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Abstract. Virtual Screening (VS) methods can considerably aid clinical research, predicting how ligands 

interact with drug targets. Most VS methods suppose a unique binding site for the target, but it has been 

demonstrated that diverse ligands interact with unrelated parts of the target and many VS methods do not 

take into account this relevant fact. This problem is circumvented by a novel VS methodology named 

BINDSURF that scans the whole protein surface in order to find new hotspots, where ligands might 

potentially interact with, and which is implemented in last generation massively parallel GPU hardware, 

allowing fast processing of large ligand databases. BINDSURF can thus be used in drug discovery, drug 

design, drug repurposing and therefore helps considerably in clinical research. However, the accuracy of 

most VS methods and concretely BINDSURF is constrained by limitations in the scoring function that 

describes biomolecular interactions, and even nowadays these uncertainties are not completely 

understood. In order to improve accuracy of the scoring functions used in BINDSURF we propose a 

hybrid novel approach where neural networks (NNET) and support vector machines (SVM) methods are 

trained with databases of known active (drugs) and inactive compounds, being this information exploited 

afterwards to improve BINDSURF VS predictions.  

Keywords: Neural Networks, Support Vector Machines, Clinical Research, Drug Discovery, Virtual 

Screening, Parallel Computing. 

1 INTRODUCTION 

In clinical research, it is crucial to determine the safety and effectiveness of current drugs and to 

accelerate findings in basic research (discovery of new leads and active compounds) into meaningful 

health outcomes. Both objectives need to process the large data set of protein structures available in 

biological databases such as PDB (Berman, et al., 2000) and also derived from genomic data using 

techniques as homology modeling (Sanchez & Sali, 1998). Screenings in lab and compound optimization 

are expensive and slow methods (Yao, et al., 2009), but bioinformatics can vastly help clinical research 
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for the mentioned purposes by providing prediction of the toxicity of drugs and activity in non-tested 

targets, and by evolving discovered active compounds into drugs for the clinical trials.  

This can be achieved thanks to the availability of bioinformatics tools and Virtual Screening (VS) 

methods that allow testing all required hypothesis before clinical trials. Nevertheless current Virtual 

Screening (VS) methods, such as docking, fail to make good toxicity and activity predictions since they 

are constrained by the access to computational resources; even the nowadays fastest VS methods cannot 

process large biological databases in a reasonable time-frame. Therefore, these constraints impose serious 

limitations in many areas of translational research. 

The use of last generation massively parallel hardware architectures such as Graphics Processing Units 

(GPUs) can tremendously overcome this problem. The GPU has become increasingly popular in the high 

performance computing arena, by combining impressive computational power with the demanding 

requirements of real-time graphics and the lucrative mass-market of the gaming industry (Garland & 

Kirk, 2010). Scientists have exploited this power in arguably every computational domain, and the GPU 

has emerged as a key resource in applications where parallelism is the common denominator (Garland et 

al., 2008). To maintain this momentum, new hardware features have been progressively added by 

NVIDIA to their range of GPUs, with the Fermi architecture (NVIDIA, 2009) being the most recent 

milestone in this path. Therefore, GPUs are well suited to overcome the lack of computational resources 

in VS methods, accelerating the required calculations and allowing the introduction of improvements in 

the biophysical models not a affordable in the past (Pérez-Sánchez & Wenzel, 2011). We have previously 

worked in this direction, showing how VS methods can benefit from the use of GPUs (Guerrero, et al., 

2011; Sánchez-Linares et al., 2011; Sánchez-Linares et al., 2012a). Moreover, another important lack of 

VS methods is that they usually take the assumption that the binding site derived from a single crystal 

structure will be the same for different ligands, while it has been shown that this does not always happen 

(Brannigan et al., 2010), and thus it is crucial to avoid this very basic supposition. In this work, we 

present a novel VS methodology called BINDSURF (Sánchez-Linares et al., 2012b) which takes 

advantage of massively parallel and high arithmetic intensity of GPUs to speed-up the required 

calculations in low cost and consumption desktop machines, providing new and useful information about 

targets and thus improving key toxicity and activity predictions. In BINDSURF a large ligand database is 

screened against the target protein over its whole surface simultaneously. Afterwards, information 



obtained about novel potential protein hotspots is used to perform more detailed calculations using 

particular VS method, but just for a reduced and selected set of ligands. 

Other authors have also performed VS studies over whole protein surfaces (Hetényi & van der Spoel, 

2002) using different approaches and screening small ligand databases, but as far as we know, none of 

them have been implemented on GPUs, while BINDSURF has been designed from scratch taken into 

account the GPU architecture. 

However, the accuracy of most VS methods is constrained by limitations in the scoring function that 

describes biomolecular interactions, and even nowadays these uncertainties are not completely 

understood. In order to solve this problem we propose a novel hybrid approach where softcomputing 

methods that includes neural networks (NNET) and support vector machines (SVM) are trained with 

known active (drugs) and inactive compounds and are later used to improve VS predictions. 

The rest of the paper is organized as follows. Section 2 describes the methodology including VS using 

BINDSURF, NNET and SVM techniques, and molecular properties used in this study. Section 3 presents 

the experiments carried out to refine the BINDSURF method with the previously mentioned techniques 

while section 4 discusses the results obtained. In section 5 we present our main conclusions and further 

work. 

2  METHOLODOGY 

In this section we describe the methodologies we used for improving the prediction of protein-ligand 

affinity; a) the Virtual Screening method BINDSURF, and b) two different soft computing techniques are 

studied; neural networks (NN) and support vector machines (SVM) trained with different molecular 

properties calculated for known active and inactive compounds selected from standard VS benchmarks. 

In Figure 1 a flowchart of the methodology is shown; once a protein target (component A) and a 

compound database (component B) have been chosen, compounds for which no information about 

affinity against protein target is available (component C) are docked using BINDSURF (component D) 

and estimated affinities (component E) and 3D poses (component F) are obtained. Using the methods 

described in this section, we start selecting compounds from the database for which affinity data is 

available (component G), so that we can calculate relevant descriptors (component H) and train 

adequately neural networks and support vector machines (component I) so that affinities obtained in 

component E are post-processed and we finally obtain improved values for the affinities (component J). 



 

 

 

Figure 1. Flowchart of the methodology used for improving the predictive capability of BINDSURF.  

 

2.1 Virtual Screening with BINDSURF 

The main idea underlying our VS method BINDSURF is the protein surface screening method, 

implemented in parallel on GPUs. Essentially, VS methods screen a large database of molecules in order 

to find which one fit some established criteria (Jorgensen, 2004). In the case of the discovery of new 

leads, compound optimization, toxicity evaluation and additional stages of the drug discovery process, we 

screen a large compound database to find a small molecule which interacts in a desired way with one or 

many different receptors. Among the many available VS methods for this purpose we decided to use 

protein-ligand docking (Yuriev et al., 2011; Huang & Zou, 2010). These methods try to obtain rapid and 

accurate predictions of the 3D conformation a ligand adopts when it interacts with a given protein target, 

and also the strength of this union, in terms of its scoring function value. Docking simulations are 

typically carried out using a very concrete part of the protein surface in methods like Autodock (Morris et 

al., 1998), Glide (Friesner et al., 2004) and DOCK (Ewing et al., 2001), to name a few. This region is 

commonly derived from the position of a particular ligand in the crystal structure, or from the crystal 

structure of the protein without any ligand. The former can be performed when the protein is co-

crystallized with the ligand, but it might happen that no crystal structure of this ligand-protein pair is at 

disposal. Nevertheless, the main problem is to take the assumption, once the binding site is specified, that 

many different ligands will interact with the protein in the same region, discarding completely the other 

areas of the protein. 
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Given this problem we propose to overcome it by dividing the whole protein surface into defined regions. 

Next, docking simulations for each ligand are performed simultaneously in all the specified protein spots. 

Following this approach, new hotspots might be found after the examination of the distribution of scoring 

function values over the entire protein surface. This information could lead to the discovery of novel 

binding sites. If we compare this approach with a typical docking simulation performed only in a region 

of the surface, the main drawback of this approach lies on its increased computational cost. We decided to 

pursue in this direction and show how this limitation can be overcome thanks to GPU hardware and new 

algorithmic designs. 

In essence, in a docking simulation we calculate the ligand-protein interaction energy for a given starting 

configuration of the system, which is represented by a scoring function (Wang et al., 2004). In 

BINDSURF the scoring function calculates electrostatic (ES), Van der Waals (VDW) and hydrogen bond 

(HBOND) terms. 

Furthermore, in docking methods it is normally assumed (Jorgensen, 2004) that the minima of the scoring 

function, among all ligand-protein conformations, will accurately represent the conformation the system 

adopts when the ligand binds to the protein. Thus, when the simulation starts, we try to minimize the 

value of the scoring function by continuously performing random or predefined perturbations of the 

system, calculating for each step the new value of the scoring function, and accepting it or not following 

different approaches like the Monte Carlo minimization method (Metropolis et al., 1953) or others. 

Simulations were always carried out with a total of 500 Monte Carlo steps. For a detailed discussion it is 

advisable to have a look at our previous BINSURF publication (Sánchez-Linares et al., 2012b). 

2.2 Softcomputing Methods 

We review the softcomputing methods we will apply to refine the prediction capacities of BINDSURF. 

2.2.1 Neural Networks 

One of the most dominant application areas of neural networks is non-linear function approximation.  The 

main advantage of neural network modeling is that complex non-linear relationships can be modeled 

without assumptions about the form of the model. That feature is very useful in the field of drug design 

and discovery. 

In the last years a large number of authors have designed hybrid methods that combined neural networks 

with other techniques to solve chemistry related problems.  



More than two decades ago, the aqueous solubility of organic compounds was studied using neural 

approaches (Bodor, 1991). In next decade, supervised and unsupervised neural models were employed to 

model QSAR, predict molecules activities and structure, clustering and many more. (Schneider & Wrede 

1998; Peterson, 2000). More recently the problem of drug solubility prediction from structure has been 

revisited (Jorgensen & Duffy, 2002). The prediction of physico-chemical properties of organic 

compounds from molecular structure has been extensively studied using hybrid techniques that include 

neural networks (Taskinen & Yliruusi, 2003; Weisel et al., 2010; Pal & Panja, 2013). Also identification 

of small-molecule ligands has been improved using neural techniques (Durrant & McCammon, 2010; 

Durrant and McCammon 2011; Romero Reyes et al., 2013). 

There are several types of feed-forward neural networks (NNET), the most widely used being multi-layer 

networks with sigmoidal activation functions (multi-layer perceptrons) and single layer networks with 

local activation functions (radial basis function networks). The good approximation capability of neural 

networks has been widely demonstrated by both practical applications and theoretical research. We 

decided to use a single-hidden-layer neural network with skip-layer connections in this study (see Figure 

2) since it has been clearly demonstrated its impact on the differentiation between active and inactive 

compounds and other chemical applications (Schneider & Wrede 1998). For such purpose we used the 

nnet function of the R package (Venables & Ripley, 2002). 

 

 

Figure 2. Single Hidden layer Neural Network 

 

 



2.2.2 Support Vector Machines 

Support vector machines (SVM) (Cortes & Vapnic, 1995) are a group of supervised learning methods that 

can be applied to classification or regression. They represent the decision boundary in terms of a typically 

small subset of all training examples, called the support vectors. In a short period of time, SVM have 

found numerous applications in chemistry, such as in drug design (discriminating between ligands and 

nonligands, inhibitors and noninhibitors, etc.) (Jorissen and Gilson, 2005), drug discovery (Warmuth et 

al., 2003), quantitative structure-activity relationships (QSAR, where SVM regression is used to predict 

various physical, chemical, or biological properties) (Kriegl et al., 2005), chemometrics (optimization of 

chromatographic separation or compound concentration prediction from spectral data as examples), and 

sensors (for qualitative and quantitative prediction from sensor data), chemical engineering (fault 

detection and modeling of industrial processes) (Lee et al., 2005). An excellent review of SVM 

applications in chemistry was published by Ivancicuc (Ivancicuc, 2007). 

In our case, we exploit the idea that SVM produce a particular hyperplane in feature space, that separates 

active from inactive compounds, called the maximum margin hyperplane (see Figure 3). 

Most used kernels within SVM include: linear (dot), Polynomial, Neural (sigmoid,Tanh), Anova, Fourier, 

Spline, B Spline, Additive, Tensor and  Gaussian Radial Basis or Exponential Radial Basis. 

 

 

Figure 3. Support Vector Machines margin hyperplanes 

 

2.3 Ligand databases and molecular properties 



We carried out our study applying the methods described in sections 2.2.1 and 2.2.2 and using different 

sets of molecules that are known to be active or inactive. We employed standard VS benchmark tests, 

such as the Directory of Useful Decoys (DUD) (Huang et al., 2006), where VS methods check how 

efficient they are in differentiating ligands that are known to bind to a given target, from non-binders or 

decoys. Input data for each molecule of each set contains information about its molecular structure and 

whether it is active or not. We focused on three diverse DUD datasets (details are shown in Table 1) that 

cover kinases, nuclear hormone receptors and other enzymes such as TK, which corresponds to thymidine 

kinase (from PDB 1KIM), MR, which corresponds to mineralocorticoid receptor (from PDB 2AA2), and 

GPB, which corresponds to the enzyme glycogen phosphorylase (from PDB 1A8I).  

 

Protein	   PDB	  
Code	  

Resolution	  
(Å)	  

no	  of	  	  
ligands	  

no	  of	  	  
decoys	  

GPB	   1a8i	   1.8	   52	   1851	  

MR	   2aa2	   1.9	   15	   535	  

TK	   1kim	   2.1	   22	   785	  

Table 1. Number of active (ligands) and inactive compounds (decoys) for each of the ligand datasets used 
in this study and obtained from DUD. 

 

Next, using the ChemoPy package (Cao et al., 2013) we calculated for all ligands of the TK, MR and 

GPB sets a diverse of molecular properties derived from the set of constitutional, CPSA (charged partial 

surface area) and fragment/fingerprint-based descriptors, as described in Table 2. Constitutional 

properties depend on very simple descriptors of the molecule that can be easily calculated just counting 

the number of molecular elements such as atoms, types of atoms, bonds, rings, etc. These descriptors 

should be able to differentiate very dissimilar molecules, but might have problem for separating closely 

related isomers. CPSA descriptors take into account finer details of molecular structure, so they might be 

able to separate similar molecules, but might also have also difficulties for separating isomers. Lastly, 

fragment and fingerprint-based descriptors take into account the presence of an exact structure (not a 

substructure) with limited specified attachment points. These descriptors are more difficult to calculate. In 

generating the fingerprints, the program assigns an initial code to each atom. The initial atom code is 

derived from the number of connections to the atom, the element type, atomic charge, and atomic mass. 

This corresponds to an ECFP with a neighborhood size of zero. These atom codes are then updated in an 



iterative manner to reflect the codes of each atoms neighbors. In the next iteration, a hashing scheme is 

employed to incorporate information from each atoms immediate neighbors. Each atoms new code now 

describes a molecular structure with a neighborhood size of one. This process is carried out for all atoms 

in the molecule. When the desired neighborhood size is reached, the process is complete and the set of all 

features is returned as the fingerprint. For the ECFPs employed in this paper, neighborhood sizes of two, 

four and six (ECFP 2, ECFP 4, ECFP 6) were used to generate the fingerprints. The resulting ECFPs can 

represent a much larger set of features than other fingerprints and contain a significant number of 

different structural units crucial for the molecular comparison, among the compounds. 

CONSTITUTIONAL	  DESCRIPTORS	  
Natom	   Number	  of	  atoms	  

MolWe	   Molecular	  Weight	  
NRing	   Number	  of	  rings	  

NArRg	   Numer	  of	  aromatic	  rings	  
NRotB	   Number	  of	  rotatable	  bonds	  	  

NHDon	   Number	  of	  H-‐bond	  donors	  	  

NHAcc	   Number	  of	  H-‐bond	  acceptors	  	  
CPSA	  DESCRIPTORS	  

Msurf	   Molecular	  surface	  area	  
Mpola	   Molecular	  polar	  surface	  area	  

Msolu	   Molecular	  solubility	  

AlogP	   Partition	  coefficient	  
FRAGMENT/FINGERPRINT-‐BASED	  DESCRIPTORS	  

ECP2,	  ECP4,	  ECP6	   Extended-‐connectivity	  fingerprints	  (ECFP)	  
EstCt	   Estate	  counts	  

AlCnt	   AlogP2	  Estate	  counts	  
EstKy	   Estate	  keys	  

MDLPK	   MDL	  public	  keys	  

Table 2. Molecular descriptors used in this study. 

 

3. RESULTS AND DISCUSSION 

A set of experiments has been carried out in order to test the validity of our initial hypothesis combining 

and refining BINDSURF results with the proposed softcomputing methods. 

3.1 Virtual Screening with BINDSURF 

After BINDSURF calculations (depicted by components A, B, C and D in Figure 1), results for three 

different DUD datasets (depicted by components E and F in Figure 1) are shown in the ROC curves of 



Figure 3. Given the results obtained for the DUD datasets TK, MR and GPB, and characterized by the 

value of the area under the curve (AUC) for each ROC curve, it could be said that, on average, 

BINDSURF performs similarly well than other docking methods such as DOCK (Shoichet et al., 1992), 

ICM (Abagyan et al., 1994) and GLIDE (Friesner et al., 2004) as reported for these datasets (Cross et al., 

2009) and shown in Table 3. 

 

Dataset	   BINDSURF	  
	  

DOCK	   ICM	   GLIDE	  

TK	   0.700	   0.521	   0.723	   0.681	  

MR	   0.695	   0.554	   0.789	   0.856	  

GPB	   0.675	   0.454	   0.462	   0.823	  

Table 3. Obtained values for AUC of the ROC curves for the docking programs BINDSURF, DOCK, 
ICM and GLIDE when processing DUD datasets TK, MR and GPB. 

 

Nevertheless, it is clear that there is still room for improvement in the scoring function that BINDSURF 

uses, and on its energy optimization method (Monte Carlo), since both affect directly to the effectiveness 

of the direct prediction of binding poses. 



 
Figure 4. From up-left to down right ROC plots; A) obtained using BINDSURF for the targets of the 
DUD data set GPB (red), MR (blue) and TK (green), B) obtained for data set TK using BINDSURF (red), 
the property that yields top AUC value (EAE246) using NNET, and the property that yields top AUC 
value (AlCnt) using SVM, C) obtained for data set MR using BINDSURF (red), the property that yields 
top AUC value (EstCt) using NNET, and the property that yields top AUC value (EstKy) using SVM, and 
D) obtained for data set GPB using BINDSURF (red), the property that yields top AUC value (EE246) 
using NNET, and the property that yields top AUC value (AE246) using SVM. In all cases diagonal line 
indicates random performance.  

 

3.2 Activity prediction using Softcomputing methods  

NNET and SVM were trained with the previously described DUD datasets TK, MR and GPB (depicted 

by component G in Figure 1). Molecular properties described in Table 2 were calculated for each 

molecule (depicted by components H in Figure 1) as described in the methods section. A k folds cross-

validation technique with k=5 was employed for neural networks and SVM experiments (depicted by 

component I in Figure 1). 
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3.2.1 Neural Networks 

A set of experiments was carried out in order to find the most optimal feedforward neural network 

architecture for the classification problem proposed. Different numbers of neurons for the hidden layer 

were tested with the different descriptors and datasets previously described. Best results were obtained 

with 3 neurons per layer, c(3), for most of the properties and datasets tested. Increasing the number of 

neurons did not improve the results, as shown in Figure 5.  

 

Figure 5. AUC values of the ROC curves for some of the properties calculated in this study for the 
different datasets TK, GPB and MR, and for different numbers of neurons per layer, c(1), c(2) and c(3) 
used in NNET. 

 

After having chosen 3 neurons per layer for the NNET architecture, we can observe in Figure 6 results 

obtained for all properties and different datasets, previously described. 
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Figure 6. AUC values of the ROC curves obtained using NNET as described in section 2.2.1 for each 
property of Table 2 of the three different datasets GPB (blue), MR (red) and TK (yellow). Baseline for 
AUC=0.65 is also shown. The resulting AUC values for the combined properties described in Table 5 are 
also reported, and also AUC values obtained by BINDSURF as depicted in Figure 4A. 

 

3.2.2 Support Vector Machines 

A set of experiments with different kernels was carried out in order to find the option with the best 

discrimination capacity between active and non-active compounds for each descriptor. More specifically, 

linear, polynomial, sigmoidal and radial kernels were tested with all the descriptors and datasets, and best 

results were obtained with radial kernel. The results obtained for AUC values of the most relevant 

properties for different datasets and with different kernels are reported in Figure 7. 
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Figure 7. AUC values of the ROC curves of some relevant properties obtained using SVM for different 
kernels. 

 

We can observe in Figure 8 results obtained with SVM and radial kernel for all properties and different 

datasets, previously described. 

 

Figure 8. AUC values of the ROC curves obtained using SVM as described in section 2.2.1 for each 
property of Table 2 of the three different datasets GPB (blue), MR (red) and TK (yellow). Baseline for 
AUC=0.65 is also shown. The resulting AUC values for the combined properties described in Table 5 are 
also reported, and also AUC values obtained by BINDSURF as depicted in Figure 4A. 
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4. DISCUSSION 

BINDSURF predictions reach AUC values around 0.7 as reported in Fig. 4 and Table 3. From the other 

side, AUC values reported by both NNET and SVM depend clearly on the considered molecular property, 

and to a lesser extent, on the molecular dataset studied (GPB, MR, TK). The reason for the latter might be 

that main active compounds of these sets have similar structures (as shown in Figure 9) consisting in 

small molecules with two or four rings, and also because they establish similar interactions with the 

protein, mainly based on hydrogen bond networks. 

We propose a threshold value of 0.65 for AUC in order to discriminate which properties are useful for 

active/inactive prediction. Properties that yield simultaneously AUC values higher than this threshold for 

all sets using both NNET and SVM are; AlCnt, E246, ECP2 and MDLPK, while properties that yield 

AUC values lower than threshold are mostly AlogP, MolWe, MPola, MSolu, MSurf, NArgRg, Natom, 

NHacc, NHDon, NRing, and NRotB. So it seems clear that the best option for discriminating among 

active and inactive compounds in these datasets is to use fingerprint-based descriptors and to avoid the 

use of constitutional and CPSA descriptors. This is reasonable since fingerprint descriptors take into 

account more details about the structure of molecules, being able to efficiently discriminate with more 

accuracy between active compounds and their decoys.  

Next, we studied whether combination of properties could lead to improvements on the predictive 

capability of these softcomputing methods. Therefore we combined properties that yielded the lowest 

AUC values, constitutional descriptors, and the properties that yielded the highest AUC values, so 

fingerprint based descriptors. Combinations used are described in Table 5 and AUC values obtained are 

reported in Figures 6 and 8. In the case of combinations of constitutional descriptors, there is no clear 

improvement for either NNET or SVM, while for fingerprint combinations, average AUC values for the 

three datasets improve slightly.   

 

 

TK MR GPB 
NNET_EE246 0.94 NNET_EstCt 0.87 NNET_EAE246 0.96 
SVM_AE246  0.95 SVM_EstKy 0.98 SVM_AlCnt  0.98 
BINDSURF  0.70 BINDSURF 0.70 BINDSURF  0.68 

Table 4. Top obtained values for AUC of the ROC curves when processing DUD datasets TK, MR and 
GPB for BINDSURF, NNET and SVM. For each dataset, the property that yields that top value of AUC 
for both NNET and SVM is specified.  



 

Finally, top obtained AUC values for datasets GPB, MR and TK correspond to properties EE246 (0.96), 

EstCt (0.87) and EAE246 (0.94) when using NNET, and AE246 (0.98), EstKy (0.98)and AlCnt (0.95) 

when using SVM. Obtained ROC curves for the mentioned top properties can be seen in Figure 4. 

Therefore, if we compare NN and SVM obtained results with the previous ones obtained by BINDSURF, 

as reported in Figures 4B, 4C and 4D and Table 4, it is clear that predictive capability increases when 

using the presented methodology with the application of softcomputing methods as depicted in Figure 1. 

 

 

COMBINATIONS	  OF	  CONSTITUTIONAL	  DESCRIPTORS	  

MNBH	  
Molecular	  polar	  surface	  area	  (MPola)+	  Number	  of	  rotatable	  
bonds	  (NRotB)	  +	  Number	  of	  H-‐Bond	  acceptors	  (NHAcc)	  

MNB	  
Molecular	  polar	  surface	  area	  (MPola)	  +	  Number	  of	  rotatable	  

bonds	  (NRotB)	  

NBH	  
Number	  of	  rotatable	  bonds	  (NRotB)	  +	  Number	  of	  H-‐Bond	  

acceptors	  (NHAcc)	  

MoN	  
Molecular	  polar	  surface	  area	  (MPola)	  +	  Number	  of	  H-‐Bond	  

acceptors	  (NHAcc)	  
COMBINATIONS	  OF	  FRAGMENT/FINGERPRINT-‐BASED	  DESCRIPTORS	  

EAE246	  
Estate	  counts	  (EstCt)	  +	  AlogP2	  Estate	  counts	  (AlCnt)	  +	  Extended-‐

connectivity	  fingerprints	  (ECFP)	  

EA	   Estate	  counts	  (EstCt)	  +	  AlogP2	  Estate	  counts	  (AlCnt)	  	  

AE246	  
AlogP2	  Estate	  counts	  (AlCnt)	  +	  Extended-‐connectivity	  

fingerprints	  (ECFP)	  

EE246	  
Estate	  counts	  (EstCt)	  +	  Extended-‐connectivity	  fingerprints	  

(ECFP)	  

Table 5. Combinations of molecular descriptors used in this study. 

 

 
Figure 9. Depiction of the molecular structure and protein-ligand interactions established by main active 
compounds from A) MR, B) TK, and C) GPB. 
 
 
 

A C B 



 

 

Figure 10, Depiction of the binding mode found by BINDSURF for ligand number 17 of the DUD data 
set of GPB (PDB ID: 1A8I) with pink skeleton and crystallographic pose for Beta-D-Glucopyranose 
Spirohydantoin, with green skeleton. 

 

Consequently, and taking into account information obtained by softcomputing methods, we can post-

process docking results obtained by the scoring function of BINDSURF (as depicted in the flowchart in 

Figure 1) and neglect resulting compounds that are predicted as inactive. Then we can sort them by the 

final affinity value predicted by the BINDSURF scoring function for such cases and study visually the top 

ones. As an example we can observe in Figure 10 the good agreement in the comparison between the top 

predicted compound from the DUD database for GPB and the crystallographic pose. In this case main 

stabilizing interactions are due to a hydrogen-bond network where the intervening nitrogen and oxygen 

atoms of the predicted compound fall closely to the same atoms of the crystallographic pose. 

 

5. CONCLUSIONS 

In this work we have shown how the predictive capability of the VS method BINDSURF can be 

improved applying softcomputing methods such as neural networks and support vector machines when 

using only a small set of representative chemical properties. We have also studied which of these 

properties are the most representative, and we have finally obtained that topological properties can 

efficiently discriminate between active and non-active compounds for the datasets studied. However, it 



must be mentioned that softcomputing approaches can only be used when there is data available for active 

and non-active compounds for a given protein. For further studies we consider it would be of high interest 

to train softcomputing methods with a diverse range of absolute affinity data for known compounds and 

to check whether prediction accuracy still increases with respect to the methodology presented on this 

work. 

Given the improvements shown in the obtained results, we conclude that this methodology can be used to 

improve drug discovery, drug design, repurposing and therefore aid considerably in biomedical research. 

In the next steps we want to substitute the Monte Carlo minimization algorithm already present in 

BINDSURF for more efficient optimization alternatives, such as the Ant Colony optimization method, 

which we have already efficiently implemented on GPU (Cecilia et al., 2011) and implement also full 

ligand and receptor flexibility.  
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