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Abstract 

Ethylene glycol (EG) oxidation has been studied on Pt(111) and its vicinal surfaces in acidic 

media by cyclic voltammetry and infrared spectroscopy. Even at Pt(111) the C-C bond is readily 

broken and CO is formed at low potentials. Both types of steps catalyze the EG oxidation to 

CO2, being the {110} steps the most catalytic for the splitting of the C-C bond. Spectroscopic 

results show that glycolic acid and oxalic acid are produced mainly at the close-packed terraces. 
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1. Introduction 

Among possible fuels, ethanol CH3CH2OH is very promising for a series of reasons [1]. The 

main problem is the formation of acetate as final product, especially at model Pt(111) electrode. 

This single crystal contains the most compact arrangement of surface atoms and is expected to 

be an important fraction of surface sites in platinum nanoparticles. The inclusion of steps in the 

structure leads to a better performance, because C-C breaking takes place at steps [2, 3]. In 

contrast, EG seems to effectively dissociate at platinum, in such a way that CO was considered 

to be the only relevant residue from spontaneous interaction of the fuel with the different basal 

planes [4]. It appears that the inclusion of an alcohol group in the methyl part of the molecule 

confers a greater reactivity towards breaking of the C-C bond [5]. 

This aims to examine in detail the oxidation of EG on Pt(111) and its vicinal surfaces  in order 

to study the reactivity associated to each type of catalytic site. 

 

2. Experimental 

 Platinum single crystal working electrodes preparation, reagents and experimental 

procedures, including FTIR set-up, is the same as described in previous papers [1-6]. Pt(111) 

and its vicinal surfaces Pt(S)[n(111)x(100)], with Miller indices Pt(n+1, n-1, n-1) and 

Pt(S)[n(111)x(111)] or Pt(S)[(n-1)(111)x(110)], with Miller indices Pt(n, n, n-2), where n is the 

number of terrace rows, were used. 
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3. Results and discussion 

3.1. Cyclic voltammetry. 

Figure 1 shows the activity of a selected set of electrodes in 0.1 M HClO4 + 0.1 M EG. In the 

positive-going sweep, the oxidation of EG at Pt(111) presents three characteristic features: (i) a 

pre-wave at 0.52 V, (ii) an oxidation peak at 0.65 V, and (iii) a shoulder at 0.75 V. After that, 

the current density drops to zero at higher potentials, after completion of the OHads layer [7]. In 

the negative-going sweep, a more intense peak is observed at 0.6 V.  

The pre-wave currents increase and shift to lower potentials after the insertion of {100} steps 

(n>16), Figure 1A. The highest current densities are attained with relatively large terraces. The 

shoulder at 0.75 V becomes a well defined peak whose intensity progressively increases with 

step density. Also, the net oxidation current above 0.85 V is higher as the terrace length is 

decreased, likely due to the formation of Oads at step sites [7]. Conversely, the peak at 0.65 V 

decreases and shifts to less positive potentials as the step density increases.  

EG oxidation on the stepped surfaces belonging to the        zone is given in Figure 1B. The 

higher oxidation currents demonstrate that {110} or {111} steps are more catalytic than {100} 

steps. Unlike the previous case, the intensity of both peaks at 0.65 V and 0.75V grow as the step 

density increases, although displace towards more positive potentials. The onset of EG 

oxidation, however, clearly shifts to lower potentials, even at high step density (n<7). In this 

series, the oxidation currents above 0.85 V also increase as n decreases, but are lower than those 

observed for the previous series, pointing out a different reactivity of Oads adsorbed at different 

steps [7]. 
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Fig.1. EG oxidation on stepped surfaces vicinal to Pt(111): (A) Pt[n(111)x(100)], (B) Pt[(n-1)(111)x(110)]. Test 

solution: 0.1 M EG in 0.1 M HClO4, 50 mV·s-1. Positive (solid line) and negative scan (dashed line) are shown. 

 

3.2. Spectroelectrochemical results. 

The inset graphs of Fig. 1A-B show that the platinum surfaces are significantly blocked for 

hydrogen adsorption. The poisoning is mainly due to adsorbed CO [4] and is higher as the step 

density increases, especially for the surfaces with {110} steps, revealing faster CO formation at 

steps. FTIR experiments were carried out to find out details of the different species formed on 

the electrode surfaces. In the following spectra, positive bands correspond to the products 

formed at the sampling potential, while negative bands are due to the consumption of species 

present at the reference potential. The FTIR spectra for the oxidation of EG on Pt(111) electrode 

are shown in Fig. 2A.The bands at 2032-2063 cm
-1

 and 1800-1816 cm
-1

 are assigned to CO 

stretching in on-top and bridge configurations, respectively. The appearance of these bands 

indicates that the C-C bond of the EG molecule has been broken at low potentials, resulting in 

the formation and accumulation of adsorbed CO and demonstrating that CO is the poison 

present on the electrode surface. This behavior is somewhat different to that shown by ethanol, 

where the amount of CO formed and accumulated on the Pt(111) surface is very small [1]. The 

band at 2343 cm
-1

, corresponding to the asymmetrical stretching mode of CO2 in solution, is 

already visible at 0.6 V RHE. For ethanol oxidation, the CO2 onset potential was 0.7 V and the 
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IR bands were comparatively smaller. The observation of the CO2 band at lower potentials in 

the negative scan reflects that still remains in the thin layer. Nevertheless, the intensity of this 

band diminishes at potentials lower than 0.6 V, which indicates that some CO2 is diffusing away 

from the thin layer and no additional CO2 is being formed below this potential. Since the quality 

of the Pt(111) single crystal electrode is better than that previously used, the presence of 

adsorbed CO must be linked to the nature of the molecule and not to the defects present on the 

electrode surface [8]. That means that the introduction of an OH group in the molecule, in 

comparison with ethanol, induces more reactivity towards complete oxidation. The bands at 

1735-1745 cm
-1

 and 1235 cm
-1

 correspond, respectively, to the C=O stretching of a carbonyl 

group and the C-OH stretching of a carboxylic acid group, and can be tentatively assigned to 

oxalic and/or glycolic acid. The formation of this latter molecule is corroborated by the presence 

of the band at 1398 cm
-1

, assigned to adsorbed glycolate [9, 10]. The band at 1640 cm
-1

, 

corresponding to the bending mode of water, is present in all the spectra, and can hide the band 

associated to as(OCO) mode of bioxalate, which appears at 1635 cm
-1

 [11] as well as that of 2-

hydroxyacetyl [12, 13]. It was proposed that oxalate comes from further adsorption and 

oxidation of glycolate to oxalate [14] and that 2-hydroxyacetyl is the precursor of CO. 
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Fig.2. (A) Spectra obtained at different potentials, as labeled, for the oxidation of 0.1 M EG + 0.1 M HClO4 in H2O 

the Pt(111) electrode (reference spectra taken at 0.06V). (B) Plot corresponding to the integration of the bands of 

CO2, COL measured in H2O and carboxylic group measured in D2O as a function of the applied potential. 

 

Fig. 2A shows that in the positive going sweep of the first cycle is possible to detect the bands 

associated to the carboxylic group at 0.5 V, but not the one assigned to glycolate adsorption 

because the amount of acid formed is too small. At 0.6 V, when CO starts to oxidize and the 

CO2 band first appears, these two bands become more defined. Only at 0.7 V, when the CO is 

completely removed from the surface, the band of adsorbed glycolate appears, remaining in the 

following spectra until the adsorption of CO takes place again in the negative sweep. It is worth 

to mention that, coinciding with the start of the oxidation wave in the negative scan, the bands 
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of the C=O and C-OH stretching of the carboxylic acid become more intense, and that glycolate 

desorbs from the surface. From these spectra, the formation of oxalic acid cannot be asserted. 

For that reason, FTIR experiments were carried out in D2O (not shown). The use of D2O 

eliminates the interferences of the carbonyl group with the (OH) mode of water, since this 

band moves from 1640 to 1200 cm
-1

.  In this solvent, a weak band at 1639 cm
-1

 was observed at 

0.6 V in the negative-going sweep, pointing out the formation of bioxalate. This product was 

not found on polycrystalline Pt [12]. Since the oxidation of oxalic acid to CO2 only occurs at 

potentials above 1.1 V [15], the oxidation currents in the negative-going sweep have to be 

related to the oxidation of EG to CO2 and glycolic acid, which would generate adsorbed 

glycolate, and its further oxidation to CO2 and oxalic acid/bioxalate.  

Fig. 2B represents the integration of the bands associated to linear CO, CO2 from the spectra in 

H2O and that associated to the C=O stretching of a carbonyl groups from the spectra in D2O, as 

a function of the applied potential. Some conclusions can be drawn from this plot: (i) CO is 

formed on the Pt(111) electrode at 0.2 V and oxidizes at 0.6 V; (ii) both COL and COB (not 

shown in the figure to simplify) are produced in the same potential region in the negative-going 

sweep; (iii) in the positive-going sweep, CO2 is formed at 0.6 V from the oxidation of the 

adsorbed CO; in the negative scan, some CO2 is also formed between 0.9 V and 0.6 V. This can 

be deduced from the increase in the signal, which is proportionally lower than the signal 

associated to the C=O stretching. (iv) Carboxylic groups are formed between 0.6 V and 0.9 V, 

both in the positive and negative-going sweeps. Once the CO adsorption appears in the spectra, 

the formation of the carboxylic group stops.  

The following scheme summarizes the spectroelectrochemical information for EG oxidation at 

Pt(111): 

 

Scheme 1. General scheme for the oxidation of EG on Pt(111) electrode. 

 

FTIR spectra were also recorded for Pt stepped surfaces to understand the role of the steps in the 

formation of the different species. Comparison with the Pt(111) electrode at selected potentials 

is given in Fig. 3. At 0.4 V, bands associated to CO adsorption are predominant. Moreover, the 

electrodes with {110} steps show an asymmetrical bipolar band corresponding to linear CO. 

That indicates that some CO was already adsorbed at the reference potential, which gives the 
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negative contribution to the band, and its surface concentration has increased during the 

voltammetric sweep, resulting in a more intense positive band. The almost complete absence of 

the bridge CO band in this series agrees with the {110} symmetry assignment [16]. As the step 

density increases this bipolar band becomes more intense, indicating that the presence of {110} 

defects catalyze the C-C cleavage of the EG molecule, as in ethanol oxidation [2]. Interestingly, 

the band at 1740 cm
-1

 is not observed at 0.4 V but is clearly observed at 0.6 and 0.8 V. 

The electrodes with {100} steps show both linear and bridge CO, as expected [16]. The 

intensity of both bands is higher as the step density increases, but in a more moderate way that 

in the previous series. The spectra taken at 0.6 V and 0.8 V show that both types of steps 

increase the catalytic activity of the electrode in the pathway that leads to CO2 formation, but 

also in that in which glycolic acid is formed. As reported for ethanol oxidation [2], the 

electrodes with {110} steps give a more intense CO2 band than those with {100} steps and the 

same terrace width. 
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Fig.3. Spectra for the oxidation of 0.1 M EG in 0.1 M HClO4 on the different stepped surfaces at 0.4 V, 0.6 V and 0.8 

V (only positive-going sweep). Reference spectra: 0.06 V. 

 

Further FTIR experiments in D2O with these stepped surfaces where performed, where no band 

at 1639 cm
-1

 was found. These results point out that the presence of steps catalyze the EG 

oxidation to glycolic acid and CO2 rather than the formation of oxalic acid/bioxalate, which 

seems to take place on the long terraces of the Pt(111) electrode. This can explain the 

conclusions reported on polycrystalline Pt-film electrodes[12]. 
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4. Conclusions 

Results suggest that CO is readily formed from EG at low potentials, which implies the rupture 

of the C-C bond. The insertion of an OH group in the molecule, in comparison with ethanol, 

makes this bond more labile in contact with platinum surfaces. The presence of steps catalyzes 

the cleavage of the C-C bond, the higher yields of CO2 observed for electrodes of the series 

Pt(S)[(n-1)(111)x(110)]. FTIR experiments point out a parallel pathway where glycolic acid is 

formed, further oxidized to oxalic acid/bioxalate (in long {111} domains) and CO2 

(preferentially in the presence of steps). In spite of greater poisoning at stepped surfaces, the 

oxidation current is higher at 0.55 V, thus suggesting that both routes are faster at stepped 

surfaces. It appears that {110} steps catalyze the formation of CO while {100} steps favor the 

carboxylic acid route. Oxalate/bioxalate was only found at Pt(111). 
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RESEARCH HIGHLIGHTS 

 Pt(111) electrode is very active for the oxidation of ethylene glycol 

 The breaking of the C-C bond takes place on the (111) terraces 

 Steps are very active for this oxidation 


