
INTEGRATION OF DIFFERENT MODELS IN THE DESIGN OF

CHEMICAL PROCESSES: APPLICATION TO THE DESIGN OF A

POWER PLANT

José A. Caballero*; Miguel A. Navarro
*
, Ignacio E. Grossmann

**

*Department of Chemical Engineering. University of Alicante. Ap. Correos 99. 03080 Alicante. Spain

** Department of Chemical Engineering. Carnegie Mellon University. Pittsburgh, PA. USA.

Abstract

With advances in the synthesis and design of chemical processes there is an increasing need

for more complex mathematical models with which to screen the alternatives that constitute

accurate and reliable process models. Despite the wide availability of sophisticated tools for

simulation, optimization and synthesis of chemical processes, the user is frequently interested

in using the 'best available model'. However, in practice, these models are usually little more

than a black box with a rigid input-output structure. In this paper we propose to tackle all these

models using generalized disjunctive programming to capture the numerical characteristics of

each model (in equation form, modular, noisy, etc.) and to deal with each of them according to

their individual characteristics. The result is a hybrid modular –equation based approach that

allows synthesizing complex processes using different models in a robust and reliable way. The

capabilities of the proposed approach are discussed with a case study: the design of a utility

system power plant that has been decomposed into its constitutive elements, each treated

differently numerically. And finally, numerical results and conclusions are presented.

keywords

Process synthesis, Generalized Disjunctive Programming; Utility Systems, Modular

Optimization, kriging.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Alicante

https://core.ac.uk/display/32319002?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

The model of a chemical plant can be theoretically represented by a large system of nonlinear

algebraic equations. However, depending on the data specified and the final objective of the

model user four types of different problems are considered [1, 2]:

In a Simulation Problem, the feeds and design variables of each unit must be specified. The

unknowns are the variables representing the additional (product) streams. They usually have a

rigid input-output structure, but at the same time are robust and reliable.

A Design Problem is similar to the simulation problem, but some of the design variables (i.e.

reactor volume; number of trays in a distillation column, etc) are unspecified. A number of

constraints are then imposed on some of the stream variables to satisfy the extra degrees of

freedom.

In an Optimization Problem some variables associated with the feed and equipment design can

be left unspecified, in this case a performance function must be added to the model. Inequality

constraints may also be added to the model.

In a Synthesis Problem, alongside the optimal operating conditions (feed and design variables),

we are also interested in the best configuration, for a given objective, from a structural point of

view (combination of unit operations or technologies). We have the added difficulty of solving a

problem in which the set of equations change depending on the selected equipment.

The simulation and design problems can be theoretically represented by a large system of

nonlinear algebraic equations of the form:

() =f x 0 (1)

where f is a vector of functions and x is a vector of variables. The variables represent flow rates,

compositions, temperatures, pressures, etc., and the functions are obtained from physical and

chemical principles expressing conservation of mass and energy, chemical equilibrium, kinetics

and transport phenomena. Modeling a chemical plant can involve hundreds of thousands of

equations and variables. In some cases it is possible to write and solve the complete set of

equations directly using general modeling systems (e.g. GAMS [3] , AMPL [4]) or chemical

engineering oriented modeling systems (e.g. ASCEND [5], gPROMS [6]) that include databases

of chemical and thermodynamic properties. But as the model becomes more complex more

specialized knowledge is required to, for example, provide good initializations, and avoid

physically meaningless solutions.

Alternatively, instead of solving all the equations simultaneously, it is possible to use a modular

approach. In this case the equations of a given module (i.e. unit operation like a distillation

column, heat exchanger, etc.) are solved using tailored numerical algorithms. And then all the

modules are solved following a pre-specified calculation sequence. The advantages of a

modular approach are:

• Different sub-modules can be prepared and tested separately.

• The solution methods can be specifically designed for that module, e.g. the model of a

distillation column or a complex reactor. Therefore, the module is robust and reliable.

• Because of the rigid requirements, data can be easily checked for consistency and

completeness.

• The modular structure allows easy addition of new modules.

Due to these advantages, it is not surprising that modular simulation is still the dominant

approach. However, when we move to design, optimization or synthesis problems the modular

approach loses some of its attractiveness. The straightforward approach consists of performing

simulations that attempt to satisfy the design or optimization objectives. However, repeated runs

of the simulation rapidly lead to long computational times. Therefore, the design and

optimization is usually performed in an equation based environment (all equations solved

simultaneously) using general modeling systems or field specific modeling systems [7]. In the

case of synthesis, the model takes the form of a Mixed-integer (Non)Linear Programming

problem [2, 8, 9] (MINLP) where discrete decisions are related to integer (binary) variables or a

Generalized Disjunctive Programming Problem (GDP) [10]

Developments in the design, optimization and synthesis of chemical processes over the last

years have been impressive at all levels: from individual unit operations, to subsystems, and

even to complete flowsheet optimization (see for instance the following books [8, 11-14]).

However, due to the necessity of using equation based approaches, most of these designs rely

on shortcut or aggregated methods [15] or on some assumptions that must be verified using

rigorous models (i.e. a chemical process simulator). Moreover, with advances in the synthesis

and design of chemical processes there is an increasing need for more complex mathematical

models with which to screen the alternatives that constitute accurate and reliable process

models. Due to the complexity of the models it is not practical, and perhaps not even possible to

write a mathematical model each time we need to use it in a new simulation, design or

synthesis problem. Instead we would like to reuse the best available mathematical model [16].

While this is really straightforward in a modular simulation environment (we only have to add

one more module), in design, optimization and synthesis problems we should try to avoid the

brute force approach of repeated simulations mentioned previously. In this paper we present a

modeling framework that captures the specific characteristics of each of these models and

allows their efficient utilization in design, optimization and synthesis problems.

However, we do not confine our attention to only chemical process simulators in this paper. It is

clear that a number of state of the art models of importance to the chemical engineering

community come standard with commercial process simulators. Trying to use chemical process

simulators as an external module for solving synthesis problems by a MINLP approach is not

something new. Harsh et al [17] developed an interface between a MINLP and FLOWTRAN for

the purpose of retrofitting an ammonia process. Diwekar et al [18], devised a process

synthesizer using Aspen Plus. They illustrate their method on some small problems and the

structural optimization of the hydrodealkylation of the toluene process. Their algorithm is

basically an implementation of the modeling and decompositions strategy [19]. Reneaume et al

[20] point out that in a given constraint (,) 0h ≤d s (d is a vector of decision variables and s are

variables of interest calculated by the process simulator) the s variables depend implicitly on the

d variables. But this implicit function varies depending on what the structural decisions are. In

other words, s depends on the structural decisions and therefore the linearization of a given

constraint (e.g. in the construction of the MILP Master Problem) can lead to the linearization of

different functions, and consequently to the failure of the algorithm. They solved the problem by

adding 'pseudo-torn' streams, the function of which is to explicitly separate the dependency of s

variables from the structural decisions. Diaz & Bandoni [21] used a process simulator

specifically designed for ethylene plants, SISER [22], for the structural design of an ethylene

plant using a combination of different types of models (rigorous and simplified), which includes

correlations and results to check against an actual ethylene plant. Caballero et al. [23] proposed

a specific algorithm for the rigorous design of distillation columns, combining process simulators

and a modified version of the outer approximation algorithm [24-26]. Later Brunet el al. [27]

used this algorithm in the optimization of distillation columns in an ammonia water absorption

cooling cycle. They also extended the approach to mutiobjective optimization by considering

Life Cycle Assessment (LCA), without changing the topology in the process simulator.

In all the above-cited works, the full model is solved by a process simulator interfaced with a

MINLP solver. Caballero et al [28] presented a hybrid approach for the design of hybrid

distillation vapor membrane separation systems, in which the differential and algebraic

equations of the membrane modules are calculated in equation form. Caballero & Grossmann

[29] presented a detailed modeling framework that combines a process simulator with complex

algebraic (equation based) models involving both continuous and discrete variables, although

the topology of the flow sheet was not modified. A similar approach was followed by Brunet el

al. [30, 31] who extended the methodology to consider multiobjective optimization by including

LCA in biotechnological processes in which the reactions have complex kinetics that cannot be

solved by the process simulator.

It is worth mentioning that deterministic optimization methods, like the approach proposed in

this paper, are not the only alternative for dealing with these problems. Stochastic methods

have proved to be a good alternative for solving hybrid simulation-optimization problems.

Although there is a vast literature on metaheuristic optimization, combination with chemical

process simulators is a relatively recent development [32-39]. Besides in the case of synthesis

other approaches can be used such as local/global optimization techniques [40-42].

In this paper we present a modeling framework for dealing with synthesis problems including

models that might come from different sources and exhibit completely different numerical

behavior. This includes, but it is not limited to, chemical process simulators, thermodynamic

property servers, third party proprietary software and models from computer fluid dynamics, or

even experimental models. We believe that disjunctive programming is a framework that is very

well suited for dealing with these kinds of problems because it allows «encapsulating» each

model and then following a different approach based on the characteristics of each. The

connectivity between those models is in equation form – to avoid the implicit relation between

design and calculated variables [20]. Logical relationships, including strong relations between

alternatives (i.e., to ensure only feasible solutions) and soft relations (i.e., designer preferences)

can be added easily. The model is solved using logic-based algorithms without reformulating it

as an MINLP [9, 43]. As far as we know this is the first framework for modeling chemical

process that allows a modular approach, combining explicit –equation based- models with

simulation (black box) models, each of them with its own numerical characteristics, into a

Generalized Disjunctive Programming environment with logic based solvers.

In the rest of the paper we first provide a brief overview of generalized disjunctive programming

(GDP). Then we describe the modelling framework, its characteristics and the different

numerical treatment alternatives depending on the characteristics of a given model. The

capabilities of the proposed approach are illustrated by means of a case study: the design of a

utility system power plant that has been decomposed into its constitutive elements, each one

requiring different numerical treatment. Finally, numerical results and conclusions are

presented.

2. Generalized Disjunctive Programming

The most basic formulation of an optimization problem including binary variables (in the context

we are interested, and usually related with a decision, i.e., to install or not a particular process

unit) –MINLP- is as follows:

{ }

min : (,)

. . (,) 0

; 0,1

j

p
n

Z f x y

s t g x y j J

x X y

=

≤ ∈

∈ ⊆ ℜ ∈

 (2)

An alternative approach for representing discrete and continuous optimization problems is by

using models consisting of algebraic constraints, logic disjunctions and logic propositions [44].

This approach not only facilitates the development of the models by making the formulation

process intuitive, but also keeps the underlying logical structure of the problem in the model,

which can be exploited to find the solution more efficiently. A particular case of these models is

Generalized Disjunctive Programming (GDP).

The general structure of a GDP problem can be represented as follows [45]

{ }

,

,

,

1

,

min ()

. . () 0

() 0

()

,

, , ,

k

k
k K

i k

i k
i D

k i k

lo up

n
k

i k k

Z f x c

s t g x

Y

r x k K

c

Y True

x x x

x c

Y True False i D k K

γ

∈

∈

= +

≤

 ∨ ≤ ∈
 =

Ω =

≤ ≤

∈ ℜ ∈ ℜ

∈ ∈ ∈

∑

 (3)

where 1: nf R R→ is a function of the continuous variables x in the objective function,

: n lg R R→ belongs to the set of global constraints, the disjunctions k K∈ , are composed

of a number of terms ki D∈ , that are connected by the OR operator. In each term there is a

Boolean variable ,i kY , a set of relations , () 0i kr x ≤ and a cost variable kc . If ,i kY is True,

then , 0i kr ≤ is enforced; otherwise they are ignored. Also ()Y TrueΩ = are logic

propositions for the Boolean variables.

In order to take advantage of the existing MINLP solvers, GDPs are often reformulated as an

MINLP. To do so, two main transformations should be made, namely the disjunctive constraints

must be expressed in terms of algebraic equations and the propositional logic needs to be

expressed in terms of linear equations. The disjunctive constraints can be transformed by using

either the big-M [46] or the Hull Relaxation [10]. The transformation of propositional logic can be

accomplished as described in the work by Willians [47] to get a set of linear equalities and

inequality constraints in terms only of binary variables. An important drawback of MINLP

reformulation is that all the equations , () 0i kr x ≤ appear in the final formulation, even though

they might be inactive, which in some situations could produce numerical problems.

In order to fully exploit the logic structure of GDP problems, two other solution methods have

been proposed, namely the Disjunctive Branch and Bound method [10] and the logic based

outer approximation method [43]. The basic idea of the disjunctive Branch and Bound method is

to directly branch to the constraints corresponding to particular terms in the disjunctions, while

considering the convex hull of the remaining disjunctions. Although the tightness of the

relaxation at each node is comparable with that obtained when solving the HR reformulation

using a MINLP solver, the size of the solved problems is smaller and the numerical robustness

is improved, even though we still have to reformulate the problem. The idea underlying the

Logic Based Outer Approximation consists of iteratively solving a master problem given by a

linear GDP and a nonlinear (NLP), with fixed values of Boolean variables serving as an upper

bound. Therefore, for fixed values of the Boolean variables,

, ,;i k i kY True Y False i i= = ≠�

�

 the corresponding NLP is as follows:

,

,

1

min ()

. . () 0

() 0

,

k
k K

i k
k

k i k

lo up

n
k

Z f x c

s t g x

r x
i D

c

x x x

x R c R

γ

∈

= +

≤

≤ ∈
=

≤ ≤

∈ ∈

∑

�

�

�

 (4)

It is important to note that only the constraints that belong to the active terms in the disjunction

(i.e. associated Boolean variables ,i kY True=�) are imposed.

In the context of process networks, dealt with in this paper, the disjunctions in the GDP are two-

termed. Basically the decision in the disjunction is whether to select or not a given alternative

(i.e., in the case study presented later, to install or not a gas turbine, a boiler, etc). The second

term of the disjunction simply states that if a given option is not selected all the variables related

to that option are set to zero.

() 0 0

0

ii
i

i

i i i

YY

r x B x

c cγ

 ¬

 ≤ ∨ =
 = =

 (5)

For this particular case, the master problem can be written as follows:

1

min

. . () ()()
1,2....,

() ()() 0

() ()() 0 0

0

()

k
k K

l l l

l l l

i i

l l l i
i i i

i i i

Z c

s t f x f x x x
l L

g x g x x x

Y Y

r x r x x x l L B x i D

c c

Y True

R

α

α

γ

α

∈

= +

≥ + ∇ − =
+∇ − ≤

 ¬

 +∇ − ≤ ∈ ∨ = ∈
 = =
Ω =

∈

∑

 (6)

The problem in equation (6) can be easily reformulated and solved as a Mixed Integer Linear

Programming (MILP) problem.

It should be noted that before applying the above master problem we need at least one linear

approximation of each of the terms i D∈ in the disjunctions. Here there are two alternatives,

select the smallest number of NLP sub-problems that include at least once each disjunction [43]

or perform sub-Lagrangian optimization of the non-existing terms with respect to a base case.

This constitutes the modeling and decomposition approach [19]. In the appendix A there is a

comprehensive description on how to adapt the logic based outer approximation algorithm to

implicit models (modular approach).

3. Modeling framework

We present a new modeling environment that is capable of dealing with synthesis problems

involving mathematical models from different sources, exhibiting different numerical behavior

and with different degrees of end-user access to the original code. As far as we know this is the

first time that the intuitive modeling framework provided by GDP, is combined with a modular

hybrid simulation-optimization, in which the numerical treatment of each module is different

depending on its characteristics. We believe that GDP is the ideal framework for dealing with

these problems for at least the following reasons:

i. GDP representation maintains the underlying logic structure of the problem. The

formulation of the problem is intuitive.

ii. Each module can be «encapsulated» in a disjunction. In this way all the procedures

specific to each module can be isolated from the rest. For example, the generation of

accurate derivatives for both the NLP and Master problems might be based on different

methodologies in each module.

iii. Different models can be used for the same unit, without the necessity of 'rewriting' the

model, simply by calling a different module. The specific characteristics of the new

model will be automatically incorporated.

iv. We can use a range of models, from completely explicit (based on equations) to

completely implicit (all equations in third party modules like a process simulator), going

through mixed approaches in which parts of the model are implicit and others explicit.

For example, it is possible to add explicit constraints that affect the behavior of an

implicit model directly.

Figure 1 shows a scheme of the actual implementation. It is composed of three main modules:

An algebraic modeling language; a module for the evaluation of each external module, and a

logic based solver. The modeling language has the following characteristics

• The complete modeling system is developed in Matlab [48]

• Permits indexing of variables, algebraic equations and implicit models. In other words,

the same model can be used in different parts of the problem with different values of the

parameters and independent variables.

• Use of Boolean variables, disjunctions and logic equations. Allowing the direct

formulation of the problem as a disjunctive problem without MINLP reformulation.

• Specific differentiation methods for each sub-model (algebraic, automatic differentiation,

finite differences based on complex variables; etc).

• Determination of the sparsity pattern for each individual model and calculation of the

global Jacobian Matrix.

• Interfaced with different commercial solvers for NLP, LP, MILP models through Matlab-

Tomlab [48, 49], and with our implementations of a simple Branch and bound algorithm,

the outer approximation algorithm [24-26], the LP-NLP based branch and bound

algorithm [50] for MINLP models, and disjunctive solvers without MINLP reformulation

[43].

• Communication with process simulators and other third party models, except those

developed in Matlab, is accomplished by the Windows COM capabilities.

Figure 1. Scheme of the modeling framework

The module that evaluates the external models has the two major difficulties to cope with when

external modules are used:

1. Rigid input-output structure. This is the case of almost all chemical process simulators (a

remarkable exception is AspenHysys
TM

) and most modules designed for a specific task.

Consider for example a splitter in a process simulator. The user must specify the feed

stream and the split fractions, and the module calculates the exit streams. If we can reverse

the information flow we may be able to simplify the calculation procedure. In the simulation

of chemical processes the information flow usually coincides with the mass flow. Therefore,

if in the model there are recycles we must use an iterative process to solve the problem. In

some situations, however, we can reduce the recycle structure of the model by correctly

selecting the design variables [51]. If the module does not have a rigid input-output structure

(i.e. unit operations in AspenHysys
TM

) we could eventually take advantage of this fact. The

evaluation module performs a 'structural' analysis of the model in order to establish what the

best calculation sequence is. If the selection of design variables does not allow reducing the

recycle structure of the problem then it is convenient let the optimizer to simultaneously

search for the optimum and converges the flow sheet. Even though this approach increases

the number of explicit variables seen by the solver it also increases it robustness without

sacrificing the performance because in this way we avoid unnecessary iterations in the

process simulator.

2. Calculation of accurate derivatives. Accurate derivatives are fundamental for solving any

deterministic optimization problem. Depending on the origin or the external module and its

characteristics, the following cases are relevant:

2.1. The model is in equation form (with or without integer variables). Under these

conditions first and second derivatives are available (or easy to obtain).

2.2. We have access to the code of all the external modules. In this case it is possible to

automate a set of procedures that generate code for performing operations like

automatic differentiation, sparsity pattern determination or discontinuity function

evaluation. Tolsma et al [52] implemented these procedures in the modeling system

ABACUS II.

2.3. We have no access to the code that has an input-output structure, but numerical

derivative information is available. This is the case of some thermodynamic packages

that provide information both about the property and its derivatives with respect to

some variables.

2.4. We have no access to the code and derivative information is not available. Here we

can distinguish between different cases

2.4.1. Derivative information can be obtained easily and accurately, estimated using a

numerical approach. If the external module admits complex arithmetic we can

calculate derivatives virtually without numerical error [53]. In other cases we must

use a finite difference scheme by perturbing the independent variables.

2.4.2. A characteristic of external modules is that they introduce numerical noise, e.g.

the solution varies slightly with identical initial values. This is common in systems

that solve complex numerical equations within a finite tolerance. In process

simulators this behavior arises in distillation columns, chemical reactors or other

complex operations. If the numerical noise is relatively small, it is still possible to

implement a finite difference approach by increasing the perturbation of

independent variables, but at the expense of getting approximations of the

Jacobian that eventually could produce unexpected behaviors in the solver. Some

important additional considerations must be taken into account if derivatives are

calculated by finite differences:

A finite difference scheme that employs a noisy model should never be used in a

recycle because recycles act as noise amplifiers. This is a very common problem

in process flowsheet simulation. If this is the case the tolerances for closing

recycles must be at least a couple of orders of magnitude smaller than the

perturbation factors. A much better approach consists of letting the NLP solver

converge the recycles. Although the number of variables seen by the NLP solver

increases and the number of explicit equality constraints also increases, in

general the model is more robust and the computational time will usually not

increase (e.g., by avoiding converging all the recycles each time the simulation is

called). This is the approach we follow in this work.

If the model cannot be solved fast enough (say, in a fraction of a second) the time

necessary to calculate derivatives could be very large making the optimization

impractical.

2.4.3. If the model is very noisy or the computational time is too large to allow practical

implementation, then we cannot use it directly. In this case we can use a shortcut

or aggregated model, but of course this is what we want to avoid from the

beginning. Alternatively, it is possible to use a surrogate model. These include,

among others, polynomial correlations; splines; neural networks; radial basis

functions; kriging models; etc. We have implemented kriging models [54]. A

detailed description on the use of kriging models in optimization can be found in

Refs. [55-60]. Here we follow the implementation proposed by Caballero &

Grossmann [60], which can handle both noisy or deterministic systems by

implementing an interpolating or non-interpolating approach depending on the

characteristics of the model. It also uses an adaptive approach that contracts or

moves the domain between consecutive iterations if necessary in order to ensure

accurate results. Finally, there is explicit treatment of constraints in the case of

noisy systems.

The following remarks deserve special attention. It is assumed that all the implicit models are

continuous and differentiable. Even in noisy systems, the underlying model is assumed to be

continuous and differentiable. It is not uncommon for computer models to include "max/min"

operators; "If" sentences, etc. that can destroy the differentiability and continuity assumptions. If

the user is able to anticipate this behavior, a correct MINLP or GDP reformulation or a

disjunctive model can be developed. Otherwise, the numerical behavior of the model could lead

to difficulties. All MINLP and GDP algorithms require convexity to guarantee convergence to a

global optimal solution. In an implicit model it is difficult to prove convexity, even if the

underlying model is convex. Since in general we cannot ensure convexity, there is no guarantee

that a global optimum solution can be found.

The evaluation module determines the characteristics of each external module (method of

differentiation; if necessary, the optimal perturbation value of each variable that minimizes the

effect of numerical noise; or whether or not to transform the original model into a surrogate

model). All this information is sent to the modeling language, which generates the model,

determines the sparsity pattern, and decides the calculation sequence. Then the logic based

solver is executed and the problem is solved. In this paper we have used a logic-based outer

approximation algorithm modified to work with external modules (implicit equations). A

comprehensive description of this algorithm can be found in appendix A.

4. Case Study

As an example we present the synthesis of a utility system in which it is assumed that different

components are simulated by modules that exhibit different numerical behavior. There are

different commercial tools that can perform the design very efficiently (Aspen Utility Planner
TM

;

Ariane
TM

 by ProSim
TM

) using databases and cost correlations obtained directly from industrial

applications. The objective in this work is to show that efficient synthesis of a complex system

using different models is possible.

There are a many papers on the optimization and design of utility systems [61-67] ranging from

simplified linear models to thermodynamic based approaches, going through detailed studies

about startup and operation [68, 69].

Rigorous models for power production of steam turbines have been developed by Mavromatis

and Kokossis [70, 71]. Bruno et al. [72] proposed a superstructure optimization formulated as a

MINLP based on the previous work by Papoulias & Grossmann [62]. Manninen & Zhu [73]

decomposed the problem into a Master problem that specifies major structural features on a

design and flowsheet level, in which an exergy analysis identifies relevant modification options.

Varbanov et al.[74] developed more accurate models for steam and gas turbines that provide a

better description of part-load performance.

In this work we use a superstructure inspired by the previous work of Bruno et al. [72]. Figure 2

shows the superstructure, which includes:

• A gas turbine with a heat recovery steam generator (HRSG) with no additional fuel. The gas

turbine can satisfy the electricity demands by supplying exhaust gases to a HRSG boiler that

in turn provides vapor to a very high pressure (VHP) header.

• High pressure boilers fired by fuel. Boiler blowdown is necessary in all boilers; in this paper

we assume a fixed blowdown rate of 3% of the steam entering the boiler.

• A waste heat boiler that operates at medium pressure and recovers heat from process flue

gases or other units such as reactors.

• We assume four pressure headers VHP, HP, MP and LP. In addition, we have to consider a

vacuum level for the condensation turbines and an atmospheric level that recovers the water

returned from the process (previously treated). The demineralized water needed to

compensate for plant losses and consumption is also assumed to be at atmospheric

pressure.

• A de-aerator is included to remove the dissolved gases by steam stripping before feeding the

water into boilers. However, extra boiler feedwater could be an option. In this case we

assume that the de-aerator uses the LP steam of the plant.

• Steam turbines are used to generate electricity and to satisfy mechanical power needs. Here

we consider the following turbines.

� Backpressure turbines working between any two pressure levels (VHP-HP;

VHP-MP, VHP-LP; HP-MP, HP-LP, MP-LP).

� Extraction backpressure turbines exhausting from VHP to HP and MP and from

HP to MP and LP.

� Condensing turbines from HP and MP.

� Extracting condensing turbines from MP to LP and vacuum.

• The steam is distributed to steam consumers, to steam turbines or to the next pressure

header through letdown valves.

• Electric motors can be used to meet the required power demands.

• Finally, utility pumps are included to change the pressure in all the liquid streams.

Before continuing with the discussion it is worth introducing some discussion about

superstructure based optimization. Superstructure optimization is ideal when we have to deal

with a problem with a large number of alternatives for performing the same tasks, because

evaluate all those alternatives is not practical (even not possible). Of course, if a device is not in

the set of superstructure alternatives, not optimization method can place it there, therefore the

designer must use his/her knowledge of the system to generate a compact superstructure that

include all the alternatives of interest. Besides, superstructure optimization must be necessarily

followed by a critical analysis of the solution. Generation of superstructures is a research field

itself [75]. In systems like the one presented here, where the different alternatives can be clearly

specified, and the number of possible combinations can be large a superstructure based

optimization approach is a good approach.

Before providing a description of the actual implementation of each unit and its characteristics,

because we are using a modular approach, it is convenient to analyze the information flow in

the flow sheet (or superstructure). If we assume that the information flow coincides with the

mass flow, which is the usual approach in modular simulation, then any valid flow sheet must

include a recycle involving all unit operations. For example, we should assume a water mass

flow rate entering the boilers and fresh water entering the de-aerator, and after calculating the

entire flow sheet the water exiting the de-aerator should equal the assumed mass flow rate

entering the boilers. As commented before, it is convenient to let the optimizer converge this

recycle in order to minimize the effects of numerical noise. However, if we can change the

direction of the information flow we could solve a given flow sheet by means of small recycles

involving a single unit operation that can be efficiently handled by the implicit model. In this case

it can be accomplished just by reversing the calculation in the boilers: The (steam) water mass

flow rate is calculated in terms of the fuel flow rate and operating conditions. It is then possible

to calculate the fresh water mass flow rate in the de-aerator and no recycles appear in the flow

sheet. This kind of analysis can be automated, see for example the book by Westerberg et al

[51].

Following is a description of the main equipment involved in the power plant and their particular

models for implementation.

Figure 2. Superstructure of the utility system plant. It is possible to include N turbines of each

class in parallel.

Gas turbine and HRSG

The gas turbine is introduced in the model as a kriging metamodel. To generate data that sets

up the kriging model [54-56, 60] a gas turbine model was created in Aspen Hysys
TM

. See Figure

3.The model consists of a compressor that receives air at ambient conditions. The resulting

compressed air is introduced together with pressurized fuel (natural gas) in a Gibbs reactor that

simulates the combustion chamber of the gas turbine. The gases leaving the combustion

chamber are introduced in a turbine where they are expanded to atmospheric pressure. The

work generated by the gas turbine is used to move the compressor and to generate electricity

which is simulated by an energy balance. The exhaust gases are sent to a HRSG that is used to

generate more steam, and simulated as a regular heat exchanger. All relevant data about the

different equipment units are given in Table 1. Table 2 shows utilities data.

Figure 3. Scheme of the actual implementation of a gas turbine in Aspen-Hysys

Pure thermodynamic based approaches do not match the real cases with a sufficient degree of

accuracy. Instead we combine the thermodynamic model with data obtained from actual

turbines in order to obtain gas turbine efficiencies that can be included in the model. One of the

major factors that affect gas turbine performance is its size. This is measured in terms of rated

power production at ISO conditions (1 atm; 15 ºC and 60% relative humidity). Turbines from

different manufactures feature different efficiencies for the same size. Data on turbine

efficiencies is published by manufactures, for example General Electric reference library

documents [76]. Varvanov et al [74] showed that regressing that data set the following equation

can be formulated:

,max ,max() 21.9917 2.6683f gtQ MW W= + (7)

Using the same set of data the gas turbine efficiencies can be correlated with the following

equation:

4
,max0.3 3.207·10 ()GT gtW MWη

−= + (8)

The gas turbine can be calculated using three independent variables. We have used the air to

fuel ratio (wt.), fixed between 40 and 100; the compressor output pressure (between 1000 and

1500 kPa corresponding to compression ratios between 10 and 15 that corresponds with the

compression ratios in the data set of actual turbines that are being used as design basis); and

the fuel mass flow rate.

In the Aspen-Hysys model the efficiency of the gas turbine is forced to match the correlated

efficiency by dynamically modifying the compressor and turbine efficiencies.

The model, as implemented in Aspen Hysys is slightly noisy, and although it slows the

optimization down a bit it can be used as is. However, as commented above, for illustrative

purposes it was substituted by a kriging metamodel. The kriging approach has the advantage of

allowing very fast evaluation of the model. Moreover, it is possible to get numerical derivatives

without error (to within computer precision) by using complex derivatives.

To calibrate the kriging model we have used 100 points distributed by a min-max approach

(minimizing the maximum distance between two points) based on 1000 kg/h of fuel, which in

fact leaves the kriging model with two degrees of freedom. In this case the maximum error

introduced by the kriging interpolation is under 0.8%. Figure 4 shows the values predicted by

the kriging model, those calculated by Aspen-Hysys and the error for 500 random points.

Figure 4. Left: calculated values and those predicted by the kriging model, for the gas

turbine.Right, % kriging error of 500 random points.

Therefore, the model for the gas turbine can be written as follows:

, , , , _ (, ,)

40 100

1000 1500 ()

1200 (º)

600(º)

160 (º)

out out stack out
gt combustion turbine HRSG HRSG gt compressor gt

out
compressor

out
combustion

out
turbine

out
HRSG

W T T Q T Kriging Turbine AF P Fuel

AF

P kPa

T C

T C

T C

 =
≤ ≤

≤ ≤

≤

≤

≥

(9)

where:

gtAF Gas Turbine air to fuel ratio (weight basis)

out
compressorP Output pressure from the compressor in the gas turbine (kPa)

gtFuel Gas turbine mass fuel flow rate (kg/h)

gtW Effective work provided by the gas turbine

out
combustionT

Temperature of the output stream from the combustion chamber in the

gas turbine

out
turbineT Temperature of the exhaust gases from the gas turbine

HRSGQ Maximum heat available from the Heat Recovery Steam Generator

stack
HRSGT Temperature for the gases that exit from the HRSG.

For the HRSG we have to decide at which pressure we want to generate the extra steam and

what the minimum approach temperature between the gases and steam has to be. By means of

an energy balance we can calculate the extra steam mass flow rate and conditions (pressure

and temperature). This calculation is performed using Hysys as a thermodynamic calculator for

estimating specific water and steam enthalpies at the inlet and outlet conditions. Alternatively, it

is possible to generate a flow sheet in Aspen Hysys to perform this calculation. However, the

first option avoids interaction with the graphical interface and calculations are faster as a result.

The model for the HRSG can be written as follows

(), , , ,Steam Steam outgas
HRSG HRSG HRSG HRSG HRSG HRSGF T HRSG Q T P T = ∆

 (10)

where:

HRSGP Steam pressure in the HRSG (kPa)

Steam
HRSGF Steam flow rate exiting from HRSG (kg/h)

Steam
HRSGT Temperature of the vapor exiting from the HRSG (ºC)

HRSGT∆ Minimum approach temperature in the HRSG (ºC).

Boilers

For the boilers we follow a similar approach to that followed in the case of the gas turbine. A

flow sheet is built in Aspen Hysys to rigorously simulate the boiler. In this case we take

advantage of the Aspen Hysys capability for transmitting information from one unit to another as

soon as all the degrees of freedom of a unit have been provided by the user See Figure 5.

Figure 5. Scheme of the implementation of a Boiler in Aspen Hysys. Dotted lines indicate

information flow, which is different to the mass flow.

The design variables, see Figure 5, are the fuel flow rate and the temperature of the gases after

heat exchange with the water to generate steam. The calculation sequence is as follows:

A fuel and an air stream (10% excess) are introduced in a Gibbs reactor that simulates the

combustion of fuel in the boiler. The combustion gases exchange heat with water at high

pressure to generate steam. Instead of using a single heat exchanger, we use two heat

exchangers in which the heat is transmitted with a given efficiency (90%). Note that if the output

gas temperature is known (design variable), the amount of heat available for generating steam

is then also known. The temperature of the steam is fixed by assuming a minimum temperature

difference between the stack temperature of combustion gases (exit temperature) and the

steam. With this information Aspen-Hysys can calculate the steam flow rate, the blowdown, the

high pressure water flow rate and the pump. See Figure 5.

The model can be developed by using a given mass flow rate as basis (i.e. 100 kg/h). Under

those conditions if the steam pressure is known the complete model depends on just one

design variable. In our case this is the temperature of combustion gases after heat exchange.

Efficiency and approach temperature are fixed parameters. See Table 1 for all the relevant data

for boilers.

As in the case of gas turbines the model is slightly noisy, and it can be used as is, because it is

possible to get accurate derivatives by a finite difference approximation. However, it is much

more efficient, from a numerical point of view, to use a polynomial or cubic spline interpolation

for which the error is negligible and we have analytical derivatives. This is the approach we use

in this work.

Conceptually, the model for the boiler can be written as follows:

(), , ,

() 1900 (º)

Steam Steam Gas
Boiler Boiler Boiler Boiler Boiler

Gas
Steamdew Boiler Boiler

F T Boiler T Fuel P

T P T T C

 =
+ ∆ ≤ ≤

 (11)

where:

BoilerP Steam pressure in the boiler

BoilerFuel Mass flow rate of fuel consumed by the boiler

Gas
BoilerT Temperature of the gases exiting from the boiler

Steam
BoilerT Boiler steam temperature

Steam
BoilerF Boiler steam mass flow rate

Steam Turbines

A steam turbine converts steam energy into power. The total power of the expansion is further

split into power used by the shaft and energy losses (mechanical friction, heat losses and

kinetic losses). The three main factors affecting turbine performance are the turbine size

(maximum power), the pressure drop across the turbine, and the operating load.

An ideal steam turbine assumes an isentropic expansion. Any model of an actual turbine

captures its real behavior by means of the isentropic efficiency:

in out
IS

in IS

H H

H H
η

−
=

−
 (12)

In the literature there are different correlations that capture the isentropic efficiency in terms of

the actual load and pressure difference [12, 72, 74]. These correlations vary depending on the

manufacturer and the turbine size and model. However, according to Varbanov et al [74]

although the machine efficiency varies noticeably in a non-linear way with the load, it retains

relatively high values, that go from 88% for smaller turbines to 96% for the larger ones. Bruno et

al. [72] presented correlations for turbines working at their maximum load that relates the steam

turbine efficiency to the inlet pressure, the shaft power and exhaust conditions (condensing and

non-condensing turbines). In this work we include those correlations plus a fixed 0.95 efficiency

to take into account a possible deviation from full load operation.

For calculating the ideal turbine we can use a turbine model as implemented in Aspen Hysys or

using Aspen Hysys as a thermodynamic calculator server. We follow the second approach

because it affords us better control over the model and we do need to interact with the Aspen

Hysys graphical interface, which slows down the calculations.

A complex turbine can be decomposed into its basic components including simple turbine units,

splitters and mixers. Any minor differences between the extraction turbine and the decomposed

model can be compensated for later in the design by small adjustments in the specification in

terms of efficiency [12].

For condensation turbines, we use cooling water as cold utility. Therefore, the pressure of the

vacuum header is fixed to allow enough of a temperature difference between the condensing

steam and the cooling water.

Conceptually, the model for a turbine can be written as follows:

(), , , , , , ,

1

k k k

k

SteamOut SteamOut outSteamIn SteamIn SteamIn
Turbine Turbine Turbine cond Turbine Turbine Turbine Turbine

SteamOut SteamIn
Turbine k Turbine

k
k Turbineoutputs

SteamIn
Turbine

W F T Q Turbine F P T P Type

F F

F

α

α

∈

 =

≥

=∑

SteamIn SteamIn
Turbine Turbine

k k k

F F

α α α

≤ ≤

≤ ≤

 (13)

where

SteamIn
TurbineF Mass steam flow rate entering the turbine

SteamIn
TurbineP Pressure of the inlet steam

SteamIn
TurbineT Temperature of the inlet steam

kout

TurbineP Pressure of each of the output streams

Type Type of steam turbine: back pressure or condensing

TurbineW Turbine power

kSteamOut

TurbineF Mass steam flow rate in each turbine output

kSteamOut

TurbineT Temperature of each output stream

condQ Condenser heat load (only for condensing turbines)

Vapor Headers

A vapor header combines the steam (water) flows coming from different sources: Boilers,

HRSG, steam turbines, letdown valves, etc at different temperatures but at the same pressure

and distributes steam to where it is needed (process, steam turbines, letdown valves,

deaerator,…).

The header conditions (temperature if the pressure is fixed) can be calculated just from mass

and energy balances on all the streams entering the header (it is equivalent to a mixer). The

enthalpy of each stream is either determined from the unit that is generated or calculated by

Aspen Hysys.

Finally, a simple mass balance relates the input streams to the output streams (including

process demands) in each header.

Valves

A letdown valve is simulated as an iso-enthalpic expansion between two pressure levels. The

inlet conditions are calculated by the corresponding header. Therefore, the only computation

needed is the calculation of the outlet temperature for a given pressure and enthalpy (PH-flash).

De-aerator

To simulate the de-aerator we follow the approach described by Smith [12]. The mass flow and

conditions (temperature or enthalpy) of the following water (steam) streams are known: water

returned from the process, water coming from the atmospheric or vacuum headers and water

leaving from the de-aerator to the boilers or HRSG.

Assuming that the de-aerator works with LP steam extracted from the LP main, and that a fixed

percentage (5%) of the steam is vented, we can calculate the treated water makeup and the LP

steam requirements (See Figure 6) by mass and energy balances

Steam

Steam

Steam

Steam

LP Water
TW i Deaerator Boilers Vent

i Water Return

LP Water Water
TW TW k k LP Deaerator Boiler Boilers Vent Vent

k Water Return

LP

Vent Deaerator

F F F F F

H F H F H F H F H F

F Fα

∈

∈

+ + = +

+ + = +

=

∑

∑ (14)

where F makes reference to mass flow rates. H makes reference to specific enthalpies.

TM Reference to Treated Water Makeup

Water Return
Set of all the water flows returning to the Power plant: condensate,

from process, etc.

α Fraction of LP steam vented.

Note that enthalpies of the water going to boilers (and HRSG) and Vent streams are calculated

with reference to the de-aerator operating conditions.

Figure 6. Scheme of a de-aerator.

To perform the economic evaluation we use the total annualized cost (TAC). To annualize the

capital costs we use the following relationship [12]:

()

(1)

(1) 1

N

N

TAC OperatingCosts f CapitalCost

i i
f

i

= +

+
=

+ −

 (15)

where i is the interest rate per year and n is the number of years. Fuel, cooling water and other

cost data are given in Table 2. To estimate the capital costs we use the correlations in Turton el

al [13], except for the gas turbine whose purchased cost was correlated from manufacturing

data, supplied by Nye Thermodynamics Corporation [77]:

() ()
0.7395

$ 0.7886 ()GT GTGasTurbineCost M W W in MW= (16)

The final model consists of an objective function (TAC minimization) subject to fixed equipment

equations: vapor headers, letdown valves and de-aerator. Note that the valves do not require a

disjunction because the flow passing through a valve takes a zero value if the valve does not

exist. Conditional equipment equations included as two term disjunctions are: Gas Turbine (

GTY), HRSG (HRSGY) , Boilers (
kBoilerY) and Steam Turbines (STY). Where Y makes

reference to the boolean variable of each unit.

We must include the following logical relationships:

• If the HRSG exists then the gas turbine must exist:

HRSG GTY Y⇒ (17)

• If a gas turbine is not selected then the HRSG cannot be selected

GT HRSGY Y¬ ⇒ ¬ (18)

• At least the HRSG or a boiler must be selected

()
kHRSG Boiler

k Boilers
Y Y

∈
∨ ∨ (19)

The mechanical power must be supplied by a given equipment unit (Steam turbines or electric

motors). In that case, we need to allocate the power among the available equipment. To that

end we define a new boolean variable:

,eq pdZ True if equipment 'eq' satisfies the demand 'pd '

The following disjunctions explicitly enforce that relationship

,eq pd

eq pd

Z

W PowerDemand

 =
 (20)

The following logical relationships correctly ensure feasible assignments:

• If the mechanical power demand 'pd' is assigned to equipment unit 'eq' then unit 'eq'

must be selected:

,eq pd eqZ Y⇒ (21)

• Each mechanical power demand must be assigned to some equipment unit

(),eq pd
pd
Z eq∨ ∀ (22)

Although it is not strictly necessary, if we want to guarantee that a given unit of equipment be

assigned to a single mechanical power demand we can include the following relationship:

(),eq pd

eq

at most Z pd∀ (23)

Note that steam demands are included in the mass balances on each steam header, and

therefore it is not explicitly necessary to allocate a Boolean variable to every steam demand.

As a final remark, it is worth mentioning that adding new equipment (i.e. more gas turbines, or

boilers) does not modify the equations of existing equipment units; thus, adding another is

straightforward. Due to the modular approach, modifying equipment, or adding or removing

alternatives does not modify the structure of the rest of the model.

5. Examples

Here we present three instances of the model that illustrates the versatility of both the case

study and the modeling framework. All the relevant data for each of the three instances are

given in Table 3

The first case is a power plant with high power (electricity) demand (50 MW) and different

demands of VHP (100 bar) stream 1 t/h; HP (40 bar) steam 20 t/h; MP steam (20 bar) 5 t/h and

LP steam (3 bar) 10 t/h. In this first case there is no mechanical power demand. The optimal

solution includes a gas turbine with HRSG, and four steam turbines working between different

pressure levels. See Figure 7.

Figure 7. Optimal solution for case study, instance 1.

Notice the perfect steam balance in this example. The operating conditions of the gas turbine

and HRSG are optimized in such a way that the steam produced in the HRSG is used, without

any excess, for supplying the steam demands (including the LP steam in the de-aerator) and

the extra power demand not satisfied by the gas turbine. Table 4 shows with detail the results of

this example.

From a computational point of view, the most complex non-linear problem, that in which all the

units exist (used for initialization since it is a feasible solution, although of course not the optimal

one) is solved in around 60 seconds of CPU time, although this time depends on the initial

values. The remaining the NLP sub-problems are solved typically in CPU times that range

between 5 and 20 seconds. (Intel(R) Core(TM)2Quad CPU 2.4GHz 2.39 GHz. RAM 8 GB under Windows 7).

The MILPs where solved in all the cases in less than 1 second of CPU time. Table 5

All the numerical tests we have performed show that for a given problem with a fixed

configuration, the optimal solution that is obtained is not too sensitive to the initial values. In

other words, there is reasonable evidence that the solution is the global optimum (although of

course we cannot guarantee it). However, in the master problem slack variables become active

during the initial iterations, and as a consequence we cannot guarantee that the solution is

indeed the global optimum. Nevertheless, numerical tests allowing a large number of major

iterations (i.e. 25 major iterations) show that the solution obtained, if not optimal, is at least a

good solution (error smaller than 10-15% in the worst cases).

In the second instance there are mechanical power demands (three rotating units of equipment

requiring 2000, 2500 and 3500 kW, respectively) that must be satisfied by steam turbines, and a

power (electricity) demand of 5 MW. Moreover, the process plant requires 10 t/h of HP steam

and 5 t/h of LP steam.

The optimal solution includes a gas turbine, a HRSG, and three steam turbines to provide

mechanical power (one of these is a condensing turbine).See Figure 8 and Table6. In contrast

to the first example, the steam needed to drive the turbines and satisfy process demands,

generates more electricity than is required, and can be fed in and sold to the power grid.

Figure 8. Optimal solution for case study, instance 2.

The computational performance in this case is similar to that observed in the first instance.

Nevertheless, it is interesting to note that because of the initialization it is not practical to solve a

set of feasible NLPs that includes all the alternatives at least once. Due to the assignment

equations linking turbines to mechanical demands, the number of alternatives is too large.

However, what we really need to initialize are the steam turbines. Therefore, to initialize the

MILP master problem we simply assume that all the steam turbines exist subject to the

condition that the power generated by all of them exceeds the total power (mechanical +

electricity).

The third instance is similar to the second but the mechanical power demands (500 kW, 1000

kW) and electricity demand (600 kW) are lower. There are also demands for HP steam (2 t/h)

and LP steam (5 t/h). The optimal solution includes a Boiler, 2 backpressure steam turbines, a

condensing turbine, and the de-aerator. There are also two letdown valves to distribute the

steam among the steam mains and the steam turbines. In this case, the reduced demand for

electricity does not justify the high gas turbine cost. See Figure 9 and Table 7 for a detailed

summary of the results.

Figure 9. Optimal solution for case study, instance 3.

6. Conclusions

This paper describes how models from very different sources and with different numerical

behavior can be incorporated as modules in a general synthesis framework that is able to

capture their numerical performance and implement numerical approaches tailored to the need

of each model. Some of the capabilities of the proposed approach are the following:

• Structural analysis of the input-output structure of each model for selecting design

variables and limiting as much as possible the extent of the recycle structure of the

problem.

• Determination of the sparsity pattern of each model to accelerate the calculation of the

Jacobian matrix.

• Different approaches for calculating the derivative information that includes analytical,

complex variables based differentiation, and finite differences.

• Possibility for dealing with noisy systems through adaptive surrogate models (kriging).

• Disjunctive modeling that facilitates the conceptual modeling.

• Soft and hard logic relations can be easily introduced in the model

The final result is a hybrid system that includes implicit models coming from different sources

exhibiting different numerical behavior, and models or constraints in equation form. The basic

idea is that the 'best available' model can be used in a rigorous synthesis framework when

shortcut models are inadequate. Even though some of the previous characteristics are included

in different algebraic modeling systems, as far as we know the combination of all of them in a

Generalized Disjunctive Programming environment is new.

It has been shown that the synthesis problem can be written as a General Disjunctive

Programming problem and solved without MINLP reformulation using the logic based outer

approximation or LP/NLP based branch and bound. Conceptually, the GDP approach allows

easy model formulation by the final user and at the same time encapsulates each sub-model,

facilitating numerical study of its characteristics.

The synthesis of a utility system, in which each of the components has been treated as a sub-

model of different characteristics, has been used as a case study. The objectives were twofold,

first we have proved the efficiency and robustness of the proposed framework and second we

develop a new tool to the preliminary design of utility systems. Future work will concentrate on

producing a new design and synthesis tool that can be applied to many processes.

Acknowledgements.

The authors wish to acknowledge support from the Spanish Ministry of Science and Innovation

(CTQ2012-37039-C02-02).

Appendix A.

Logic Based Algorithms with implicit sub-models

The specific disjunctive model we solve in this paper can be written as follows.

()

{ }

min : (,)

. . ()

(,)

(,)

()

(,)

(,)

,

i

i i i

i i i

i i

n

p

f

s t

Y

Y
i D

True

X

True False

=

=

≤

 = ¬ ∨ ∀ ∈ = =
 ≤

Ω =

∈ ⊆ ℜ

∈

D I

D I I

E D I

E D I

D I I

E D I I

E D I

I

x x

x r x

r x x 0

s x x 0

x h x

h x x 0 x 0

g x x 0

Y

x

Y

 (A.1)

where xD is a vector of dependent variables (e.g calculated by the implicit models) over which

the designer has no direct control. xI is a vector of independent variables over which the user

has complete control. The index "I" makes reference to implicit equations calculated by external

modules (Process Simulator, property estimation modules, etc) and the index "E" makes

reference to explicit equations. Note that we have introduced dependent variables in explicit

equations (for example in (,) ; (,)or= ≤E D I E D Ir x x 0 s x x 0), associated with a given

topology implicitly this formulation involves sequential function evaluation, first the implicit

models and then the explicit equations. An alternative approach consists of adding a new

subset of independent variables and explicitly including the relationship with the dependent

variables : j j=I Dx x . In this work we follow the first approach.

In the model given by equation (A.1) we only allow two term disjunctions which is the case of

process networks and synthesis problems. This is not a major limitation because an N term

disjunction can be reformulated as N disjunctions with 2 terms.

Initial and primal subproblems

To solve the problem given by equation (A.1) we use a version of the logic based outer

approximation algorithm [43] or a logic version of the LP-NLP based branch and bound

algorithm [50]. The first step consists of initializing all the units (sub-models) inside the

disjunctions. Here there are different alternatives. The first one consists of selecting a basic

feasible flow sheet, optimizing it and then performing a sub-lagrangian optimization of the non-

existing units in that initial flow sheet. This constitutes the Modeling and Decomposition (MD)

strategy [19]. The second approach consists of selecting a minimum set of feasible flow sheets

in such a way that all the disjunctions are true at least once. This sub-set can be selected by

solving a set covering problem [43] with the constraints given in form of logic relationships in

equation (A.1). In some situations the sub-lagrangian optimization cannot be easily performed.

This is the case, for example, of distillation columns in a process simulator, in which the

optimization of non-existing trays is equivalent to optimizing the complete column. In that case,

Caballero et al [23] proposed performing a simulation of the non-existing configurations using

the optimal values of the initial base case, and adding an extra term in the master problem that

takes into account the eventual existence of those units. Brunet et al [30, 31, 78] extended this

approach to other systems but not distillation columns.

During iteration k only a feasible NLP problem is solved, one that corresponds to fixed values of

boolean variables given by the master problem. The major difference between the logic

versions of the Outer Approximation and LP-NLP based BB is that in the first the master is

solved to optimality, however, in the second the NLP is solved when an integer solution is

found. In the latter case, the tree generated by the master problem is updated with new

linearizations from the last NLP.

It is worth remarking that when a given configuration (a set of Boolean variables that produce a

feasible solution) is selected the NLP involves only the common variables and the variables

inside the existing disjunctions. The remaining variables are ignored. Mathematically the non-

existing variables are set to zero, but that is done a posteriori, and therefore the solver is only

viewing a reduced set of variables, which increases the robustness of the optimization.

Master subproblem.

The objective of the master problem is to provide a new set of Boolean variables that likely

produce better results than a previous solution. Here we present a tailored master linear

disjunctive problem.

We define the following index set for iteration k in the algorithm:

{ }| is a feasible configuration already visited by the algorithmm mΓ

1 2 1 2

1

min : ()

. . (,) (,) ()

() (,) (,) ()

(,) (,) ()

i i

i D

k k k k T k k

m

m

k k k k k T k k

m

m

k k k k T k k

m

m

s t f f obj

sign

α

α

∈

∈Γ

∈Γ

∈Γ

+ Π + + +

≥ +∇ − + ∆

+ ∇ − + ∆ ≤

+ ∇ − + ∆

∑

∑

∑

I

I

I

E E E E

I D x I D I I

E E I D x E I D I I E E

E I D x E I D I I E

u u u u

x x x x x x

r r x x r x x x x r u

s x x s x x x x s
2

,

,

1 2

() (,) (,) ()

(,) (,) ()

()

, ,

i

ik k k k k T k k k

i i i i i i m i

im

k k k k T k k

i i i i i i i m

m

k

i

Y

Y
sign i D

True

∈Γ

∈Γ

≤

¬
+ ∇ − + ∆ ≤ ∨ ∀ ∈

=

+ ∇ − + ∆ ≤

Ω =

≥

∑

∑

∑

I

I

E

E E I D x E I D I I E E

I

E I D x E I D I I E

E E E

u

h h x x h x x x x h u
x 0

g x x g x x x x g 0

Y

u u u 0

1...

(,)

n

p

k K

X

True False

=

∈ ⊆ ℜ

∈

I
x

Y

 (A.2)

The disjunction model (A.2) is obtained by linearization in terms of independent variables in the

optimal solution provided by the NLP solver, either in the initialization or in a given iteration k.

The term k
mobj∆ corresponds to the difference between the objective function at a given

iteration k of the NLP and the objective function associated with a given topology. The terms

; ;k k
m m∆ ∆E Er s , ,;k k

i m i m∆ ∆E Eh g are the differences between the values of a given constraint

for the new topology and their value in the original NLP
k
 problem. These terms are not needed

(fixed to zero) if the modeling and decomposition or the logic based outer approximation are

used. Only in the third alternative, when no sub-optimization of non-existing disjunctions is

used, must these terms be included.

Variables 'u' are positive slack variables, that appear as penalties in the objective function using

an exact penalty (Π is the penalty factor). These variables are introduced to ensure that the an

infeasible master problem could only be the result of logical relationships, and at the same time

is a heuristic to try to minimize the effect of non-convexities [25].

The disjunctive master problem in (A.2) can be solved as a MILP problem using the convex hull

reformulation [45].

If the original problem is convex, the master problem in the MD and logic OA base versions

yields a lower bound to the optimal solution. Therefore, the optimal solution is found when at a

given iteration, the optimal solution of the primal and master problems are within a given

tolerance of each other (or when they cross each other if a canonical cut is added in each

master problem [43]). In non-convex problems, like those solved in this work, we cannot

guarantee that the master problem will yield a lower bound. Therefore, the search is terminated

when after two consecutive iterations the NLP does not obtain an improvement [25]. This is just

a heuristic based on experience. To improve the quality of the solution in non-convex problems,

one could perform a fixed number of iterations (e.g. 10) but at the price of increasing the

computational time to solve the problem.

References

1. Shacham, M., et al., Equation oriented approach to process flowsheeting. Computers
and Chemical Engineering, 1982. 6(2): p. 79-95.

2. Grossmann, I.E., J.A. Caballero, and H. Yeomans, Mathematical programming
approaches to the synthesis of chemical process systems. Korean Journal of Chemical
Engineering, 1999. 16(4): p. 407-426.

3. Rosenthal, R.E., GAMS - A User's Guide. 2012: GAMS Development Corporation,
Washington, DC, USA.

4. Fourer, R., D.M. Gay, and B.W. Kernighan, AMPL: A Modeling Language for
Mathematical Programming. 2003, United States: Duxbury Press, Brooks, Cole
Publishing Company.

5. ASCEND. [cited 2013; Available from: http://ascend4.org/.

6. Process Systems Enterprise, gPROMS, www.psenterprise.com/gproms,. 1997-2009.

7. Marquardt, W., Trends in computer-aided process modeling. Computers and Chemical
Engineering, 1996. 20(6-7): p. 591-609.

8. Biegler, L.T., I.E. Grossmann, and A.W. Westerberg, Systematic methods of chemical
process design. Prentice Hall international series in the physical and chemical
engineering sciences. 1997, Upper Saddle River, N.J.: Prentice Hall PTR. xviii, 796 p.

9. Grossmann, I.E., Review of Nonlinear Mixed-Integer and Disjunctive Programming
Techniques. Optimization and Engineering, 2002(3): p. 227-252.

10. Lee, S. and I.E. Grossmann, Logic-based modeling and solution of nonlinear
discrete/continuous optimization problems. Annals Of Operations Research, 2005.
139(1): p. 267-288.

11. Dimian, A.C., Integrated design and simulation of chemical processes. Computer Aided
Chemical Engineering 13. 2003, Amsterdam, The Netherlands: Elsevier.

12. Smith, R., Chemical Process Design and Integration. 2005, Chichester: John wiley &
Sons, Ltd. 687.

13. Turton, R., et al., Analysis Synthesis and Design of Chemical Processes. 2003, New
York: McGraw-Hill.

14. Luyben, W.L., Principles and Case Studies of Simultaneous Design. 2011, Hoboken,
New Yersey, USA.: John Wiley & Sons.

15. Caballero, J.A. and I.E. Grossmann, Aggregated models for integrated distillation
systems. Industrial and Engineering Chemistry Research, 1999. 38(6): p. 2330-2344.

16. Braunschweig, B.L., et al., Process modeling: The promise of open software
architectures. Chemical Engineering Progress, 2000. 96(9): p. 65-76.

17. Harsh, M.G., P. Saderne, and L.T. Biegler, A mixed integer flowsheet optimization
strategy for process retrofits—the debottlenecking problem. Computers & Chemical
Engineering, 1989. 13(8): p. 947-957.

18. Diwekar, U.M., I.E. Grossmann, and E.S. Rubin, An MINLP Process Synthesizer For A
Sequential Modular Simulator. Industrial & Engineering Chemistry Research, 1992.
31(1): p. 313-322.

19. Kocis, G.R. and I.E. Grossmann, A Modeling And Decomposition Strategy For The
Minlp Optimization Of Process Flowsheets. Computers & Chemical Engineering, 1989.
13(7): p. 797-819.

20. Reneaume, J.M.F., B.M. Koehert, and X.L. Joulia, Optimal process synthesis in a
modular simulator environment: new formulation on the mixed integer nonlinear
programming problem. Industrial & Engineering Chemistry Research, 1995. 34: p.
4378-4394.

21. Díaz, M.S. and J.A. Bandoni, A mixed integer optimization strategy for a large scale
chemical plant in operation. Computers & Chemical Engineering, 1996. 20(5): p. 531-
545.

22. Ilacqua, A., et al., Simulador a medida de una plnata de etileno para estudios de
sensibilidad paramétrica y optimización, in XVI Congreso Interamericano de Ingeniería
Química. . 1991: Buenos Aires, Argentina.

23. Caballero, J.A., D. Milan-Yanez, and I.E. Grossmann, Rigorous Design of Distillation
Columns: Integration of Disjunctive Programming and Process Simulators. Industrial &
Engineering Chemistry Research, 2005. 44(17): p. 6760-6775.

24. Duran, M.A. and I.E. Grossmann, An Outer-Approximation Algorithm For A Class Of
Mixed-Integer Nonlinear Programs. Mathematical Programming, 1986. 36(3): p. 307-
339.

25. Viswanathan, J. and I.E. Grossmann, A combined penalty function and outer-
approximation method for MINLP optimization. Computers & Chemical
Engineering, 1990. 14(7): p. 769-782.

26. Kocis, G.R. and I.E. Grossmann, Relaxation Strategy For The Structural Optimization
Of Process Flow Sheets. Industrial & Engineering Chemistry Research, 1987. 26(9): p.
1869-1880.

27. Brunet, R., et al., Minimization of the LCA impact of thermodynamic cycles using a
combined simulation-optimization approach. Applied Thermal Engineering, 2012. 48(0):
p. 367-377.

28. Caballero, J.A., et al., Design of Hybrid Distillation−Vapor Membrane Separation
Systems. Industrial & Engineering Chemistry Research, 2009. 48(20): p. 9151-9162.

29. Caballero, J.A., A. Odjo, and I.E. Grossmann, Flowsheet optimization with complex cost
and size functions using process simulators. AIChE Journal, 2007. 53(9): p. 2351-2366.

30. Brunet, R., G. Guillén-Gosálbez, and L. Jiménez, Cleaner Design of Single-Product
Biotechnological Facilities through the Integration of Process Simulation, Multiobjective
Optimization, Life Cycle Assessment, and Principal Component Analysis. Industrial &
Engineering Chemistry Research, 2011. 51(1): p. 410-424.

31. Brunet, R., et al., Hybrid simulation-optimization based approach for the optimal design
of single-product biotechnological processes. Computers & Chemical Engineering,
2012. 37(0): p. 125-135.

32. Dantus, M.M. and K.A. High, Evaluation of waste minimization alternatives under
uncertainty: a multiobjective optimization approach. Computers & Chemical
Engineering, 1999. 23(10): p. 1493-1508.

33. Leboreiro, J. and J. Acevedo, Processes synthesis and design of distillation sequences
using modular simulators: a genetic algorithm framework. Computers & Chemical
Engineering, 2004. 28(8): p. 1223-1236.

34. Gutiérrez-Antonio, C. and A. Briones-Ramírez, Pareto front of ideal Petlyuk sequences
using a multiobjective genetic algorithm with constraints. Computers & Chemical
Engineering, 2009. 33(2): p. 454-464.

35. Gutérrez-Antonio, C., A. Briones-Ramírez, and A. Jiménez-Gutiérrez, Optimization of
Petlyuk sequences using a multi objective genetic algorithm with constraints.
Computers & Chemical Engineering, 2011. 35(2): p. 236-244.

36. Vazquez–Castillo, J.A., et al., Design and optimization, using genetic algorithms, of
intensified distillation systems for a class of quaternary mixtures. Computers &
Chemical Engineering, 2009. 33(11): p. 1841-1850.

37. Eslick, J.C. and D.C. Miller, A multi-objective analysis for the retrofit of a pulverized coal
power plant with a CO2 capture and compression process. Computers & Chemical
Engineering, 2011. 35(8): p. 1488-1500.

38. Torres, C.M., et al., Evaluation Tool for the Environmental Design of Chemical
Processes. Industrial & Engineering Chemistry Research, 2011. 50(23): p. 13466-
13474.

39. Torres, C.M., et al., An automated environmental and economic evaluation
methodology for the optimization of a sour water stripping plant. Journal of Cleaner
Production, 2013. 44(0): p. 56-68.

40. Lazzaretto, A., et al., Criteria for the decomposition of energy systems in local/global
optimizations. Energy, 2010. 35(2): p. 1157-1163.

41. Muñoz, J.R. and M.R. von Spakovsky, A decomposition approach for the large scale
synthesis design optimization of highly coupled, highly dynamic energy systems.
Internationa Journal of Thermodynamics. , 2010. 4(1): p. 1-17.

42. Rancruel, D.F. and M.R. von Spakovsky, A decomposition strategy based on
thermoeconomic isolation applied to the optimal synthesis/design and operation of an
advanced tactical aircraft system. Energy, 2006. 31: p. 3327-3341.

43. Turkay, M. and I.E. Grossmann, Logic-based MINLP algorithms for the optimal
synthesis of process networks. Computers & Chemical Engineering, 1996. 20(8): p.
959-978.

44. Hooker, J.N. and M.A. Osorio, Mixed logical-linear programming. Discrete Applied
Mathematics, 1999. 97: p. 395-442.

45. Raman, R. and I.E. Grossmann, Modeling And Computational Techniques For Logic-
Based Integer Programming. Computers & Chemical Engineering, 1994. 18(7): p. 563-
578.

46. Nemhauser, G. and L. Wolsey, Integer and combinatorial optimization. 1999: John
Wiley & Sons.

47. Williams, H.P., Model building in mathematical programming. . 1990: Wiley (Chichester
England and New York)

48. MATLAB., The Language of Technical Computing. 2006., The Mathworks Inc.

49. Holmström, K., The Tomlab Optimization Environment in Matlab. Adv. Model Optim.,
1999. 1: p. 47-69.

50. Quesada, I. and I.E. Grossmann, An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Computers & Chemical Engineering, 1992.
16(10-11): p. 937-947.

51. Westerberg, A.W., et al., Process flowsheeting 1979, Cambridge. : Cambridge
University Press.

52. Tolsma, J.E., J.A. Clabaugh, and P.I. Barton, Symbolic Incorporation of External
Procedures into Process Modeling Environments. Industrial & Engineering Chemistry
Research, 2002. 41(16): p. 3867-3876.

53. Squire, W. and G. Trapp, Using Complex Variables to Estimate Derivatives of Real
Functions. SIAM Rev., 1998. 40(1): p. 110-112.

54. Krige, D.G., A Statistical Approach to Some Mine Valuations and Allied Problems at the
Witwatersrand. 1951, University of Witwatersrand.

55. Jones, D.R., A taxonomy of global optimization methods based on response surfaces.
Journal Of Global Optimization, 2001. 21(4): p. 345-383.

56. Jones, D.R., M. Schonlau, and W.J. Welch, Efficient global optimization of expensive
black-box functions. Journal Of Global Optimization, 1998. 13(4): p. 455-492.

57. Sasena, M.J., Flexibility and Efficiency Enhancements for Constrained Global Design
Optimization with Kriging Approximations. 2002, University of Michigan: Michigan. p.
237.

58. Davis, E. and M. Ierapetritou, A kriging method for the solution of nonlinear programs
with black-box functions. AIChE Journal., 2007. 53(8): p. 2001-2012.

59. Henao, C.A. and C.T. Maravelias, Surrogate-based superstructure optimization
framework. AIChE Journal, 2011. 57(5): p. 1216-1232.

60. Caballero, J.A. and I.E. Grossmann, An algorithm for the use of surrogate models in
modular flowsheet optimization. AIChE Journal, 2008. 54(10): p. 2633-2650.

61. Nishio, M., et al., A Thermodynamic Approach to Steam-Power System Design.
Industrial & Engineering Chemistry Process Design and Development, 1980. 19(2): p.
306-312.

62. Papoulias, S.A. and I.E. Grossmann, A structural optimization approach in process
synthesis—I: Utility systems. Computers & Chemical Engineering, 1983. 7(6): p. 695-
706.

63. Dhole, V.R. and B. Linnhoff, Total site targets for fuel, co-generation, emissions, and
cooling. Computers & Chemical Engineering, 1993. 17, Supplement 1(0): p. S101-
S109.

64. Iyer, R.R. and I.E. Grossmann, Synthesis and operational planning of utility systems for
multiperiod operation. Computers & Chemical Engineering, 1998. 22(7–8): p. 979-993.

65. Godoy, E., S.J. Benz, and N.J. Scenna, A strategy for the economic optimization of
combined cycle gas turbine power plants by taking advantage of useful thermodynamic
relationships. Applied Thermal Engineering, 2011. 31(5): p. 852-871.

66. Siefert, N.S. and S. Litster, Exergy and economic analyses of advanced IGCC–CCS
and IGFC–CCS power plants. Applied Energy, 2013. 107(0): p. 315-328.

67. Tică, A., et al., Design of a combined cycle power plant model for optimization. Applied
Energy, 2012. 98(0): p. 256-265.

68. Alobaid, F., et al., Modeling and investigation start-up procedures of a combined cycle
power plant. Applied Energy, 2008. 85(12): p. 1173-1189.

69. Luo, X., et al., Operational planning optimization of steam power plants considering
equipment failure in petrochemical complex. Applied Energy, 2013. 112(0): p. 1247-
1264.

70. Mavromatis, S.P. and A.C. Kokossis, Conceptual optimisation of utility networks for
operational variations—I. targets and level optimisation. Chemical Engineering Science,
1998. 53(8): p. 1585-1608.

71. Mavromatis, S.P. and A.C. Kokossis, Conceptual optimisation of utility networks for
operational variations—II. Network development and optimisation. Chemical
Engineering Science, 1998. 53(8): p. 1609-1630.

72. Bruno, J.C., et al., A Rigorous MINLP Model for the Optimal Synthesis and Operation of
Utility Plants. Chemical Engineering Research and Design, 1998. 76(3): p. 246-258.

73. Manninen, J. and X.X. Zhu, Level-by-level flowsheet synthesis methodology for thermal
system design. AIChE Journal, 2001. 47(1): p. 142-159.

74. Varbanov, P.S., S. Doyle, and R. Smith, Modelling and Optimization of Utility Systems.
Chemical Engineering Research and Design, 2004. 82(5): p. 561-578.

75. Yeomans, H. and I.E. Grossmann, A systematic modeling framework of superstructure
optimization in process synthesis. Computers & Chemical Engineering, 1999. 23(6): p.
709-731.

76. Brooks, F.J., GE Gas Turbine Performance Characteristic. General Electric Reference
Library, GER-3576H. Available at
www.gepower.com=publications=gers=GER3567H.pdf, 2001.

77. Nye Thermodynamics Corporation. http://www.gas-turbines.com/trader/outprice.htm.

78. Brunet, R., et al., Combined simulation–optimization methodology for the design of
environmental conscious absorption systems. Computers & Chemical Engineering,
2012. 46(0): p. 205-216.

Table 1. Summary of operating parameters

Unit Operating Parameters

Headers VHP Pressure 100 bar

 HP Pressure 40 bar

 MP Pressure 20 bar

 LP Pressure 3 bar

 Condenser Pressure 1.01325 bar (1 atm)

 Vacuum Pressure 0.1 bar (10 kPa)

 Vacuum Temperature 46.01 ºC

Gas Turbine Compression ratio (r) 10 15r≤ ≤

 Combustion temperature 1200ºout
combustionT C≤

 Exhaust gas temperature 600ºExhaustT C≤

 Thermodynamics
Peng Robinson (combustion chamber)

ASME Steam for steam lines.

HRSG
Min approach

temperature
30 ºC

 Stack temperature 160 ºC

Boilers Efficiency 90 %

 Approach temperature 30 ºC

 Blowdown rate 3 %

 Excess combustion air 10 %

 Thermodynamics

Peng Robinson Hysys default (combustion

chamber)

ASME Steam for steam lines.

Steam Turbines Efficiency 0.95t
is

t

a W
c
b W

η

 − = +
 (W in kW)

 Backpressure

40 ; 427.0992; 865.5034 ; 0.8217;

20 ; 378.0419; 758.8181; 0.8223;

1 ; 181.9821; 381.1312; 0.8150;

in

in

in

P bar a b c

P bar a b c

P bar a b c

≥ = − = =−

≥ = − = =−

≥ = − = =−

 Condensation

40 ; 313.3561; 648.2201; 0.7714;

20 ; 244.8585; 528.1410; 0.7769;

1 ; 142.4190; 323.1106; 0.7700;

in

in

in

P bar a b c

P bar a b c

P bar a b c

≥ = − = =−

≥ = = =

≥ = − = =−

Deaerator Pressure 1.01325 bar (1 atm)

 Vent 5% LP introduced

Table 2. Utilities Data.

Utility

Fuel Natural Gas

 Composition (wt fraction)

 Methane

 Ethane

 Propane

 n-Butane

 Ethylene

0.8405

0.1278

0.0203

0.0033

0.0081

 Temperature 25 ºC

 Pressure 101.325 kPa (1 atm)

 Cost 0.23 $/(m
3
-std) = 2.5792 M$ /(year·tone fuel)

+

Cooling Water Temperature 25 - 35 ºC

 Pressure 101.325 kPa (1 atm)

 Cost 19.1952 10
-6

 M$/(kW·year)

Demineralized Water Temperature 25

 Pressure 101.325 kPa (1 atm)

 Cost 0.02 M$/(t/h year)

+
Calculated for 8000 h of operation year (30.7134 / ()Fuel stdkg mρ =).

Table 3. Data for examples

 Instance 1 Instance 2 Instance 3

VHP Steam Demand (t/h) 1 --- ---

HP Steam Demand (t/h) 20 10 2

MP Steam Demand (t/h) 5 --- ---

LP Steam Demand (t/h) 10 5 5

Water Returned from process (t/h) 10.8 4.5 2.1

Electricity demand (MW) 50 5 0.6

Drivers demands (kW) ---
2000
2500
3500

500
1000

Table 4. Results for example 1

Equipment

Gas Turbine Power (MW) 39.1
 Fuel (t/h) 8.13
 Compression ratio 1.5
 Air to fuel ratio 50.0
 Exhaust gas temperature (ºC) 592.9
 Installed cost (M$) 41.5

HRSG Water inlet temperature (ºC) 80
 Steam mass flow rate (t/h) 63.59
 Installed cost (M$) 3.23

Backpressure turbine 1 PIn – Pout (bar) VHP(100) – HP (40)
 Work (kW) 2637
 Efficiency 0.781
 Steam Flow (t/h) 40.8
 Installed cost (M$) 1.81

Backpressure turbine 2 PIn – Pout (bar) VHP(100) – MP (20)
 Work (kW) 2298
 Efficiency 0.780
 Steam Flow (t/h) 21.80
 Installed cost (M$) 1.76

Backpressure turbine 3 PIn – Pout (bar) HP (40) – LP(3)
 Work (kW) 2733
 Efficiency 0.78
 Steam Flow (t/h) 20.80
 Installed cost (M$) 1.83

Condensing Turbine PIn – Pout (bar) MP (20) – Vacuum (0.1)
 Work (kW) 3219
 Efficiency 0.738
 Steam Flow (t/h) 16.80
 Installed cost (M$) 1.89
 Condenser heat load (MW) 10.63
 Condenser Installed cost (M$) 0.33

Deaerator LP Steam flow rate (t/h) 10.80
 Fresh water makeup (t/h) 25.74
 Vent (t/h) 0.539
 Water from atm. header (t/h) 16.80
 Installed cost (M$) 0.067

Costs Total installed Cost (M$) 52.45

 Annualizing factor (f)
(8 years 10% interest)

0.1874

 Fuel Cost (M$/year) 20.97
 Fresh water cost (M$/year) 0.515
 Cooling water cost (M$/year) 0.108

 Total utilities cost (M$/year) 21.59

 TAC (M$/year) 31.42

Note: cost of pipes, pumps and valves is not included.

Table 5. Numerical statistics for the three instance.

 Instance 1 Instance 2 Instance 3

Nº of Boolean variables 15 48 37

Nº of independent variables 25 25 25

Nº of linear explicit equations
(1)

 25 25 25

Nº of non-linear explicit equations
(2)

 8 41 30

Nº of implicit blocks 24 24 24

Detailed iterations for instance 1
(3)

Iterations

Objective

CPU time

(seconds)

Solver

Initialization (all units exist). NLP 37.99 55.3 CONOPT

MILP Master 29.14 0.047 CEPLEX

Iteration 2: NLP 31.85 29.6 CONOPT

Iteration 2: Master-MILP 30.21 0.28 CEPLEX

Iteration 3: NLP 33.66 7.7 CONOPT

Iteration 3: Master-MILP 34.62 0.14 CEPLEX

Iteration 4: NLP 31.42 14.1 CONOPT

Iteration 4: Master-MILP 35.01 0.29 CEPLEX

Iteration 5: NLP 33.24 6.1 CONOPT

Iteration 5: Master-MILP 35.07 0.16 CEPLEX

Iteration 6: NLP 54.73 24.9 CONOPT

Iteration 6: Master-MILP 96.11 0.34 CEPLEX

Iteration 7: NLP 32.08 22.6 CONOPT

Iteration 7: Master-MILP 189.06 0.16 CEPLEX

Iteration 8: NLP 32.58 8.4 CONOPT

(1) Logical relationships not included
(2) Includes both independent and dependent variables.
(3) Numerical performance for instances 2 and 3 is similar.
(4) Fixed number of iterations to 8. Note also that the Master is not providing lower bounds due to slack variables.
(Intel(R) Core(TM)2Quad CPU 2.4GHz 2.39 GHz. RAM 8 GB under Windows 7)

Table 6. Results for example 2

Equipment

Gas Turbine Power (MW) 20.86
 Fuel (t/h) 4.80
 Compression ratio 10
 Air to fuel ratio 52.04
 Exhaust gas temperature (ºC) 600
 Installed cost (M$) 26.09

HRSG Water inlet temperature (ºC) 80
 Steam mass flow rate (t/h) 39.44
 Installed cost (M$) 2.15

Extraction turbine 1 PIn – Pout (bar) VHP(100) – HP(40) – MP (20)
 Work (kW) 2500
 Steam Flow In(t/h) 33.74
 Stem Flow Out (t/h) 26.99 – 6.75
 Efficiency 0.781 – 0.784
 Installed cost (M$) 2.50

Extraction turbine 2 PIn – Pout (bar) HP(40) – MP(20) – LP(3)
 Work (kW) 2000
 Steam Flow In (t/h) 19.71
 Stem Flow Out (t/h) 8.02-11.70
 Efficiency 0.781 - 0.782
 Installed cost (M$) 2.70

Condensing Turbine PIn – Pout (bar) MP(20) – Vacuum (0.1)
 Work (kW) 3500
 Steam Flow (t/h) 17.75
 Efficiency 0.738
 Installed cost (M$) 1.92
 Condenser heat load (MW) 11.40
 Condenser Installed cost (M$) 0.348

Deaerator LP Steam flow rate (t/h) 6.70
 Fresh water makeup (t/h) 10.84
 Vent (t/h) 0.33
 Water from atm. header (t/h) 22.25
 Installed cost (M$) 0.052

Costs Total installed Cost (M$) 35.77

 Annualizing factor (f)
(8 years 10% interest)

0.1874

 Fuel Cost (M$/year) 10.53
 Fresh water cost (M$/year) 0.216
 Cooling water cost (M$/year) 0.116

 Total utilities cost (M$/year) 10.862

 TAC (M$/year) 19.43

Table 7. Results for example 3

Equipment

Boiler Fuel (t/h) 1.28
 Temperature steam (ºC) 502.6
 Heat load (MW) 13.47
 Steam flow rate (t/h) 14.43
 Blowdown flow rate (t/h) 0.43
 Installed Cost 0.942

Back pressure turbine 1 PIn – Pout (bar) VHP(100) – HP (40)
 Work (kW) 600
 Steam Flow In(t/h) 10.27
 Efficiency 0.782
 Installed cost (M$) 1.08

Back pressure turbine 2 PIn – Pout (bar) MP(20) – LP(3)
 Work (kW) 1000
 Steam Flow In (t/h) 10.15
 Efficiency 0.782
 Installed cost (M$) 1.36

Condensing Turbine PIn – Pout (bar) HP(40) – vacuum (0.1)
 Work (kW) 500
 Steam Flow (t/h) 2.29
 Efficiency 0.734
 Installed cost (M$) 1.01
 Condenser heat load (MW) 1.44
 Condenser Installed cost (M$) 0.124

Deaerator LP Steam flow rate (t/h) 2.45
 Fresh water makeup (t/h) 5.02
 Vent (t/h) 0.12
 Water from atm. header (t/h) 7.09
 Installed cost (M$) 0.0317

Costs Total installed Cost (M$) 4.56

 Annualizing factor (f)
(8 years 10% interest)

0.1874

 Fuel Cost (M$/year) 3.30
 Fresh water cost (M$/year) 0.101
 Cooling water cost (M$/year) 0.015

 Total utilities cost (M$/year) 3.42

 TAC (M$/year) 4.27

