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Abstract: The use of RGB-D sensors for mapping and recognition tasks in robotics or, in
general, for virtual reconstruction has increased in recent years. The key aspect of these
kinds of sensors is that they provide both depth and color information using the same device.
In this paper, we present a comparative analysis of the most important methods used in the
literature for the registration of subsequent RGB-D video frames in static scenarios. The
analysis begins by explaining the characteristics of the registration problem, dividing it into
two representative applications: scene modeling and object reconstruction. Then, a detailed
experimentation is carried out to determine the behavior of the different methods depending
on the application. For both applications, we used standard datasets and a new one built for
object reconstruction.
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1. Introduction

Registration of multiple 3D datasets is a fundamental problem in many areas, such as computer vision,
medical imaging [1], object reconstruction, mobile robotics, augmented reality [2], etc. Due to the
increasing usage of current low-cost RGB-D sensors, this technology has opened new lines of research.
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Three-dimensional data can be obtained from different devices: 3D lasers, stereo cameras,
time-of-flight cameras, RGB-D cameras, etc. Depending on the input sensor, some algorithms provide
better results than others. 3D lasers are usually active, non-contact sensors. They emit a pulse of light
and measure the time spent by the light to return to the device. Others 3D lasers use a triangulation using
a camera to measure the deviation of the light depending on the depth of the object from which the light
was reflected. Some 3D laser systems do not provide color information, so algorithms that need visual
features are not suitable. Other 3D lasers systems provide color information (using different approaches
to incorporate color to the depth information), but their cost is prohibitive. Stereo cameras use two or
more conventional cameras to obtain the disparity (the difference of position from one camera to the
others, usually by correlation) and, from it, the depth (objects close to the camera have less disparity
than farther ones). However, stereo cameras suffer from the lack of textures: image areas without texture
do not provide depth information. Another sensor is the Photonic Mixer Device (PMD) (also known as
time-of-flight cameras), which measures distances directly for a two-dimensional field of pixels, based
on the time of flight of modulated infrared light. The visual information of PMD cameras, like SR4000,
is infrared. It is affected by natural light and, normally, is noisy. In our previous work [3], we performed
some experiments using the SIFT visual feature method [4] with this kind of camera. As the SR4000
camera provided noisy images, the repeatability of the SIFT feature was low.

Low-cost RGB-D sensors, such as Microsoft Kinect, Primesense Carmine (http://www.primesense.
com) or Asus Xtion (http://www.asus.com/Multimedia/Xtion PRO), introduce a great advance to the
robotics area. They are composed of two sensors: an IR (infrared) projector, an IR CMOS camera and an
RGB camera. The IR sensor provides the depth information. The IR projector sends out a fixed pattern of
bright and dark speckles. Using structured light techniques; depth is calculated by triangulation against
a known pattern from the projector. The pattern is memorized at a known depth, and then, for each pixel,
a correlation between a known pattern and the current pattern is done, providing the current depth at this
pixel. In this work, we have used the Kinect camera for experiments. The Kinect camera has a resolution
of 640× 480 (307,200 pixels) and a working range between 1 and 8 m, approximately providing a frame
rate up to 30 fps. A detailed analysis of the accuracy and resolution of this camera can be found in [5].

In this paper, we are focusing on low-cost RGB-D sensors. For the rest of the paper, when we
mention RGB-D sensors or data, we are referring to the low-cost ones. With these specific kinds of
sensors, we are interested in the study of the behavior of different registration methods for incremental
video reconstruction of scenes and small objects. The work focuses on the registration of subsequent
frames of a slowly moving Kinect camera in a static Lambertian scene.

The registration problem could be addressed in two ways. First is searching the solution in the
correspondence space. In this case, the problem is comprised of two related sub-problems:
correspondence selection and motion (or transformation) estimation. In the former, candidate
correspondences between datasets are chosen, while in the latter, transformation minimizing the
distances between corresponding points are estimated. Second is searching the solution in the
transformation space. An objective function is defined (for example, the distance between two datasets),
and a search using different transformations to find the transformation that minimize the objective
function is performed.

http://www.primesense.com
http://www.primesense.com
http://www.asus.com/Multimedia/Xtion_PRO
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Several reviews related to the registration problem can be found in the literature. In [6], a complete
color image registration survey is presented. Tam et al. [7] made a survey of registration methods for
rigid and non-rigid point clouds and meshes. In [8], a comparison among different iterative closest point
(ICP) methods is presented, while in [9], a similar study is proposed, but with real-world datasets.

In this paper, we are focused on an experimental review of state-of-the-art rigid registration methods
using RGB-D images. Therefore, our main contributions are:

• A study of the most used approaches to register static environments using RGB-D sensors and
testing different methods using a state-of-the-art dataset.

• A study of the current methods for object reconstruction and a discussion of the problems
of registering small objects using low-cost RGB-D sensors and also the creation of a new
real-world dataset.

With respect to registration methods, RANSAC (random sample consensus) [10] usually works with
features (visual or 3D). Since the global properties of objects are vulnerable to occlusions and clutter
in the scene [11], local invariant features are used for this purpose. Moreover, local features could be
used with non-rigid objects in scenarios, i.e., articulated or deformable objects. RANSAC is faster than
other methods, and it allows a proper registration in the presence of noisy data. However, it depends
on the ratio between inliers and outliers. If there are many more outliers than inliers and the number of
inliers is low, the probability of finding the best solution is low. Furthermore, if the number of matched
features is low, there is a high probability of obtaining a small number of inliers. Iterative closest point
(ICP [12,13]) uses all of the points in the scene. ICP needs an initial alignment to register the scene.
However, for small and smooth camera or scene motion in rigid scenes, incremental methods, such as
ICP, achieve good results. ICP is more suitable for the local motion of noisy surfaces, while RANSAC
achieves better results for global motion with precise correspondences containing outliers.

There exist several variants of the ICP method that are more quickly calculated by reducing the
amount of points or by extracting less features. In this work, we have compared the original ICP only
considering a kd-tree to speed-up correspondence searching. Due to the high variety of methods, we
have made a study of the registration methods that use RGB-D sensors in static scenarios.

In order to review and describe the state-of-the-art of the rigid registration approaches, we decided to
classify them into coarse and fine methods.

Following the definition of Salvi et al. [14], coarse and fine registration mainly differs in the accuracy
of the provided solution. Coarse registration aims at computing an initial estimation of the rigid motion
between data points. The robustness of these methods may highly vary in measure, where in theory, low
accuracy increases their speed. Most of coarse registration methods are iterative, despite the existence
of linear approaches. It is important to highlight that many coarse approaches use a subset of the data
(downsampling or keypoints) in order to reduce the computational cost.

Fine registration, on the other hand, is focused on providing the most accurate solution. These
methods generally use a roughly initial estimation to unify all views in a common coordinate system
(avoiding falling in local minima) and then refining the initial solution.

In [14], a table is presented where important aspects of coarse and fine registration methods are
classified: kind of correspondences, motion estimation, robustness and registration strategy.
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This classification is used in [14,15], but many others can be found in the literature, such as
dense/sparse, intrinsic/extrinsic, etc. Despite this classification, most of the registration methods use a
hybrid approach to firstly coarse register pre-aligning the data into a global coordinate system and, next,
refining the result using fine registration methods. In order to analyze the performance and accuracy of
the reviewed methods, we have divided the experiments into two categories. The first one is the scene
reconstruction. It is often used to perform map building. The mapping problem consists of registering
the point sets obtained by the robot at different positions in order to get a map of the environment around
the robot. The second one is the object reconstruction, very similar to the previous one, but focused on
object reconstruction, like sculptures, tools, plants, etc. We will develop a detailed experimentation to
determine the best methods to solve both problems. This paper does not intend to be an exhaustive review
of the state-of-the-art, but a comparative study among different approaches to estimate registration, tested
in two important and representative applications in which registration is used as a part of the general
process: scene mapping and object reconstruction. These applications cover most of the expected
requirements for the output of a registration process. Specifically, they allow one to reach important
conclusions about the performance of registration methods using RGB-D sensors.

The remainder of this paper is organized as follows; Section 2 presents the review of the
state-of-the-art, presenting first the registration problem. Then, the two frameworks used to make the
comparison (scene and object reconstruction) and the metrics used to compare them are presented in
Section 3. Results are presented, and a discussion is given in Section 4. Finally, conclusions are drawn
in Section 5.

2. Related Work

Since registration has played an important role in many areas (including computer vision, medical
imaging, image processing, etc), this task assumes different requirements depending on the scope. It
could be analyzed from different perspectives. In medical imaging, it is usual to register images acquired
by different kind of sensors, for example mapping an MRI image onto a CT scan. In image processing,
registration is used to match images taken, for example, at different times or from different viewpoints.
In general, it could be analyzed as the process of aligning different sets of data into one coordinate
system. Figure 1 shows an example of a scene registration. On the left, we show the two point clouds
provided by the Kinect camera, which are shown in a common reference system. As both point clouds
were taken from different view points, objects appear repeated. On the right, we show both registered
point clouds together with the initial position (red pyramid) and the estimated one (green pyramid) of
the camera.

Irrespectively, if the registration task is considered as a mapping, matching or aligning process of
sets of data, data are usually a set of two-dimensional (e.g., images) or three-dimensional points. In this
paper, we are interested in the registration process aimed at aligning a set of 3D points. Therefore, we
can define the registration problem approached in this work as the process of transforming different sets
of 3D data into the same coordinate system. This means finding the transformation needed to align one
new dataset, S, to a reference dataset, M .
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Figure 1. (Left) Two non-aligned point clouds. (Right) Both point clouds aligned and the
estimated and reference positions of the camera.

Formally, the transformation, T , that minimizes the distance between the transformed points S = {s}
and the reference points M = {m} is obtained by minimizing:

T ∗ = arg min
T∈V

∑
s∈S

∑
m∈M

wsm ‖m− T (s)‖ (1)

where m is the point that matches with the point, s, ‖·‖ is the distance measure between points, usually
euclidean distance, V = {T} is the set of all the possible transformations and wsm is the probability that
the point, s, matches with the point, m. The problem can be simplified when the correspondence pairs
between scene and model are known,

T ∗ = arg min
T∈V

N∑
i=1

‖mi − T (si)‖ (2)

where N is the number of correspondence pairs and mi is the point of the model set which has a
correspondence with the scene point, si.

According to the transformation, T , applied to the set, S, rigid and non-rigid registrations could
be obtained. A rigid registration transform the S points by a rotation and a translation preserving the
distance between every pair of points in S. Rigid transformations are usually applied to static scenarios.
However, non-rigid registrations are obtained to align the set, S, onto the reference points, M , when both
datasets have non-linear geometric differences. In this case, non-rigid registrations are used to register
deformations of objects (e.g., elastic surface deformation of an object) or articulated objects (e.g., human
body movements). An interesting review could be found in the work written by Crum et al. [16]. As we
are focused on static scenarios, non-rigid transformations are out of the scope of this paper.

According to the set of points to be registered, a wide or small baseline registration problem has to
be dealt with. For wide baseline settings, the set of points, M and S, have been acquired from very
different viewpoints (position and orientation of the camera) having a few overlap data between them.
Registering laser scans from entirely different positions or registering two separate object reconstructions
with a hand-held Kinect are examples of wide-baseline requirements for registration. Usually, methods
try to detect invariant features from data to match the datasets using descriptors that look the same when a
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transformation, T , is applied. Additionally, other robust features are calculated (e.g., robust with respect
to the lighting) that use only a local image region, so that feature-based registrations can work also with
large parts of the dataset occluded, their relative order swapped, with dynamic objects, etc. On the other
hand, small baseline settings assume data from close viewpoints having a larger overlapped areas in both
datasets. This data can be obtained from a 3D image or a video acquisition system. For video acquisition
systems, registration is usually carried out frame to frame. Depending on the frame rate, sometimes
registration can deal with neglectable video motion, having very close viewpoints between frames. As a
consequence, all those above feature properties for wide-baseline registration are useless in subsequent
video frames of static scenes, because everything looks almost identical.

Another important aspect related to the set of points to be registered is the source of the points that
conform the datasets, S and M . In general, S and M contains points from a viewpoint. Registration of
two single views is usually considered a pairwise registration. When more than two views are taken into
account into the process, a multiview registration is performed. In this case, the dataset, M , contains
more than one view. It could contain a meta-view composed of raw views or a model of the scene
previously registered being able to perform an incremental registration, aligning new views to the model,
even already registered views can be registered again.

Applications discussed in this comparative study (mapping for robotics and small object
reconstruction) of registration methods using RGB-D video deal with static scenarios. Hence, we are
going to focus on rigid registration methods. Moreover, since the low-cost RGB-D cameras allow the
capture of reasonably accurate mid-resolution depth and appearance information at high frame rates [17],
the set of points to be registered have small baseline settings. As a consequence, the problem of rigid
registration for small baseline settings using RGB-D video is going to be analyzed.

There are several approaches to solve the frame-to-frame registration problem in RGBD video
sequences, but all of them could be fitted in a general scheme. Figure 2 shows the main steps of a
complete registration process. These steps are:

• Pre- and post-processing are phases where smoothing or noise rejection techniques are applied to
enhance the result of the registration.

• The model data source is the module where the information from the output of the process is
stored. It could contain the previous data and/or the obtained transformations. These data could
be used to obtain the current registration: the previous data (3D data) as the current model; the
previous estimated transformation as the initial transformation as, e.g., for the ICP.

• The output of the process could be just the transformation or the registered model.

However, not always are these steps carried out. Focusing on the coarse and fine registration phases,
the preprocessing phase could be omitted when views are close enough to each other, and an initial
alignment step is not needed. The post-processing phase could be avoided if the demanded accuracy
is not high and accurate enough results were provided by the coarse registration phase. Furthermore,
there exists different techniques to apply the registration process, such as multi-view, where one dataset
is registered against a group of datasets and not only against a single view.

Regarding time performance, coarse registration methods could be faster than fine methods, due to
them not needing to find the best solution, as well as the use of features from the scene, reducing
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the amount of data to be registered. However, they need additional time to calculate features and to
match them. Generally speaking, generic algorithms that were conceived of to be used with different
3D sensors (stereo, laser, etc), e.g., ICP for fine registration and RANSAC for coarse registration, have
not been developed considering temporal constraints. Despite the ICP having several variants, including
the use of a kd-tree to search the closest pair of points or reducing the number of noises by rejecting
wrong data, even uniformly downsampling the original data, it is still a slow algorithm. Furthermore,
RANSAC is time consuming in those cases where the number of tested random samples is too large,
and then, several iterations of the algorithm have to be executed. However, implementations able to
work at video frequency can be found in the literature for both methods [8,18]. Specific methods
designed for RGBD cameras, including ICP for refinement, as KinectFusion [19], dense visual odometry
(DVO) [20] and RGBDemo [21], were developed to work with cameras that provide about 30 fps, such
as the Microsoft Kinect.

Figure 2. General scheme of the registration process.
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2.1. Coarse Methods

In contrast to the methods based on the calculation of distances between pairs of points, the coarse
methods commonly do not use all available data, but the downsampling of the data. Feature-based
methods can be used, which try to reduce the amount of points from both sets (model and scene) using a
given detection and description feature method to represent the input data. A feature has a position and a
descriptor (the information around the position is described). Features can come from the image (visual
features) or directly from 3D data (3D features). Irrespective of the kind of feature used, the steps of
the registration methods are: feature detection/description, feature matching and transformation model
estimation. These steps are shown in Figure 3.

The feature detection step tries to detect salient and distinctive parts of an object (shapes, closed
regions, contours, lines, line intersections, etc.) in the datasets using a feature detection method and
then represent the detected part as a set of values, normally called the feature descriptor. This step can be
directly applied to the 3D data or to the 2D image (when using RGB-D cameras) and then assigning their
3D information. Thus, the number of elements is reduced extremely (from 340000 to less than 1000 in
the case of a Kinect camera).
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Figure 3. Basic scheme of the feature registration model.
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There are several feature detectors and descriptors that work with 2D data. One of the most used is
the SIFT (scale invariant features transforms) [4], which provides both feature detection and description.
The SURF feature (sped up robust features) [22] is similar, but faster than SIFT. For a deep study of the
different visual features, see [23].

Only a few general purpose pure 3D feature detectors/descriptors have been presented. Some
extensions of the well-known 2D Harris detector are proposed in [24]. A pure 3D descriptor is presented
in [25]. It is called the fast point feature histograms (FPFH), and it is based on a histogram of the
differences of angles between the normals of the neighbor points of the source point. Johnson [26]
proposes a representation of a 3D surface for matching.

A planar patches feature extraction process is applied to the raw 3D data in order to obtain a
complexity reduction in [27,28]. Koser and Koch [29] normalized RGBD data to a frontal view to
obtain perspectively invariant surface features, while Wu et al. [30] rectified large planar regions to
obtain perspective invariance, and Zeisl et al. [31] uses orthographic projection of RGB-D data to
simplify matching.

The most used method for finding the transformation between correspondences is based on the
RANSAC algorithm [10], since the matching step usually yields a lot of outliers. It is an iterative
method that estimates the parameters of a mathematical model from a set of observed data, which
contains outliers. In our case, we look for a 3D transformation (our model) which best explains the data
(matches between 3D features). At each iteration of the algorithm, a subset of data elements (matches)
is randomly selected. These elements are considered as inliers. A model (3D transformation) is fitted
to those elements. Remaining data are then tested against the fitted model and included as inliers if its
error is below a given threshold. If the estimated model is reasonably good (its error is low enough and
it has enough matches), it is considered as a good solution. This process is repeated a number of times,
and then, the best solution is returned.

Other registration methods are based on Genetic Algorithms (GA), as in [32]. Using these strategies,
the problem of registration is dealt with as a search/optimization problem. The final transformation is
generated using a genetic algorithm, getting some information of pairs to estimate the best transformation
of all the transformations generated by the GA.

Stückler and Behnke [33] use a multi-resolution surfel (surface element) representation of the RGB-D
images. This approach uses shape descriptors of the surfels similar to [25] and color histograms in



Sensors 2014, 14 8555

a CIELAB (chromatic model close to the human perception) space. It uses these feature descriptors
and the spatial properties of the multi-resolution octree to get the surfels correspondences. The method
iterates to get the estimated transformation in a similar way to ICP.

2.2. Fine Methods

Fine registration methods are commonly used to refine a nearly close registration. In contrast to
coarse methods, fine methods usually use all the available information in order to get the correct
transformation between datasets. They usually follow an iterative method to incrementally refine the
estimated registration due to the amount of data used. Nowadays, one of the most used methods is
the iterative closest points [12,13] and its variants. Warping image methods were used in the past to
register [34] colored stereo images. Color is used to constrain the search for the closest points in [35].
Recently, Kerl et al. [36] presented a 3D colored variation of the method in order to register consecutive
RGB-D images.

2.2.1. Iterative Closest Point and Variations

Some of the 2D/3D registration methods use the distance information between the matched points
to calculate the global transformation that best explains the change of the position of two datasets. In
this kind of method, the registration solves two problems iteratively: (1) finding the correspondence (or
matching) between points; and (2) estimating the transformation that best explains the correspondences.
The most used of these methods is the iterative closest point, which was introduced in [12,13]. The
structure of the ICP method is shown in Figure 4.

Figure 4. Basic scheme of the iterative closest point algorithm.
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One of the datasets is the model, and the other one is called the scene. The ICP starts with a given
initial transformation and, then, continues iterating in two consecutive steps. First, scene points are
processed using the current transformation. After that, the correspondence pairs are calculated using the
scene and model points. At the end of each iteration and using the correspondence pair information,
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the transformation that best explained the correspondences is calculated. The base scheme of the ICP
normally gets a local optimum solution for the registration, depending on the initial transformation given
to the ICP method. This is the basic structure of the ICP, from which a lot of variations have emerged,
which seek to change or improve any of the steps of the classical ICP.

The initial ICP [12] uses all of the points of the scene and model sets, matching the points with the
least Euclidean distance. There are several methods that try to improve this time consuming step. For
example, Turk [37] uses a uniform sub-sampling method to reduce the amount of points of the datasets.
Another approach is the random selection of points [38], which quickly reduces the number of points,
at the risk of losing some parts of the structure of the datasets. The method proposed by Weik [39] uses
additional information to find the correspondences, like point color or intensity changes. Other methods
use a kd-tree or a closest-point cache system [40] in order to speed up the search process. Other papers,
like [41], weights the correspondence pairs with respect to their distance, giving less weight to pairs with
higher distance or also depending on the difference between the normal of the points. Another criteria for
weighting the matching step is to assign different weights with respect to the noise model of the sensors.
For example, if it is known that the camera produces more noisy data for distant points, give them less
weight than the closest points to the camera. Another approach [42] proposes rejecting a percentage of
the worst matches, according to some criterion, usually distance from the points. Other variants, such
as [38], reject the pairs whose distance is higher than a multiple of the standard deviation of the distances.
Some papers, like [8,43], presented a collection of variations of the classical ICP in order to make it more
robust and efficient.

Iterative closest methods are also used in current systems. The method proposed by Zhang et al. [44]
searches multiple nearest points, then discards the correspondences with a larger distance than
a computed threshold and only takes the correspondences that are bi-unique (i.e., only uses a
correspondence if its model point has only one correspondence with the scene points).

In [17], Henry et al. present a hybrid approach of ICP and visual features. This modification
of the original ICP makes use of SIFT visual features [4] and RANSAC [10] to get an initial guess
transformation and then applies the ICP iterations, but instead of just getting the estimation that reduces
the nearest neighbor distance of the points; it also uses the distances between the selected visual features
using a parameter to weight both distances. This weighted system allows the ICP to align the two datasets
using both the color of the visual features and the geometric information of the point cloud.

Other variations of the ICP are based on KinectFusion [19], which builds a model of the scene, while
it computes the positions of the camera. This model is internally represented as a volumetric truncated
signed distance function (TSDF). TSDF and the depth data integration comes from [45]. Each point in
the space has stored the distance against the closest surface (positive if it is outside or negative if it is
inside) and some weight value. This representation model allows the system to fuse the following depth
images into one model, getting a smooth model. This registration against a model instead of the last
frame images or point clouds allows the system to avoid the drift in the registration and gets smoother
maps and camera trajectories compared to previous approaches.

Some different modifications of the original KinectFusion appeared. Kintinuous [46] presents a
modification that allows the KinectFusion to work on bigger environments by shifting the model volume
and saving the triangulation mesh that is removed from the working volume. In [47], they presented an
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integration of the Kintinuous with a color fast feature system based on [48]. Another extension of the
Kintinuous [49] uses SURF features and constructs a pose graph to perform the loop closure to correct
camera trajectories.

2.2.2. Warping Image Methods

Warping image methods are based on the photo-consistency of the image pixels. Lucas-Kanade [34]
presented a image registration method that uses the spatial intensity gradient at each point to modify the
current estimated transformation and uses a Newton-Raphson iteration method to converge to better
transformations. Following the same idea, Koch [50] used this approach to efficiently estimate the
transformation of a textured model onto an image. This method is based on minimizing the photometric
error between the observed and the synthesized image, where this synthesized image is generated by a
3D transformation of the 3D projected pixels of the image and then projecting again the transformed
3D points to a 2D image. Comport et al. [51] used this approach to estimate the camera position
over consecutive stereo images due to the slightly movement of the camera. This approach has been
adapted to RGB-D sensors in [20,52], where they show good registration results and camera position
estimations using Kinect images. Recently, Kerl et al. [36] presented a refined approach of their dense
visual odometry (DVO) method, where they use a weight system of residuals images (differences of the
image’s gradients) in order to gain robustness against noise and large residual values.

3. Comparison Framework

In this section, we present the comparison framework, including the considered scenarios
(Section 3.1), to evaluate some of the aforementioned methodologies for different situations, and the
metrics (Section 3.2) used to evaluate the results.

3.1. Considered Scenarios

In order to evaluate the different methodologies presented in the previous sections, we studied
different scenarios that represent mainly the wide range of registration problems that can be considered
for many applications, including full scene and small objects reconstruction. Moreover, we present here
the specific methods we are going to evaluate that are the most relevant in this area.

3.1.1. Scene Reconstruction

In order to register large scenes, several RGB-D datasets have to be registered into a common
coordinate system. Most of the scene mapping methods use a simultaneous location and mapping
(SLAM) [53–56] scheme in order to get the registration of consecutive RGB-D datasets. SLAM methods
use a global rectification method in order to reduce the incremental error of the consecutive estimations.

We implemented some of the state-of-the-art registration methods in order to test and compare their
results on representative scene RGB-D datasets. The methods tested are visual features, dense visual
odometry and the KinectFusion. The visual features method is a hybrid system, which uses the Features
from Accelerated Segment Test (FAST) detector [57,58] and the Binary Robust Independent Elementary
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Features (BRIEF) descriptor [59] and then a RANSAC algorithm to estimate the correspondences and the
transformation between the features of scene and model datasets. In order to refine the final estimation
results, we also applied an Iterative Closest Point algorithm. The FAST detector and the BRIEF
descriptor are implemented in the OpenCV library (http://opencv.org/). The RANSAC and ICP methods
are implemented in the Point Cloud Library (PCL) (http://pointclouds.org). We also implemented some
variations of this method in order to see the difference of applying individually visual features or ICP to
estimate the transformation. The dense visual odometry method is provided as a package in the Robot
Operating System (ROS) system (http://vision.in.tum.de/data/software/dvo). Finally, the KinectFusion
method is also provided by the PCL. KinectFusion was not originally implemented to register large
scenarios, but PCL has a modification of this algorithm to extract the model as a polygon mesh and
update the model.

In order to test the implemented scene mapping systems on large scenarios, we used the Technische
Universität München (TUM) RGB-D dataset [60]. This dataset provides RGB-D and ground-truth data
with the goal of evaluating the visual odometry and visual SLAM systems. The dataset contains the color
and depth images of a Microsoft Kinect sensor along the ground-truth trajectory of the sensor. It provides
images at a full frame rate (30 Hz) and sensor resolution (640 × 480). The ground-truth trajectory was
obtained from a high-accuracy motion-capture system with eight high-speed tracking cameras (100 Hz).
Further, it provides the accelerometer data from the Kinect.

This original dataset contains 39 sequences recorded in two different scenarios. The “fr1” datasets
are recorded on a typical office environment and the “fr2” datasets are recorded in a large industrial hall.
Furthermore, some sequences are recorded using a hand-held Kinect and the rest using a Kinect mounted
on a wheeled robot. Later, this dataset was extended with more sequences in order to test scenarios with
different texture and structure appearances or scenes with dynamic objects. Figure 5 shows an example
of the first 200 ground-truth positions of the camera as a yellow line and the reconstructed map.

Figure 5. Example of the ground-truth point cloud reconstruction of the first 200 frames of
the “fr1 desk” sequence; the yellow line represents the movement of the camera.

http://opencv.org/
http://pointclouds.org
http://vision.in.tum.de/data/software/dvo
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Table 1 shows the average translation and rotation velocities of the different datasets. We observe that
some datasets, like “fr1 xyz”, “fr2 xyz”, “fr2 desk” or all of “fr3”, have slow velocities. Other datasets,
like “fr1 desk” and “fr1 desk2”, have high translations, so the movement between frames is higher. The
“fr1 360” has slow translational velocity, but it has high rotational movement that also has influence on
the registration results.

Table 1. The number of frames and the average translation and rotation velocities of the
used datasets.

Dataset Number of Frames Average Translational
Velocity (m/s)

Average Rotational
Velocity (deg/s)

fr1 xyz 780 0.24 8.92
fr1 desk 595 0.41 23.33
fr1 360 739 0.21 41.6
fr1 desk2 631 0.43 29.31
fr2 xyz 3,594 0.06 1.72
fr2 desk 2,234 0.19 6.34
fr3 structure and texture 904 0.193 4.323
fr3 no structure and no texture 451 0.196 2.712
fr3 no structure and texture 447 0.299 2.890
fr3 structure and no texture 791 0.166 4.00

The authors concluded from their calibration measures that the relative error of the Kinect camera
position on a frame-to-frame basis in the ground-truth data is lower than 1 mm.

3.1.2. Small Object Reconstruction

The problem of object reconstruction is a well-known topic in computer vision [61], but with the
appearance of the low-cost RGB-D sensors, a wide variety of approaches have been proposed. Object
reconstruction covers from objects with big volumes, such as chairs or tables, to small and intricate
ones, like plants, tools, etc. Related to the size of the object, the resolution of the RGB-D devices
is an important aspect that affects the acquisition and, hence, the registration and reconstruction. The
depth resolution expresses the minimum difference in depth that the camera is able to distinguish. The
resolution is affected by the noise of the data. As the level of noise is increased, the performance of the
registration methods decreases.

Regarding big elements, traditional algorithms could be used for registering the views, because each
view has a large number of object points. Moreover, this sort of object is fairly described with visual and
3D features, making easier the pre-alignment by using RANSAC techniques for a coarse registration.
Nevertheless, small objects have different aspects to be considered, i.e., size and geometry. Related to
the size, object reconstruction is performed with a subset of the points. Irrespective of the size of the
object, RGB-D sensors only work properly in a certain range of depth. Then, at least a minimum distance
has to be preserved, and the object only will be represented with a part of the possible data. Thereby, the
smaller the objects are, the less data that is available.
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Another important issue is the object surface geometry. Due to the technique used by the low-cost
RGB-D sensors, smooth surfaces are better estimated than rough ones. In scene mapping, the
signal-to-noise ratio (SNR) is high due to the fact that scenes usually have big smooth surfaces (roof,
floor, walls, etc.) that are well extracted, and then, the registration methods obtain a good transformation
to align the views. However, objects do not always follow this kind of geometry. Normally, big objects
have regions of smooth surfaces, except those intricate ones, such as trees. Nevertheless, when the target
is small, less smooth surfaces appear; therefore, the SNR decreases. Hence, traditional techniques cannot
be applied directly to the point cloud.

In this section, five different registration techniques are tested for object reconstruction acquired using
RGB-D sensors:

• Coarse registration (Section 2.1): a feature-based approach has been evaluated using RANSAC.
The number of features in objects is small compared to the scene case. 3D features are
time-consuming techniques, and also, due to the noise of the RGB-D sensors, they are not usually
reliable; hence, visual features are more often used. We use the SIFT feature extraction and
description, as it is one of the most used algorithms in object reconstruction. RANSAC is used to
estimate the best translation that registers the SIFT descriptors of two views.

• Fine registration (Section 2.2): in this section, the registration is performed with the well-known
iterative closest point. In particular, the Chen and Medioni ICP variant with edge rejection has
been tested. In order to be able to use fine registration directly, several views, close to each other,
are registered.

• A combination of coarse and fine registration methods is applied to evaluate a common process of
pre-alignment and refinement.

• A well-known implementation for reconstruction with RGB-D sensors is KinectFusion [19,62].
This method was developed for environments, not for objects. It tends to smooth the objects by
using a truncate signed distance function (TSDF) and a model of the scene, which makes shapes
rounded or even disappear when they are too small.

• The last presented method is the RGBDemo [21], which has been specifically developed for object
reconstruction using RGB-D sensors. It uses color markers (ARToolKit markers) to make an initial
coarse registration. Once the initial alignment is done, an ICP and then a subsampling process
return the final result.

Figure 6 shows different objects with specific features associated with their shapes, which affect the
registration. The dataset has been created for this experimentation, due to the lack of a dataset of objects
acquired using RGB-D sensors, where KinectFusion and RGBDemo results are presented. They have
been acquired using a Microsoft Kinect on a turntable. Three hundred twenty views have been acquired
of each element around them (about 1.13 degrees per step) in order to use the fine registration method
without pre-alignment. The distance that separates sensor and objects is a meter, and the camera is
placed diagonal-upper to allow the markers of RGBDemo to be visible. The first one, Figure 6a, is a Taz
toy of 15 cm in height with a large variety of colors. The second object (Figure 6b) is a wooden cube
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of 8 cm3, which has faces where a knot appears and others, less varied in color. In the third column, a
tool (Figure 6c) is presented. It is 30 cm-long; the thinnest part is 0.5 cm, and the widest is 2.8 cm. The
last object is a bomb toy shown in Figure 6d with 8 cm height and 5 cm width. It has different colors,
thin parts, such as the white one on the top, the body part with a smooth curve and the back part with a
key attached.

A previous segmentation of the region of interest has been performed in order to isolate the object. A
segmentation combining color and depth information has been used to extract the object from the scene
for ICP and RANSAC algorithms. The background of the scene has been carefully established using
blue chroma. Moreover, the distance from camera to object is previously known. Regarding RGBDemo,
the method uses a white floor with specific markers (printed in white paper) to localize the space where
the object is placed. RGBDemo uses only that region in the registration process (markers for coarse
registration and ICP for fine registration). However, KinectFusion works with the whole data supplied
by the camera having as a consequence two different motions: moving parts as the object on the turntable
and static parts as the rest of the scene.

Figure 6. Objects used for experimentation. (a) Taz toy; (b) cube; (c) tool; and
(d) bomb toy.

(a) (b) (c) (d)

3.2. Metrics and Performance Measures

As previously mentioned, we used the TUM RGB-D dataset [60] for scene reconstruction. This
dataset proposes some evaluation measures based on the comparison of the estimated trajectories of the
camera and the ground-truth ones.

The relative pose error measures the local accuracy of the trajectory over a fixed time interval, ∆.
Therefore, the relative pose error corresponds to the drift of the trajectory, which is useful for the
evaluation of visual odometry systems. The dataset authors define the relative pose error at time step
i as:

Ei := (Q−1
i Qi+∆)−1(P−1

i Pi+∆) (3)
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From a sequence of n camera poses, we obtain in this way m = n−∆ individual relative pose errors
along the sequence. From these errors, they propose to compute the root mean squared error (RMSE)
over all time indices of the translational component as:

RMSE(E1:n,∆) :=

(
1

m

m∑
i=1

‖trans(Ei)‖2

)1/2

(4)

where trans(Ei) refers to the translational components of the relative pose error, Ei. The time parameter,
∆, needs to be chosen. For visual odometry systems that match consecutive frames, ∆ = 1 is an
intuitive choice; RMSE(E1:n) then gives the drift per frame that we will use to measure the quality of
the implemented systems.

For object reconstruction, we will use visual appearance analysis, due the non-existence of a common
dataset and its correspondent ground-truth.

4. Results and Discussion

In this section, we present the results of the experiments done for both scene and object reconstruction.
For each part, we discuss the obtained results.

4.1. Scene Reconstruction

We have performed two different experiments to evaluate scene registration methods. In the first one,
we analyze the results of each method on the different scene sequences. In order to improve clarity, some
“y-axes” are trimmed, because there are some high error values that represent a totally misalignment or
registration error. Moreover, some graphs are not complete, since the implementation fails, and it is not
able to recover or register the following frames. The blue lines represents the translational error. The
ground-truth translational magnitude (in meters) is included on the following graphics as red lines and
reflects the relative error with respect to the real translation. Following the considerations of the dataset
authors’ evaluation method, we do not show the rotational error, because the camera is in continuous
motion; an error in the rotation estimation involves an error in the translational error.

Figure 7 shows the results of the KinectFusion implementation. We observe that KinectFusion fails
in the “fr1 desk” and “fr1 360” datasets. The rest of the results looks quite smooth, despite some high
errors. Some of these datasets have parts where there is a lack of geometry, so the method gets a high
error or it gets lost. According to the real relative movement of the camera represented with red lines,
the “fr1 xyz” dataset has continuous changes in velocity and direction. In the “fr2-desk” dataset, the
camera described sudden/abrupt movements. These movements are caused by a lack of ground-truth
information, so the distance between “consecutive” frames is relatively high.

Dense Visual Odometry results are shown in Figure 8. We observe that DVO has more variability
in the “fr1 xyz” caused by sudden direction changes. DVO gives good results on the datasets with
smooth movements, like “fr2 desk”. The “fr1 360” dataset presents high errors caused by the high
rotational camera motion. In general, the DVO method works better than the KinectFusion, except on
the “fr2 xyz”.
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Figure 7. Blue: KinectFusion relative pose translational errors (y-axis, meters) on the
selected datasets (x-axis, frames). Red: relative ground-truth motion (meters).
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Figure 8. Dense visual odometry relative pose translational errors (y-axis, meters) on the
selected datasets (x-axis, frames).
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Figure 9. Visual features + ICP relative pose translational errors (y-axis, meters) on the
selected datasets (x-axis, frames).
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Visual Features with ICP refinement results, showed in Figure 9, have mostly the same or higher
errors as the ones in DVO and KinectFusion. There are no relatively high errors on most of the datasets.
The “fr2 desk” dataset shows higher error in one of the last frames (Frame 659). The “Fr2 xyz” dataset
presents a high error due to the error introduced by the localization of visual features, which is not
corrected by the ICP refinement.

The results of the visual features method (Figure 10) show a similar structure than the visual + ICP
method, but the errors are higher in almost all the cases. We now observe the difference of applying the
ICP refinement step. In general, the visual features method without the ICP refinement has higher errors.

Figure 10. Visual features relative pose translational errors (y-axis, meters) on the selected
datasets (x-axis, frames).
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Figure 11. ICP relative pose translational errors (y-axis, meters) on the selected datasets
over all the frames (x-axis, frames).
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Figure 11 shows the results of the iterative closest point method. We observe similar errors as the
ones obtained with the visual features method, but it also has some high errors, like at the beginning of
the “fr1 desk2” and in the “fr2 desk”. As expected, ICP gets better results than visual features in the
datasets with less movement, since the frames to register are initially very close. In the “fr1 360” dataset
with high rotational movements, the ICP gets several high errors. In general, we can observe that the
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visual features with ICP refinement works better than both methods individually. The implementations
of the visual features and ICP methods have no correction, and that is why high errors are obtained that
make no sense for a particular application, such as scene reconstruction. These errors can be detected
and corrected or discarded by a simply movement boundary limitation, like the one that KinectFusion
and DVO use.

To summarize, Figure 12 shows the average errors and the standard deviation of the five tested systems
on the different datasets. We observe that the datasets with lower velocities (“fr1 xyz” and “fr2 xyz”)
have less error values. In “fr1 360”, we spot the influence of the rotational velocities on the registration
methods. Despite it having a low translational velocity (0.21 m/s), its rotational velocity increases the
error values of the methods, as can be observed in the error bars and their standard deviation. In general,
we observe the improvement of the visual features method with the ICP refinement. This improvement
is particularly noticeable in the “fr1 360” dataset. We conclude that the dense visual odometry method
is one of the most robust methods, and it provides low errors.

Figure 12. Error means (bars) and the standard deviations (error lines) of the five different
methods applied to the selected datasets.
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Figure 13. Trajectories estimated on the dataset “fr1 desk2” by the KinectFusion (a), the
dense visual odometry (b) and the visual features + ICP (c) methods.
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Finally, Figure 13 shows the error in the camera pose of the KinectFusion, DVO and visual
features + ICP methods over the “fr1 desk2” dataset. Due to the incremental estimation of the camera
pose, a high error in one estimation can lead to a totally misaligned trajectory. This is the case of the
KinectFusion. When a high error is detected, an additional method should be implemented in order to
discard the frame and use the previous correct position.

In the second experiment, we focus on the analysis of the results of the three main tested methods
in scenarios with special features. The TUM dataset has a special “fr3” set of scenes where different
combinations of texture and geometry appearance are presented. We use four different combinations
of texture and structure appearance. The first column of Table 2 shows some of the used scenes.
Table 2a represents a scene with detailed texture and geometry appearance. Table 2b shows an empty and
white floor, so it represents a non-texture and non-structure information dataset. Table 2c only has some
posters in a wall, so it represents the texture and non-structure information situation. The last dataset,
Table 2d, represents the non-texture and structure information situation.

To improve the interpretation of the results we did not include the ICP and visual feature methods
in this experiment. Furthermore, the first experiment showed that the combined features with ICP
refinement worked better than the two methods separately.

Table 2 shows the relative pose translational errors of the three tested methods. The results show
a general poor registration, since most of the errors are higher than the real translational movement.
However, the errors are mostly lower than 2 cm. Despite the simplicity of the scenes, we observe a high
error in most of the scenes with different methods. In the datasets with a lack of structure information
Table 2b,c, the results of the three methods are similar. In general, we observe that the KinectFusion
method gets the best results with the exception of the dataset with texture, but no structure information,
where the visual features with ICP refinement gets the best results.

Figure 14. Error means (bars) and the standard deviations (error lines) of the five different
methods applied to the different texture and structures datasets.
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Figure 14 shows the average errors and the standard deviation of the five tested methods on the
different datasets. We can observe that the dense visual odometry method is getting the biggest errors
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on these datasets. The KinectFusion method (Kinfu) gets the best results on the datasets with geometry
information and gets results closest to the best on the other two datasets.

Table 2. Relative pose translational errors in blue color (y-axis, meters) on the fr3 datasets
(x-axis, frames) of the dense visual odometry, KinectFusion and visual features with ICP
refinement methods. Red color values represent the ground-truth pose movement. Images
belong to the dataset; (a) structure and texture. (b) no structure and no texture. (c) no
structure and texture. (d) structure and no texture.

Example Image Dense Visual Odometry KinectFusion Visual Features + ICP
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4.2. Small Object Reconstruction

For small object reconstruction, we have made an experiment using some representative methods of
objects in Figure 6. Figure 15 shows the result of the different registration algorithms. The first row has
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the coarse registration results; the second one presents the ICP results. In the third, a combination of
coarse pre-alignment and fine registration using the RANSAC and ICP methods is shown. The fourth
row presents KinectFusion’s results. Lastly, Figure 15q–t shows the RGBDemo results.

Figure 15a–d shows the coarse registration of the objects with RANSAC and visual SIFT features.
Figure 15a has been well registered in the front part, where a large variety of colors appear. However,
the error in the back part produces the wrong final result. The cube in Figure 15b shows some views
that are bent, caused by features in the top matched with others in the lateral part, due to the similarity,
causing a bad registration. In Figure 15c,d, the error in the registration is caused because these shapes
have few features, and it is not possible to register them properly.

The fine registration ICP applied to the test objects (Figure 15e–h) shows that, in general, the results
are better than in coarse registration, but still with a considerable error. These errors are caused by the
low SNR, mainly in thin or sharp parts, where the RGB-D sensor cannot return the depth information
accurately.

The registration results of combining (Figure 15i–l) pre-alignment using RANSAC and refinement
with ICP shows how if the wrong pre-alignment is achieved, ICP cannot return a proper registration.

KinectFusion results show that it does not work properly in object reconstruction. For example, the
cube in Figure 15n, where the edges of the shape are rounded. In addition, thin parts close to each other
are joined, making them distorted. This method uses only 3D information; hence, in objects, such as
the bomb toy, where the shape is rounded, the method cannot put the different views in the right place.
Finally, the tool (Figure 15o) is joined to the floor, due to its thin geometry. Figure 16 shows different
moments of the reconstruction, where step by step, the algorithm mixes the object and the floor.

RGBDemo algorithm results are presented in Figure 15q–t. The Taz toy (Figure 15q) and cube
(Figure 15r) are well registered. The cube has the edges rounded due to the subsampling. The tool
in Figure 15s is well registered in the thickest part, but the thin part disappeared, due to different aspects.
One is the subsampling, but the main reason is the way in which low-cost RGB-D sensors recover the
depth information. They use a correlation window (http://wiki.ros.org/kinect calibration/technical) to
estimate the depth information. In case the window of 9 × 7 speckles (they use speckle pattern) had
more points in the floor than in the object, the floor depth information will be dominant. Figure 17
shows the color (Figure 17a), depth (Figure 17b) and infra-red (Figure 17c) images of the tool acquired
with the RGB-D sensor. The depth image has no information, because the speckles that reach the object
are not enough to estimate the profundity. The bomb toy in Figure 15t is properly registered at the top
part, but the low part of the body is incomplete. This is produced by self-occlusion. RGBDemo uses
visual markers, which have to be always visible. In case the full object has to be fully reconstructed, it
should be acquired from different positions, and finally, all registration results aligned together.

According to the four objects that have been selected to evaluate different aspects of the registration
methods, the analysis shows that as the Taz toy is the largest object and has several colors, enough
visual features can be found for the RANSAC algorithm. It also has a varied geometry what allows
ICP-based methods to align the views properly. Despite these features, the traditional methods
(RANSAC, RANSAC + ICP and ICP) cannot achieve an accurate final result, due to the cumulative error
between views, producing the final wrong closure. KinectFusion obtains a reasonable result, despite the
fact that it joins several parts, due to the smoothing characteristics of the method.

http://wiki.ros.org/kinect_calibration/technical
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Figure 15. Object registration results of the tested methods. First row: RANSAC with
SIFT features registration. Second row: ICP registration. The third row shows the result of
the RANSAC and ICP combination. The fourth row presents the results of KinectFusion.
Finally, the fifth row presents the RGBDemo results.
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The cube is a low textured object, making difficult the feature extraction in some of its faces. Then,
both methods based on RANSAC cannot achieve good results. On the other hand, despite the geometry
being simple, the RGB-D sensors provide noisy data, mainly in edges, which makes it difficult to evaluate
the point cloud correspondence and general transformation between two consecutive views. For that
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reason, the ICP cannot obtain a final proper registration. KinectFusion tends to smooth surfaces, because
it uses a model of the scene and a TSDF method for point-to-model correspondence estimation, which
produces the rounded edges.

Figure 16. Different moments of the tool reconstruction with KinectFusion. The objects is
mixed progressively with the floor.

(a) (b) (c) (d)

Figure 17. The color, depth and infra-red images obtained by the camera. Using the infra-red
speckles, the depth is obtained with a structured light technique. In this case, the object has
thin parts that not enough speckles reach, and no depth information can be obtained.
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The tool has been selected due to the thin and low textured shape. Neither enough features could
have been extracted nor are there geometry aspects suitable for traditional algorithms. Thus, RANSAC
and ICP cannot register the views. KinectFusion does not work properly due to the aforementioned
smoothing characteristics of the method, producing a non-accurate final reconstruction.

Finally, the bomb toy is a small object with different areas. There are parts having color feature areas
and others with varied geometry. These features produce good results for RANSAC when the featured
parts are registered, but fail in the rest. On the other hand, ICP works properly with the back part, where
a keypoint is attached to the object, but fails when the round part of the Bomb is aligned. KinectFusion
cannot achieve a good result due to the lack of geometry.

Different conclusions can be extracted analyzing the above experimentation results. In general,
regarding the size of the object, all methods find more difficulties in registering views from small objects,
because either few features appear or the noise becomes more relevant. That is the reason why the best
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result in general terms is achieved by the RGBDemo algorithm, using external visual markers in order
to help the registration. The coarse alignment is based on these visual markers; then the lack of texture
does not affect it, and the fine registration works properly, because of the good coarse pre-alignment.
For thin and small objects, such as the tool and the bomb toy, a slight filtering process should be used in
order to avoid over-rejection of data when those objects are commonly originally represented with few
data. Despite the RGBDemo presenting good results, there is still work to do in order to allow different
angles of the sensor against the object to minimize self-occlusions. There exist new proposals focused
on this problem, such us [63], where a model-based multi-view registration method is presented for 3D
markers to allow the registration of objects.

5. Conclusions

In this paper, we have first made a description of different registration methods using low-cost RGB-D
sensors, dividing them into coarse and fine methods. This classification facilitates the description of
the main features of the algorithms. Then, we have developed an experimental validation of different
registration methods in two representative applications: scene and object reconstruction.

For scene registration, we have tested five different registration methods and quantitatively measured
the error in the pose estimation using a state-of-the-art RGB-D dataset for visual odometry and SLAM
systems. Using the evaluation measures and tools provided by the dataset, we analyzed the results of the
tested methods, which are the KinectFusion, the dense visual odometry, the ICP, a visual feature-based
method and visual features with the ICP refinement method. Results showed that the DVO method gets
the lowest registration error, and it is the most robust. KinectFusion does not work properly with datasets
where frames have a lack of geometry.

For object registration, we have tested also five different registration methods and qualitatively
measured the error using a new RGB-D dataset created for this evaluation; specifically, a visual
feature-based method using SIFT and RANSAC, the ICP variant of Chen and Medioni, the visual
features with ICP refinement method and the new methods, KinectFusion and RGBDemo. KinectFusion
is one of the most used methods for object reconstruction. However, RGBDemo is a very different
approach, due to the use of ARToolKit markers. Results show that traditional algorithms did not
provide accurate results, while visual marker-based methods obtain better registrations. Different areas
of research still remain a challenge in this topic, such as better techniques focused on registering objects
acquired with low-cost RGB-D sensors.

As future work, we plan to continue comparing new methods and analyzing new RGB-D sensors
for these problems. Moreover, quantitative techniques to evaluate object registration error have to be
enhanced, since they are the most used for object registration and reconstruction visual inspection.
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