
TITLE: Improvement of Virtual Screening predictions using Computational Intelligence methods  

RUNNING TITLE: Improvement of Virtual Screening using Computational Intelligence 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32319092?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(TITLE PAGE) 

Improvement of Virtual Screening predictions using Computational Intelligence methods 

Authors: 

Gaspar Cano 

Address: Computing Technology Department, University of Alicante, Ap. 99. E03080. Alicante, Spain. 

Phone: 0034-965903400 Ext 2616 

Fax: 0034-965909643 

Email: gcano@dtic.ua.es 

 

José García-Rodríguez 

Address: Computing Technology Department, University of Alicante, Ap. 99. E03080. Alicante, Spain. 

Phone: 0034-965903400 Ext 2616 

Fax: 0034-965909643 

Email: jgarcia@dtic.ua.es 

 

Horacio Pérez-Sánchez 

Address: Computer Science Department, Catholic University of Murcia (UCAM) E30107 Murcia, Spain. 

Phone: 0034-968277982 

Fax: 0034-968277943 

Email: hperez@ucam.edu* 

*Corresponding author 

  



ABSTRACT: 

 

Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands interact 

with drug targets. However, the accuracy of most VS methods is constrained by limitations in the scoring 

function that describes biomolecular interactions, and even nowadays these uncertainties are not 

completely understood. In order to improve accuracy of scoring functions used in most VS methods we 

propose a hybrid novel approach where neural networks (NNET) and support vector machines (SVM) 

methods are trained with databases of known active (drugs) and inactive compounds, being this 

information exploited afterwards to improve VS predictions.  
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1 INTRODUCTION 

In clinical research, it is crucial to determine the safety and effectiveness of current drugs and to 

accelerate findings in basic research (discovery of new leads and active compounds) into meaningful 

health outcomes. Both objectives need to process the large data set of protein structures available in 

biological databases such as PDB [1] and also derived from genomic data using techniques such as 

homology modeling [2]. Screenings in lab and compound optimization are expensive and slow methods, 

but bioinformatics can vastly help clinical research for the mentioned purposes by providing prediction of 

the toxicity of drugs and activity in non-tested targets, and by evolving discovered active compounds into 

drugs during clinical trials.  

This aim can be achieved thanks to the availability of bioinformatics tools and Virtual Screening (VS) 

methods that allow testing all required hypothesis before clinical trials. However, the accuracy of most 

VS methods is constrained by limitations in the scoring function that describes biomolecular interactions, 

and even nowadays these uncertainties are not completely understood. In order to solve this problem we 

propose a novel hybrid approach where Computational Intelligence (CI) methods that include neural 

networks (NNET) and support vector machines (SVM) are trained with databases of known active (drugs) 

and inactive compounds (decoys) and later used to improve VS predictions. Other approaches based on 

the use of molecular descriptors have been previously described in the literature but they were applied in 

concrete contexts of protein-ligand interactions [2-4], while the method we propose can be applied to any 

case of protein-ligand interactions and VS method, provided previous experimental information for active 

and inactive compounds is available.  

The rest of the paper is organized as follows. Section 2 describes the methodology including VS, NNET 

and SVM techniques, and molecular properties used in this study. Section 3 presents the experiments 

carried out to refine the VS methods with the previously mentioned techniques while section 4 reports the 

results obtained. In section 5 we present our main conclusions and further work. 



2  METHOLODOGY 

In this section we describe the methodologies we used for the improved prediction of protein-ligand 

affinities; a) the Virtual Screening method (VS), and b) two different CI techniques are employed that 

include; neural networks (NN) and support vector machines (SVM) trained with different molecular 

properties calculated for known active and inactive compounds selected from standard VS benchmarks. 

In Fig. (1) the flowchart of our experimental setup is depicted. 

 

 

Figure 1. Flowchart of the experimental setup used in this work. 

 

2.1 Virtual Screening  

Essentially, VS methods screen a large database of molecules in order to find compounds that fit some 

established criteria [6]. In the case of the discovery of new leads, compound optimization, toxicity 

evaluation and additional stages of the drug discovery process, we screen a large compound database to 

find a small molecule which interacts in a desired way with one or many different receptors. Among the 

many available VS methods for this purpose one of the most structurally accurate methods is protein-

ligand docking [7, 8]. These methods try to obtain rapid and accurate predictions of the 3D conformation 

a ligand adopts when it interacts with a given protein target, and also the strength of this union, in terms 

of its scoring function value. Docking simulations are typically carried out in a very concrete part of the 

protein surface in methods such as Autodock [9], Glide [10] and DOCK [11], to name a few. This region 

is commonly derived from the position of a particular ligand in the crystal structure, or from the crystal 

structure of the protein without any ligand. The former can be performed when the protein is co-

crystallized with the ligand, but it might happen that no crystal structure of this ligand-protein pair is at 



disposal. Nevertheless, the main problem is to take the assumption, once the binding site is specified, that 

many different ligands will interact with the protein in the same region, discarding completely the other 

areas of the protein. 

In essence, in a docking simulation we calculate the ligand-protein interaction energy for a given starting 

configuration of the system, which is represented by a scoring function [12]. In most VS methods the 

scoring function calculates electrostatic (ES), Van der Waals (VDW) and hydrogen bond (HBOND) 

terms. 

Furthermore, in docking methods it is normally assumed [13] that the minima of the scoring function, 

among all ligand-protein conformations, will accurately represent the conformation the system adopts 

when the ligand binds to the protein. Thus, when the simulation starts, we try to minimize the value of the 

scoring function by continuously performing random or predefined perturbations of the system, 

calculating for each step the new value of the scoring function, and accepting it or not following different 

approaches like the Monte Carlo minimization method [14,15].  

 

2.2 Computational Intelligence Methods 

We describe in this section the CI methods we will apply to refine the prediction capacities of VS. 

2.2.1 Neural Networks 

One of the most dominant application areas of neural networks is non-linear function approximation.  The 

main advantage of neural network modeling is that complex non-linear relationships can be modeled 

without assumptions about the form of the model. That feature is very useful in the field of drug design 

and drug discovery. 

More than two decades ago, the aqueous solubility of organic compounds was studied using neural 

approaches [16]. In next decade, supervised and unsupervised neural models were employed to model 

QSAR, predict molecules activities and structure, clustering and many more [17-18]. More recently the 

problem of drug solubility prediction from structure has been revisited [19]. Properties of organic 

compounds obtained from the molecular structure have been extensively studied using hybrid techniques 

that include neural networks [20-22]. Also identification of small-molecule ligands has been improved 



using neural techniques [23-25]. In the last years a large number of authors have designed hybrid methods 

that combined neural networks with other techniques to solve chemistry related problems.  

There are several types of feed-forward neural networks (NNET), the most widely used being multi-layer 

networks with sigmoidal activation functions (multi-layer perceptrons) and single layer networks with 

local activation functions (radial basis function networks). The good approximation capability of neural 

networks has been widely demonstrated by both practical applications and theoretical research. We 

decided to use a single-hidden-layer neural network with skip-layer connections in this study, as shown in 

Fig. (2), since it has been clearly demonstrated its impact on the differentiation between active and 

inactive compounds and other chemical applications [17]. For such purpose we used the nnet function of 

the R package [26]. 

 

Figure 2. Single Hidden layer Neural Network 

 

2.2.2 Support Vector Machines 

Support vector machines (SVM) [27]  are a group of supervised learning methods that can be applied to 

classification or regression. They represent the decision boundary in terms of a typically small subset of 

all training examples, called the support vectors. In a short period of time, SVM have found numerous 

applications in chemistry, such as in drug design [28] when discriminating between ligands and non-

ligands, inhibitors and non-inhibitors, drug discovery [29], quantitative structure-activity relationships 

(QSAR, where SVM regression is used to predict various physical, chemical, or biological properties) 

[30], chemometrics (optimization of chromatographic separation or compound concentration prediction 



from spectral data as examples), sensors (for qualitative and quantitative prediction from sensor data), 

chemical engineering (fault detection and modeling of industrial processes)[31]. An excellent review of 

SVM applications in chemistry can be found in [32].    

In our case, we exploit the idea that SVM produce a particular hyperplane in feature space that separates 

the active from the inactive compounds called the maximum margin hyperplane, as shown in Fig. (3). 

Most used kernels within SVM technique include: linear (dot), Polynomial, Neural (sigmoid,Tanh), 

Anova, Fourier, Spline, B Spline, Additive, Tensor and  Gaussian Radial Basis or Exponential Radial 

Basis. 

 

 

Figure 3. Support Vector Machines margin hyperplanes 

 

2.3 Ligand databases and molecular properties 

We carried out our study applying the methods described in sections 2.2.1 and 2.2.2 and using different 

sets of molecules that are known to be active or inactive. We employed standard VS benchmark tests, 

such as the Directory of Useful Decoys (DUD) [33], where VS methods check how efficient they are in 

differentiating ligands that are known to bind to a given target, from non-binders or decoys. Input data for 

each molecule of each set contains its molecular structure and whether it is active or not. We focused on 

three diverse DUD datasets (details are shown in Table 1) that cover kinases, nuclear hormone receptors 

and other enzymes such as TK, which corresponds to thymidine kinase (from PDB 1KIM), MR, which 



corresponds to mineralocorticoid receptor (from PDB 2AA2), and GPB, which corresponds to the enzyme 

glycogen phosphorylase (from PDB 1A8I).  

 

 

 

Protein PDB 
Code 

Resolution 
(Å) 

no of  
ligands 

no of  
decoys 

GPB 1A8I 1.8 52 1851 

MR 2AA2 1.9 15 535 

TK 1KIM 2.1 22 785 

 

Table 1. Number of active (ligands) and inactive compounds (decoys) for each of the sets used in this 

study, obtained from DUD [33]. 

 

 

Next, using the ChemoPy package [34] we calculated for all ligands of the TK, MR and GPB sets a 

diverse set of molecular properties derived from the set of constitutional, CPSA (charged partial surface 

area) and fragment/fingerprint-based descriptors, as described in Table 2. Constitutional properties 

depend on very simple descriptors of the molecule that can be easily calculated just counting the number 

of molecular elements such as atoms, types of atoms, bonds, rings, etc. These descriptors should be able 

to differentiate very dissimilar molecules, but might have problem for separating closely related isomers. 

CPSA descriptors take into account finer details of molecular structure, so they might be able to separate 

similar molecules, but might also have difficulties for separating isomers. Lastly, fragment and 

fingerprint-based descriptors take into account the presence of an exact structure (not a substructure) with 

limited specified attachment points. These descriptors are more difficult to calculate. In generating the 

fingerprints, the program assigns an initial code to each atom. The initial atom code is derived from the 

number of connections to the atom, the element type, atomic charge, and atomic mass. This corresponds 

to an ECFP with a neighborhood size of zero. These atom codes are then updated in an iterative manner 

to reflect the codes of each atoms neighbors. In the next iteration, a hashing scheme is employed to 

incorporate information from each atoms immediate neighbors. Each atoms new code now describes a 

molecular structure with a neighborhood size of one. This process is carried out for all atoms in the 



molecule. When the desired neighborhood size is reached, the process is complete and the set of all 

features is returned as the fingerprint. For the ECFPs employed in this paper, neighborhood sizes of two, 

four and six (ECFP 2, ECFP 4, ECFP 6) were used to generate the fingerprints. The resulting ECFPs can 

represent a much larger set of features than other fingerprints and contain a significant number of 

different structural units crucial for the molecular comparison, among the compounds. 

 

CONSTITUTIONAL DESCRIPTORS 

Natom Number of atoms 

MolWe Molecular Weight 

NRing Number of rings 

NArRg Numer of aromatic rings 

NRotB Number of rotatable bonds  

NHDon Number of H-bond donors  

NHAcc Number of H-bond acceptors  

CPSA DESCRIPTORS 

Msurf Molecular surface area 

Mpola Molecular polar surface area 

Msolu Molecular solubility 

AlogP Partition coefficient 

FRAGMENT/FINGERPRINT-BASED DESCRIPTORS 

ECP2, ECP4, ECP6 Extended-connectivity fingerprints (ECFP) 

EstCt Estate counts 

AlCnt AlogP2 Estate counts 

EstKy Estate keys 

MDLPK MDL public keys 

Table 2. Molecular descriptors used in this study. 

3. RESULTS 

A set of experiments has been carried out in order to test the validity of our initial hypothesis combining 

and refining VS results with the proposed CI methods. 

3.1 Activity prediction using Computational Intelligence methods  

NNET and SVM were trained with the previously described DUD datasets TK, MR and GPB. Molecular 

properties described in Table 2 were calculated for each molecule as described in the methods section.  

A k-fold cross-validation technique with k=5 was employed for NNET and SVM experiments. 

3.1.1 NNET 



A set of experiments has been developed to find the feed-forward neural network architecture that fits 

better to the problem of classification proposed. A combination of different number of neurons for the 

hidden layer has been tested with the different descriptors and datasets. We considered architectures with 

1, 2 and 3neurons in the hidden layer. Since results of combinations with more than 3 neurons did not 

improve the results, we decide to use the simplest option with 3 neurons due to its lower temporal cost for 

training phase. Results for AUC values are reported in Fig (4). 

.  

 

Figure 4. AUC values of the ROC curves obtained using NNET as described in section 2.2.1 for each 

property of Table 2 of the three different datasets GPB (blue), MR (red) and TK (yellow). Baseline for 

AUC=0.65 is also shown. The resulting AUC values for the combined properties described in Table 3 are 

also reported. 

 

 

3.1.2 SVM 

A set of experiments with different kernels has been developed to find the option with higher 

discrimination capacities between active and non-active compounds for each descriptor. More 

specifically, linear, polynomial, sigmoid and radial kernels has been tested with all the descriptors and 

datasets. Best results have been obtained with radial kernels and results obtained for AUC values are 

reported in Fig. (5). 
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Figure 5. AUC values of the ROC curves obtained using SVM as described in section 2.2.1 for each 

property of Table 2 of the three different datasets GPB (blue), MR (red) and TK (yellow). Baseline for 

AUC=0.65 is also shown. The resulting AUC values for the combined properties described in Table 3 are 

also reported. 

 

4. DISCUSSION 

AUC values reported by both NNET and SVM depend clearly on the considered molecular property, and 

to a lesser extent, on the molecular dataset studied (GPB, MR, TK). The reason for the latter might be that 

main active compounds of these sets have similar structures, as shown in Fig. (6), consisting in small 

molecules with two or four rings, and also because they establish similar interactions with the protein, 

mainly based on hydrogen bond networks. 

We propose a threshold value of 0.65 for AUC in order to discriminate which properties are useful for 

active/inactive prediction. Properties that simultaneously yield AUC values higher than this threshold for 

all sets using both NNET and SVM are; AlCnt, E246, ECP2 and MDLPK, while properties that yield 

AUC values lower than threshold are mostly AlogP, MolWe, MPola, MSolu, MSurf, NArgRg, Natom, 

NHacc, NHDon, NRing, and NRotB. So it seems clear that the best option for discriminating among 

active and inactive compounds in these datasets is to use fingerprint-based descriptors and to avoid the 

use of constitutional and CPSA descriptors. This is reasonable since fingerprint descriptors take into 

account more details about the structure of molecules, being able to efficiently discriminate with more 

accuracy between active compounds and their decoys.  
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Next, we studied whether combination of properties could lead to improvements on the predictive 

capability of these CI methods. Therefore we combined properties that yielded the lowest AUC values, 

constitutional descriptors, and the properties that yielded the highest AUC values, so fingerprint based 

descriptors. Combinations used are described in Table 3 and AUC values obtained are reported in Figs. 

(4) and (5). In the case of combinations of constitutional descriptors, there is no clear improvement for 

either NNET or SVM, while for fingerprint combinations, average AUC values for the three datasets 

improve slightly.   

Finally, top obtained AUC values for datasets GPB, MR and TK correspond to properties EE246 (0.96), 

EstCt (0.87) and EAE246 (0.94) when using NNET, and AE246 (0.98), EstKy (0.98)and AlCnt (0.95) 

when using SVM.  

COMBINATIONS OF CONSTITUTIONAL DESCRIPTORS 

MNBH 
Molecular polar surface area (MPola)+ Number of rotatable 

bonds (NRotB) + Number of H-Bond acceptors (NHAcc) 

MNB 
Molecular polar surface area (MPola) + Number of rotatable 

bonds (NRotB) 

NBH 
Number of rotatable bonds (NRotB) + Number of H-Bond 

acceptors (NHAcc) 

MoN 
Molecular polar surface area (MPola) + Number of H-Bond 

acceptors (NHAcc) 

COMBINATIONS OF FRAGMENT/FINGERPRINT-BASED DESCRIPTORS 

EAE246 
Estate counts (EstCt) + AlogP2 Estate counts (AlCnt) + Extended-

connectivity fingerprints (ECFP) 

EA Estate counts (EstCt) + AlogP2 Estate counts (AlCnt)  

AE246 
AlogP2 Estate counts (AlCnt) + Extended-connectivity 

fingerprints (ECFP) 

EE246 
Estate counts (EstCt) + Extended-connectivity fingerprints 

(ECFP) 

Table 3. Combinations of molecular descriptors used in this study. 

 

 
Figure 6. Depiction of the molecular structure and protein-ligand interactions established by main active 

compounds from A) MR, B) TK, and C) GPB. 

 



Consequently, and taking into account information obtained by CI methods we can post-process docking 

results obtained by the scoring function of VS methods and neglect resulting compounds that are 

predicted as inactive. Then we can sort them by the final affinity value predicted by the VS scoring 

function for such cases and study visually the top ones.  

 

5. CONCLUSIONS 

In this work we have shown how the predictive capability of the VS methods can be improved using CI 

methods such as neural networks and support vector machines. It must be mentioned that CI approaches 

can only be used when experimental data for active and non-active compounds for a given protein is 

available. 

This methodology can be used to improve drug discovery, drug design, repurposing and therefore aid 

considerably in clinical research. In the next steps we want to extend our ideas to the application of 

unsupervised CI methods. 
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