-level architecture is reported in Figure 1. At the lower level, there are
the market participants, i.e. the generators and aggregators that want to maximize their profit,
taking into account the limits of the flexibility they can sell. At the higher level, power/price bids
are received from market participants, and, based on technical and economic considerations, the
DSO decides which bid to accept. The proposed approach in this chapter consists of formalizing
a unique optimization problem for DSO, assuming that any market participant at the lower level
behaves to optimize its performance objective. This is accomplished by providing all parameters
that are necessary to write the KKT conditions ensuring the optimality conditions for the lower
level problem. This fact makes the market problems considered interrelated, which results in
a well-posed equilibrium problem. Specifically, this problem is an instance of the Generalized
Nash Equilibrium Problem (GNEP). The GNEP is a generalization of the well known Nash
Equilibrium Problem (NEP). In a GNEP each player’s set of constraints depends on the rival
players’ decisions; that is, the actions of other players are not considered fixed for establishing
the decisions of each market participant [53]. It is important to point out to the reader that the
DSO solves its optimization problem by determining the quantities of power to accept based on
technical and economic choices. For this reason, an offer at lower price might be not accepted
because it is not in a strategic position for network services’ quality.

In the following subsections, the equilibrium constraints for each market participant are obtained.
It is important to point out to the reader that until now the supply functions that indicate prices
according to power are always left indicated to maintain a generality of the model presented. In
literature, the model is not univocal, often quadratic functions are used because they guarantee
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Figure 4.1: The proposed bi-level market structure.

strong convexity properties compared to linear functions, which on the other hand are more
reasonable from an engineering point of view. For this reason, the equilibrium constraints will
be formalized in both cases.

4.2.1 Traditional Generators

As described in Chapter 2, medium size traditional generators can participate in the BM session
without an aggregator since the can offer at least the minimum amount of required flexibility. In
order to formulate the KKT optimality condition for this market participant we refer to the opti-
mization problem formulated in Chapter 2 (2.1)-(2.6). Defining σc,j as the Lagrange multipliers
associated to constraint j of generator g, the Lagrange function for this problem is:

Lg(xg, σg,j, j = 1, ..., 7) =

−
{
λP,upg (P up

g )− ĈgP up
g − λP,dwg (P dw

g )− ČgP dw
g + λQ,upg (Qup

g )− λQ,dwg (Qdw
g )
}

−σg,1P up
g + σg,2P

dw
g + σg,3(P up

g − P̂ ∗g ) − σg,4(P dw
g + P̌ ∗g )− σg,5Qup

g + σg,6Q
dw
g

+σg,7[(P up
g + P da

g + P dw
g )

2
+ (Qup

g +Qda
g +Qdw

g )
2 − S2

g ] (4.1)

The KKT conditions are given by:

∂Lg
∂P up

g
= −d

λP,upa (P up
g )

dP
up
g

+ Ĉg − σg,1 + σg,3 + 2σg,7(P up
g + P da

g + P dw
g ) = 0 (4.2)

∂Lg
∂P dw

g

=
d λP,dwg (P dw

g )

dP dw
g

− Čg − σg,4 + σg,2 + 2σg,7(P up
g + P da

g + P dw
g ) = 0 (4.3)
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∂Lg
∂Qup

g
= −d

λQ,upg (Qup
g )

dQ
up
g

− σg,5 + 2σg,7(Qup
g +Qda

g +Qdw
g ) = 0 (4.4)

∂Lg
∂Qdw

g

=
d λQ,dwg (Qdw

g )
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g
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g ) = 0 (4.5)
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P dw
g ≤ 0 (4.7)

(P up
g − P̂ ∗g ) ≤ 0 (4.8)

−(P dw
g − P̌ ∗g ) ≤ 0 (4.9)

(P up
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g )

2
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g = 0 (4.12)
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σg,4(P dw
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Qup
g ≥ 0 (4.15)
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g ≤ 0 (4.16)
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g = 0 (4.17)

σg,6Q
dw
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g + P da
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g )

2
+ (Qup

g +Qda
g +Qdw

g )
2 − S2

g ] = 0 (4.19)

σg,j ≥ 0 j = 1, .., 7 (4.20)

4.2.1.1 Linear supply function

If we consider linear supply function for the balancing services of a generator g we have:

λP,upg (P up
g ) = aP,up1g P up

g + cP,up1g =⇒ d λP,upg (P up
g )

dP
up
g

= aP,up1g (4.21)

λQ,upg (Qup
g ) = aQ,up1g Qup

g + cQ,up1g =⇒ d λQ,upg (Qup
g )

dQ
up
g

= aQ,up1g (4.22)

λP,dwg (P dw
g ) = aP,dw1g P dw
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g )

dP dw
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= aP,dw1g (4.23)

λQ,dwg (Qdw
g ) = aQ,dw1g Qdw

g + cQ,dw1g =⇒ d λQ,dwg (Qdw
g )

dQdw
g

= aQ,dw1g (4.24)
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4.2.1.2 Quadratic supply function

In this case, if we consider a quadratic supply function for the balancing services of a generator
g we have:

λP,upg (P up
g ) = aP,up2g (P up

g )2 + aP,up1g P up
g + cP,up1g =⇒ d λP,upg (P up

g )

dP
up
g

= 2aP,up2g P up
g + aP,up1g (4.25)

λQ,upg (Qup
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(4.28)
where aP,up1g , aQ,up1g , aP,dw1g , aQ,dw1g , cP,up1g , cQ,up1g , cP,dw1g and cQ,dw1g are known parameters.

4.2.2 Aggregators

The aggregator represents a certain energy reserve that is provided by several customers belong-
ing to the same aggregation area. This decision maker establishes contracts with its customers
in exchange of a profit for the provided service. In order to formulate the KKT optimality con-
dition for this market participant we refer to the optimization problem formulated in Chapter 2
(2.7)-(2.12).

Defining σc,j as the Lagrange multipliers associated to constraint j of customer c, the Lagrange
function for the aggregator a is:
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 ∑
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The KKT conditions are
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σc,j, j = 1, ..., 7, ∀c ∈ C(a) (4.48)

4.2.2.1 Linear supply function

If we consider linear supply function for the balancing services of a aggregator a we have:

λP,upa (P up
c ) = aP,up1a P up

c + cP,up1c =⇒ d λP,upa (P up
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dP
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where aP,up1a , aQ,up1a , aP,dw1a , aQ,dw1a , cP,up1c , cQ,up1c , cP,dw1c and cQ,dw1c are known parameters.
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4.2.2.2 Quadratic supply function

If we consider a quadratic supply function for the balancing services of a aggregator a we have:

λP,upa (P up
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4.3 The DSO Optimization Problem

It is now necessary to define the new optimization of the DSO, which is modified compared to
the one described in Chapter 2, considering the new distribution grid model described in Chapter
3 and the equilibrium conditions of market participants stated in the previous section. The overall
multiobjective optimization problem is given by:
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I
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(
Qda
ck +Qup

ck +Qdw
ck

)
∀i ∈ N k ∈ K

(4.63)

53



IR = Re (YV ) (4.64)

II = Im (YV ) (4.65)

Pik = aik + bik ∀i ∈ N, k ∈ K (4.66)

Qik = −cik + dik ∀i ∈ N, k ∈ K (4.67)

aik ≥ Vik
RIRik + Vik

RIRik − VikRIRik ∀i ∈ N, k ∈ K (4.68)

aik ≥ Vik
R
IRik + Vik

RI
R

ik − Vik
R
I
R

ik ∀i ∈ N, k ∈ K (4.69)

aik ≤ Vik
RIRik + Vik

RI
R

ik − Vik
R
IRik ∀i ∈ N, k ∈ K (4.70)

aik ≤ Vik
R
IRik + Vik

RIRik − VikRI
R

ik ∀i ∈ N, k ∈ K (4.71)

bik ≥ Vik
IIIik + Vik

IIik
I − VikIIRik ∀i ∈ N, k ∈ K (4.72)

bik ≥ Vik
I
IIik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (4.73)

bik ≤ Vik
IIIik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (4.74)

bik ≤ Vik
I
IIik + Vik

IIik
I − VikIIik

I ∀i ∈ N, k ∈ K (4.75)

cik ≥ Vik
RIIik + Vik

RIik
I − VikRIikI ∀i ∈ N, k ∈ K (4.76)

cik ≥ Vik
R
IIik + Vik

RIik
I − Vik

R
Iik

I ∀i ∈ N, k ∈ K (4.77)

cik ≤ Vik
RIIik + Vik

RIik
I − Vik

R
Iik

I ∀i ∈ N, k ∈ K (4.78)

cik ≤ Vik
R
IIik + Vik

RIik
I − VikRIik

I ∀i ∈ N, k ∈ K (4.79)

dik ≥ Vik
IIRik + Vik

IIik
I − VikIIikI ∀i ∈ N, k ∈ K (4.80)

dik ≥ Vik
I
IRik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (4.81)

dik ≤ Vik
IIRik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (4.82)

dik ≤ Vik
I
IRik + Vik

IIik
I − VikIIik

I ∀i ∈ N, k ∈ K (4.83)

Vik
R ≤ IRik ≤ Vik

R ∀i ∈ N k ∈ K (4.84)

Vik
I ≤ IIik ≤ Vik

I ∀i ∈ N k ∈ K (4.85)

Iik
R ≤ IRik ≤ Iik

R ∀i ∈ N k ∈ K (4.86)

Iik
I ≤ IIik ≤ Iik

I ∀i ∈ N k ∈ K (4.87)

P ik ≤ Pik ≤ P ik ∀i ∈ N k ∈ K (4.88)
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Q
ik
≤ Qik ≤ Qik ∀i ∈ N, k ∈ K (4.89)

−
d λ

P,up
gk (P up

gk )

dP
up
gk

+ Ĉgk−σgk,1 +σgk,3 +2σgk,7(P up
gk +P da

gk +P dw
gk ) = 0 ∀G ∈ GT, k ∈ K (4.90)

d λ
P,dw
gk (P dw

gk )

dP dw
gk

− Čgk− σgk,4 + σgk,2 + 2σgk,7(P up
gk +P da

gk +P dw
gk ) = 0 ∀G ∈ GT, k ∈ K (4.91)

−
d λ

Q,up
gk (Qup

gk)

dQ
up
gk

− σgk,5 + 2σgk,7(Qup
gk +Qda

gk +Qdw
gk ) = 0 ∀G ∈ GT, k ∈ K (4.92)

d λ
Q,dw
gk (Qdw

gk )

dQdw
gk

+ σgk,6 + 2σgk,7(Qup
gk +Qda

gk +Qdw
gk ) = 0 ∀G ∈ GT, k ∈ K (4.93)

P up
gk ≥ 0 ∀G ∈ GT, k ∈ K (4.94)

P dw
gk ≤ 0 ∀G ∈ GT, k ∈ K (4.95)

(P up
gk − P̂ ∗gk) ≤ 0 ∀G ∈ GT, k ∈ K (4.96)

−(P dw
gk − P̌ ∗gk) ≤ 0 ∀G ∈ GT, k ∈ K (4.97)

(P up
gk + P da

gk + P dw
gk )

2
+ (Qup

gk +Qda
gk +Qdw

gk )
2 − S2

gk ≤ 0 ∀G ∈ GT, k ∈ K (4.98)

σgk,1P
up
gk = 0 ∀G ∈ GT, k ∈ K (4.99)

σgk,2P
dw
gk = 0 ∀G ∈ GT, k ∈ K (4.100)

σgk,3(P up
gk − P̂ ∗gk) = 0 ∀G ∈ GT, k ∈ K (4.101)

σgk,4(P dw
gk + P̌ ∗gk) = 0 ∀G ∈ GT, k ∈ K (4.102)

Qup
gk ≥ 0 ∀G ∈ GT, k ∈ K (4.103)

Qdw
gk ≤ 0 ∀G ∈ GT, k ∈ K (4.104)

σgk,5Q
up
gk = 0 ∀G ∈ GT, k ∈ K (4.105)

σgk,6Q
dw
gk = 0 ∀G ∈ GT, k ∈ K (4.106)

σgk,7[(P up
gk + P da

gk + P dw
gk )

2
+ (Qup

gk +Qda
gk +Qdw

gk )
2 − S2

gk] = 0 ∀G ∈ GT, k ∈ K (4.107)

σgk,j ≥ 0 j = 1, .., 7 ∀G ∈ GT, k ∈ K (4.108)

−d λ
P,up
a (P up

ck )

dP
up
ck

+ Ĉck−σck,1 +σck,2 +2σck,7(P up
ck +P da

ck +P dw
ck ) = 0 ∀c ∈ C(a) k ∈ K (4.109)

d λP,dwa (P dw
ck )

dP dw
ck

− Čck − σc,4 + σck,3 + 2σck,7(P up
ck + P da

ck + P dw
ck ) = 0 ∀c ∈ C(a) k ∈ K (4.110)
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−d λ
Q,up
a (Qup

ck )

dQ
up
ck

+ Ĉck − σck,5 + 2σck,7(Qup
ck +Qda

ck +Qdw
ck ) = 0 ∀c ∈ C(a) k ∈ K (4.111)

d λP,dwa (Qdw
ck )

dQdw
ck

+ σck,6 + 2σck,7(Qup
ck +Qda

ck +Qdw
ck ) = 0 ∀c ∈ C(a) k ∈ K (4.112)

(P up
ck + P da

ck +Qdw
ck )

2
+ (Qup

ck +Qda
ck +Qdw

ck )
2 − S2

ck ≤ 0 ∀c ∈ C(a) k ∈ K (4.113)

−P up
ck ≤ 0 ∀c ∈ C(a) k ∈ K (4.114)

P dw
ck ≤ 0 ∀c ∈ C(a) k ∈ K (4.115)

Qdw
ck ≤ 0 ∀c ∈ C(a) k ∈ K (4.116)

Qup
c ≥ 0 ∀c ∈ C(a) k ∈ K (4.117)

(P up
ck − P̂ ∗ck) ≤ 0 ∀c ∈ C(a) k ∈ K (4.118)

−(P dw
ck + P̌ ∗ck) ≤ 0 ∀c ∈ C(a) k ∈ K (4.119)

σck,1P
up
ck = 0 ∀c ∈ C(a) k ∈ K (4.120)

σck,3P
dw
ck = 0 ∀c ∈ C(a) k ∈ K (4.121)

σck,2(P up
ck − P̂ ∗c ) = 0 ∀c ∈ C(a) k ∈ K (4.122)

σck,4(P dw
ck + P̌ ∗ck) = 0 ∀c ∈ C(a) k ∈ K (4.123)

σck,5Q
up
ck = 0 ∀c ∈ C(a) k ∈ K (4.124)

σck,6Q
dw
ck = 0 ∀c ∈ C(a) k ∈ K (4.125)

σck,7[(P up
ck + P da

ck + P dw
ck )

2
+ (Qup

ck +Qda
ck +Qdw

ck )
2 − S2

ck] = 0 ∀c ∈ C(a) k ∈ K (4.126)

σck,j, j = 1, ..., 7, ∀c ∈ C(a) k ∈ K (4.127)

It is essential to point out that being a distribution network it is necessary to consider each phase
of the system. For this reason, the k subscripts have been added representing the quantities per
phase. The optimization problem formalized above is nonlinear due to the KKT conditions and
the capability constraints. The convex relaxation proposed in the previous Chapter decreases the
number of nonlinearities in the problem replacing the non-convex power flow equations with the
set of linear equations defined by the McCormick envelopes.
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4.4 Case study application

The developed market structure has been tested to the modified benchmark distribution test net-
work presented in Chapter 2.

To test the proposed balancing market approach, the following procedure has been followed:
first of all, the active and reactive power was assigned to each node, then the SI was calculated
for each network component. Consequently, having verified that the state of the network is
unsatisfactory, the BM session is introduced to increase the overall quality of service. Please
note that as mentioned above linear supply functions are considered. The nonlinear optimization
problem has been solved on a PC Intel i7, 16 GB RAM using the YALMIP [56] interface through
the MATLAB language with the IPOPT [57] solver.

4.4.1 Modified IEEE 13 Bus system

In the base case, without any BM session the overall SIsys = 22.0214 with SIG = 2.9733,
SIV = 15.4269 and SIC = 3.6211. The run time is 85 seconds. To understand if the current
condition is satisfactory or not, in Figures 4.2, 4.3 and 4.4 are reported the various SI for each
phase of the network (node and link numbers are the same as the original network test case).

As can be easily seen from the aforementioned figures, many indices at each node and component
are larger or close to the unit. This means that many components are close to or even exceed the
limits that allow a good quality of service. For this reason, it is necessary to proceed with the
BM session. After the optimization BM session with α = 1, the overall SIsys = 20.3156 with
SIG = 2.5649, SIV = 14.2292 and SIC = 3.5215, at the price 2932e .

The Figures show that the generator of node 634 belonging to the first aggregator is not called
to provide a balancing service. This happens because its SI is almost unitary so it does not lead
to an improvement in system performance. As far as the whole system is concerned, the overall
quality of the service has generally improved, it should be noted that as far as the SI of lines
and generators is concerned some of them have slightly increased or unchanged, while all the
indicators of nodal voltage have improved.
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Figure 4.2: SIVi before and after the BM session for the Modified IEEE 13 Bus system
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Figure 4.3: SIVi before and after the BM session for the Modified IEEE 13 Bus system
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Figure 4.4: SIVi before and after the BM session for the Modified IEEE 13 Bus system
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4.4.1.1 Sensitivity analysis

The formalized objective function includes basically two not commensurable terms (costs in [e ]
and SI as [p.u.]). The parameter α represents the weight that is given to SI (the higher its value
the higher is the importance given to the minimization of the overall stress of the system ). Thus,
a sensitivity analysis has been carried out to evaluate the influence of the SI in the cost function.
Defining J1 as the economic cost for purchasing balancing services from the market participants
and J2 as the overall SI cost, the sensitivity of the solution of the multiobjective problem at the
variation of parameter α is presented in Figure 4.5 and Table 4.1.

α J1 J2

0.01 2933.3 20.262
0.1 2933 20.3041
1 2932 20.31

10 2929.5 20.323
100 2926 20.36730

Table 4.1: Results of the sensitivity analysis to the parameter α

Figure 4.5: Sensitivity analysis to the α parameter

As can be seen from the simulation the two costs are mathematically in conflict, as a matter of
fact changing the weight parameter both costs change oppositely (one increases and the other
decreases).
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4.4.2 Modified IEEE 123 Bus system

In the base case, without any BM session the SIsys = 233.35 with SIG = 1.597, SIV =
214.367789 and SIC = 17.38604. The run time for the optimization is 326.18 seconds. The
comparison between the various indexes before and after the BM session is reported in Figures
4.8, 4.7, and 4.6 (node and link numbers are the same as the original network test ). Also, the
global situation of the system improves SIsys = 204.3237 with SIG = 1.824, SIV = 194.2391
and SIC = 8.2605, at the price of 3213.42e . From the figures, it can be seen that the SIs related
to voltages and currents decrease while the generators’ indices increase or remain unchanged
since generation is required by the plants. Namely, the generators of nodes 43 and 44 are not
called to provide balancing services. Also in this test case a counterexample was done to prove
the correctness of the solution, i.e. the flexibility (in increasing and then in decreasing active
power) has been set to the maximum value, in both cases the SI of the whole system increased.

Figure 4.6: SIGi before and after the BM session for the Modified IEEE 123 Bus system
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Figure 4.7: SICi before and after the BM session for the Modified IEEE 123 Bus system

In summary, it can be seen that in both cases the quality of service is visibly improved. This new
market structure can, therefore, find applicability in real cases being an effective but also simple
method it solves a single optimization problem without resorting to iterative mechanisms, whose
convergence is not assured, as it happens in current literature.
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Figure 4.8: SIVi before and after the BM session for the Modified IEEE 123 Bus system
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Chapter 5

A new distributed structure for cooperative
Balancing Markets in distribution grids

This Chapter aims to formulate a cooperative structure for the Balancing Market in distribution
grids. In this framework, each market participant cooperates with the other actors in order to
achieve the so called social welfare. To do this, a distributed optimization algorithm based on
the cooperative consensus mechanism has been developed (i.e. the the Proximal Atomic Coor-
dination (PAC) algorithm) . The activities presented in this Chapter have been developed during
the research stage at the Active Adaptive Control (AAC) Lab at Massachusetts Institute of Tech-
nology (MIT) under the supervison of Dr. Anuradha Annaswamy. The main contribution of the
following Chapter are:

• The development of a distributed algorithm, based on the PAC method, with clear articula-
tion of conditions for proof of convergence and the advantages over the popular distributed
alternating direction method of multipliers (dADMM) method.

• The application of the proposed method to the BM framework over the modified IEEE 13
and 123 bus systems dining a new cooperative market structure.

In particular, a new distributed algorithm called PAC is presented and discussed. It based on
the prox-linear approach and we prove that it achieves convergence in both objective values and
distance to feasibility with rate o(1/τ ), where τ is the number of algorithmic iterations. This
convergence rate matches the best known convergence results for distributed algorithms based
on the popular alternating direction method of multipliers (ADMM) method. We then discuss the
advantages of PAC using the notions of privacy and algorithmic complexity, the latter of which
involves complexities in iteration, computation, communication and storage. The algorithm is
then applied to create a cooperative Balancing Market structure, exploiting the decomposition
profile, and then testing to the modified IEEE 13 and 123 bus systems. It is important to note that
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in this Chapter only a summary of the theoretical aspects of the algorithm are specified, for more
information and plots concerning the convergence properties please see [58] The organization of
this Chapter is as follows. Section I investigates the actual literature on the distributed optimiza-
tion, in Section II the decomposition profile and the PAC algorithm are defined, In Section III
PAC properties compared with dADMM are discussed, in Section IV the the cooperative PAC-
based market structure is presented and tested over the test networks of Chapter 2 and Chapter 4.
Finally in Appendix A the convergence proofs are shown.
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5.1 Literature review

Optimization formulations feature prominently in many of today’s most pressing engineering
and data science challenges, including: machine learning [59]; statistics [60]; database queries
[61]; power grid regulation [62]; network analysis [63]; and finite-element models [64]. These
formulations, however, often involve a large number of variables to optimize over, intricate fea-
sibility regions and complicated objective functions. In fact, it is the large-scale nature of the
underlying applications that often render centralized approaches, by far the best understood and
most widely implemented class of optimization solvers, to perform poorly.

In an effort to make these large-scale optimization problems more manageable, various dis-
tributed optimization approaches have been developed, including many that employ regular-
ization [65], [66], [67], [68], [69], [70] , [71], [72], [73], [74] and [75] . These decentralized
approaches solve the original centralized optimization formulation by

• Properly allocating the computational burden of optimizing the problem’s variables amongst
different processing units

• Exploiting parallel or sequential computation to speed up iteration convergence

• Ensuring that all processing units agree on coupling variables so that the distributed solu-
tion matches that of the original global solution.

More broadly, distributed optimization algorithms have been investigated extensively over the
years, as presented in the excellent overviews and seminal results of [68], [67], [66], [72]. A
key ingredient adopted in distributed optimization is that of dual decomposition, an innovation
that allows for the optimization of the primal and dual variables in succession [66]. A popular
method that enabled a distributed implementation of dual decomposition is the alternating direc-
tion method of multipliers (ADMM), introduced into the optimization literature in [67] wherein
a distributed architecture is employed for the computation of primal variables with a centralized
solver retained for the update of dual variables. More recently, a fully distributed implementa-
tion of ADMM (denoted as dADMM) has been carried out in [69] and [73, 74, 75]. Distributed
optimization has also been addressed recently in [76] and [77]. The main trade off of these
distributed methods with their centralized relatives is generally higher iteration complexity due
to the added responsibility of coordinating the coupling variables [68]. In an effort to decrease
this complexity, many methods such as dADMM [69] and the prox-linear algorithm [70] utilize
additional coordination variables that are sent along with the minimally required primal and/or
dual variable information. This solution, however, adds communication complexity (the num-
ber of scalar variables that need to be sent via a communication medium [78]) to the algorithms
since now more information has to be transferred between each processing unit. Additionally,
the inclusion of coordination variables further adds to each processing unit’s primal update com-
putational complexity and associated storage complexity, as well as exposes private information
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in competitive economic environments. Finally, for these regularized methods, we also have that
each primal update presents itself as a sub-minimization of the regularized Lagrangian which
necessitates an added computational complexity to solve. In summary, a successful distributed
algorithm is one that appropriately balances minimizing all four of these complexities (iteration,
computational, communication, and storage). These four complexities, taken together, comprise
a given distributed algorithm’s algorithmic complexity.

As mentioned earlier, there has been an extensive amount of work done in the framework of
distributed optimization solvers and algorithms. The interested reader can consult the excellent
overviews ([65] [68]) and the seminal works ([71] [72]) for a more thorough description of the
different distributed approaches that have been used to optimize large-scale systems. Most of
these methods are based on regularized centralized approaches, such as the method of multipli-
ers (MoM) [79], or the proximal point method ([80][81]). One of the most successful distributed
methods is the dADMM method [69], which is based on the Gauss-Seidel inspired centralized
ADMM [67]. The dADMM method specifically presents itself as a 2-block ADMM formulation
and was shown to exhibit the aforementionedO (1/τ) andO

(√
κf log

(
1
ε

))
convergence charac-

teristics, matching the best convergence rates for the 2-block centralized ADMM case [82] and
comparing favorably with the O

(
(κf )

5
7 log

(
1
ε

))
convergence rate of the distributed Nesterov

gradient descent algorithm in [83].
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5.2 Proximal Atomic Cordination algorithm

5.2.1 A Global Standard Optimization Framework

A vector y is denoted as a column vector and yi denotes the i − th component of the vector.
Overbar y and underbar y notation denote upper and lower limits for a variable y. For a matrix
G, we write [G]i to denote the i − th column of matrix G, [G]i to denote the i − th row of
matrix G, and Gij to denote the entry at i − th row and j − th column. For matrices we let
λ min (G), λ̂ min (G) and λ max (G) represents it smallest, smallest non-zero and largest eigenvalue,
respectively. For a set Y , |Y | denotes the number of elements of Y . In addition, we denote the
elements of a subset W[j] ⊂ Y =

{
wjk
}

, where the subscript k indicates that w[j]
k is the kth

element of the subset Wj and the superscript j signifies that wjk belongs to the jth subset.

We start by considering the following global standard optimization (GSO) problem:

min
y∈RY

{
f (y) ,

∑
k∈B fk (y)

}
subj. to:

{
Gy = 0M

} (5.1)

where:

• y ∈ RY represents the Y optimization variables;

• fk : RY → R represents an objective function summand;

•
∑

k∈B fk (y) represents the total objective function;

• G =
[
gT1 , ..., g

T
M

]
∈ RM×Y is a matrix s.t. null (G) represents the feasibility region of the

GSO and each row gi ∈ RY represents the feasibility constraints1.

We can decompose the GSO into K different coupled sub-optimization problems, called atoms,
by using the following decomposition profile D = (L,C, S,O,T):

• L = {Lj, ∀j ∈ K} represents the partition of Y with Lj ⊆ N being the index of the
components of y that each jth atom “owns”;

• C = {Cj, ∀j ∈ K} represents the partition of M with Cj ⊆ M representing the index
of the rows of G that each jth atom “owns”;

1It should be pointed out that a general formulation of an optimization problem also includes inequality con-
straints hy ≤ 0 that represent the domain of optimization variables. The discussions here can be easily extended to
this case as well by suitably restricting the variables’ feasible set.
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• S = {Sj,∀j ∈ K} represents the partition of B with Sj ⊆ B representing the index of the
objective summands of f that each jth atom “owns”;

• O = {Oj ∀j ∈ K} has each Oj ⊆ Y representing the index of the “copies” of vari-
ables of y that each jth atom needs to satisfy the scope of both [GCj

]i and fSj
(y) ,∑

k∈Sj
fk (y);

• T = {Tj, ∀j ∈ K} represents the atomic partitioning of the GSO where each Tj =
Lj ∪Oj ⊆ Y represents the total variables each jth atom “uses”.

Using D, we obtain the following atomized standard optimization (ASO):

min
aj∈R|Tj |

{∑
j∈K f̃j (aj)

}
subj. to:

{
G̃jaj = 0NC

j
, for all j ∈ K

[B]j a = 0NO
j
, for all j ∈ K

, (5.2)

with each atom’s variables (both owned and copied) being represented by aj ∈ R|Tj | and:

• f̃j (aj) =
∑

k∈|Sj | fk
(
ΠTjy

)
for all k ∈ |Sj| and y ∈ RY , where ΠTj ∈ RY×Y is given by:

ΠTj , diag
{
δ1∈Tj , . . . , δY ∈Tj

}
,

with:

δn∈Tj ,

{
1, if n ∈ Tj

0, otherwise .

• G̃j , GCj ,Tj ∈ R|Cj |×|Tj | represents the submatrix of GCj ,− obtained by removing all zero
columns;

• B ∈ R|O|×|T | represents the adjacency matrix of the directed graph with nodes signifying
the atomic variables with edges

(
y

[i]
k , y

[j]
k

)
, where y[i]

k with k ∈ Li is defined to be the

variable of y that is “owned” by the jth atom and y
[j]
k with k ∈ Oj defined to be the

variable of y that is “copied” by the jth atom;

• [B]j , BÕj ,− ∈ R|Oj |×|T | represents the relevant incoming edges of the directed graph with
adjacency matrixB of the variables “copied” by the jth atom, with Õj = |Oj|+

∑
k∈[j−1]

|Ok|;

• [B]j , B−,T̃j ∈ R|O|×|Tj | represents the relevant out-going edges of the directed graph with
adjacency matrix B of the variables “owned” by the jth atom, with T̃j = |Tj|+

∑
k∈[j−1]

|Tk|.
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We notice how the ASO of (5.2) is an augmented version of the GSO of (5.1), sharing the same
optimal solutions. Specifically, we relate the optimal ASO a∗ to optimal GSO y∗ via:

y∗ = ΠLa∗,

where each ΠL : RY → R|T | represents the projection from a-space into y-space that consists of
all owned variables in each aj∗ being placed correctly in the resultant y∗′ = ΠLa∗.

As we will see in the next section, we prefer to use the ASO formulation to solve the underlying
problem because it allows us to compute the primal update in a distributed fashion, i.e., by using
the ASO we can iterate over all aj concurrently. The cost of this parallelization, however, is
the addition of another constraint, termed coordination, that needs to be satisfied for every atom
j ∈ K:

[B]j a = 0NO
j
.

This coordination constraint can be interpreted as requiring all atomic copied variables in a given
jth atom (given by Oj) to equal the value of their corresponding owned variable in another non
j-atom.

5.2.1.1 Decomposition Example

In this example the application of the decomposition profile D over a simple optimization prob-
lem is shown. Let’s take as an example the following linear problem concerning the optimization
of power flows on a simple inductive power grid. This problem is a classic transmission network
problem, that for the sake of simplicity has been adapted to a 3-node network shown in Figure
5.1.

Figure 5.1: Example of a 3 node transmission network

The problem statement is as follows:

min {C1P1 + C2P2 + C3P3} (5.3)

P12 − P1 = 0 (5.4)
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P12 + P2 − P23 = 0 (5.5)

P23 + P3 = PLoad (5.6)

P12 =
δ1 − δ2

x12

(5.7)

P23 =
δ2 − δ3

x23

(5.8)

where P1, P2 and P3 are active power injections at each node whose cost is C1, C2, C3 re-
spectively; P12 and P23 are the active power flows between the network nodes; x12 and x23 are
the cables’ inductance and δ1, δ2 and δ3 are the phase associated to each node. Constraints (5.4)-
(5.6) define the bower balance at each node and (5.7)-(5.8) represent the so called DC power flow
equations commonly used for transmission grid studies. We then collect (5.4)-(5.8) to rewrite the
constraints in standard form Gy = b where:

y =
[
P1 P2 P3 δ1 δ2 δ3 P12 P23

]T (5.9)

G =


−1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 −1
0 0 1 0 0 0 0 1
0 0 0 − 1

x12

1
x12

0 1 0

0 0 0 0 − 1
x23

1
x23

0 1

 (5.10)

b =
[
0 0 PLoad 0 0

]T (5.11)

We then decompose the problem in 3 subproblems applying D

L = {(1, 4, 5), (2, 7), (3, 6, 8)} (5.12)

C = {(1, 4), (2), (3, 5)} (5.13)

S = {(1), (2), (3)} (5.14)

O = {(7), (8), (5)} (5.15)

T = {(1, 4, 5, 7), (2, 7, 8), (3, 6, 8, 5)} (5.16)

It is important to point out to the reader that, as described in the previous section, D defines a set
of indexes that represents rows/columns of the matrices of the optimization problem in standard
form. Moreover D is not unique, but depends on how many subproblems has to be formulated.
In the following the coordination matrix B is defined

B =

0 0 0 1 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 0
0 0 −1 0 0 0 0 0 0 0 1

 (5.17)
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Using the decomposition profile D and the definition from the matrix B it is now possible to
separate the problem into 3 agents (atoms) on which the algorithm can then be applied. Below
the 3 sub-problems are reported

min {C1P1}
G̃1a1 = b1 (5.18)

with
a1 =

[
P1 δ1 δ2 P̂12

]T
(5.19)

G̃1 =

[
−1 0 0 1
0 − 1

x12

1
x12

1

]
(5.20)

b1 =
[
0 0

]T (5.21)

min {C2P2}
G̃2a2 = b2 (5.22)

with
a2 =

[
P2 P12 P̂23

]T
(5.23)

G̃2 =
[
−1 1 −1

]
(5.24)

b2 =
[
0
]T (5.25)

min {C3P3}
G̃3a3 = b3 (5.26)

with
a3 =

[
P3 δ3 P23 δ̂2

]T
(5.27)

G̃3 =

[
1 0 0 1
0 − 1

x23

1
x23

1

]
(5.28)

b3 =
[
PLoad 0

]T (5.29)
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5.2.2 PAC Algorithm Specifications

We begin by forming the atomic Lagrangian function for (5.2):

L (a, µ, ν) =
∑
j∈K

[
f̂j (aj) + µTj G̃jaj + νTj [B]j a

]
=
∑
j∈K

[
f̂j (aj) + µTj G̃jaj + νT [B]j aj

]
,
∑
j∈K

Lj (aj, µj, ν) . (5.30)

We can then apply the prox-linear approach of [70] to (5.30) and obtain the proximal atomic
coordination (PAC) algorithm:

aj [τ + 1] = argmin
aj∈R|Tj |

{
Lj (aj, µ̄j [τ ] , ν̄ [τ ]) +

1

2ρ
‖aj − aj [τ ]‖2

2

}
, (5.31)

µj [τ + 1] = µj [τ ] + ργjG̃jaj [τ + 1] , (5.32)

µ̄j [τ + 1] = µj [τ + 1] + ργ̂j[τ + 1]G̃jaj [τ + 1] , (5.33)

Communicate aj∀j ∈ [K] within network, (5.34)

νj [τ + 1] = νj [τ ] + ργj [B]j a [τ + 1] , (5.35)

ν̄j [τ + 1] = νj [τ + 1] + ργ̂j[τ + 1] [B]j a [τ + 1] , (5.36)

Communicate ν̄j∀j ∈ [K] within network, (5.37)

where we utilized the previously mentioned prox-linear method to ensure parallel computation
of each primal step. We have chosen a common step-size (ρ ≥ 0) but different over-relaxation
terms γj and γ̂j[τ ]. This constant step-size can be pre-assigned to all agents in the network.

The primal and dual variables are initialized as follows, for j ∈ K:

aj [0] ∈ R|Tj |, (5.38)

µj [0] = ργjG̃jaj [0] , (5.39)

νj [0] = ργj [B]j a [0] , (5.40)

ν̄j [0] = νj [0] + ργ̂j[0] [B]j a [0] . (5.41)

We note the symmetry in the structure between the update equations for (µj, µ̄j) and (νj, ν̄j).
This structure resembles primal updates for accelerated gradient methods [84], in the sense that
we “accelerate” our dual variable for our atomic primal updates (µj and νj) while still updating
the “true” dual variable (µj and νj) in the usual way.
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5.2.3 Structural Assumptions

We next make the following assumptions on the structure of the GSO and ASO formulations
(and components therein), where γmin , max

j∈K
{γj}:

Assumption 5.2.1. Each f̂k ∈
{
f̃j

}
∀j ∈ K is a closed, convex and proper (CCP) function with

dom
(
f̂k

)
= RY .

Assumption 5.2.2. There exists a non-trivial optimal GSO solution y∗ ∈ RN . The optimal ASO
solution a∗ ∈ R|T | is related to y∗ ∈ RN via: y∗ = ΠLa∗.

Assumption 5.2.3. Let the PAC parameters satisfy:

1 > ρ2γminλ max

(
G̃T G̃+BTB

)
Assumption 5.2.4. Let the PAC parameters satisfy:

1 ≥ ρ2γminλ max

(
G̃T G̃+BTB

)
Assumption 5.2.5. Each f̂k ∈

{
f̃j

}
∀j ∈ K is differentiable, α-strongly convex and L-strongly

smooth [85].

Assumption 5.2.6. The over-relaxation terms γj and γ̂j[τ ] are chosen so that the following in-
equality is satisfied for all τ and j ∈ [K]:

γj > γ̂j[τ ] > γ̂minj > 0

where γ̂minj is a positive constant.

Assumptions 5.2.1 and 5.2.2 are standard assumptions for optimization problems [85]. Assump-
tions 5.2.3 and 5.2.4 are needed to guarantee that metric by which we measure convergence for
our PAC algorithm is p.d. or p.s.d, respectively. Assumption 5.2.5 is a more stringent assumption
for when we have atomic objective functions that are sufficiently “curved” along every atomic
variable dimension. Indeed, this latter assumption generally allows for quicker convergence since
the curvature of the functions allow for quick primal convergence to the minimum cost solution.
Assumption 4.6 is needed to obtain improved privacy, and is discussed in Proposition 5.1.

5.2.4 Main Result

Using the above GSO and ASO optimization models, we now state the main result of the chapter
(proofs are reported in Appendix B):
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Theorem 5.2.7. Let the PAC parameters satisfy ρ > 0 and γj > 0 for 1 ≤ j ≤ K. Further, let:

a [τ ] = [a1 [τ ] ; s; aK [τ ]] ,

represent the PAC trajectory of (5.31)-(5.37) under zero-initialization. Then:

a) Strictly Sublinear Convergence: If Assumptions 5.2.1, 5.2.2 and 5.2.3 holds, then there
exists an optimal ASO solution a∗ s.t.:

lim
τ→∞
{a [τ ]} = a∗,

with convergence rate satisfying, for all τ ∈ N:{
‖a [τ + 1]− a [τ ]‖2

Ṽ2(ρ,Γ)

}
∀τ ∈ N = o

(
1

τ

)
.

b) Ergodic Sublinear Convergence: If Assumptions 5.2.1, 5.2.2 and 5.2.4 holds, then there
exists an optimal ASO solution a∗ s.t.:

lim
τ→∞
{a [τ ]} = a∗

s.t.: ∣∣∣f̂ (ā [τ ])− f̂ (a∗)
∣∣∣ ≤ (1

τ

)
ξ−1

E1 (ρ, γmin) , (5.42)

∥∥RΓā [τ ]
∥∥2

2
≤
(

1

τ

)
ξ−1

E2 (ρ, γmin) , (5.43)

where:

γmin = min
j∈K
{γj} ,

ξ−1
E1 (ρ, γmin) =

2

ρ

[
‖a∗‖2

2 +
4Φ2

γminλ̂ min (V1)

]
, (5.44)

ξ−1
E2 (ρ, γmin) =

2

ρ2

[
‖a∗‖2

2 + 4ρ2 +
4Φ2

γminλ̂ min (V1)

]
,

with Φ , sup
z∈∂f(a∗)

{‖z‖2} and RΓ satisfying:

RΓRΓ = Ṽ1 (Γ) , 2

and ā [τ ] = 1
τ

∑
υ∈[τ ] a [υ] being the ergodic average.

2The root R exists since V1 is square p.s.d. matrix. Specifically, if V1 = UΣUT is a suitable eigenvalue
decomposition, then R =

[
UΣ

1
2UT

]
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c) Linear Convergence: If Assumptions 5.2.1, 5.2.2, 5.2.4 and 5.2.5 holds, then there exists a
unique optimal ASO solution s.t., for all τ ∈ N:

lim
τ→∞
{a [τ ]} = a∗

and:
‖a [τ ]− a∗‖ ≤ [1 + ξ P (ρ, γmin)]−τ

(
‖a∗‖2

Ṽ2(ρ,Γ) + ‖r∗‖2
2

)
,

where:

ξ P (ρ, γmin) =
2αργminλ̃ min (V1)

2αL+ 2ρ−2 + γminλ̃ min (V1)
, (5.45)

with r∗ ∈ R|T | satisfying:

RΓr∗ +
1

ρ
∇af̂ (a) = 0.

Theorem 5.2.7 details the conditions under which the convergence of PAC is strictly sublinear,
sublinear and linear. Essentially, under the regularity conditions of Assumptions 5.2.3 and 5.2.4,
we have at least a sublinear convergence in the atomic primal variables so long as we have a
convex optimization problem. If we strengthen each atomic objective function f̃j to be differen-
tiable, α-strongly convex and L-strongly smooth, then we can improve this convergence rate to
being linear.

We maximize PAC convergence by choosing the following ρ and γmin as specified in Theorem
5.2.8 (proofs are reported in Appendix B):

Theorem 5.2.8. If we denote the atomic spectral ratio (ASR) of a particular decomposition
profile D by:

ψ (D) = λ̂ min (V1) (λ max (V1))−1 , (5.46)

then the choices of PAC parameters ρ and γmin that maximize the corresponding PAC conver-
gence rates are:

a) Ergodic Rate: Optimizing (5.44) over (ρ, γmin):

ρ∗E1 =

(√
γ∗E1λ max (V1)

)−1

, (5.47)

γ∗E1 =
4Φ2

λ̂ min (V1) ‖a∗‖2
2

, (5.48)

ξ∗E1 =

√
ψ (D)

2Φ ‖a∗‖2

. (5.49)
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b) Strong Primal Rate: Optimizing (5.45) over (ρ, γmin):

ρ∗P =
(√

γ∗Pλ max (V1)
)−1

, (5.50)

γ∗P =
2αL

2λ max (V1) + λ̂ min (V1)
, (5.51)

ξ∗P =

(
1

2
√
α−1L

)√
2λ̂ min (V1)ψ (D)

2λ max (V1) + λ̂ min (V1)
. (5.52)

5.2.5 PAC Privacy Framework

In competitive economic environments, a successful distributed algorithm also needs to preserve
privacy and limit the dissemination of any sensitive information between processing units. In
the current context, we consider sensitive information to correspond to any information about a
processing unit’s computations that can be used by others to their advantage. In this chapter, we
limit the objective of rogue processing units to be that of using this sensitive information in or-
der to sabotage the global convergence properties of the overall distributed solver, in contrast to
other adversarial scenarios. Like the decreasing of iteration complexity through the introduction
of regularized coordination variables discussed previously, the limiting of sensitive information
does introduce additional algorithmic complexity that will need to be appropriately balanced.
Protection of any sensitive information corresponds to privacy. An advantage of distributed opti-
mization algorithms could be to keep private the coordination between the agents. In the current
context, we consider sensitive information to correspond to any information about k-th atom that
j-th atom can make use of to their advantage. In particular, a rogue j-th atom may seek to utilize
information about k-th atom to recover the information about the trajectory of νj . Such informa-
tion may be utilized to sabotage the overall convergence property of the PAC through deliberate
manipulations of the coordination constraints.

The privacy framework is illustrated by Figure 5.2. The “true” valuation of the coordination
constraint is given by the blue circles and the ν [j→k]

i [τ ] points. This valuation is computed and
kept private by k-th atom. The “protected” valuation of the coordination constraint is given by the
black triangles and is communicated from k-th atom to j-th atom. In this configuration, atom-
j only sees the black trajectory of the “protected” valuation and not the blue trajectory of the
“true” valuation. More mathematical details concerning the privacy of PAC and its comparison
with dADMM will be dealt with in the following sections.
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Figure 5.2: Example of the dual variable trajectory for
{
ν

[j→k]
i [τ ]

}3

τ=0
and

{
ν̄

[j→k]
i [τ ]

}3

τ=0
.
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5.3 Advantages of PAC over dADMM

In this section, we carry out a detailed comparison between PAC and dADMM in terms of pri-
vacy features and algorithmic complexities. While we focus our comparisons on the dADMM
algorithm in [69], the overall observations extend to other variations such as those in [73, 74, 75]
as well.

5.3.1 Derivation of dADMM

To begin, we adapt dADMM from [69] to our general ASO formulation of (5.2) to obtain the
following algorithm:

aj [τ + 1] = argmin
aj∈R|Tj |

{
Lj (aj, µj [τ ] , ν [τ ]) +

ρ

2

∥∥∥G̃jaj

∥∥∥2

2
+
ρ

2

∥∥∥[B]j (aj − aj [τ ]) + w [τ ]
∥∥∥2

2

}
,

(5.53)

µj [τ + 1] = µj [τ ] + ργ
(
G̃jaj [τ + 1]

)
, (5.54)

Communicate {aj [τ + 1]} ∀j ∈ [K] within network, (5.55)

wj [τ + 1] =

(
1

1 + dj

)
[B]j a [τ + 1] , (5.56)

νj [τ + 1] = νj [τ ] + ρwj [τ + 1] (5.57)

Communicate
{
wj [τ + 1] , νj[τ+1]

}
∀j ∈ [K] within network, (5.58)

where dj , |{i ∈ K|Li ∩Oj 6= ∅}| in (5.56) represents the in-degree of atom-j w.r.t. dependen-
cies on other atoms (e.g., how many other atoms have “owned” indices that the jth atom needs a
local “copy” of).

5.3.2 Privacy of PAC

This section aims to show that, with respect to dADMM, PAC keeps the νj trajectory, associated
to the coordination between the atoms, private at each iteration. In what follows, we will mathe-
matically show that the PAC algorithm prevents such a recovery. We define ν̂j→k [τ ] with k 6= j
as the estimation of the νk trajectory at iteration τ by a rogue j-th atom. A repeated application
of (5.35) from iteration 0 to iteration τ leads to:

νj[τ ] = ργj [B]j
[

τ∑
s=0

a[s]

]
. (5.59)

80



Similarly, from (5.36), we obtain

ν̄j[τ ] = ργj [B]j
[

τ∑
s=0

a[s]

]
+ ργ̂j[τ ] [B]j a.[τ ] (5.60)

Using (5.59), we propose that the rogue atom’s estimation is carried out as

ν̂j→k [τ ] = ργ̂k [B]k
[

τ∑
s=0

a[s]

]
, (5.61)

where γ̂k [B]k is an estimate of γk [B]k. It can be seen that such an estimation is possible at every
atom j 6= k since the information on the right hand side of (5.61) is globally broadcasted.

Proposition 5.3.1. Given the algorithm (5.31)-(5.37) with initialization as in (5.38)-(5.41), when
the rogue agent estimation is carried out as in (28), then

‖ν̂j→k [τ ]− νj[τ ]‖2 6→ 0. (5.62)

In contrast to the PAC, it is easy to see from (20)-(25) that dADMM does not preserve privacy as
aj , wj and νj are broadcast to everyone.

5.3.3 Algorithmic Complexity

In this section we compare the various complexities required at each atom for both the PAC
algorithm of (5.31)-(5.37) and the dADMM algorithm of (5.53)-(5.58). Assume for illustrative
purposes that each atomic objective function is a convex quadratic of the form:

f̃j (aj) = aTj Q̃jaj + b̃Tj aj + c̃j, (5.63)

where Q̃j � 0 ∈ R|Tj |×|Tj | and b̃j, c̃j ∈ R|Tj |. Then, we have the following complexities:

• Iteration Complexity: As we show in Theorem 5.2.8, PAC exhibits strictly sublinear
convergence o

(
1
τ

)
while, as [69] demonstrates, dADMM exhibits sublinear convergence

O
(

1
τ

)
. The dADMM method specifically presents itself as a 2-block ADMM formulation

and was shown to exhibitO (1/τ) andO
(√

κf log
(

1
ε

))
convergence characteristics, where

κf is the condition number, leading to an ε-optimal solution[82, 83].

• Computational Complexity: Using the first-order condition for optimality, we have that
the primal PAC updates of (5.31) can be written in closed-form as:

aj [τ + 1] =

(
Q̃j +

1

ρ
INT

j

)−1(
1

ρ
aj [τ ]− G̃T

j µ̃j [τ ]− [B]Tj ν̃ [τ ]− b̃j
)
, (5.64)
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and that the primal dADMM updates of (5.53) can be written in closed-form as:(
Q̃j + ρG̃T

j G̃j + ρ [B]Tj [B]j

)
aj [τ + 1] =(

ρ [B]Tj [B]j aj [τ ]− G̃T
j µj [τ ]− [B]Tj ν [τ ]− ρ [B]Tj w [τ ]− b̃j

)
(5.65)

We note that the matrix inversion in (5.64) only needs to be done once and can be consid-
ered a pre-processing step, so the atomic update complexity of PAC is only that of matrix
multiplication: O

(
(|Tj|)2). The update complexity of dADMM, on the other hand, neces-

sitates solving a linear system of equations and so takes O
(
(|Tj|)3) operations.3 Hence

we see that the PAC has superior update complexity over that of dADMM.

• Communication Complexity: For PAC, each atom is required to communicate primal aj
and dual ν̃j , leading to a communication complexity ofO (|Tj|+ |Oj|). In comparison, for
dADMM, we have that each atom is required to communicate primal aj and dual {ν, wj},
leading to a communication complexity of O (|Tj|+ |Oj|). Hence we see that PAC has the
same communication complexity over that of dADMM.

• Storage Complexity: For PAC, each atom is required to locally store and maintain primal
aj and dual {µj, νj, ν̃j},4 for a storage requirement of |Tj|+ |Cj|+ 2|Oj|. In comparison,
for dADMM, we have that each atom is required to locally store and maintain primal aj
and dual {µj, νj, wj}, for a storage requirement of |Tj|+ |Cj|+ 2|Oj|. Hence we see that
PAC and dADMM have the same storage complexity requirements.

3We cannot invert the LHS matrix of (5.3.3) like we can in (5.64) since the LHS matrix is only guaranteed to be
p.s.d., not p.d.

4We can equivalent state µ̃ [τ ] in (5.31) as µj [τ ] + ργG̃jaj [τ ].
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5.4 Cooperative Balancing market framework

This section will show how the distributed algorithm described in the previous section can be
transformed into a cooperative market mechanism. In this framework, unlike the approach de-
scribed in Chapter 4, each market participant is not selfish but rather participates together with
others to achieve the so-called social optimum. In mathematical terms, this concept translates
into the union of optimization problems related to each agent, to create a unique one without
any DSO dominance over the other market players. This concept is depicted in Figure 5.3, as
a matter of fact using the PAC algorithm each market player shares some variables to reach the
convergence to the optimal point while keeping the coordination information private.

Figure 5.3: Cooperative market structure.

5.4.1 The overall Optimization problem

In this subsection the cooperative optimization problem is defined which is different from the
problems formalized in Chapters 2 and Chapter 4, considering the new distribution grid model
described in Chapter 3 and the equilibrium conditions of market participants stated in the pre-
vious section. The overall optimization problem aims to minimize the social welfare objective
function

min
xg∈GT,xcc∈C(a), a∈A,V R

ik ,V
I
ik,I

R
ik,I

I
ik

(2.1) + (2.7) + (2.16) (5.66)

Under constraints
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SIsys =
∑

h∈(GT∪Ctot)

SIGh +
∑
i∈N

SIVi +
∑
i∈N

∑
j∈N
i 6=j

SICij (5.67)

SIGh =
P da
gk + P up

gk + P dw
gk

Pmax
gk

∀h ∈ (GT ∪ CTOT ) (5.68)

SIVik =

(
‖Vik‖ − V̂ik

∆V ∗i

)2

∀i ∈ N k ∈ K (5.69)

SICijk =

(
Iijk
I∗ij

)2

∀i, j ∈ N k ∈ K (5.70)

Pik =
∑
g∈GT :

i=Node(g)

(
P da
gk + P up

gk + P dw
gk

)
+
∑
a∈A

∑
c∈C(a):
i=Node(c)

(
P da
ck + P up

ck + P dw
ck

)
∀i ∈ N k ∈ K

(5.71)
Qik =

∑
g∈GT :

i=Node(g)

(
Qda
gk +Qup

gk +Qdw
gk

)
+
∑
a∈A

∑
c∈C(a):
i=Node(c)

(
Qda
ck +Qup

ck +Qdw
ck

)
∀i ∈ N k ∈ K

(5.72)
IR = Re (YV ) (5.73)

II = Im (YV ) (5.74)

Pik = aik + bik ∀i ∈ N, k ∈ K (5.75)

Qik = −cik + dik ∀i ∈ N, k ∈ K (5.76)

aik ≥ Vik
RIRik + Vik

RIRik − VikRIRik ∀i ∈ N, k ∈ K (5.77)

aik ≥ Vik
R
IRik + Vik

RI
R

ik − Vik
R
I
R

ik ∀i ∈ N, k ∈ K (5.78)

aik ≤ Vik
RIRik + Vik

RI
R

ik − Vik
R
IRik ∀i ∈ N, k ∈ K (5.79)

aik ≤ Vik
R
IRik + Vik

RIRik − VikRI
R

ik ∀i ∈ N, k ∈ K (5.80)

bik ≥ Vik
IIIik + Vik

IIik
I − VikIIRik ∀i ∈ N, k ∈ K (5.81)

bik ≥ Vik
I
IIik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (5.82)

bik ≤ Vik
IIIik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (5.83)

bik ≤ Vik
I
IIik + Vik

IIik
I − VikIIik

I ∀i ∈ N, k ∈ K (5.84)

cik ≥ Vik
RIIik + Vik

RIik
I − VikRIikI ∀i ∈ N, k ∈ K (5.85)

cik ≥ Vik
R
IIik + Vik

RIik
I − Vik

R
Iik

I ∀i ∈ N, k ∈ K (5.86)
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cik ≤ Vik
RIIik + Vik

RIik
I − Vik

R
Iik

I ∀i ∈ N, k ∈ K (5.87)

cik ≤ Vik
R
IIik + Vik

RIik
I − VikRIik

I ∀i ∈ N, k ∈ K (5.88)

dik ≥ Vik
IIRik + Vik

IIik
I − VikIIikI ∀i ∈ N, k ∈ K (5.89)

dik ≥ Vik
I
IRik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (5.90)

dik ≤ Vik
IIRik + Vik

IIik
I − Vik

I
Iik

I ∀i ∈ N, k ∈ K (5.91)

dik ≤ Vik
I
IRik + Vik

IIik
I − VikIIik

I ∀i ∈ N, k ∈ K (5.92)

Vik
R ≤ IRik ≤ Vik

R ∀i ∈ N k ∈ K (5.93)

Vik
I ≤ IIik ≤ Vik

I ∀i ∈ N k ∈ K (5.94)

Iik
R ≤ IRik ≤ Iik

R ∀i ∈ N k ∈ K (5.95)

Iik
I ≤ IIik ≤ Iik

I ∀i ∈ N k ∈ K (5.96)

P ik ≤ Pik ≤ P ik ∀i ∈ N k ∈ K (5.97)

Q
ik
≤ Qik ≤ Qik ∀i ∈ N, k ∈ K (5.98)

P up
gk ≥ 0 ∀G ∈ GT, k ∈ K (5.99)

P dw
gk ≤ 0 ∀G ∈ GT, k ∈ K (5.100)

(P up
gk − P̂ ∗gk) ≤ 0 ∀G ∈ GT, k ∈ K (5.101)

−(P dw
gk − P̌ ∗gk) ≤ 0 ∀G ∈ GT, k ∈ K (5.102)

(P up
gk + P da

gk + P dw
gk )

2
+ (Qup

gk +Qda
gk +Qdw

gk )
2 − S2

gk ≤ 0 ∀G ∈ GT, k ∈ K (5.103)

−P up
ck ≤ 0 ∀c ∈ C(a) k ∈ K (5.104)

P dw
ck ≤ 0 ∀c ∈ C(a) k ∈ K (5.105)

Qdw
ck ≤ 0 ∀c ∈ C(a) k ∈ K (5.106)

Qup
c ≥ 0 ∀c ∈ C(a) k ∈ K (5.107)

(P up
ck − P̂ ∗ck) ≤ 0 ∀c ∈ C(a) k ∈ K (5.108)

−(P dw
ck + P̌ ∗ck) ≤ 0 ∀c ∈ C(a) k ∈ K (5.109)

(P up
ck + P da

ck +Qdw
ck )

2
+ (Qup

ck +Qda
ck +Qdw

ck )
2 − S2

ck ≤ 0 ∀c ∈ C(a) k ∈ K (5.110)

We then use the PAC algorithm to solve the BM problem of (5.67)-(5.110), with the social welfare
objective function. All simulations were performed using a 2.3 GHz Intel Core i7 with MATLAB
[86] and the YALMIP interface [28] using the GUROBI solver [27]. In order to be able to use
PAC it is necessary to define the new vector of decision variables increased by the variables
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needed to reach consensus. In this respect, in order to limit the number of sub-problems, it was
decided to define a problem for each node of the network without separating the phases. The
new vector of decision variables is given by:

ai =
[
IRi IIi V R

i V I
i P up

g P dw
g Qup

g Qdw
g P up

c P dw
c Qup

c Qdw
c ai bi ci di V̂ R

j V̂ I
j

]T
∀i, j ∈ N ∀G ∈ GT ∀c ∈ C(a) (5.111)

where V̂ R
j and V̂ I

j are the only coordination variables needed for this optimization problem, as a
matter of fact are needed for the nodal analysis equations to couple the system through the power
flow and the branch current can be expressed as a function of the voltages between two nodes.

5.4.2 Application to the modified IEEE 13 Bus system

For this simulations the chosen PAC parameters are γ = 1.931 and ρ = 0.2873. The comparison
between the various indexes before and after the BM session is reported in Figures 5.4, 5.5
and 5.6. Also in this case the global situation of the system improves ( SIsys = 21.7979 with
SIG = 3.432, SIV = 14.9751 and SIC = 3.3908, at the price of 838.54 e ). From the figures,
it can be seen that the SIs related to voltages and currents decrease while the generators’ indices
are called to increase (node 684) and decrease (node 646) their power production. The generator
of node 634 is not called to provide balancing services.

Further analysis has been made on the performance of the PAC for this particular application.
In Figure 5.7, we evaluate the algorithm’s performances as measured by two different met-
rics. These are the distance to global feasibility:

∥∥∥G̃a [τ ]
∥∥∥

2
; and the distance to coordination:

‖Ba [τ ]‖2. These metrics describe how feasible the solution is (whether power flow equations
are satisfied), and how far the variable copies are from their true values. Results show the algo-
rithm converges to the optimal solution in less than 2000 iterations. The maximum and average
time required for each primal update for PAC is 0.0096s and 0.0023s, respectively.
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Figure 5.4: SIVi before and after the BM session for the Modified IEEE 13 Bus system
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Figure 5.5: SICi before and after the BM session for the Modified IEEE 13 Bus system
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Figure 5.6: SIGi before and after the BM session for the Modified IEEE 13 Bus system

Figure 5.7: Algorithms performances.
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5.4.3 Application to the modified IEEE 123 Bus system

In this second market simulation, the chosen PAC parameters are γ = 2.031 and ρ = 0.585.
Numerical experiment show the for this particular case PAC converges to the optimal solution in
less than 3500 iterations. The maximum and average time required for each primal update for
PAC is 0.0105s and 0.0054s, respectively. For this last simulation (with α = 1) the overall SI
is decreased to 219.351 with SIG = 2.2845, SIV = 208.57 and SIC = 8.49, at the price of
1409.67 e ).

From a first analysis, the competitive structure compared to the cooperative one seems to be more
effective in terms of improving the quality of the distribution network service. It must be taken
into account that the two decision-making problems are different and the two market structures
have different properties, from an architectural and security point of view the distributed structure
is more efficient.

Figure 5.8: SIGi before and after the BM session for the Modified IEEE 123 Bus system
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Figure 5.9: SIVi before and after the BM session for the Modified IEEE 123 Bus system
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Figure 5.10: SICi before and after the BM session for the Modified IEEE 123 Bus system
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Chapter 6

Conclusions and future developments

The Ph.D. thesis concerns the development and application of new methods for the optimization
of network systems (with multi-decision makers) with particular attention to the case of power
distribution networks. In particular, the definition of new competitive and cooperative market
structures in distribution power grids is addressed. This need arises from the fact that in the
recent future the possibility of active participation of loads and generators (aggregates and non-
aggregates) in a balancing market for distribution networks will be introduced. In Chapter 2
the overall modeling framework is defined, stating the optimization problems for the market
actors, namely generators, aggregators, and DSO. The first critical points concerning the accurate
modeling of the electricity grid, i.e. the nonconvexity of the power flow equations, have been
highlighted.

In Chapter 3 a new convex relaxation for the OPF problem for the distribution networks is pre-
sented. The main idea is to reformulate the problem as CI instead of power injections/absorption.
The non-convexity of the model due to bilinear terms has been codified through the McCormick
envelopes, obtaining a linear relaxation of these constraints. New constraints on current injec-
tions to improve the quality of the relaxation are obtained optimally through an explicit rule
based on simple optimization problems, which do not add any computational burden to the cen-
tralized solver. With this new formulation, it is possible to solve OPF problems of any kind
without any restriction of topology, network type, and technology. This aspect is extremely in-
novative compared to the current state of the art because most of the models are not as flexible
as the one presented. The new model has been applied to the main IEEE testbeds for distribution
networks (IEEE 13 and 123 bus, and IEEE 8500 nodes), suitably modified to exploit the model’s
potential. The results show an excellent quality of the lower bound obtained and considerably
shorter calculation times compared to the non-linear model. Future developments will concern
the application of the model in the context of distributed and multi-period optimization, as well
as the development of new heuristics for further improvement of relaxation.
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In Chapter 4, a multi-level approach for the modeling and optimization of transmission networks’
BM has been developed and tested. The proposed BM scheme has been described as a bilevel
and multi-decision maker optimization problem. At the highest level, there is the market arbiter,
i.e. the DSO, who wants to keep the quality of the network service as high as possible but
spending as little as possible in buying flexibility from the market participants. Instead, at the
lower level, there are the generators and aggregators (which can operate on multiple network
nodes at the same time) that want to maximize their profits by selling flexibility to the DSO. Each
market participant has been modeled through its own cost and profit functions and its own set of
constraints. To take into account these participants into the DSO problem, optimality constraints
have been derived, which ensure that each lower-level decision maker behaves optimally. The
resulting optimization problem has been solved for the modified IEEE 13 and 123 bus systems
described in Chapter 2. The results show that the quality of the network service is improved
after the market session. Future developments will include new BM participants such as electric
vehicle aggregators, intermittent renewables, electric storage systems, and even perform multi-
period optimization.

In Chapter 5 the PAC algorithm for distributed convex optimization is presented and discussed.
We first detailed how we can partition a centralized formulation into an atomized one. We then
derived the PAC algorithm using a prox-linear approach and showed how the PAC algorithm
achieves an ε-solution in at most o

(
1
τ

)
iterations. The distributed algorithm has then been ap-

plied to the BM optimization problem cooperatively defined in Chapter 2 to create a new market
structure with applications to the modified IEEE 13 and 123 bus systems. The results show that
also in this case the quality of the network service is improved after the market session. Future re-
search directions will include the application of PAC under non-convex constraints and/or objec-
tive functions, to prove the PAC convergence to local minima in the presence of non-convexities.
Ongoing research also concerns the development of new methodologies to speed up the time
required for solving the proximal function inherent in each PAC primal update.
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Appendix A

Preliminaries

In this section, some basic concepts that are fundamental to the the overall understanding of this
PhD thesis are presented. That are:

• Complex numbers and phasors

• Optimization problems

• Convex sets and convex functions

• Karush-Kuhn-Tucker Conditions

• Multilevel programming

• McCormick envelopes

• Introduction to graph theory

• Consensus Based distributed optimization

• Power systems basics

Furthermore, in order to help the reader to understand these concepts, some examples are pro-
vided.

A.1 Complex numbers and phasors

The complex numbers are the field C of numbers in the form a + ib, where a, b ∈ R, and i is a
solution of the equation

x2 = −1 (A.1)
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Since no real number satisfies this equation, i is called an imaginary number. For the complex
number z = a+ib, a is called the real part, and b is called the imaginary part. This representation
of a number z ∈ C is called the rectangular coordinate form of a complex number, since it can be
represented in a Cartesian plane like in Figure A.1, where the x-axis, denoted as Re, represents
the real axis, while the y-axis Im represents the imaginary axis.

Figure A.1: Cartesian representation of a complex number.

The C set can be defined as the algebraic extension of R adding the imaginary number i. This
means that complex numbers can be added, subtracted, and multiplied, as polynomials in the
variable i, according to the rule

i2 = −1 (A.2)

Another way to represent a complex number z through the use of the polar coordinates (called
polar form). It is possible to state the real and imaginary components of a complex number z
in terms of r and θ. Namely, r is the magnitude of the vector associated with z and θ is the
angle (phase) made by the vector with the real axis. Using Euler’s formula we can represents a
complex number in terms of magnitude and phase as:

z = reiθ = r(cos θ + i sin θ) (A.3)

An important property of the complex numbers is the complex conjugate. The complex conjugate
of a complex number is the complex number with an equal real part and an imaginary part equal
in magnitude but opposite in sign:

• In rectangular from, the complex conjugate of a+ ib is a− ib.

• In polar form, the complex conjugate of reiθ is re−iθ.
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• As regards matrices and vectors we define xH as the Hermitian of the matrix or vector x,
that is the complex conjugate and transpose of x.

In power systems engineering, a phasor (denoted as Ȧ), is a complex number representing a
sinusoidal function whose amplitude A, frequency ω, and phase θ are time-invariant. Euler’s
formula indicates that sinusoids can be represented mathematically as the sum of two complex-
valued functions:

Ȧ = A cos(ωt+ θ) = A
ei(ωt+θ) + e−i(ωt+θ)

2
(A.4)
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A.2 Optimization problems

An optimization problem or mathematical programming problem is a mathematical entity that
allows maximizing or minimizing a certain objective (i.e., objective function) subject to diverse
restrictions, typically in the form of equality or inequality constraints. An optimization problem
has the general form

min
x
f (x) (A.5)

s. t.

h(x) = 0 (A.6)

g(x) ≤ 0 (A.7)

where x ∈ Rn is the decision variable vector, f(x) : Rn → R is the objective function to be
minimized, h(x) : Rn → RnE are the functions for the equality constraints and g(x) : Rn → RnI

for the inequality constraints. The following observations valid in this context:

• Any x ∈ Rn is called a solution, while a solution meeting (A.6)-(A.7) is called a feasi-
ble solution, and a feasible solution minimizing (A.5) is called an optimal solution or a
minimizer. The objective function value at the minimizer is the objective function optimal
value.

• The set of solutions meeting both h(x) = 0 and g(x) ≤ 0 constitutes the feasible region of
the optimization problem.

• Minimizing f(x) is equivalent to maximizing −f(x).

Example 1 : Linear optimization problem

In the following, an example of linear programming (both objective function and constraints are
linear) problem is provided.

max
x,y

(x+ y − 50) (A.8)

50x+ 24y ≤ 2400 (A.9)

30x+ 33y ≤ 2100 (A.10)

x ≥ 45 (A.11)

y ≥ 5 (A.12)

x, y ∈ < (A.13)

The optimal solution (obtanied though a mathematical programming solver) is given by x = 45,
y = 6.25 and the value of the objective function is 1.25.

99



A.3 Convex sets and convex functions

In this section an important property of sets and functions is defined, i.e., the convexity. This
property is essential for nonlinear optimization theory over this kind of functions and sets. As a
mater of fact, the convexity property (of the objective function and the feasibility region) implies
the uniqueness of the optimal solution [87]. In the following, the formal definition of convex set
and convex functon are provided.

• A set C is convex if the line segment between any two points in C lies in C, i.e., if for any
x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have θx1 + (1− θ)x2 ∈ C.

• A function f : Rn → R is convex if dom f is a convex set and if for all x, y ∈ domf , and
θ with 0 ≤ θ ≤ 1, we have f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

More informally, a set defined on an n-dimensional interval is called convex if the line segment
between any two points on the set of the function lies on the set itself (as shown in Figure A.2).
Equivalently, a function is convex if its epigraph (the set of points on or above the graph of the
function) is a convex set. For a twice-differentiable function of a single variable, if its second
derivative is always nonnegative on its entire domain, then the function is convex.

Figure A.2: Convex and nonconvex sets

Well-known examples of convex functions of a single variable include the linear functions (cx
where c is a known constant), the square function x2 and the exponential function ex. On the
contrary, the sinusoidal functions i.e. cos(x) and sin(x) are non convex.
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Figure A.3: Convex and nonconvex functions
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A.4 Karush-Kuhn-Tucker Conditions

The Karush-Kuhn-Tucker (KKT) conditions are first-order conditions such that the optimal so-
lutions of a broad range of optimization problems should satisfy. Furthermore, KKT conditions
can be necessary but not sufficient conditions feasible solutions meeting them are not necessarily
optimal but optimal solutions need to meet them, these conditions become necessary and suffi-
cient under convexity (both feasibility set and objective function) hypothesis. KKT conditions
are first-order conditions, i.e., conditions that are formulated using first derivative vectors and
matrices (gradients and Jacobians). To formulate the KKT conditions it is convenient to define
the Lagrange function.

The Lagrange function of problem (A.5)-(A.7) is

L = f(x) + λTh(x) + µTg(x) (A.14)

where f(x), h(x) and g(x) are continuously differentiable in the feasibility set (x ∈ {x|h(x) = 0,
g(x) ≤ 0}). The KKT conditions of problem (A.5)-(A.7) are

∇xf(x) + λT∇xh(x) + µT∇xg(x) = 0 (A.15)

h(x) = 0 (A.16)

g(x) ≤ 0 (A.17)

µTg(x) = 0 (A.18)

µ ≥ 0 (A.19)

where λ ∈ RnE and µ ∈ RnI are respectively, the equality and inequality Lagrange multiplier
vectors, and∇x denotes the gradient with respect to x.

Constraint (A.15) states that the gradient of the Lagrangian function of (A.14) at an optimal so-
lution x should be zero. Constraint (A.16) states the equality constraints. Constraint (A.17)
enforces the inequality constraints. Constraint (A.18) states that inner product of the mul-
tiplier vector of the inequality constraints and the inequality constraint vector is zero. Con-
straint (A.19) states that the multiplier vector of the inequality constraints is nonnegative. Con-
straints (A.17)-(A.19) are known as complementarity conditions and are equivalently written as
0 ≤ µ ⊥ g(x) ≤ 0 where ⊥ indicates complementarity.

Example 2 : The KKT conditions of problem (A.8)- (A.13)

First of all, it is important to define the Lagrange function of the optimization problem (according
to (A.14)):
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L(x, y, µ) = (x+ y − 50) + µ1(50x+ 24y − 2400)+

µ2(30x+ 33y − 2100) + µ3(−x+ 45) + µ4(−y + 5) (A.20)

The set of KKT condition id given by:

∂L
∂x

= 1 + 50µ1 + 30µ2 − µ3 (A.21)

∂L
∂y

= 1 + 24µ1 + 33µ2 − µ4 (A.22)

50x+ 24y − 2400 ≤ 0 (A.23)

30x+ 33y − 2100 ≤ 0 (A.24)

−x+ 45 ≤ 0 (A.25)

−y + 5 ≤ 0 (A.26)

µ1(50x+ 24y − 2400) = 0 (A.27)

µ2(30x+ 33y − 2100) = 0 (A.28)

µ3(−x+ 45) = 0 (A.29)

µ4(−y + 5) = 0 (A.30)

µ1 ≥ 0 (A.31)

µ2 ≥ 0 (A.32)

µ3 ≥ 0 (A.33)

µ4 ≥ 0 (A.34)

Since problem (A.8)- (A.13) is linear (therefore the objective function and the feasibility set is
convex), the optimal solution is unique (the same as in Example 1).
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A.5 Multilevel programming

A multilevel programming problem (MP) is an optimization problem involving constraints that
represent equilibrium conditions in other words, an MP is an optimization problem whose con-
straints include other interrelated optimization problems. The formulation of an MP is provided
below

Min
x

f (x, x1, ..., xN) (A.35)

s.t

g (x, x1, ..., xN) = 0 (A.36)

h (x, x1, ..., xN) ≤ 0 (A.37)
Min
x1

f1 (x, x1, ..., xN)

s.t

g1 (x, x1, ..., xN) = 0

h1 (x, x1, ..., xN) ≤ 0

(A.38)

...
Min
xN

fN (x, x1, ..., xN)

s.t

gN (x, x1, ..., xN) = 0

hN (x, x1, ..., xN) ≤ 0

. (A.39)

Observe the nested structure of problem (A.35)-(A.37) above, i.e., an optimization problem con-
strained by a set of N optimization problems. Vector x ∈ Rno includes the set of optimization
variables of the upper level problem, vector xi ∈ Rni includes the set of optimization variables
of constraining problem i, and λi ∈ Rni and µi ∈ Rni are the dual variable vectors of problem i
associated with the equality and inequality constraints.

The overall MP problem con be solved providing an analytical solution of the lower level opti-
mization problem to be added at the upper level one. As an example, KKT conditions for lower
level decision problems can be used. Therefore, in this case we will solve an "augmented" ver-
sion of the upper level optimization adding as new constraints the KKT conditions of each lower
level problem. The overall optimization problem is given by:
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Min
x

f (x, x1, ..., xN) (A.40)

s.t

g (x, x1, ..., xN) = 0 (A.41)

h (x, x1, ..., xN) ≤ 0 (A.42)

KKT1 (A.43)
...

KKTN (A.44)

Example 3: Multilevel programming problem

The following example has been taken from [53]

Min
π,f1,s1,s2

− π(s1 + f1) + a1 + b1(s1 + f1) (A.45)

s.t
Min
s1
− πs1 + a1 + b1(s1 + f1)

s.t

−π + γ − β(s1 + s2 + f1 + f2) = 0

s1 − smax1 ≤ 0

(A.46)


Min
s2
− πs2 + a2 + b2(s2 + f2)

s.t

−π + γ − β(s1 + s2 + f1 + f2) = 0

s2 − smax2 ≤ 0

(A.47)

Using the KKT conditions of the two lower-level problems the overall problem becomes

Min
π,f1,s1,s2,λ1,µ1,λ2,µ2

− π(s1 + f1) + a1 + b1(s1 + f1) (A.48)

s. t.

−π + b1 − λ1β + µ1 = 0 (A.49)

−s1 − λ1 = 0 (A.50)
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−π + γ − β(s1 + s2 + f1 + f2) = 0 (A.51)

0 ≤ µ1 ⊥ (s1 − smax1 ) ≤ 0 (A.52)

−π + b2 − λ2β + µ2 = 0 (A.53)

−s2 − λ2 = 0 (A.54)

−π + γ − β(s1 + s2 + f1 + f2) = 0 (A.55)

0 ≤ µ2 ⊥ (s2 − smax2 ) ≤ 0 (A.56)
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A.6 McCormick envelopes

In this section we will study bilinear forms and its convexification. This approach is useful in the
definition of the new convex relaxation of the OPF problem that is one of the main cores of this
PhD thesis. We define a bilinear form as w = xy with x, y ∈ R. This is a classical nonconvex
and nonlinear function (as can be seen in Figure A.4) recurring in optimization problems.

Figure A.4: A bilinear form

McCormick Envelopes (MCE) is a type of convex relaxation used in bilinear Non-Linear Pro-
gramming problems. Solving nonconvex problems is a complicated task. First, the nonconvex
function is transformed into a convex function by relaxing the parameters on the problem.

Relaxing the bounds through a convex relaxation decreases the computational difficulty of solv-
ing the problem at the cost of introducing solutions that do not correspond to the original ob-
jective function i.e. the optimal solution in the relaxed problem will not always be the optimal
solution to the objective problem. Solving the convex problem will provide a lower bound for
the optimal solution. Having a tighter relaxation that is still convex will provide a lower bound
that is closer to the solution.

The enevlope of a bilinear form w = xy defined over a set S ⊂ R3 = {x, y : x ∈ [x, x], y ∈
[y, y]} is stated as:

w ≥ xy + xy − xy (A.57)

w ≥ xy + xy − xy (A.58)

w ≤ xy + xy − xy (A.59)

w ≤ xy + xy − xy (A.60)
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McCormick envelopes are obtained through simple mathematical steps. In order to obtain (A.57),
we proceed defining the following quantities:

ŵ1 = x− x (A.61)

ŵ2 = y − y (A.62)

since ŵ1ŵ2 ≥ 0 we have

ŵ1ŵ2 = (x− x)(y − y) (A.63)

= xy − xy − xy + xy ≥ 0 (A.64)

=⇒ w ≥ xy + xy − xy (A.65)

thus (A.57) is obtained. the other relations, namely (A.58), (A.59) and (A.60), can be obtained
defining

ŵ3 = x− x (A.66)

ŵ4 = y − y (A.67)

and and making all the following combinations:

ŵ3ŵ4 = (x− x)(y − y) ≥ 0 (A.68)

= xy − xy − xy + xy ≥ 0 (A.69)

=⇒ w ≥ xy + xy − xy (A.70)

ŵ2ŵ3 = (y − y)(x− x) ≤ 0 (A.71)

= −xy + xy + xy − xy ≤ 0 (A.72)

=⇒ w ≤ xy + xy − xy (A.73)

ŵ1ŵ4 = (x− x)(y − y) ≤ 0 (A.74)

= −xy − xy + xy + xy ≤ 0 (A.75)

=⇒ w ≤ xy + xy − xy (A.76)

Example 4: The McCormick envelope of x2

In this example the envelope of the bilinear form w = x2 over a set −1 ≤ x ≤ 2. The envelope
is given by:

(2− x) (2− x) = w − 4x+ 4 ≥ 0 (A.77)

(x+ 1) (2− x) = −w + x+ 2 ≥ 0 (A.78)

(x+ 1) (x+ 1) = w + 2x+ 1 ≥ 0 (A.79)
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A.7 Introduction to graph theory

In this section, we will introduce some basic principles about graph theory that are useful for
the basic modeling of a distribution network and the definition of the distributed optimization
algorithm.

A simple graph G(V,E) consists of a non-empty finite set V of elements called vertices (or
nodes), and a finite set E of distinct unordered pairs of distinct elements of V called edges. We
call V (G) the vertex set andE(G) the edge set of G. Two main categories of graphs are:

• Directed graph: a graph where the edges have a direction associated with them (Figure
A.5).

• Undirected graph: a graph where all the edges are bidirectional (Figure A.6).

A

B

D

C

E

Figure A.5: A directed graph

A useful representation of a graph is the adjacency matrix. For a graph with vertex set V , the
adjacency matrix is a square |V | × |V | matrix A defined as follows:{

Aij = 1, if ij ∈ E
Aij = 0, otherwise

(A.80)

For a graph with no self-loops, the adjacency matrix must have 0s on the diagonal. For an
undirected graph, the adjacency matrix is symmetric. The adjacency matrices of the graphs

109



A

B

D

C

E

Figure A.6: An undirected graph

depicted in Figures A.6 and A.5 are:

Aud =


0 1 1 1 1
1 0 1 0 0
1 1 0 1 1
1 0 1 0 0
1 0 1 0 0

 (A.81)

Ad =


0 1 1 0 0
0 0 1 0 0
0 0 0 1 1
1 0 0 0 0
1 0 0 0 0

 (A.82)
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A.8 Consensus Based distributed optimization

Distributed consensus optimization is an important family of optimization problems which is
formulated as

min
x

N∑
i=1

fi(x) (A.83)

s. t.

h(x) = 0 (A.84)

g(x) ≤ 0 (A.85)

where x ∈ Rn and fi(x) : Rn → R are convex functions, h(x) and g(x) describe a convex set of
solutions. N agents want to optimize the sum of local objective functions, fi(x), i ∈ {1, ..., N}
over a global variable vector x. In order to solve the problem in a distributed way, it is necessary
to decompose the problem into sub-problems, the resolution of which in an iterative way through
the exchange of information with other agents leads to a global solution of the problem.

One possible strategy to decompose the problem, and solve it in a completely decentralised way
is to use the consensus method. This methodology proposes to define an augmented version of
the problem by introducing the so-called "copy" variables. In this way it is possible to duplicate
the variables needed to define each sub-problem; the price to pay will result in increasing the
overall number of variables and introducing a new set of constraints:

min
x̃=x

⋃
x̂

N∑
i=1

fi(x̃) (A.86)

s. t.

h(x̃) = 0 (A.87)

g(x̃) ≤ 0 (A.88)

x− x̂ = 0 (A.89)

As can be seen from the new version of the problem you have a new set of variables x̃ = x
⋃
x̂,

where x̂ is the set of copied variables needed to fully decompose the problem. The equivalence
of the global solution is guarantee by adding the new constraint (A.89) that states the equivalence
between the "main" variables and their copy.
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A.9 ADMM

In this section the popular Alternating Direction Method of Multipliers (ADMM) algorithm is
briefly presented. ADMM is an algorithm that is intended to unite the decomposability of dual
ascent with the superior convergence properties of the method of multipliers. The algorithm
solves problems in the form:

min
x,z

f(x) + g(z) (A.90)

s. t.

Ax+Bz = c (A.91)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. We will assume
that f and g are convex. The only difference from the general linear equality-constrained version
of problem (A.5)-(A.7) is that the variable, called x there, has been split into two parts, called x
and z here, with the objective function separable across this splitting. To solve the problem, we
form the augmented Lagrangian

L(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2)‖Ax+Bz − c‖2
2 (A.92)

where y is the Lagrange multiplier associated to (A.91), and ρ is the step size parameter. The
algorithm performs the following iterations, until convergence:

x[τ + 1] = argmin
x

L(x, z[τ ], y[τ ]) (A.93)

z[τ + 1] = argmin
z

L(x[τ + 1], z, y[τ ]) (A.94)

y[τ + 1] = y[τ ] + ρ(Ax[τ + 1] +Bz[τ + 1]− c) (A.95)

The convergence proof of ADMM algorithm is proven in [67]
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A.10 Power systems basics

A.10.1 Admittance matrix

In power engineering, nodal admittance matrix or Y Matrix is an N × N matrix describing a
power system with N buses. For a network with N buses, the admittance between a bus k, and
another bus i is described by yik = gik + ibik, where gik is the line conductance and bik is the line
susceptance. The general mathematical expression of Y is:

Yij =


∑

m:(i,m)∈Ei

yim if i = j

−yij if i 6= j and (i, j) ∈ E
0 otherwise

(A.96)

It is important to note that yki is non-zero only where a physical connection exists between two
buses. From the general case where N is greater than 2, it is desirable to solve these equations
as a system, namely through matrix algebra. The general Y matrix appears as follows:

Y =


Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n

· · · · · · · · · · · ·
Yn1 Yn2 · · · Ynn

 (A.97)

Example 5: Admittance matrix of a three-nodes system

Figure A.7: 3 nodes example

Considering the network depicted in Figure A.7 according to A.96 the Y matrix is:

Y =

 y12 −y12 0
−y12 y22 + y23 −y23

0 −y23 y23

 (A.98)

A.10.2 Three phase systems

An unbalanced three-phase circuit is one that contains at least one source or load that does
not possess three-phase symmetry. A source with the three source-function magnitudes un-
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equal and/or the successive phase displacements different from 2
3
π will make the overall net-

work unbalanced. Similarly, a three-phase load with different power request per phase make
the overall network unbalanced. In this case, the cables have to be expressed by the 3-phase
admittance matrix yr,s ∈ R3×3, for a cable between nodes r and s ∈ N , in which each ele-
ment of the matrix, yk,k′ , represents the magnetic coupling between phases k and k′, such that
yk,k′ = gk,k′ + ibk,k′∀k, k′ ∈ K where K = a, b, c is the set of phases. That is:

yij =

yaaij yabij yacij
yabij ybbij ybcij
yacij ybcij yccij

 ∀i, j ∈ N (A.99)

A.10.3 Nodal Analysis

In power systems analysis, the nodal analysis method is a way to determine the voltage between
the nodes of a power network, in terms of the injected currents at each node.

Nodal analysis writes an equation at each electrical node, according to Kirchhoff’s current law
(KCL), requiring that the sum of the branch currents at each node must be zero. The branch
currents are written in terms of the network’s node voltages. Nodal analysis is possible when all
the circuit elements’ branch constitutive relations have an admittance representation. The nodal
analysis produces a compact set of equations for the network, which can be quickly solved using
linear algebra.

In general, for a network with N nodes, the node-voltage equations obtained by nodal analysis
can be written in a matrix form as derived in the following.

For any node k ∈ N , KCL states:∑
j 6=k∈N

Yjk(vk − vj) = 0 ∀k ∈ N (A.100)

where Ykj = Yjk is the negative of the sum of the admittances between nodes k and j, and vk is
the voltage of node k. This implies

0 =
∑
j 6=k∈N

Yjk(vk − vj) =
∑
j 6=k∈N

Yjkvk −
∑
j 6=k∈N

Yjkvj

= Ykkvk −
∑
j 6=k∈N

Yjkvj ∀k ∈ N (A.101)

where Ykk is the sum of conductances connected to node k. We note that the first term contributes
linearly to the node k via Ykk, while the second term contributes linearly to each node jconnected
to the node k via Yjk with a minus sign. If an independent current source/input ik is also attached
to node k, the above expression is generalized to ik = Ykkvk −

∑
j 6=k Yjkvj . It is readily to show
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that one can combine the above node-voltage equations for all N nodes, and write them down in
the following matrix form:


Y11 Y12 · · · Y1N

Y21 Y22 · · · Y2N
...

... . . . ...
YN1 YN2 · · · YNN



v1

v2
...
vN

 =


i1
i2
...
iN

 (A.102)

or simply
I = Y V (A.103)

In the network presented in Figure A.7 relation A.102 becomesi1i2
i3

 =

 y12 −y12 0
−y12 y22 + y23 −y23

0 −y23 y23

v1

v2

v3

 (A.104)
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Appendix B

Proofs of Chapter 5

Lemma B.0.1. SupposeD = diag (d1, . . . , dM) � 0 andA ∈ RM×N . Let {λ1 (B) , . . . , λN (B)}
be the eigenvalues of matrix B ∈ RN×N with λi (B) ≤ λj (B) for 1 ≤ i ≤ j ≤ N . Then:

a) ATDA � 0;

b) dminλj (ATA) ≤ λj (ATDA) ≤ dmaxλj (ATA);

Proof of Lemma B.0.1.

a) Let x ∈ RN . Then:

xTATDAx = xTATD
1
2D

1
2Ax =

(
D

1
2Ax

)T (
D

1
2Ax

)
=
∥∥∥D 1

2Ax
∥∥∥2

2
≥ 0 (B.1)

b) Recall the following from Courant-Fischer-Weyl Min-Max Principle:

λj
(
ATDA

)
= min

U :dim(U)=j

{
max

x∈U :‖x‖22=1

{
xTATDAx

}}
(B.2)

λj
(
ATDA

)
= max

U :dim(U)=N−j+1

{
min

x∈U :‖x‖22=1

{
xTATDAx

}}
. (B.3)

Next, if x ∈ RN×N , then:

xTATDAx =
∥∥∥D 1

2Ax
∥∥∥2

2
=

M∑
j=1

(√
dj [A]j x

)2

=
M∑
j=1

dj

(
[A]j x

)2

, (B.4)
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from which we get:

xTATDAx ≤ dmax

(
xTATAx

)
, (B.5)

xTATDAx ≥ dmin

(
xTATAx

)
. (B.6)

We then get the desired inequalities by applying (B.5) to (B.2) and (B.6) to (B.3) and
factoring out the constants dmax and dmin, respectively.

Proof of Theorem 5.2.7. Defining the following quantities:

G̃ = diag
{
G̃1, . . . , G̃K

}
(B.7)

ΓG̃ = diag
{
γ1INC

1
, . . . , γKINC

K

}
(B.8)

ΓB = diag
{
γ1INO

1
. . . , γKINO

K

}
(B.9)

Γ̂G[τ ] = diag
{
γ̂1[τ ]INC

1
, ..., γ̂K [τ ]INC

K

}
(B.10)

Γ̂B[τ ] = diag
{
γ̂1[τ ]INC

1
, ..., γ̂K [τ ]INC

K

}
(B.11)

Λ̂G[τ ]= ΓG[τ ]− Γ̂G[τ ] (B.12)

Λ̂B[τ ]= ΓB[τ ]− Γ̂B[τ ] (B.13)

V1 = G̃T G̃+BTB, (B.14)

Ṽ1 (Γ) = G̃TΓG̃G̃+BTΓBB (B.15)

Ṽ2 (ρ,Γ) =
1

ρ2
INT − Ṽ1 (Γ) (B.16)

Ṽ3

(
Λ̂[τ ]

)
= G̃T Λ̂G̃[τ ]G̃+BT Λ̂B[τ ]B (B.17)

We shall proceed in a similar fashion to the proofs of Lemmas 2.1 and 2.2 in [70] for a). We will
then proceed in a similar fashion to the proof strategies of Theorems 1 and 2 and Theorem 3 of
[69] for b) and c), respectively.

a): From dual update equations of (5.32) and (5.35), we have:

µ[τ ] = ρ
(

ΓG̃G̃
)[ τ∑

s=0

a[s]

]
, (B.18)

ν[τ ] = ρ
(
ΓBB

) [ τ∑
s=0

a[s]

]
. (B.19)
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From the definition of the iteration-varying γ̂j[τ ] given in Section IV.A we have

γ̂j[τ ] = βjγj ⇒ βj[τ ] < 1, (B.20)

γ̂j[τ ]− γj = 1− βj[τ ]⇒ 1− βj[τ ] < 0. (B.21)

Using both (B.18) , (B.19) and defining Λ̂[τ ] = diag
{

(1− β1[τ ]) I|C1|, ..., (1− βK[τ ]) I|Ck|
}

=

Γ̂[τ ]− Γ in conjunction with the necessary condition for optimality of (5.31), we have:

a [τ + 1] = argmin
a∈R|T |

{
f̂ (a) + (µ̄ [τ ])T G̃a

(ν̄ [τ ])T Ba+ 1
2ρ
‖a− a [τ ]‖2

2

}
⇒ 0NT = c

1

ρ
c

[τ+1]

f̂
+ Ṽ1 (Γ)

[
τ+1∑
s=0

a[s]

]
+Ṽ2 (ρ,Γ) (a [τ + 1]− a [τ ]) +Ṽ3

(
Λ̂[τ ]

)
a [τ ]

<
1

ρ
c

[τ+1]

f̂
+ ρV̂1 (Γ)

τ∑
s=0

a[s] + Ṽ2 (ρ,Γ) (a [τ + 1]− a [τ ]) (B.22)

where c[τ+1]

f̂
∈ ∂f̂ (a [τ + 1]). We note that Ṽ1 (Γ) is a p.s.d. matrix and Ṽ3

(
Λ̂
)

is negative
definite since 1− βj[τ ] < 0 , while Assumption 5.2.3 gives us:

1 > ρ2λ max

(
Ṽ1 (Γ)

)
⇒ λ min

(
1

ρ2
INT − Ṽ1 (Γ)

)
> 0⇒ λ min

(
Ṽ2 (ρ,Γ)

)
> 0 (B.23)

from which we get that Ṽ2 (ρ,Γ) is p.d.. Since Ṽ1 (Γ) is p.s.d when γj � 0 for each j ∈ K, we
can then define its symmetric “square root” RΓ ∈ R|T |×|T | according to:

RΓRΓ = Ṽ1 (Γ) = G̃TΓG̃G̃+BTΓBB1.

Connecting RΓ to a∗ and the ASO-feasibility of (5.2), we have:

a is ASO-feasible iff RΓa = 0NT . (B.24)

Sufficiency of (B.24) follows directly while necessity of (B.24) follows from:

RΓa = 0NT ⇒ RΓRΓa = 0NT ⇒ G̃TΓG̃G̃a = −BTΓBBa⇒
∥∥∥G̃a∥∥∥2

ΓG̃
= −‖Ba‖2

ΓB

⇒ G̃a = 0NC and Ba = 0NO ⇒ a is ASO-feasible.

Using (B.24), we see that the ASO of (5.2) is equivalent to the following auxiliary standard
optimization (XSO) problem:

min
ρRΓa=0Ñ

{
f̂ (a)

}
, (B.25)

1We note that such a root matrix exists for Ṽ1 (Γ) since the latter is square p.s.d. matrix. Specifically, if Ṽ1 (Γ) =

UΣUT is a suitable eigenvalue decomposition, then RΓ =
[
UΣ

1
2UT

]
. See the 7th footnote on pg. 5086 of [69] for

more information.
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whose necessary condition for optimality satisfies:

RΓr∗ +
1

ρ
c∗
f̂

= 0NT , (B.26)

where r∗ is the optimal dual variable, a∗ is ASO-optimal, and c∗
f̂
∈ ∂f̂ (a∗). Since (B.25) is

equivalent to (5.2), we have that the dual summands of the associated Lagrangians for both are
equal for all τ > 0 and, using (B.18) and (B.19), we have:

(r [τ ])T
(
ρRΓ

)
a [τ ] = (µ [τ ])T G̃a [τ ] + (ν [τ ])T Ba [τ ] =

(
τ∑
s=0

a [s]

)T (
ρṼ1 (Γ)

)
a [τ ]

=

(
τ∑
s=0

a [s]

)T (
ρRΓRΓ

)
a [τ ] =

(
RΓ

[
τ∑
s=0

a [s]

])T (
ρRΓ

)
a [τ ] . (B.27)

from which we conclude that r [τ ] , RΓ (
∑τ

s=0 a [s]). Using (B.26) and noting that:

(a∗ − a [τ + 1])T c∗
f̂

= (a∗ − a [τ + 1])T
[
−
(
ρRΓ

)
r∗
]

= ρ (r∗)T RΓa [τ + 1] = ρ (r∗)T (r [τ + 1]− r [τ ]) (B.28)

we can then exploit the monotonicity property of the subdifferential operator ∂f̂ and use (B.22)
to obtain:

0 ≤ (a [τ + 1]− a∗)T
(

1

ρ
c

[τ+1]

f̂
− 1

ρ
c∗
f̂

)
+ (r∗)T (r [τ + 1]− r [τ ])

≤ (a [t+ 1]− a∗)T
[
−Ṽ1 (Γ)

[
τ+1∑
s=0

a[s]

]
−Ṽ2 (ρ,Γ) (a [τ + 1]− a [τ ])

]
+ (r∗)T (r [τ + 1]− r [τ ])

= − (r [τ + 1]− r [τ ])T r [τ + 1]− (a [τ + 1]− a∗)T Ṽ2 (ρ,Γ) (a [τ + 1]− a [τ ])

+ (r∗)T (r [τ + 1]− r [τ ])

= (a [τ + 1]− a [τ ])T Ṽ2 (ρ,Γ) (a∗ − a [τ + 1]) + (r [τ + 1]− r [τ ])T INT (r∗ − r [τ + 1]) .
(B.29)

Using the identity for Z ∈ Rn×n and z1, z2, z3 ∈ Rn:

2 (z1 − z2)T Z (z3 − z1) = ‖z2 − z3‖2
Z − ‖z1 − z3‖2

Z − ‖z2 − z1‖2
Z , (B.30)

we then have that (B.29) is equivalent to:

0 ≤ ‖q [τ ]− q∗‖2
W − ‖q [τ + 1]− q∗‖2

W − ‖q [τ ]− q [τ + 1]‖2
W , (B.31)
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where:

W =

[
Ṽ2 (ρ,Γ) 0

0INT

]
(B.32)

q [τ ] = [a [τ ] ; r [τ ]] (B.33)

q∗ = [a∗; r∗] . (B.34)

From (B.31), we then have, for any q [τ + 1] 6= q [τ ]:

‖q [τ ]− q∗‖2
W ≥ ‖q [τ + 1]− q∗‖2

W + ‖q [τ ]− q [τ + 1]‖2
W > ‖q [τ + 1]− q∗‖2

W . (B.35)

where we used that W is p.d..2 From (B.35), we have that
{
‖q [τ ]− q∗‖2

W

}
τ>0

is monotonically
decreasing. Since this sequence has a lower bound of 0, we can thus conclude that it converges
to a fixed value:

‖q [τ ]− q∗‖2
W →

τ→∞
ζ ∈ R+. (B.36)

From (B.36) we have that {q [τ ]}τ≥0 deterministically converges to a vector q which is a distance
ζ away from q∗. Due to the nature of PAC, we can then conclude that q is a fixed point of PAC
and also satisfies the KKT Conditions of the XSO (B.25). By Assumption 5.2.1, f̂ is convex
and dom

(
f̂
)

= RN . Utilizing this along with Assumption 5.2.2, we can then conclude that
Slater’s Condition is satisfied. Hence, q is an optimal point of the XSO (B.25). Since our choice
of choice q∗ was initially arbitrary in the sense that it only had to be an (not necessarily the)
optimal solution of the XSO, we can then simply set q∗ = q and therefore conclude that the PAC
trajectory obtains asymptotic convergence to an optimal XSO solution:

lim
τ→∞
{q [τ ]} = q∗ ⇒ lim

τ→∞
{a [τ ]} = a∗.

As for the rate, we can follow the approach of Lemma 2.2 of [88] and use the monotonicity of
∂f̂ and the first-order condition of optimality to get, if ∆a [τ + 1] , a [τ + 1]− a [τ ]:

0 ≤ (∆a [τ + 1])T
(

1

ρ
c

[τ+1]

f̂
− 1

ρ
c

[τ ]

f̂

)
= (∆a [τ + 1])T

(
−
[
RΓr [τ + 1] + V2 (ρ,Γ) ∆a [τ + 1]

]
+
[
RΓr [τ ] + V2 (ρ,Γ) ∆a [τ ]

])
= − (∆a [τ + 1])T V2 (ρ,Γ) (∆a [τ + 1]−∆a [τ ])− (∆a [τ + 1])T RΓ (∆r [τ + 1])

= − (∆a [τ + 1])T V2 (ρ,Γ) (∆a [τ + 1]−∆a [τ ])− (∆r [τ + 1])T (∆r [τ + 1]−∆r [τ ])

= −‖∆q [τ + 1]‖2
W + (∆a [τ + 1])T V2 (ρ,Γ) (∆a [τ ]) + (∆r [τ + 1])T (∆r [τ ])

≤ −‖∆q [τ + 1]‖2
W +

1

2

[
‖∆q [τ + 1]‖2

W + ‖∆q [τ ]‖2
W

]
= −1

2
‖∆q [τ + 1]‖2

W +
1

2
‖∆q [τ ]‖2

W ,

(B.37)

2This follows since Ṽ2 (ρ,Γ) is p.d..
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where we used the identity for Z ∈ Rn×n and z1, z2 ∈ Rn:

2 (z1)T Z (z2) ≤ ‖z1‖2
Z + ‖z2‖2

Z .

From (B.37) we can thus conclude that ‖∆q [τ ]‖2
W monotonically non-increasing in τ , i.e.:

‖∆q [τ + 1]‖2
W ≤ ‖∆q [τ ]‖2

W .

Since lim
τ→∞
{q [τ ]} = q∗, we can conclude using (B.31) that

∑∞
τ=1 ‖∆q [τ ]‖2

W < 0. Hence, we

use Lemma 1.1 of [88] to determine that PAC converges with ‖∆q [τ + 1]‖2
W = o

(
1
τ

)
. Thus, a)

is proven.

b): We begin by showing that we can bound both the cost and infeasibility of the ergodic cost.
We then exploit the structure of the associated XSO from (B.25) to bound the ergodic cost and
ergodic infeasibility even further.

So, we start by letting a∗ be the optimal ASO solution that the PAC trajectory converges to, as
proven in in part a). We continue by using the first-order property of convex functions f̂ to get,
for some dual variable r ∈ RNT and c[τ+1]

f̂
∈ ∂f̂ (a [τ + 1]):

f̂ (a [τ + 1]) + (a∗ − a [τ + 1])T c
[τ+1]

f̂
≤ f̂ (a∗)

⇓[
f̂ (a [τ + 1])− f̂ (a∗)

]
+ ρrTRΓa [τ + 1] ≤ (a [τ + 1]− a∗)T c[τ+1]

f̂
+ ρrTRΓa [τ + 1]

⇓
2
ρ

[
f̂ (a [τ + 1])− f̂ (a∗)

]
+ 2rTRΓa [τ + 1] ≤ (B.38)

‖q [τ ]− q‖2
W − ‖q [τ + 1]− q‖2

W − ‖q [τ + 1]− q [τ ]‖2
W

⇓
2
ρ

[
f̂ (a [τ + 1])− f̂ (a∗)

]
+ 2rTRΓa [τ + 1] ≤ ‖q [τ ]− q‖2

W − ‖q [τ + 1]− q‖2
W , (B.39)

where q = [a∗; r] andW is p.s.d..3 We then sum (B.39) from 0 to T−1, using Jensen’s Inequality
on the LHS and using the non-negativeness of the l2 metric for the RHS, to get:

T−1∑
τ=0

(
2
ρ

[
f̂ (a [τ + 1])− f̂ (a∗)

]
+ 2rTRΓa [τ + 1]

)
≤

T−1∑
τ=0

(
‖q [τ ]− q‖2

W

−‖q [τ + 1]− q‖2
W

)
⇓

f̂ (ā [T ])− f̂ (a∗) + ρrTRΓā [T ] ≤=
( ρ

2T

)
‖q‖2

W , (B.40)

3We can conclude that W is p.s.d. from Assumption 5.2.4 using similar reasoning to how we concluded that W
is p.d. from Assumption 5.2.3 in part a).
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for ā [T ] = 1
T

∑T
s=1 a [s] and zero initialized q [0] = [0NT ; 0NT ]. Our goal now is to bound the

absolute value of the first two summands in LHS of (B.40) and then bound the absolute value of
the third summand in (B.40). As such, we first set r = 0NT in (B.40) and obtain:

f̂ (ā [T ])− f̂ (a∗) ≤
( ρ

2T

)
‖a∗‖2

Ṽ2(ρ,Γ) . (B.41)

Using the saddle point inequality associated with the XSO of (B.25) we also have:

f̂ (a∗) ≤ f̂ (ā [T ]) + ρ (r∗)T RΓā [T ] (B.42)

⇓
ρ (r∗)T RΓā [T ] ≤ f̂ (ā [T ])− f̂ (a∗) + ρ (2r∗)T RΓā [T ] . (B.43)

Applying (B.40) to (B.43) with r = 2r∗, we then have:

ρ (r∗)T RΓā [T ] ≤
( ρ

2T

) [
‖a∗‖2

Ṽ2(ρ,Γ) + ‖2r∗‖2
]
. (B.44)

Combining (B.44) with (B.42), we then have:

f̂ (a∗)− f̂ (ā [T ]) ≤
( ρ

2T

) [
‖a∗‖2

Ṽ2(ρ,Γ) + ‖2r∗‖2
]
,

from which we can conclude that:∣∣∣f̂ (a∗)− f̂ (ā [T ])
∣∣∣ ≤ ( ρ

2T

) [
‖a∗‖2

Ṽ2(ρ,Γ) + 4 ‖r∗‖2
W

]
. (B.45)

We can also bound the ergodic infeasibility RΓā [T ] in a similar fashion. Letting r = r∗ +
RΓā[T ]
‖RΓā[T ]‖2

, we have from (B.40):

f̂ (ā [T ])− f̂ (a∗) + ρ (r∗)T RΓā [T ] + ρ
∥∥RΓā [T ]

∥∥
2
≤(

ρ
2T

) [
‖a∗‖2

Ṽ2(ρ,Γ) +
∥∥∥r∗ + RΓā[T ]

‖RΓā[T ]‖2

∥∥∥2

2

]
. (B.46)

Applying the saddle-point inequality of (B.25) to (B), we then have:

∥∥RΓā [T ]
∥∥

2
≤
(

1

2T

)[
‖a∗‖2

Ṽ2(ρ,Γ) +

∥∥∥∥r∗ +
RΓā [T ]

‖RΓā [T ]‖2

∥∥∥∥2

2

]
≤(

1

2T

)[
‖a∗‖2

Ṽ2(ρ,Γ) + 2
(
‖r∗‖2

2 + 1
)]
. (B.47)

where we used that ‖w + z‖2
2 ≤ 2 ‖w‖2

2 + 2 ‖z‖2
2 for any w, z ∈ R|T |. Finally, to further bound

(B.45) and (B.48) we note that:

‖a∗‖2
Ṽ2(ρ,Γ) ≤ λ max

(
Ṽ2 (ρ,Γ)

)
‖a∗‖2

2 =

[
1

ρ2
− λ min

(
Ṽ1 (Γ)

)]
‖a∗‖2

2 ≤
1

ρ2
‖a∗‖2

2 , (B.48)
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and, using (B.26) in conjunction with Lemma 8 of [69] and Lemma B.0.1.b:

‖r∗‖2
2 ≤

Φ2

ρ2λ̂ min

(
Ṽ1 (Γ)

) ≤ Φ2

ρ2γminλ̂ min (V1)
, (B.49)

where Φ = sup
z∈∂f̂(a∗)

{‖z‖2}. Applying (B.48) and (B.49) to (B.45) and (B), we get:

∣∣∣f̂ (a∗)− f̂ (ā [T ])
∣∣∣ ≤ ( 1

ρT

)[
‖a∗‖2

2

2
+

2Φ2

γ minλ̂ min (V1)

]
,

and: ∥∥RΓā [T ]
∥∥

2
≤
(

1

ρ2T

)[
‖a∗‖2 + 2

(
Φ2

γ minλ̂ min (V1)
+ ρ2

)]
.

c) We shall proceed in a similar fashion to the proof of Theorems 3 of [69]. We once again
start by letting a∗ be the optimal ASO solution that the PAC trajectory converges to, as proven
in in part a). Since f̂ is α-strongly convex and L-strongly continuous, we can use the following
inequality:4

min
{
α ‖a [τ + 1]− a∗‖2

2 ,
1

L

∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2

}
≤(

∇f̂ (a [τ + 1])−∇f̂ (a∗)
)T

(a [τ + 1]− a∗)

m

θα ‖a [τ + 1]− a∗‖2
2 +

(1− θ)
L

∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
≤(

∇f̂ (a [τ + 1])−∇f̂ (a∗)
)T

(a [τ + 1]− a∗) . (B.50)

for all θ ∈ [0, 1]. Using (B.50) in conjunction with (B.29) and (B.31), we have:

2θα

ρ
‖a [τ + 1]− a∗‖2

2 +
2 (1− θ)
ρL

∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
≤

‖q [τ ]− q∗‖2
W − ‖q [τ + 1]− q∗‖2

W (B.51)

Letting δ ≥ 0 satisfy:

δ ≤ min

 2αθγminλ̂ min (V1)

ρλ max

(
Ṽ2 (ρ,Γ)

)(
γminλ̂ min (V1) + 2λ max

(
Ṽ2 (ρ,Γ)

)) , ργminλ̂ min (V1) (1− θ)
L

}
,

(B.52)
4These inequalities are depicted in Lemma 3 in [69]

123



we have from (B.26) and (B.29):

δ ‖r [τ + 1]− r∗‖2
2 ≤

(
δ

γminλ̂ min (V1)

)
‖r [τ + 1]− r∗‖2

Ṽ1(Γ)

=

(
δ

γminλ̂ min (V1)

)∥∥RΓ (r [τ + 1]− r∗)
∥∥2

2

=

(
δ

γminλ̂ min (V1)

)∥∥∥∥1

ρ

(
∇f̂ (a [τ + 1])−∇f̂ (a∗)

)
+Ṽ2 (ρ,Γ) (a [τ + 1]− a [τ ])

∥∥∥2

2

≤

(
2δ

γminλ̂ min (V1)

)[
1

ρ2

∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
+
∥∥∥Ṽ2 (ρ,Γ) (a [τ + 1]− a [t])

∥∥∥2

2

]

≤

(
2δ

γminλ̂ min (V1)

)[
1

ρ2

∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2

+
(
λ max

(
Ṽ2 (ρ,Γ)

))2

‖a [τ + 1]− a [τ ]‖2
2

]
. (B.53)

Using the second RHS component of (B.52) with the first RHS summand of (B.53), we have:[
2δ

ρ2γminλ̂ min (V1)

]∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
≤
[

2 (1− θ)
ρL

] ∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
.

(B.54)
Similarly, using the first RHS component of (B.52) with the second summand of (B.53), we have:2

(
λ max

(
Ṽ2 (ρ,Γ)

))2

δ

γminλ̂ min (V1)

 ‖a [τ + 1]− a [τ ]‖2
2 ≤

 4αθλ max

(
Ṽ2 (ρ,Γ)

)
ρ
(
γminλ̂ min (V1) + 2λ max

(
Ṽ2 (ρ,Γ)

))
 ‖a [τ + 1]− a [τ ]‖2

2

=

2αθ

ρ
− 2αθγminλ̂ min (V1)

ρ
(
γminλ̂ min (V1) + 2λ max

(
Ṽ2 (ρ,Γ)

))
 ‖a [t+ 1]− a [t]‖2

2

≤
[

2αθ

ρ
− δλ max

(
Ṽ2 (ρ,Γ)

)]
‖a [τ + 1]− a [τ ]‖2

2 ≤(
2αθ

ρ

)
‖a [τ + 1]− a [t]‖2

2 − δ ‖a [τ + 1]− a [τ ]‖2
Ṽ2(ρ,Γ) (B.55)
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Combining (B.54) and (B.55) with (B.53), we have:

δ ‖q [τ + 1]− q∗‖2
W ≤

(
2αθ

ρ

)
‖a [τ + 1]− a [t]‖2

2+

(
2 (1− θ)
ρL

)∥∥∥∇f̂ (a [τ + 1])−∇f̂ (a∗)
∥∥∥2

2
.

(B.56)
Using (B.51) on (B.56), we get:

δ ‖q [τ + 1]− q∗‖2
W ≤ ‖q [τ ]− q∗‖2

W − ‖q [τ + 1]− q∗‖2
W

m

‖q [τ + 1]− q∗‖2
W ≤

(
1

1 + δ

)
‖q [τ ]− q∗‖2

W (B.57)

Iterating on (B.57) and using the zero-initialization assumption, we then obtain:

‖q [τ + 1]− q∗‖2
W ≤

(
1

1 + δ

)τ+1

‖q∗‖2
W . (B.58)

Bounding the LHS of (B.58) further, we obtain the desired:

‖a [τ + 1]− a∗‖2
Ṽ2(ρ,Γ) ≤

(
1

1 + δ

)τ+1

‖q∗‖2
W , (B.59)

‖r [τ + 1]− r∗‖2
2 ≤

(
1

1 + δ

)τ+1

‖q∗‖2
W . (B.60)

We can actually further bound the RHS of (B.58) using (B.48) and (B.49):(
1

1 + δ

)τ+1

‖q∗‖2
W =

(
1

1 + δ

)τ+1 [
‖a∗‖2

Ṽ2(ρ,Γ) + ‖r∗‖2
2

]

≤
(

1

1 + δ

)τ+1 [
1

ρ2
‖a∗‖2

2 +

∥∥∥∇f̂ (a∗)
∥∥∥2

2

ρ2γminλ̂ min (V1)

 (B.61)

Finally, we can determine the optimal θ∗ to use so as to maximize δ. This is accomplished easily
enough by setting both terms of (B.52) equal to one another and solving for θ∗:

θ∗ =
γminλ̂ min (V1) + 2ρ−2

2αL+ γminλ̂ min (V1) + 2ρ−2
. (B.62)

Plugging θ∗ into (B.52), we get the following δ∗ rate:

δ∗ =

(
ργminλ̂ min (V1)

L

)
(1− θ∗) =

2αργminλ̂ min (V1)

2αL+ γminλ̂ min (V1) + 2ρ−2
.
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Proof of Theorem 5.2.8.
a) In this part, we want to choose PAC parameters ρ and γmin to maximize the ergodic conver-
gence rate (5.44):

ξ E1 (ρ, γmin) =
ρ

2

[
‖a∗‖2

2 +
4Φ2

γminλ̂ min (V1)

]−1

, (B.63)

subject to Assumption 5.2.4:
1 ≥ ρ2γminλ max (V1) . (B.64)

Noting that (B.63) is directly proportional to ρ, we have from (B.64):

ρ (γmin) =
(√

γminλ max (V1)
)−1

(B.65)

Plugging (B.65) into (B.63) and then optimizing over γmin by setting the partial of (B.63) w.r.t.
γmin to zero, we get:

ξ∗E1 =

√
ψ (D)

2Φ ‖a∗‖2

.

where:

γ∗E1 =
4Φ2

λ̂ min (V1) ‖a∗‖2
2

(B.66)

ρ∗E1 =

(√
γ∗E1λ max (V1)

)−1

. (B.67)

b) In this part, we want to choose PAC parameters ρ and γmin to maximize the ergodic conver-
gence rate (5.45):

ξ P (ρ, γmin) =
2αργminλ̂ min (V1)

2αL+ 2ρ−2 + γminλ̂ min (V1)
, (B.68)

subject to Assumption 5.2.4:
1 ≥ ρ2γminλ max (V1) (B.69)

Noting that (B.68) is directly proportional to ρ, we have from (B.64):

ρ (γmin) =
(√

γminλ max (V1)
)−1

. (B.70)

Plugging (B.70) into (B.68) and then optimizing over γmin by setting the partial of (B.68) w.r.t.
γmin to zero, we get:

ξ∗P =

(
1

2
√
α−1L

)√
2λ̂ min (V1)ψ (D)

2λ max (V1) + λ̂ min (V1)
,
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where:

γ∗P =
2αL

2λ max (V1) + λ̂ min (V1)
(B.71)

ρ∗P =
(√

γ∗Pλ max (V1)
)−1

. (B.72)

Proof of Proposition 5.3.1. In order to prove (5.62), we rewrite (27) as y = Ax where y = ν̄j[τ ],

x =

[∑τ
s=0 a[s]
a[τ ]

]
and A =

[
ργj [B]j ργ̂j[τ ] [B]j

]
. It is easy to see that x and y are known

where as A is unknown. Noting that A ∈ R|Oj |×2|T | and y ∈ R|Oj |, and that 2|T | � |Oj|, it is
not possible to uniquely identify A using x and y. Therefore, ‖ν̂j→k [τ ]− ν̄j[τ ]‖2 6→ 0 Therefore
(5.62) follows, proving Proposition 5.3.1 .
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Appendix C

Simulations data

In this Appendix all the data regarding the test networks and the market simulations are reported

C.1 Modified IEEE 13 Bus system

Node Phase 1 [kVA] Phase 2 [kVA] Phase 3 [kVA]
632 0+j0 0+j0 0+j0
633 0+j0 0+j0 0+j0
645 0+j0 170+j125 0+j0
634 0+j0 -(230+j132) 0+j0
652 0+j0 0+j0 0+j0
646 -(120+j90) -(120+j90) -(120+j90)
671 385+j220 385+j220 385+j220
692 485+j190 68+j60 290+j212
684 -(100+j10) (0+j0) -(100+j10)
675 0+j0 0+j0 170+j80
611 128+j86 0+j0 0+j0
680 0+j0 0+j0 0+j0

Table C.1: Active and Reactive power data for the modified IEEE13 nodes test system
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C.2 Modified IEEE 123 Bus system

Node Phase 1 [kVA] Phase 2 [kVA] Phase 3 [kVA]
1 0+1i*0 0+1i*0 0+1i*0
2 40+1i*20 0+1i*0 0+1i*0
3 0+1i*0 20+1i*10 0+1i*0
4 0+1i*0 0+1i*0 -(35+1i*20)
5 0+1i*0 0+1i*0 50+1i*20
6 0+1i*0 0+1i*0 60+1i*10
7 0+1i*0 0+1i*0 40+1i*20
8 20+1i*10 0+1i*0 0+1i*0
9 0+1i*0 0+1i*0 0+1i*0

10 40+1i*20 0+1i*0 0+1i*0
11 20+1i*10 0+1i*0 0+1i*0
12 40+1i*20 0+1i*0 0+1i*0
13 0+1i*0 20+1i*10 0+1i*0
14 0+1i*0 0+1i*0 0+1i*0
15 0+1i*0 0+1i*0 0+1i*0
16 0+1i*0 0+1i*0 0+1i*0
17 0+1i*0 0+1i*0 40+1i*20
18 0+1i*0 0+1i*0 20+1i*10
19 0+1i*0 0+1i*0 0+1i*0
20 40+1i*20 0+1i*0 0+1i*0
21 40+1i*20 0+1i*0 0+1i*0
22 0+1i*0 0+1i*0 0+1i*0
23 0+1i*0 40+1i*20 0+1i*0
24 0+1i*0 0+1i*0 0+1i*0
25 0+1i*0 0+1i*0 40+1i*20
26 0+1i*0 0+1i*0 0+1i*0
27 0+1i*0 0+1i*0 0+1i*0
28 0+1i*0 0+1i*0 0+1i*0
29 40+1i*20 0+1i*0 0+1i*0
30 40+1i*20 0+1i*0 0+1i*0
31 0+1i*0 0+1i*0 50+1i*20
32 0+1i*0 0+1i*0 -(20+1i*10)
33 0+1i*0 0+1i*0 65+1i*10
34 40+1i*20 0+1i*0 0+1i*0
35 0+1i*0 0+1i*0 40+1i*20
36 40+1i*20 0+1i*0 0+1i*0
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Node Phase 1 [kVA] Phase 2 [kVA] Phase 3 [kVA]
37 0+1i*0 0+1i*0 0+1i*0
38 40+1i*20 0+1i*0 0+1i*0
39 0+1i*0 20+1i*10 0+1i*0
40 0+1i*0 20+1i*10 0+1i*0
41 -(30+1i*10) -(30+1i*10) -(30+1i*10)
42 0+1i*0 0+1i*0 (50+1i*10)
43 (-20+1i*10) 0+1i*0 0+1i*0
44 0+1i*0 -(40+1i*20) 0+1i*0
45 10+1i*5 0+1i*0 0+1i*0
46 30+1i*10 0+1i*0 0+1i*0
47 20+1i*10 0+1i*0 0+1i*0
48 35+1i*25 35+1i*25 35+1i*25
49 70+1i*50 70+1i*50 70+1i*50
50 35+1i*25 70+1i*50 35+1i*20
51 0+1i*0 0+1i*0 40+1i*20
52 20+1i*10 0+1i*0 0+1i*0
53 40+1i*20 0+1i*0 0+1i*0
54 40+1i*20 0+1i*0 0+1i*0
55 0+1i*0 0+1i*0 0+1i*0
56 20+1i*10 0+1i*0 0+1i*0
57 0+1i*0 20+1i*10 0+1i*0
58 0+1i*0 0+1i*0 0+1i*0
59 0+1i*0 20+1i*10 0+1i*0
60 0+1i*0 20+1i*10 0+1i*0
61 20+1i*10 0+1i*0 0+1i*0
62 0+1i*0 0+1i*0 0+1i*0
63 0+1i*0 0+1i*0 40+1i*20
64 40+1i*20 0+1i*0 0+1i*0
65 0+1i*0 75+1i*35 0+1i*0
66 35+1i*25 35+1i*25 70+1i*50
67 0+1i*0 0+1i*0 75+1i*35
68 0+1i*0 0+1i*0 0+1i*0
69 20+1i*10 0+1i*0 0+1i*0
70 40+1i*20 0+1i*0 0+1i*0
71 20+1i*10 0+1i*0 0+1i*0
72 40+1i*20 0+1i*0 0+1i*0
73 0+1i*0 0+1i*0 0+1i*0
74 0+1i*0 0+1i*0 40+1i*20
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Node Phase 1 [kVA] Phase 2 [kVA] Phase 3 [kVA]
75 0+1i*0 0+1i*0 40+1i*20
76 0+1i*0 0+1i*0 40+1i*20
77 105+1i*80 70+1i*50 70+1i*50
78 0+1i*0 40+1i*20 0+1i*0
79 0+1i*0 0+1i*0 0+1i*0
80 40+1i*20 0+1i*0 0+1i*0
81 0+1i*0 40+1i*20 0+1i*0
82 0+1i*0 0+1i*0 0+1i*0
83 40+1i*20 0+1i*0 0+1i*0
84 0+1i*0 0+1i*0 20+1i*10
85 0+1i*0 0+1i*0 20+1i*10
86 0+1i*0 0+1i*0 40+1i*20
87 0+1i*0 20+1i*10 0+1i*0
88 0+1i*0 40+1i*20 0+1i*0
89 40+1i*20 0+1i*0 0+1i*0
90 0+1i*0 0+1i*0 0+1i*0
91 0+1i*0 40+1i*20 0+1i*0
92 0+1i*0 0+1i*0 0+1i*0
93 0+1i*0 0+1i*0 40+1i*20
94 0+1i*0 0+1i*0 0+1i*0
95 40+1i*20 0+1i*0 0+1i*0
96 0+1i*0 20+1i*10 0+1i*0
97 0+1i*0 20+1i*10 0+1i*0
98 0+1i*0 0+1i*0 0+1i*0
99 40+1i*20 0+1i*0 0+1i*0

100 0+1i*0 40+1i*20 0+1i*0
101 0+1i*0 0+1i*0 40+1i*20
102 0+1i*0 0+1i*0 0+1i*0
103 0+1i*0 0+1i*0 20+1i*10
104 0+1i*0 0+1i*0 40+1i*20
105 0+1i*0 0+1i*0 40+1i*20
106 0+1i*0 0+1i*0 0+1i*0
107 0+1i*0 40+1i*20 0+1i*0
108 0+1i*0 40+1i*20 0+1i*0
109 0+1i*0 0+1i*0 0+1i*0
110 40+1i*20 0+1i*0 0+1i*0
111 0+1i*0 0+1i*0 0+1i*0
112 20+1i*10 0+1i*0 0+1i*0
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Node Phase 1 [kVA] Phase 2 [kVA] Phase 3 [kVA]
113 20+1i*10 0+1i*0 0+1i*0
114 -(70+1i*20) 0+1i*0 0+1i*0
115 20+1i*10 0+1i*0 0+1i*0
116 0+1i*0 0+1i*0 0+1i*0
117 0+1i*0 0+1i*0 0+1i*0
118 0+1i*0 0+1i*0 0+1i*0
119 0+1i*0 0+1i*0 0+1i*0

Table C.2: Active and Reactive power data for the modified IEEE123 nodes test system
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Glossary

AAC Active Adaptive Control.

AC Alternate current.

ADMM Alternating direction method of multipliers.

ASO Atomized standard optimization.

BF Branch flow.

BIM Bus injection model.

BM Balancing market.

CCP Closed, convex and prope.

CI Current injection.

dADMM Distributed alternating direction method of multipliers.

DERs Distributed energy resources.

DG Distributed generation.

DMM Dynamic market mechanism.

DR Demand response.

DSO Distribution system operator.

GNEP Generalized nash equilibrium problem.

GSO Global standard optimization.

HV High voltage.
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KKT Karush-Kuhn-Tucker.

MoM Method of multipliers.

NEP Nash equilibrium problem.

OPF Optimal power flow.

PAC Proximal atomic coordination.

REM Retail energy market.

SDP Semidefinite programming.

SOCP Second order cone programming.

TSO Transmission system operator.
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