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Abstract 10 

The effect of the solvent (water, ethanol or acetone) used to impregnate CeyPr1-11 

yO2 (y = 1, 0.9 or 0.5) supports with rhodium nitrate, in order to prepare N2O 12 

decomposition catalysts, has been studied. RhOx/CeyPr1-yO2 catalysts were 13 

prepared and characterized by N2 adsorption at -196 ºC, XRD, Raman 14 

spectroscopy, TEM, XPS and H2-TPR. The activity for N2O decomposition of 15 

the catalysts studied was related with the RhOx-support interaction, and both 16 

the nature of the ceria support and of the solvent used for rhodium impregnation 17 

affected such interaction. Ceria doping with 10 % praseodymium had a positive 18 

effect in the RhOx-support interaction, but the benefit on the catalytic activity 19 

was only obtained for water impregnation because the temperature peaks 20 

created during calcination of ethanol and acetone-impregnated catalysts 21 

promoted Ce0.9Pr0.1O2 and RhOx sintering. The interaction between RhOx and 22 

Ce0.5Pr0.5O2 was not as good as that with Ce0.9Pr0.1O2. The best catalyst was 23 

obtained by impregnating Ce0.9Pr0.1O2 with a water solution of rhodium. 24 

However, if acetone or ethanol must be used for any reason the pure ceria 25 

support is more suitable (under the calcination conditions of this study; 250 to 26 

500 ºC at 10 ºC/min) because do not sinters during solvents combustion. 27 
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1. Introduction. 34 

 35 

Ceria-based materials are of interest in catalysis because of their oxygen 36 

storage capacity (OSC) and lattice oxygen mobility [1-3]. These properties are 37 

dependent of the crystal size and defects, and can be modified by ceria doping. 38 

Ceria-based oxides also affect the catalytic behavior of supported metals [4]. In 39 

this sense, RhOx supported on praseodymium-doped ceria has showed 40 

enhanced N2O decomposition activity with regard to RhOx catalyst with pure 41 

ceria support [5]. Praseodymium doping modifies the properties of the ceria 42 

lattice oxygen, lowers metal-oxygen binding energy in the Rh-mixed oxide 43 

interface and increases the number of defects (oxygen vacancies) [6]. 44 

In previous studies [7, 8], the calcination conditions were modified in 45 

order to improve the distribution of rhodium and to enlarge the rhodium-ceria 46 

interface of RhOx/CeO2 catalysts. Improved catalytic activity for N2O 47 

decomposition and CO oxidation was obtained by flash calcination, which 48 

consisted of introducing the ceria support-impregnated rhodium precursor in a 49 

furnace which was pre-heated at 250 ºC. The solvent used for rhodium 50 

precursor impregnation was water, as usually, and the speed at which water 51 

evaporates from the ceria-based support seemed very important for the catalyst 52 

properties, because it affected the size of the RhOx particles on the final catalyst 53 

[7, 8]. This lead us to look for different procedures to accelerate the evaporation 54 

of the rhodium precursor solvent, and one of the options was to change water 55 

by some other more volatile solvent. 56 
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In addition, the features of the solvent used in the impregnation step not 57 

only potentially affects the distribution of the impregnated metal precursor, due 58 

to the evaporation rate, but could also had some other important roles. The 59 

optimum conditions for a successful infiltration of the support pores mainly 60 

depend on the surface polarity, the density and polarity of the solvent, and the 61 

solubility of the precursor in the solvent. For a surface with a high density of 62 

polar functional groups a polar solvent will be suitable to obtain proper 63 

wettability and suitable diffusion through the pores [9]. The density and polarity 64 

of the solvent must be also taken into account in the impregnation of 65 

honeycomb monoliths, because the solution must enter into the channels [10, 66 

11].  67 

As far as we know, the effect of the solvent used to impregnate 68 

praseodymium doped ceria supports with a rhodium salt on the properties of the 69 

obtained catalysts has not been reported, and the goal of the current study is to 70 

compare three solvents (water, ethanol and acetone) for such purpose. 71 

 72 

2. Experimental 73 

2.1. Catalyst preparation 74 

Nine catalysts, labeled as RhOx(solvent)/CeyPr1-yO2, were prepared. The 75 

solvent could be water, ethanol or acetone and y takes values of 1, 0.9 or 0.5. 76 

Cerium and praseodymium nitrate precursors (Ce(NO3)3·6H2O (Aldrich, 99.99 77 

wt.%) and (Pr(NO3)3·6H2O (Aldrich, 99.9 wt.%)) were mixed in an agate mortar 78 

to obtain CeO2, Ce0.9Pr0.1O2 and Ce0.5Pr0.5O2 after calcination at 600 ºC for 90 79 
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min (heating rate 10 ºC/min). Rhodium was loaded on these oxides by incipient 80 

wetness impregnation with the proper amount of Rh(NO3)3·xH2O (Sigma-81 

Aldrich, ~36 wt.% as Rh) dissolved in water, ethanol or acetone in order to 82 

obtain  1 wt.% rhodium in the final catalysts. The catalysts were calcined in 83 

flash conditions, that is, the impregnated supports were introduced in a muffle 84 

furnace that was pre-heated at 250 ºC, and then the temperature was increased 85 

at 10 ºC/min up to 500 ºC (the maximum temperature was maintained for 30 86 

min).  87 

Additionally, three portions of pure ceria were impregnated with rhodium 88 

nitrate solutions using water, ethanol and acetone, respectively, and were 89 

placed in test tubes with a thermocouple located inside the solids. The tubes 90 

were introduced in a vertical furnace that was previously heated at 250 ºC, and 91 

the temperature was registered as a function of time. 92 

2.2. Catalysts characterization 93 

X-ray diffractograms were recorded in a Bruker D8-advance 94 

diffractometer, using CuKα radiation (λ =1.540598 Å). Diffractograms were 95 

recorded between 10º and 80º (2θ) with steps of 0.02º and a step time of 3 sec. 96 

The average crystal size (D) was determined using the Williamson-Hall’s 97 

equation. 98 

Raman spectra were recorded in a Jobin Yvon Horiba Raman dispersive 99 

spectrometer with a variable-power He-Ne laser source (632.8 nm), 0.9 mW of 100 

power, a confocal microscope with a 10x objective of long focal length and a 101 

diffraction grating of 600 lines/mm. The spectrum of each sample was obtained 102 
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using 2 scans with an acquisition time for each individual spectrum of 200 103 

seconds. 104 

X-ray photoelectron spectroscopy (XPS, K-ALPHA, Thermo Scientific) 105 

was used to analyze the catalysts surface. The powder catalysts were 106 

supported on a double-sided carbon tape and were analyzed without previous 107 

pretreatment. The spectra were collected using Al-Kα radiation (1486.6 eV), 108 

monochromatized by a twin crystal monochromator, yielding a focused X-ray 109 

spot with a diameter of 400 μm, at 3 mA × 12 kV. The alpha hemispherical 110 

analyzer was operated in the constant energy mode and pass energy of 50 eV. 111 

Charge compensation was achieved with the system flood gun that provides 112 

low energy electrons and low energy argon ions from a single source. Carbon 113 

concentration on the catalysts surface amounts to 30-40 % in all cases, and the 114 

binding energy (BE) and kinetic energy (KE) scales were adjusted by setting the 115 

C1s transition at 284.6 eV. 116 

Experiments of temperature programmed reduction with H2 (H2-TPR) 117 

were carried out in a Micromeritics Pulse ChemiSorb 2705 device, consisting of 118 

a tubular quartz reactor (inner diameter 5 mm) coupled to a TCD analyzer. A 119 

cold trap was placed before the TCD, consisting of a mixture of isopropyl 120 

alcohol and liquid nitrogen (temperature -89 ºC). The experiments were 121 

conducted with 20 mg of fresh catalyst at a ramp rate of 10 ºC/min from room 122 

temperature to 1050 ºC in 40 ml/min flow of 5 vol % H2 in Ar. 123 

Physical adsorption and desorption N2 isotherms were obtained at -196 124 

ºC in an automatic volumetric system (Autosorb-6, Quantachrome). Samples 125 

were outgassed at 150 ºC for 4 h under vacuum before the N2 adsorption 126 
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measurements. The BET surface areas were determined from the N2 127 

adsorption isotherms. 128 

TEM characterization was performed using a JEOL (JEM-2010) 129 

microscope, equipped with an EDS analyzer (OXFORD, model INCA Energy 130 

TEM100). A few droplets of an ultrasonically dispersed suspension of the 131 

catalyst in ethanol were placed in a copper grid with lacey carbon film and dried 132 

at ambient conditions. 133 

2.3. N2O decomposition tests 134 

N2O decomposition tests were performed in a U-shaped fix-bed quartz 135 

reactor, located in a vertical furnace at atmospheric pressure, with a 100 136 

mL/min flow (GHSV = 42000 h−1) of 1000 ppm N2O in He, using 100 mg of 137 

catalyst. The experiments consisted of point-by-point isothermal reactions in the 138 

range of 200 – 425 ºC, increasing the temperature in intervals of 25 ºC, which 139 

were extended until the steady state was reached. The gas composition was 140 

analyzed by a HP 6890 gas chromatograph equipped with a TCD and two 141 

columns (Porapak Q, for N2O, and Molecular Sieve 13X, for O2 and N2).  142 

 143 

3. Results and discussion. 144 

3.1. Catalysts temperature during rhodium nitrate thermal decomposition. 145 

The effect of the solvent used for rhodium precursor impregnation on the 146 

temperature profile during the further calcination step was studied as described 147 
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in section 2.1. The same experiment was performed with an empty test tube. 148 

The temperature profiles registered are plotted in Figure 1.  149 

The temperature profile of the empty test tube shows a sharp increase 150 

during approximately 5 minutes followed by a smooth increase that reaches a 151 

constant value of 220 ºC (slightly lower than the set-point temperature; 250 ºC) 152 

after 10 minutes. The temperature profiles of the impregnated ceria samples are 153 

different. The temperature of the sample impregnated with the water solution 154 

increased until 100 ºC, and reached a plateau at this temperature that can be 155 

attributed to water evaporation. A second increase of temperature occurs 156 

afterwards, reaching the same temperature than the empty tube in 15 min. The 157 

samples impregnated with the ethanol or acetone solutions also exhibit solvent 158 

evaporation (boiling temperature = 78 ºC and 56 ºC for ethanol and acetone, 159 

respectively) but this period is much shorter than in water impregnation, 160 

because a sharp increase of temperature is observed. The peak temperatures 161 

reached are considerably higher than the furnace temperature. This behavior is 162 

attributed to the exothermal combustion of the solvent. As it will be appealed for 163 

several times throughout this article, the temperature increase occurred during 164 

the thermal treatment affects the final features of the catalysts impregnated with 165 

acetone or ethanol rhodium solutions. 166 

3.2. N2O decomposition tests. 167 

N2O decomposition tests were performed with the nine catalysts 168 

prepared, and the conversion curves obtained are compiled in Figure 2.  169 

The nature of the ceria-based support and the solvent used for rhodium 170 

precursor impregnation affect the final activity of the catalysts. For pure ceria, 171 
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the type of solvent has no effect on the catalysts behavior (Figure 2.a). The 172 

three RhOx(solvent)/CeO2 catalysts decompose N2O from 200 ºC approximately 173 

and achieve total decomposition at 375 ºC following the same decomposition 174 

profile. On the contrary, the solvent used for rhodium precursor impregnation 175 

strongly modifies the behavior of catalysts prepared with doped ceria supports 176 

(Figures 2.b and 2.c). Regardless the molar fraction of praseodymium in doped 177 

ceria, the best results were obtained with catalysts impregnated with the water 178 

solution of rhodium nitrate. Both ethanol and acetone impregnations lead to a 179 

significant decrease of the catalytic activity with regard to the counterpart 180 

catalysts impregnated with water. The N2O decomposition curves obtained for 181 

praseodymium-containing catalysts impregnated with acetone or ethanol 182 

rhodium solution were delayed by 50 - 75 ºC with regard to the curves of the 183 

catalysts impregnated with water. The effect of the solvent on the 184 

physicochemical properties of the catalysts, and at the end on their catalytic 185 

performance, is analyzed in detail in the coming sections. 186 

The temperatures required to decompose 50 % of N2O (T50) in these 187 

catalytic tests have been compiled in Table 1. 188 

Comparing the T50 values, it can be concluded that the impregnation with 189 

ethanol or acetone rhodium solutions has a negative effect on catalysts 190 

supported on doped ceria with regard to catalysts supported on pure ceria. 191 

However, using water as the solvent, superior performance of 192 

RhOx(H2O)/Ce0.9Pr0.1O2 is observed with regard to catalysts with pure and 50 % 193 

praseodymium doped ceria supports. The positive effect of 10 % ceria doping 194 

with praseodymium is in agreement with previous publications [6]. The N2O 195 



 9 

decomposition capacity of catalysts prepared by water impregnation of rhodium 196 

follows the trend: 197 

RhOx/Ce0.9Pr0.1O2 > RhOx/CeO2 ≈ RhOx/Ce0.5Pr0.5O2 198 

According to this trend, ceria doping with 10 % praseodymium has a 199 

positive effect on the catalytic activity, as already observed [6], while 50 % 200 

praseodymium doping has no effect. As it will be discussed afterwards, the 201 

amount of praseodymium not only affects ceria properties but also the RhOx-202 

ceria interaction and this can explain the observed trend. For a future work, it 203 

will be desirable to perform an optimization study of the praseodymium amount 204 

on the RhOx/CeyPr1-yO2 catalysts (by using water impregnation of rhodium 205 

precursor), but this is out of the scope of the current study. 206 

3.3. Catalysts characterization by N2 adsorption at -196 ºC, XRD and Raman 207 

spectroscopy. 208 

N2 adsorption at -196 ºC, XRD and Raman spectroscopy techniques 209 

were used to analyze the physicochemical properties of the materials prepared. 210 

These techniques provide (not only but mainly) information about the properties 211 

of the ceria-based supports. The characterization results obtained are 212 

presented in Table 2, including the BET surface area of the supports and 213 

catalysts and the ceria supports crystal size and lattice parameters determined 214 

by XRD.  215 

The BET surface areas of all catalysts prepared with the un-doped ceria 216 

support are almost equal (56-60 m2/g), regardless the solvent used for rhodium 217 

impregnation, and are also similar to that of the ceria support (61 m2/g). In 218 
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accordance with the BET values, the ceria crystal sizes and ceria lattice 219 

parameters corresponding to these three catalysts are also similar to each 220 

other. These results allow concluding that the nature of the solvent used for 221 

rhodium impregnation do not affect the particle size/area of the pure ceria 222 

support (both parameters are related to each other in this type of oxides [12]), 223 

which is in agreement with the same catalytic activity obtained with the three 224 

praseodymium-free catalysts (see Figure 2a). 225 

The BET surface area of the Ce0.9Pr0.1O2 support is 50 m2/g, which is 226 

slightly lower than that of the pure ceria. The catalysts with Ce0.9Pr0.1O2 support 227 

impregnated with ethanol or acetone solutions present a considerably lower 228 

BET area (31-33 m2/g) than the support, while the catalyst impregnated with the 229 

water solution of rhodium (RhOx(H2O)/Ce0.9Pr0.1O2) keeps the same BET area 230 

than the support (50 m2/g). These results must be related to the N2O 231 

decomposition results obtained with these three Ce0.9Pr0.1O2-supported 232 

catalysts (see Figure 2.b), that is, the highest activity was obtained with the           233 

water-impregnated catalyst (also with the highest BET surface area among 234 

catalysts of this series) and the worse catalytic results were obtained with 235 

ethanol/acetone-impregnated catalysts. As it was previously demonstrated (see 236 

Figure 1), temperature gradients are created during the calcination of catalysts 237 

impregnated with ethanol or acetone rhodium solutions while not with water. 238 

These gradients created due to the exothermic combustion of the solvents favor 239 

Ce0.9Pr0.1O2 sintering and decrease the activity of the resulting catalysts. The 240 

BET surface area of a Ce0.9Pr0.1O2 sample impregnated with acetone (but 241 

without rhodium) and calcined under the same conditions than the catalysts was 242 
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50 m2/g (the same than that of fresh Ce0.9Pr0.1O2). This evidences that rhodium 243 

catalyzes the solvents combustion. 244 

Finally, the BET area is low and very similar for all Ce0.5Pr0.5O2-containg 245 

catalysts (17-20 m2/g), being also similar to that of the Ce0.5Pr0.5O2 support. 246 

This means that rhodium impregnation and further calcination do not affects the 247 

area of this Ce0.5Pr0.5O2 support, which is already much lower to that of CeO2 248 

synthesized in equal conditions (61 m2/g). In this case, a relationship between 249 

catalytic activity and catalyst sintering during calcination is not found, since the 250 

BET areas of all Ce0.5Pr0.5O2-containg catalysts are similar while important 251 

differences on activity were observed (see Figure 2c). As it will be demonstrated 252 

by XPS, TEM and H2-TPR characterization afterwards, the RhOx-CeyPr1-yO2 253 

interaction also plays a key role on the activity of these catalysts, and the nature 254 

of the solvent used for rhodium impregnation affects such interaction. 255 

It is important to note that, among all catalysts prepared in this study, the 256 

highest specific activity (calculated as N2O decomposition rate per m2 of 257 

catalyst; these plots are not shown for the sake of brevity) corresponds to 258 

RhOx(H2O)/Ce0.5Pr0.5O2. This suggests that it would be desirable to focus future 259 

research to the preparation Ce0.5Pr0.5O2 supports with higher surface area. 260 

As a summary, the BET surface area of CeO2 (61 m2/g) and Ce0.5Pr0.5O2 261 

(18 m2/g) does not change significantly upon rhodium impregnation and 262 

calcination, regardless the solvent used, while the area of Ce0.9Pr0.1O2 (50 m2/g) 263 

drops (to 31-33 m2/g) upon rhodium impregnation with ethanol or acetone 264 

solutions and further calcination. On the contrary, there is no effect of rhodium 265 

impregnation with the water solution on the surface area of Ce0.9Pr0.1O2. 266 
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Additional information about the features of the ceria-based supports was 267 

obtained from XRD (Figure 3) and Raman spectroscopy (Figure 4). The X-ray 268 

diffractograms only contain the main reflections of a fluorite-structured material 269 

with a face centered cubic unit cell, corresponding to the (111), (200), (220), 270 

(311), (222) and (400) planes. Evidences of segregated phases are not obvious 271 

in Figure 3. However, the presence of segregated PrOx species is difficult to be 272 

detected by XRD, because the XRD patterns of such PrOx species are quite 273 

similar to that of ceria [13]. Asymmetric XRD peaks could suggest the presence 274 

of segregated CeO2-rich and PrOx-rich phases, but this is not the case of the 275 

diffractograms in Figure 3.  276 

The position and shape of the diffraction peaks is quite similar for all 277 

catalysts. See, for instance, the zoom of the (111) peaks inset in Figure 3. As a 278 

result, the lattice parameter of the ceria-based supports is also quite similar for 279 

all catalysts (see data in Table 2). The expansion and contraction of the crystal 280 

lattice is expected to occur due to ceria doping with large or small cations, 281 

respectively [14]. However, the sizes of the Ce3+/4+ cations (0.114 nm/0.097 nm) 282 

are quite similar to those of the Pr3+/4+ cations (0.113 nm/0.096 nm), and 283 

therefore, the partial substitution of cerium by praseodymium cations has a 284 

minor effect  in the lattice constant of doped ceria. Slightly higher lattice 285 

constant values were obtained with some doped ceria catalysts with regard to 286 

values of catalysts with pure ceria. This must be attributed to the presence of 287 

more +3 cations, which are larger than +4 cations, mainly Pr3+ because Pr4+ is 288 

reduced more easily than Ce4+ [15, 16]. With regards to crystal sizes the data 289 

are consistent with the changes observed in BET surface areas, as expected 290 

[12]. 291 
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Raman spectroscopy characterization is consistent with XRD conclusions 292 

and this technique also provides evidences of praseodymium incorporation into 293 

the ceria framework. As a general behavior, four Raman bands are detected on 294 

the spectra included in Figure 4, but all these four bands are not seen in all 295 

spectra. 296 

The band at 444-463 cm−1 is ascribed to the Raman active F2g mode of 297 

fluorite ceria [17, 18]. This can be viewed as a symmetric breathing mode of the 298 

oxide anions surrounding each cation. The intensity of this peak is highest for 299 

catalysts with the pure ceria support (Figure 4a). A slight deformation of ceria 300 

structure can be elucidated due to the introduction of praseodymium into the 301 

ceria structure (in agreement with the lattice parameter calculated by XRD, 302 

Table 2). The presence of Pr3+ cations, which are bigger than Ce4+, affects the 303 

oxygen breathing mode and the F2g signal intensity. In addition, the 304 

fluorescence produced by praseodymium also diminishes the intensity of the 305 

main peak. The position of F2g peak shifts towards lower Raman shifts by 306 

increasing the praseodymium content, and this is also an evidence of 307 

praseodymium introduction within the fluorite lattice of ceria (Figure 4). 308 

The weak peak at 1170 cm-1, which is not observed in all catalysts, has 309 

been related to surface oxygen groups [19] and several interpretations have 310 

been proposed for peaks around 200 cm-1 and 570 cm-1 [6, 14, 15, 19-22]. 311 

Some authors have assigned peaks at ca. 195 and 570 cm-1 to RhOx species 312 

[20-22] and others attributed these bands to the formation of CeyPr1-yO2 solid 313 

solutions, because a physical mixture of the pure cerium and praseodymium 314 

oxides did not show these features [19]. Going into more detail, these bands at 315 
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195 and 570 cm−1 have been assigned to oxygen vacancies, which affect the 316 

asymmetric vibration of the oxide anions [14, 19].  317 

The relative intensity of the 570 cm-1 band increases with regard to the 318 

intensity of the main F2g mode at 444-463 cm−1 by increasing the praseodymium 319 

content (see Figure 4b and 4c), and the creation of vacant sites on ceria by 320 

praseodymium doping is an evidence of solid solution formation [19]. 321 

3.4. Catalysts characterization TEM, XPS and H2-TPR.  322 

The results obtained by TEM, XPS and H2-TPR, presented and 323 

discussed in this section, provide (not only but mainly for the purposes of the 324 

current study) information about the RhOx particles and their interaction with the 325 

ceria-based supports. 326 

TEM images of selected catalysts are included in Figure 5. All the 327 

micrographs show ceria crystals and the crystalline planes are even identified in 328 

some of them. The size of the ceria-based crystals seems to be consistent with 329 

the BET areas of the catalysts included in Table 2, that is, the size of the ceria-330 

based crystals observed by TEM for RhOx(H2O)/CeO2 and 331 

RhOx(H2O)/Ce0.9Pr0.1O2 (60 and 50 m2/g, respectively) are smaller than those of 332 

RhOx(H2O)/Ce0.5Pr0.5O2, RhOx(acetone)/Ce0.9Pr0.1O2 and 333 

RhOx(acetone)/Ce0.5Pr0.5O2 (20, 33 and 18 m2/g, respectively). The ceria 334 

particles size observed by TEM also correlates with the crystal sizes obtained 335 

by XRD (see Table 2). 336 

Small dark spots (marked with red circles) corresponding to RhOx 337 

nanoparticles are observed in all TEM images as well. The size of these RhOx 338 
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particles is smaller than 2 nm in most cases. However, a deeper TEM analysis 339 

of these catalysts, and of some others of similar composition previously studied 340 

[8], confirmed the presence of very small RhOx particles (even smaller than 1 341 

nm) that can be hardly observed with the magnification used to take the images 342 

in Figure 5.  343 

The EDS local analysis of the area of the TEM images and the global 344 

analysis of the catalysts by FRX confirmed that the amount of rhodium is similar 345 

in all catalysts, and therefore, the amount of RhOx particles of ca. 2 nm 346 

observed in the TEM images of Figure 5 can be related with RhOx dispersion. If 347 

RhOx is highly dispersed only few RhOx particles are observed in the TEM 348 

images, because most RhOx particles are below the detection limit of the 349 

technique. On the contrary, a lot of RhOx spots are observed in a TEM image 350 

when RhOx is less dispersed. 351 

Comparing the three TEM images (Figure 5) of catalysts prepared by 352 

water impregnation of rhodium nitrate, it is observed that there are much more 353 

RhOx particles on the catalyst with Ce0.5Pr0.5O2 support than on those with 354 

Ce0.9Pr0.1O2 or CeO2, and this is an evidence of the worst RhOx dispersion over 355 

Ce0.5Pr0.5O2. This lower RhOx dispersion on RhOx(H2O)/Ce0.5Pr0.5O2 is 356 

coincident with the lowest BET area of this catalyst (see data in Table 2). On 357 

the other hand, more RhOx particles are observed on 358 

RhOx(acetone)/Ce0.9Pr0.1O2 than on RhOx(H2O)/Ce0.9Pr0.1O2 , which could be 359 

related with the BET area values (60 and 33 m2/g, respectively). 360 

The conclusion of this TEM characterization is that both the nature of the 361 

ceria-based support and of the solvent used for rhodium impregnation affect 362 
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RhOx dispersion. As a general trend, RhOx dispersion on CeO2 and Ce0.9Pr0.1O2 363 

is better than on Ce0.5Pr0.5O2, and RhOx dispersion is better for water-364 

impregnated catalysts than for ethanol or acetone-impregnated catalysts. Some 365 

of these conclusions are supported by the XPS characterization. 366 

Figure 6 shows the Rh 3d photoelectron spectra of all catalysts. Two 367 

peaks are observed in all spectra, corresponding to the 3d5/2 and 3d3/2 368 

transitions (around 309 and 313 eV, respectively). Both peaks provide similar 369 

information about the oxidation state of rhodium. The position of the Rh 3d5/2 370 

peaks is 309.0–310.0 eV for all catalysts, which corresponds to Rh3+ cations. As 371 

reported in the literature, the Rh 3d5/2 peak appears at 307.0–307.5 eV for Rh0, 372 

at about 308 eV for Rh+, and from 308.3 to 310.5 eV for Rh3+ [23-25]. 373 

There are subtle differences in the position of the Rh 3d peaks in Figure 374 

6 that deserve a detailed analysis. In RhOx-ceria catalysts, there is a negative 375 

charge density transfer from the noble metal to the ceria support, and the extent 376 

of such transfer affects the position of the Rh 3d peaks. 377 

The position of the 3d5/2 peak is 309.5 eV for all RhOx/CeO2 catalysts 378 

(Figure 6.a), regardless the solvent used for rhodium impregnation, while it is 379 

shifted to slightly higher values for RhOx/Ce0.9Pr0.1O2 catalysts (Figures 6.b) and 380 

to lower values for RhOx/Ce0.5Pr0.5O2 (Figures 6.c). This means that the RhOx-381 

support interaction strongly depends on the support nature, and ceria doping 382 

with 10 % praseodymium favors the RhOx-support interaction while 50 % 383 

praseodymium doping hinders the interaction. This is consistent with the lowest 384 

BET area of this support (see Table 2). The reason of the positive effect of 10% 385 

praseodymium doping while negative of 50% praseodymium doping seems to 386 
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be that cerium is the main responsible of the charge density transfer from Rh(III) 387 

to the support while praseodymium modifies the cerium behavior. Both cerium 388 

and praseodymium can adopt the 3+ and 4+ oxidation states, but 389 

praseodymium is more prone to form the +3 cation (see Table 3 and discussion 390 

below). It is expected that the charge density transfer from Rh3+ to the support 391 

occurs with (Ce and Pr) 4+ cations rather than with +3 cations, and therefore, 392 

cerium should interact more efficiently with rhodium than praseodymium. Few 393 

praseodymium doping (10%) has a positive effect because promotes the 394 

interaction of Ce4+ cations with rhodium, that is, the presence of Pr favors the 395 

formation of vacant sites on the support and improves oxygen mobility, and this 396 

favors the charge density transfer (oxide anions at the end) from rhodium to 397 

ceria. 50% praseodymium doping also has this positive effect, but due to the 398 

high diluting effect there is less cerium available to interact with rhodium. 399 

The cerium and praseodymium oxidation states have been estimated by 400 

XPS, and the values obtained are compiled in Table 3 together with the Ce/Pr 401 

surface ratios. The Ce3+ percentage (with regard to total surface cerium) was 402 

estimated following the method proposed elsewhere [6] and the Pr3+ percentage 403 

(with regard to total surface praseodymium) by using the semi-quantitative 404 

method proposed by Borchert et al. [26]. The percentage of Ce3+ is similar for 405 

all catalysts prepared with the pure ceria support (34-37 %) and these 406 

percentages slightly decrease upon praseodymium doping, evidencing the 407 

insertion of the dopant into the ceria lattice. The Pr3+ percentages are much 408 

higher than those of Ce3+ due to the easier reducibility of Pr4+ with regard to 409 

Ce4+. Moreover, the presence of Pr3+ cations partially decreases the reduction 410 

of Ce4+. 411 
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Regarding the Ce/Pr ratios, they are well below the expected nominal 412 

ratios deduced from the stoichiometric formula of the mixed oxides (9 for 413 

Ce0.9Pr0.1O2 and 1 for Ce0.5Pr0.5O2). Rodríguez-Luque et al. [27] reported the 414 

rhodium nanocrystallites decoration by patches of support in     415 

Rhodium/CeyPr1-yO2 catalysts. It was argued that, during rhodium impregnation, 416 

the acid character of the rhodium solution promotes Pr3+ leaching, and after 417 

catalyst drying and calcination, such species are accumulated on the particles 418 

surface. This would explain the preferential accumulation of praseodymium on 419 

the surface of our catalysts. 420 

As a summary, the XPS analysis suggests that praseodymium is partially 421 

inserted into the ceria lattice for catalysts with doped ceria supports, but with an 422 

enrichment of praseodymium on the particles surface. Such praseodymium 423 

doping affects the RhOx-support interaction, being improved for 10 % 424 

praseodymium doping but hindered for 50 % doping. 425 

The RhOx-support interaction is known to affect the RhOx/ceria catalysts 426 

reducibility, which is closely related to the catalytic activity for N2O 427 

decomposition. In order to study such reducibility, H2-TPR experiments were 428 

performed and the profiles obtained are compiled in Figure 7.  429 

Three peaks are shown in most H2-reduction profiles, as expected [5, 430 

28]. The lowest-temperature peak can be attributed to the reduction of RhOx, 431 

and, in some cases, also to the rhodium-catalyzed ceria-based support surface 432 

reduction. The intermediate-temperature peak is attributed by some authors to 433 

surface ceria reduction as well, but not catalyzed by the noble metal, whereas 434 

other authors relate this peak to surface and/or bulk carbonates decomposition 435 
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[29] and/or to surface hydroxyls, peroxides or superoxides reduction. Finally, 436 

the peak at highest temperature is attributed to bulk ceria-support reduction. 437 

Special attention must be paid to the lowest temperature reduction peak 438 

[6], mainly taking into account the symmetry of the peak. The catalysts with high 439 

activity for N2O decomposition, which are those prepared with the pure ceria 440 

support and those impregnated with a water solution of rhodium, regardless the 441 

support (see Figure 2), present a single low-temperature H2 reduction peak. On 442 

the contrary, two overlapped peaks are evident in catalysts with lower activity, 443 

which are those impregnated with acetone or ethanol solutions in doped ceria 444 

supports [6, 7]. 445 

The presence of double-peaks or pronounced shoulders in the lowest 446 

temperature H2 reduction peaks occur because Rh3+, Pr4+ and Ce4+ are reduced 447 

sequentially, while symmetric peaks are obtained if such reductions occur 448 

simultaneously [7]. Therefore, the shape of this peak is related with the RhOx-449 

support interaction and with the formation of doped ceria solid solutions. The 450 

catalysts with good RhOx-support interaction present high catalytic activity [5]. It 451 

has been reported that the most active sites for N2O decomposition are located 452 

at the RhOx-ceria interface [30]. Also, a very effective N2O decomposition has 453 

been demonstrated to occur on RhOx/ceria catalysts, and a synergy between 454 

rhodium and ceria catalytic sites was proposed. This effective mechanism 455 

needs a good RhOx-ceria interaction [17]. 456 

The highest temperature peak attributed to bulk reduction disappeared 457 

by increasing the amount of praseodymium. This is due to the improved 458 
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reducibility with regard to pure ceria, which is related to the enhanced oxygen 459 

mobility into the lattice [6]. 460 

In conclusion, the activity for N2O decomposition of the catalysts studied 461 

is related with the RhOx-support interaction. Both the nature of the ceria support 462 

and the solvent used for rhodium precursor impregnation affect such interaction. 463 

Ceria doping with 10 % praseodymium has a positive effect on such interaction 464 

(see XPS results; Figure 6) and on the catalytic activity (see Figure 2 and Table 465 

1), but the benefit on the catalytic activity is only obtained using a water solution 466 

for impregnation. On the contrary, when Ce0.9Pr0.1O2 is impregnated with 467 

ethanol or acetone solutions of rhodium, the temperature gradients created 468 

during calcination (Figure 1) promote the support (see BET areas in Table 2) 469 

and RhOx sintering (see RhOx sizes on TEM images; Figure 5), hindering the             470 

RhOx-Ce0.9Pr0.1O2 interaction. The interaction between RhOx and Ce0.5Pr0.5O2 is 471 

not as good as that with Ce0.9Pr0.1O2 (see the XPS binding energies of Rh3+ 472 

(Figure 6)), but it seems to be enough to keep a high catalytic activity if the 473 

impregnation is carried out with a water solution. In fact, the H2-TPR peak at low 474 

temperature (Figure 7.c) demonstrates a considerable RhOx-support interaction. 475 

However, acetone or ethanol impregnation also leads to an important decrease 476 

in activity, and this must be attributed to a worst RhOx-support interaction. 477 

Finally, pure CeO2 is more stable towards sintering than doped ceria under the 478 

calcination conditions of this study (contrary to the phenomenon observed at 479 

high-temperature calcination).Pure ceria does not sinter regardless the solvent 480 

used for rhodium impregnation, and for this reason all the RhOx/CeO2 catalysts 481 

kept the same activity. 482 
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This study suggests that the best catalyst is obtained by impregnating 483 

Ce0.9Pr0.1O2 with a water solution of rhodium precursor. However, if acetone or 484 

ethanol must be used for any reason (to improve wettability of a honeycomb 485 

monolith channels, for instance) the pure ceria support is more suitable. 486 

4. Conclusions. 487 

The effect of the solvent (water, ethanol or acetone) used to impregnate 488 

CeyPr1-yO2 (y = 1, 0.9 or 0.5) supports with rhodium nitrate, in order to prepare 489 

N2O decomposition catalysts, have been studied and the following main 490 

conclusions can be summarized: 491 

 Both the nature of the ceria support and the solvent used for rhodium 492 

precursor impregnation affect the RhOx-support interaction and the 493 

activity for N2O decomposition. 494 

 The use of ethanol or acetone as solvent has a very negative effect on 495 

Ce0.9Pr0.1O2 and Ce0.5Pr0.5O2-containing catalysts, due to the sintering of 496 

both the support and RhOx particles. This affects negatively the RhOx-497 

support interaction which directly hinders the catalytic activity for N2O 498 

decomposition. This negative effect is due to the rhodium-catalyzed 499 

solvent combustion.  500 

 Ceria doping with 10 % praseodymium has a positive effect on the RhOx-501 

support interaction (and on the catalytic activity), which is observed as a 502 

negative charge density transfer from the noble metal to the ceria support 503 

(only obtained using water for impregnation). 504 
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 The interaction between RhOx and Ce0.5Pr0.5O2 is not as good as that 505 

with Ce0.9Pr0.1O2, but it is enough to keep a high catalytic activity if 506 

rhodium is impregnated with a water solution. However, acetone or 507 

ethanol impregnation leads to an important decrease in activity, and this 508 

must be attributed to the worst interaction of RhOx with the support, as 509 

deduced from the shape of the lowest temperature H2-TPR peaks. 510 
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Table 1. Temperature required to decompose 50% of N2O (T50) in the catalytic 
tests. 
 

Catalyst T50 (ºC) 

RhOx(H2O)/CeO2 252 

RhOx(ethanol)/CeO2 252 

RhOx(acetone)/CeO2 252 

RhOx(H2O)/Ce0.9Pr0.1O2 242 

RhOx(ethanol)/Ce0.9Pr0.1O2 287 

RhOx(acetone)/Ce0.9Pr0.1O2 301 

RhOx(H2O)/Ce0.5Pr0.5O2 252 

RhOx(ethanol)/Ce0.5Pr0.5O2 326 

RhOx(acetone)/Ce0.5Pr0.5O2 319 

 

Table 2. Results of the N2 adsorption and XRD characterization. 

Sample 

BET 

surface 

area 

(m2/g) 

Crystal 

 size 

(nm) 

Lattice 

parameter  

(nm) 

CeO2 61 - - 

RhOx(H2O)/CeO2 60 14 0.5413 

RhOx(ethanol)/CeO2 60 14 0.5412 

RhOx(acetone)/CeO2 56 15 0.5412 

Ce0.9Pr0.1O2 50 - - 

RhOx(H2O)/Ce0.9Pr0.1O2 50 18 0.5417 

RhOx(ethanol)/Ce0.9Pr0.1O2 31 21 0.5416 

RhOx(acetone)/Ce0.9Pr0.1O2 33 21 0.5415 

Ce0.5Pr0.5O2 18 - - 

RhOx(H2O)/Ce0.5Pr0.5O2 20 24 0.5412 

RhOx(ethanol)/Ce0.5Pr0.5O2 17 21 0.5420 

RhOx(acetone)/Ce0.5Pr0.5O2 18 21 0.5420 
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Table 3. Ce3+ and Pr3+ percentages (with regard to total Ce and Pr surface 
contents, respectively) and Ce/Pr atomic ratio determined by XPS. 
 

 

Ce3+ (%) Pr3+ (%) Ce/Pr 

RhOx(H2O)/CeO2 37 - - 

RhOx(ethanol)/CeO2 35 - - 

RhOx(acetone)/CeO2 34 - - 

RhOx(H2O)/Ce0.9Pr0.1O2 28 58 4.0 

RhOx(ethanol)/Ce0.9Pr0.1O2 30 72 3.4 

RhOx(acetone)/Ce0.9Pr0.1O2 28 66 3.7 

RhOx(H2O)/Ce0.5Pr0.5O2 31 51 0.6 

RhOx(ethanol)/Ce0.5Pr0.5O2 30 66 0.7 

RhOx(acetone)/Ce0.5Pr0.5O2 30 50 0.7 
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Figure captions 

Figure 1. Temperature profiles during the thermal treatment of ceria-
impregnated rhodium precursor (using water, ethanol or acetone as solvent) in 
test tubes placed in a vertical furnace pre-heated at 250 ºC. 

Figure 2. N2O decomposition as a function of temperature for catalysts 
supported on: (a) CeO2, (b) Ce0.9Pr0.1O2 and (c) Ce0.5Pr0.5O2. 

Figure 3. X-ray diffractograms of catalysts supported on (a) CeO2, (b) 
Ce0.9Pr0.1O2 and (c) Ce0.5Pr0.5O2. Diffractograms 1, 4, 7 correspond to samples 
impregnated with ethanol solution; 2, 5, 8 to samples impregnated with acetone 
solution and 3, 6, 9 to samples impregnate with water solution. 

Figure 4. Raman spectra of catalysts with RhOx supported on (a) CeO2, (b) 
Ce0.9Pr0.1O2 and (c) Ce0.5Pr0.5O2 (c). 

Figure 5. TEM images of catalysts (a) RhOx(H2O)/CeO2, (b) 
RhOx(H2O)/Ce0.9Pr0.1O2, (c) RhOx(H2O)/Ce0.5Pr0.5O2, (d) 
RhOx(acetone)/Ce0.9Pr0.1O2, (e) RhOx(acetone)/Ce0.5Pr0.5O2. RhOx particles 
have been circled. 

Figure 6. Rh 3d XPS spectra of catalysts with RhOx supported on (a) CeO2, (b) 
Ce0.9Pr0.1O2 and (c) Ce0.5Pr0.5O2.  

Figure 7. H2-TPR profiles of catalysts with RhOx supported on (a) CeO2, (b) 
Ce0.9Pr0.1O2 and (c) Ce0.5Pr0.5O2. 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  

 

 

 

0 150 300 450 600 750 900 1050

In
te

n
s
it
y
 (

a
.u

.)

Temperature (ºC)

RhOx(H2O)/CeO2

RhOx(ethanol)/CeO2

RhOx(acetone)/CeO2

(a)

0 150 300 450 600 750 900 1050

In
te

n
s
it
y
 (

a
.u

.)

Temperature (ºC)

RhOx(H2O)/Ce0.9Pr0.1O2

RhOx(ethanol)/Ce0.9Pr0.1O2

RhOx(acetone)/Ce0.9Pr0.1O2

(b)

0 150 300 450 600 750 900 1050

In
te

n
s
it
y
 (

a
.u

.)

Temperature (ºC)

RhOx(H2O)/Ce0.5Pr0.5O2

RhOx(ethanol)/Ce0.5Pr0.5O2

RhOx(acetone)/Ce0.5Pr0.5O2

(c)


