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Abstract 

With advances in the synthesis and design of chemical processes there is an increasing need 

for more complex mathematical models with which to screen the alternatives that constitute 

accurate and reliable process models. Despite the wide availability of sophisticated tools for 

simulation, optimization and synthesis of chemical processes, the user is frequently interested 

in using the 'best available model'. However, in practice, these models are usually little more 

than a black box with a rigid input-output structure. In this paper we propose to tackle all these 

models using generalized disjunctive programming to capture the numerical characteristics of 

each model (in equation form, modular, noisy, etc.) and to deal with each of them according to 

their individual characteristics. The result is a hybrid modular –equation based approach that 

allows synthesizing complex processes using different models in a robust and reliable way. The 

capabilities of the proposed approach are discussed with a case study: the design of a utility 

system power plant that has been decomposed into its constitutive elements, each treated 

differently numerically. And finally, numerical results and conclusions are presented. 
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1. Introduction 

The model of a chemical plant can be theoretically represented by a large system of nonlinear 

algebraic equations. However, depending on the data specified and the final objective of the 

model user four types of different problems are considered [1, 2]: 

In a Simulation Problem, the feeds and design variables of each unit must be specified. The 

unknowns are the variables representing the additional (product) streams. They usually have a 

rigid input-output structure, but at the same time are robust and reliable. 

A Design Problem is similar to the simulation problem, but some of the design variables (i.e. 

reactor volume; number of trays in a distillation column, etc) are unspecified. A number of 

constraints are then imposed on some of the stream variables to satisfy the extra degrees of 

freedom.  

In an Optimization Problem some variables associated with the feed and equipment design can 

be left unspecified, in this case a performance function must be added to the model. Inequality 

constraints may also be added to the model. 

In a Synthesis Problem, alongside the optimal operating conditions (feed and design variables), 

we are also interested in the best configuration, for a given objective, from a structural point of 

view (combination of unit operations or technologies). We have the added difficulty of solving a 

problem in which the set of equations change depending on the selected equipment.  

The simulation and design problems can be theoretically represented by a large system of 

nonlinear algebraic equations of the form: 

( ) =f x 0            (1) 

where f is a vector of functions and x is a vector of variables. The variables represent flow rates, 

compositions, temperatures, pressures, etc., and the functions are obtained from physical and 

chemical principles expressing conservation of mass and energy, chemical equilibrium, kinetics 

and transport phenomena. Modeling a chemical plant can involve hundreds of thousands of 

equations and variables. In some cases it is possible to write and solve the complete set of 

equations directly using general modeling systems (e.g. GAMS [3] , AMPL [4]) or chemical 



engineering oriented modeling systems (e.g. ASCEND [5], gPROMS [6]) that include databases 

of chemical and thermodynamic properties. But as the model becomes more complex more 

specialized knowledge is required to, for example, provide good initializations, and avoid 

physically meaningless solutions.  

Alternatively, instead of solving all the equations simultaneously, it is possible to use a modular 

approach. In this case the equations of a given module (i.e. unit operation like a distillation 

column, heat exchanger, etc.) are solved using tailored numerical algorithms. And then all the 

modules are solved following a pre-specified calculation sequence. The advantages of a 

modular approach are: 

• Different sub-modules can be prepared and tested separately. 

• The solution methods can be specifically designed for that module, e.g. the model of a 

distillation column or a complex reactor. Therefore, the module is robust and reliable. 

• Because of the rigid requirements, data can be easily checked for consistency and 

completeness. 

• The modular structure allows easy addition of new modules. 

Due to these advantages, it is not surprising that modular simulation is still the dominant 

approach. However, when we move to design, optimization or synthesis problems the modular 

approach loses some of its attractiveness. The straightforward approach consists of performing 

simulations that attempt to satisfy the design or optimization objectives. However, repeated runs 

of the simulation rapidly lead to long computational times. Therefore, the design and 

optimization is usually performed in an equation based environment (all equations solved 

simultaneously) using general modeling systems or field specific modeling systems [7]. In the 

case of synthesis, the model takes the form of a Mixed-integer (Non)Linear Programming 

problem [2, 8, 9] (MINLP) where discrete decisions are related to integer (binary) variables or a 

Generalized Disjunctive Programming Problem (GDP) [10]  

Developments in the design, optimization and synthesis of chemical processes over the last 

years have been impressive at all levels: from individual unit operations, to subsystems, and 

even to complete flowsheet optimization (see for instance the following books [8, 11-14]). 

However, due to the necessity of using equation based approaches, most of these designs rely 



on shortcut or aggregated methods [15] or on some assumptions that must be verified using 

rigorous models (i.e. a chemical process simulator). Moreover, with advances in the synthesis 

and design of chemical processes there is an increasing need for more complex mathematical 

models with which to screen the alternatives that constitute accurate and reliable process 

models. Due to the complexity of the models it is not practical, and perhaps not even possible to 

write a mathematical model each time we need to use it in a new simulation, design or 

synthesis problem. Instead we would like to reuse the best available mathematical model [16]. 

While this is really straightforward in a modular simulation environment (we only have to add 

one more module), in design, optimization and synthesis problems we should try to avoid the 

brute force approach of repeated simulations mentioned previously. In this paper we present a 

modeling framework that captures the specific characteristics of each of these models and 

allows their efficient utilization in design, optimization and synthesis problems. 

However, we do not confine our attention to only chemical process simulators in this paper. It is 

clear that a number of state of the art models of importance to the chemical engineering 

community come standard with commercial process simulators. Trying to use chemical process 

simulators as an external module for solving synthesis problems by a MINLP approach is not 

something new. Harsh et al [17] developed an interface between a MINLP and FLOWTRAN for 

the purpose of retrofitting an ammonia process. Diwekar et al [18], devised a process 

synthesizer using Aspen Plus. They illustrate their method on some small problems and the 

structural optimization of the hydrodealkylation of the toluene process. Their algorithm is 

basically an implementation of the modeling and decompositions strategy [19]. Reneaume et al 

[20] point out that in a given constraint ( , ) 0h ≤d s  (d is a vector of decision variables and s are 

variables of interest calculated by the process simulator) the s variables depend implicitly on the 

d variables. But this implicit function varies depending on what the structural decisions are. In 

other words, s depends on the structural decisions and therefore the linearization of a given 

constraint (e.g. in the construction of the MILP Master Problem) can lead to the linearization of 

different functions, and consequently to the failure of the algorithm. They solved the problem by 

adding 'pseudo-torn' streams, the function of which is to explicitly separate the dependency of s 

variables from the structural decisions. Diaz & Bandoni [21] used a process simulator 

specifically designed for ethylene plants, SISER [22], for the structural design of an ethylene 



plant using a combination of different types of models (rigorous and simplified), which includes 

correlations and results to check against an actual ethylene plant. Caballero et al. [23] proposed 

a specific algorithm for the rigorous design of distillation columns, combining process simulators 

and a modified version of the outer approximation algorithm [24-26]. Later Brunet el al. [27] 

used this algorithm in the optimization of distillation columns in an ammonia water absorption 

cooling cycle. They also extended the approach to mutiobjective optimization by considering 

Life Cycle Assessment (LCA), without changing the topology in the process simulator. 

In all the above-cited works, the full model is solved by a process simulator interfaced with a 

MINLP solver. Caballero et al [28] presented a hybrid approach for the design of hybrid 

distillation vapor membrane separation systems, in which the differential and algebraic 

equations of the membrane modules are calculated in equation form. Caballero & Grossmann 

[29] presented a detailed modeling framework that combines a process simulator with complex 

algebraic (equation based) models involving both continuous and discrete variables, although 

the topology of the flow sheet was not modified. A similar approach was followed by Brunet el 

al. [30, 31] who extended the methodology to consider multiobjective optimization by including 

LCA in biotechnological processes in which the reactions have complex kinetics that cannot be 

solved by the process simulator.  

It is worth mentioning that deterministic optimization methods, like the approach proposed in 

this paper, are not the only alternative for dealing with these problems. Stochastic methods 

have proved to be a good alternative for solving hybrid simulation-optimization problems. 

Although there is a vast literature on metaheuristic optimization, combination with chemical 

process simulators is a relatively recent development [32-39]. Besides in the case of synthesis 

other approaches can be used such as local/global optimization techniques [40-42]. 

In this paper we present a modeling framework for dealing with synthesis problems including 

models that might come from different sources and exhibit completely different numerical 

behavior. This includes, but it is not limited to, chemical process simulators, thermodynamic 

property servers, third party proprietary software and models from computer fluid dynamics, or 

even experimental models. We believe that disjunctive programming is a framework that is very 

well suited for dealing with these kinds of problems because it allows «encapsulating» each 



model and then following a different approach based on the characteristics of each. The 

connectivity between those models is in equation form –  to avoid the implicit relation between 

design and calculated variables [20]. Logical relationships, including strong relations between 

alternatives (i.e., to ensure only feasible solutions) and soft relations (i.e., designer preferences) 

can be added easily. The model is solved using logic-based algorithms without reformulating it 

as an MINLP [9, 43]. As far as we know this is the first framework for modeling chemical 

process that allows a modular approach, combining explicit –equation based- models with 

simulation (black box) models, each of them with its own numerical characteristics, into a 

Generalized Disjunctive Programming environment with logic based solvers. 

In the rest of the paper we first provide a brief overview of generalized disjunctive programming 

(GDP). Then we describe the modelling framework, its characteristics and the different 

numerical treatment alternatives depending on the characteristics of a given model. The 

capabilities of the proposed approach are illustrated by means of a case study: the design of a 

utility system power plant that has been decomposed into its constitutive elements, each one 

requiring different numerical treatment. Finally, numerical results and conclusions are 

presented. 

2. Generalized Disjunctive Programming 

The most basic formulation of an optimization problem including binary variables (in the context 

we are interested, and usually related with a decision, i.e., to install or not a particular process 

unit) –MINLP- is as follows: 

{ }

min : ( , )

. . ( , ) 0

; 0,1

j

p
n

Z f x y

s t g x y j J

x X y

=

≤ ∈

∈ ⊆ ℜ ∈

       (2) 

An alternative approach for representing discrete and continuous optimization problems is by 

using models consisting of algebraic constraints, logic disjunctions and logic propositions [44]. 

This approach not only facilitates the development of the models by making the formulation 

process intuitive, but also keeps the underlying logical structure of the problem in the model, 



which can be exploited to find the solution more efficiently. A particular case of these models is 

Generalized Disjunctive Programming (GDP).  

The general structure of a GDP problem can be represented as follows [45] 
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where 1: nf R R→  is a function of the continuous variables x in the objective function, 

: n lg R R→  belongs to the set of global constraints, the disjunctions k K∈ , are composed 

of a number of terms ki D∈ , that are connected by the OR operator. In each term there is a 

Boolean variable ,i kY , a set of relations , ( ) 0i kr x ≤  and a cost variable kc . If ,i kY  is True, 

then , 0i kr ≤  is enforced; otherwise they are ignored. Also ( )Y TrueΩ =  are logic 

propositions for the Boolean variables. 

In order to take advantage of the existing MINLP solvers, GDPs are often reformulated as an 

MINLP. To do so, two main transformations should be made, namely the disjunctive constraints 

must be expressed in terms of algebraic equations and the propositional logic needs to be 

expressed in terms of linear equations. The disjunctive constraints can be transformed by using 

either the big-M [46] or the Hull Relaxation [10]. The transformation of propositional logic can be 

accomplished as described in the work by Willians [47] to get a set of linear equalities and 

inequality constraints in terms only of binary variables. An important drawback of MINLP 

reformulation is that all the equations , ( ) 0i kr x ≤  appear in the final formulation, even though 

they might be inactive, which in some situations could produce numerical problems. 



In order to fully exploit the logic structure of GDP problems, two other solution methods have 

been proposed, namely the Disjunctive Branch and Bound method [10] and the logic based 

outer approximation method [43]. The basic idea of the disjunctive Branch and Bound method is 

to directly branch to the constraints corresponding to particular terms in the disjunctions, while 

considering the convex hull of the remaining disjunctions. Although the tightness of the 

relaxation at each node is comparable with that obtained when solving the HR reformulation 

using a MINLP solver, the size of the solved problems is smaller and the numerical robustness 

is improved, even though we still have to reformulate the problem. The idea underlying the 

Logic Based Outer Approximation consists of iteratively solving a master problem given by a 

linear GDP and a nonlinear (NLP), with fixed values of Boolean variables serving as an upper 

bound. Therefore, for fixed values of the Boolean variables, 

, ,;i k i kY True Y False i i= = ≠�
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 the corresponding NLP is as follows: 
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It is important to note that only the constraints that belong to the active terms in the disjunction 

(i.e. associated Boolean variables ,i kY True=� ) are imposed.  

In the context of process networks, dealt with in this paper, the disjunctions in the GDP are two-

termed. Basically the decision in the disjunction is whether to select or not a given alternative 

(i.e., in the case study presented later, to install or not a gas turbine, a boiler, etc). The second 

term of the disjunction simply states that if a given option is not selected all the variables related 

to that option are set to zero.  
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For this particular case, the master problem can be written as follows: 
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The problem in equation (6) can be easily reformulated and solved as a Mixed Integer Linear 

Programming (MILP) problem. 

It should be noted that before applying the above master problem we need at least one linear 

approximation of each of the terms i D∈  in the disjunctions. Here there are two alternatives, 

select the smallest number of NLP sub-problems that include at least once each disjunction [43] 

or perform sub-Lagrangian optimization of the non-existing terms with respect to a base case. 

This constitutes the modeling and decomposition approach [19]. In the appendix A there is a 

comprehensive description on how to adapt the logic based outer approximation algorithm to 

implicit models (modular approach). 

3. Modeling framework 

We present a new modeling environment that is capable of dealing with synthesis problems 

involving mathematical models from different sources, exhibiting different numerical behavior 

and with different degrees of end-user access to the original code. As far as we know this is the 

first time that the intuitive modeling framework provided by GDP, is combined with a modular 

hybrid simulation-optimization, in which the numerical treatment of each module is different 

depending on its characteristics. We believe that GDP is the ideal framework for dealing with 

these problems for at least the following reasons: 

i. GDP representation maintains the underlying logic structure of the problem. The 

formulation of the problem is intuitive. 



ii. Each module can be «encapsulated» in a disjunction. In this way all the procedures 

specific to each module can be isolated from the rest. For example, the generation of 

accurate derivatives for both the NLP and Master problems might be based on different 

methodologies in each module. 

iii. Different models can be used for the same unit, without the necessity of 'rewriting' the 

model, simply by calling a different module. The specific characteristics of the new 

model will be automatically incorporated. 

iv. We can use a range of models, from completely explicit (based on equations) to 

completely implicit (all equations in third party modules like a process simulator), going 

through mixed approaches in which parts of the model are implicit and others explicit. 

For example, it is possible to add explicit constraints that affect the behavior of an 

implicit model directly. 

 

Figure 1 shows a scheme of the actual implementation. It is composed of three main modules: 

An algebraic modeling language; a module for the evaluation of each external module, and a 

logic based solver. The modeling language has the following characteristics 

• The complete modeling system is developed in Matlab [48] 

• Permits indexing of variables, algebraic equations and implicit models. In other words, 

the same model can be used in different parts of the problem with different values of the 

parameters and independent variables. 

• Use of Boolean variables, disjunctions and logic equations. Allowing the direct 

formulation of the problem as a disjunctive problem without MINLP reformulation. 

• Specific differentiation methods for each sub-model (algebraic, automatic differentiation, 

finite differences based on complex variables; etc). 

• Determination of the sparsity pattern for each individual model and calculation of the 

global Jacobian Matrix. 

• Interfaced with different commercial solvers for NLP, LP, MILP models through Matlab-

Tomlab [48, 49], and with our implementations of a simple Branch and bound algorithm, 

the outer approximation algorithm [24-26], the LP-NLP based branch and bound 



algorithm [50] for MINLP models, and disjunctive solvers without MINLP reformulation 

[43]. 

• Communication with process simulators and other third party models, except those 

developed in Matlab, is accomplished by the Windows COM capabilities. 

 

 

Figure 1. Scheme of the modeling framework 

 

The module that evaluates the external models has the two major difficulties to cope with when 

external modules are used: 

 

1. Rigid input-output structure. This is the case of almost all chemical process simulators (a 

remarkable exception is AspenHysys
TM

) and most modules designed for a specific task. 

Consider for example a splitter in a process simulator. The user must specify the feed 

stream and the split fractions, and the module calculates the exit streams. If we can reverse 

the information flow we may be able to simplify the calculation procedure. In the simulation 



of chemical processes the information flow usually coincides with the mass flow. Therefore, 

if in the model there are recycles we must use an iterative process to solve the problem. In 

some situations, however, we can reduce the recycle structure of the model by correctly 

selecting the design variables [51]. If the module does not have a rigid input-output structure 

(i.e. unit operations in AspenHysys
TM

) we could eventually take advantage of this fact. The 

evaluation module performs a 'structural' analysis of the model in order to establish what the 

best calculation sequence is. If the selection of design variables does not allow reducing the 

recycle structure of the problem then it is convenient let the optimizer to simultaneously 

search for the optimum and converges the flow sheet. Even though this approach increases 

the number of explicit variables seen by the solver it also increases it robustness without 

sacrificing the performance because in this way we avoid unnecessary iterations in the 

process simulator. 

2. Calculation of accurate derivatives. Accurate derivatives are fundamental for solving any 

deterministic optimization problem. Depending on the origin or the external module and its 

characteristics, the following cases are relevant: 

2.1. The model is in equation form (with or without integer variables). Under these 

conditions first and second derivatives are available (or easy to obtain).  

2.2. We have access to the code of all the external modules. In this case it is possible to 

automate a set of procedures that generate code for performing operations like 

automatic differentiation, sparsity pattern determination or discontinuity function 

evaluation. Tolsma et al [52] implemented these procedures in the modeling system 

ABACUS II. 

2.3. We have no access to the code that has an input-output structure, but numerical 

derivative information is available. This is the case of some thermodynamic packages 

that provide information both about the property and its derivatives with respect to 

some variables. 

2.4. We have no access to the code and derivative information is not available. Here we 

can distinguish between different cases 



2.4.1. Derivative information can be obtained easily and accurately, estimated using a 

numerical approach. If the external module admits complex arithmetic we can 

calculate derivatives virtually without numerical error [53]. In other cases we must 

use a finite difference scheme by perturbing the independent variables.  

2.4.2. A characteristic of external modules is that they introduce numerical noise, e.g. 

the solution varies slightly with identical initial values. This is common in systems 

that solve complex numerical equations within a finite tolerance. In process 

simulators this behavior arises in distillation columns, chemical reactors or other 

complex operations. If the numerical noise is relatively small, it is still possible to 

implement a finite difference approach by increasing the perturbation of 

independent variables, but at the expense of getting approximations of the 

Jacobian that eventually could produce unexpected behaviors in the solver. Some 

important additional considerations must be taken into account if derivatives are 

calculated by finite differences: 

A finite difference scheme that employs a noisy model should never be used in a 

recycle because recycles act as noise amplifiers. This is a very common problem 

in process flowsheet simulation. If this is the case the tolerances for closing 

recycles must be at least a couple of orders of magnitude smaller than the 

perturbation factors. A much better approach consists of letting the NLP solver 

converge the recycles. Although the number of variables seen by the NLP solver 

increases and the number of explicit equality constraints also increases, in 

general the model is more robust and the computational time will usually not 

increase (e.g., by avoiding converging all the recycles each time the simulation is 

called). This is the approach we follow in this work. 

If the model cannot be solved fast enough (say, in a fraction of a second) the time 

necessary to calculate derivatives could be very large making the optimization 

impractical. 

2.4.3. If the model is very noisy or the computational time is too large to allow practical 

implementation, then we cannot use it directly. In this case we can use a shortcut 



or aggregated model, but of course this is what we want to avoid from the 

beginning. Alternatively, it is possible to use a surrogate model. These include, 

among others, polynomial correlations; splines; neural networks; radial basis 

functions; kriging models; etc. We have implemented kriging models [54]. A 

detailed description on the use of kriging models in optimization can be found in 

Refs. [55-60]. Here we follow the implementation proposed by Caballero & 

Grossmann [60], which can handle both noisy or deterministic systems by 

implementing an interpolating or non-interpolating approach depending on the 

characteristics of the model. It also uses an adaptive approach that contracts or 

moves the domain between consecutive iterations if necessary in order to ensure 

accurate results. Finally, there is explicit treatment of constraints in the case of 

noisy systems. 

The following remarks deserve special attention. It is assumed that all the implicit models are 

continuous and differentiable. Even in noisy systems, the underlying model is assumed to be 

continuous and differentiable. It is not uncommon for computer models to include "max/min" 

operators; "If" sentences, etc. that can destroy the differentiability and continuity assumptions. If 

the user is able to anticipate this behavior, a correct MINLP or GDP reformulation or a 

disjunctive model can be developed. Otherwise, the numerical behavior of the model could lead 

to difficulties. All MINLP and GDP algorithms require convexity to guarantee convergence to a 

global optimal solution. In an implicit model it is difficult to prove convexity, even if the 

underlying model is convex. Since in general we cannot ensure convexity, there is no guarantee 

that a global optimum solution can be found. 

The evaluation module determines the characteristics of each external module (method of 

differentiation; if necessary, the optimal perturbation value of each variable that minimizes the 

effect of numerical noise; or whether or not to transform the original model into a surrogate 

model). All this information is sent to the modeling language, which generates the model, 

determines the sparsity pattern, and decides the calculation sequence. Then the logic based 

solver is executed and the problem is solved. In this paper we have used a logic-based outer 

approximation algorithm modified to work with external modules (implicit equations). A 

comprehensive description of this algorithm can be found in appendix A. 



4. Case Study 

As an example we present the synthesis of a utility system in which it is assumed that different 

components are simulated by modules that exhibit different numerical behavior. There are 

different commercial tools that can perform the design very efficiently (Aspen Utility Planner
TM

; 

Ariane
TM

 by ProSim
TM

 ) using databases and cost correlations obtained directly from industrial 

applications. The objective in this work is to show that efficient synthesis of a complex system 

using different models is possible. 

There are a many papers on the optimization and design of utility systems [61-67] ranging from 

simplified linear models to thermodynamic based approaches, going through detailed studies 

about startup and operation [68, 69]. 

Rigorous models for power production of steam turbines have been developed by Mavromatis 

and Kokossis [70, 71]. Bruno et al. [72] proposed a superstructure optimization formulated as a 

MINLP based on the previous work by Papoulias & Grossmann [62]. Manninen & Zhu [73] 

decomposed the problem into a Master problem that specifies major structural features on a 

design and flowsheet level, in which an exergy analysis identifies relevant modification options. 

Varbanov et al.[74] developed more accurate models for steam and gas turbines that provide a 

better description of part-load performance.  

In this work we use a superstructure inspired by the previous work of Bruno et al. [72]. Figure 2 

shows the superstructure, which includes: 

• A gas turbine with a heat recovery steam generator (HRSG) with no additional fuel. The gas 

turbine can satisfy the electricity demands by supplying exhaust gases to a HRSG boiler that 

in turn provides vapor to a very high pressure (VHP) header.  

• High pressure boilers fired by fuel. Boiler blowdown is necessary in all boilers; in this paper 

we assume a fixed blowdown rate of 3% of the steam entering the boiler. 

• A waste heat boiler that operates at medium pressure and recovers heat from process flue 

gases or other units such as reactors. 

• We assume four pressure headers VHP, HP, MP and LP. In addition, we have to consider a 

vacuum level for the condensation turbines and an atmospheric level that recovers the water 



returned from the process (previously treated). The demineralized water needed to 

compensate for plant losses and consumption is also assumed to be at atmospheric 

pressure.  

• A de-aerator is included to remove the dissolved gases by steam stripping before feeding the 

water into boilers. However, extra boiler feedwater could be an option. In this case we 

assume that the de-aerator uses the LP steam of the plant.  

• Steam turbines are used to generate electricity and to satisfy mechanical power needs. Here 

we consider the following turbines. 

� Backpressure turbines working between any two pressure levels (VHP-HP; 

VHP-MP, VHP-LP; HP-MP, HP-LP, MP-LP). 

� Extraction backpressure turbines exhausting from VHP to HP and MP and from 

HP to MP and LP. 

� Condensing turbines from HP and MP. 

� Extracting condensing turbines from MP to LP and vacuum. 

• The steam is distributed to steam consumers, to steam turbines or to the next pressure 

header through letdown valves.  

• Electric motors can be used to meet the required power demands. 

• Finally, utility pumps are included to change the pressure in all the liquid streams. 

Before continuing with the discussion it is worth introducing some discussion about 

superstructure based optimization. Superstructure optimization is ideal when we have to deal 

with a problem with a large number of alternatives for performing the same tasks, because 

evaluate all those alternatives is not practical (even not possible). Of course, if a device is not in 

the set of superstructure alternatives, not optimization method can place it there, therefore the 

designer must use his/her knowledge of the system to generate a compact superstructure that 

include all the alternatives of interest. Besides, superstructure optimization must be necessarily 

followed by a critical analysis of the solution. Generation of superstructures is a research field 

itself [75]. In systems like the one presented here, where the different alternatives can be clearly 

specified, and the number of possible combinations can be large a superstructure based 

optimization approach is a good approach. 



Before providing a description of the actual implementation of each unit and its characteristics, 

because we are using a modular approach, it is convenient to analyze the information flow in 

the flow sheet (or superstructure). If we assume that the information flow coincides with the 

mass flow, which is the usual approach in modular simulation, then any valid flow sheet must 

include a recycle involving all unit operations. For example, we should assume a water mass 

flow rate entering the boilers and fresh water entering the de-aerator, and after calculating the 

entire flow sheet the water exiting the de-aerator should equal the assumed mass flow rate 

entering the boilers. As commented before, it is convenient to let the optimizer converge this 

recycle in order to minimize the effects of numerical noise. However, if we can change the 

direction of the information flow we could solve a given flow sheet by means of small recycles 

involving a single unit operation that can be efficiently handled by the implicit model. In this case 

it can be accomplished just by reversing the calculation in the boilers: The (steam) water mass 

flow rate is calculated in terms of the fuel flow rate and operating conditions. It is then possible 

to calculate the fresh water mass flow rate in the de-aerator and no recycles appear in the flow 

sheet. This kind of analysis can be automated, see for example the book by Westerberg et al  

[51].  

Following is a description of the main equipment involved in the power plant and their particular 

models for implementation.  



 

Figure 2. Superstructure of the utility system plant. It is possible to include N turbines of each 

class in parallel. 

Gas turbine and HRSG 

The gas turbine is introduced in the model as a kriging metamodel. To generate data that sets 

up the kriging model [54-56, 60] a gas turbine model was created in Aspen Hysys
TM

. See Figure 

3.The model consists of a compressor that receives air at ambient conditions. The resulting 

compressed air is introduced together with pressurized fuel (natural gas) in a Gibbs reactor that 

simulates the combustion chamber of the gas turbine. The gases leaving the combustion 

chamber are introduced in a turbine where they are expanded to atmospheric pressure. The 

work generated by the gas turbine is used to move the compressor and to generate electricity 

which is simulated by an energy balance. The exhaust gases are sent to a HRSG that is used to 

generate more steam, and simulated as a regular heat exchanger. All relevant data about the 

different equipment units are given in Table 1. Table 2 shows utilities data. 



 

Figure 3. Scheme of the actual implementation of a gas turbine in Aspen-Hysys 

Pure thermodynamic based approaches do not match the real cases with a sufficient degree of 

accuracy. Instead we combine the thermodynamic model with data obtained from actual 

turbines in order to obtain gas turbine efficiencies that can be included in the model. One of the 

major factors that affect gas turbine performance is its size. This is measured in terms of rated 

power production at ISO conditions (1 atm; 15 ºC and 60% relative humidity). Turbines from 

different manufactures feature different efficiencies for the same size. Data on turbine 

efficiencies is published by manufactures, for example General Electric reference library 

documents [76]. Varvanov et al [74] showed that regressing that data set the following equation 

can be formulated: 

,max ,max( ) 21.9917 2.6683f gtQ MW W= +        (7) 

Using the same set of data the gas turbine efficiencies can be correlated with the following 

equation: 

4
,max0.3 3.207·10 ( )GT gtW MWη

−= +        (8) 



The gas turbine can be calculated using three independent variables. We have used the air to 

fuel ratio (wt.), fixed between 40 and 100; the compressor output pressure (between 1000 and 

1500 kPa corresponding to compression ratios between 10 and 15 that corresponds with the 

compression ratios in the data set of actual turbines that are being used as design basis); and 

the fuel mass flow rate.  

In the Aspen-Hysys model the efficiency of the gas turbine is forced to match the correlated 

efficiency by dynamically modifying the compressor and turbine efficiencies. 

The model, as implemented in Aspen Hysys is slightly noisy, and although it slows the 

optimization down a bit it can be used as is. However, as commented above, for illustrative 

purposes it was substituted by a kriging metamodel. The kriging approach has the advantage of 

allowing very fast evaluation of the model. Moreover, it is possible to get numerical derivatives 

without error (to within computer precision) by using complex derivatives. 

To calibrate the kriging model we have used 100 points distributed by a min-max approach 

(minimizing the maximum distance between two points) based on 1000 kg/h of fuel, which in 

fact leaves the kriging model with two degrees of freedom. In this case the maximum error 

introduced by the kriging interpolation is under 0.8%. Figure 4 shows the values predicted by 

the kriging model, those calculated by Aspen-Hysys and the error for 500 random points. 



 

Figure 4. Left: calculated values and those predicted by the kriging model, for the gas 

turbine.Right, % kriging error of 500 random points. 



Therefore, the model for the gas turbine can be written as follows: 
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(9) 

where: 

gtAF   Gas Turbine air to fuel ratio (weight basis) 

out
compressorP  Output pressure from the compressor in the gas turbine (kPa) 

gtFuel   Gas turbine mass fuel flow rate (kg/h) 

gtW  Effective work provided by the gas turbine 

out
combustionT   

Temperature of the output stream from the combustion chamber in the 

gas turbine 

out
turbineT   Temperature of the exhaust gases from the gas turbine 

HRSGQ   Maximum heat available from the Heat Recovery Steam Generator 

stack
HRSGT   Temperature for the gases that exit from the HRSG. 

For the HRSG we have to decide at which pressure we want to generate the extra steam and 

what the minimum approach temperature between the gases and steam has to be. By means of 

an energy balance we can calculate the extra steam mass flow rate and conditions (pressure 

and temperature). This calculation is performed using Hysys as a thermodynamic calculator for 

estimating specific water and steam enthalpies at the inlet and outlet conditions. Alternatively, it 

is possible to generate a flow sheet in Aspen Hysys to perform this calculation. However, the 

first option avoids interaction with the graphical interface and calculations are faster as a result. 

The model for the HRSG can be written as follows 



( ), , , ,Steam Steam outgas
HRSG HRSG HRSG HRSG HRSG HRSGF T HRSG Q T P T  = ∆  

    (10) 

where: 

HRSGP   Steam pressure in the HRSG (kPa) 

Steam
HRSGF  Steam flow rate exiting from HRSG (kg/h) 

Steam
HRSGT   Temperature of the vapor exiting from the HRSG (ºC) 

HRSGT∆   Minimum approach temperature in the HRSG (ºC). 

 

Boilers 

For the boilers we follow a similar approach to that followed in the case of the gas turbine. A 

flow sheet is built in Aspen Hysys to rigorously simulate the boiler. In this case we take 

advantage of the Aspen Hysys capability for transmitting information from one unit to another as 

soon as all the degrees of freedom of a unit have been provided by the user See Figure 5.  

 

Figure 5. Scheme of the implementation of a Boiler in Aspen Hysys. Dotted lines indicate 

information flow, which is different to the mass flow. 



The design variables, see Figure 5, are the fuel flow rate and the temperature of the gases after 

heat exchange with the water to generate steam. The calculation sequence is as follows:  

A fuel and an air stream (10% excess) are introduced in a Gibbs reactor that simulates the 

combustion of fuel in the boiler. The combustion gases exchange heat with water at high 

pressure to generate steam. Instead of using a single heat exchanger, we use two heat 

exchangers in which the heat is transmitted with a given efficiency (90%). Note that if the output 

gas temperature is known (design variable), the amount of heat available for generating steam 

is then also known. The temperature of the steam is fixed by assuming a minimum temperature 

difference between the stack temperature of combustion gases (exit temperature) and the 

steam. With this information Aspen-Hysys can calculate the steam flow rate, the blowdown, the 

high pressure water flow rate and the pump. See Figure 5. 

The model can be developed by using a given mass flow rate as basis (i.e. 100 kg/h). Under 

those conditions if the steam pressure is known the complete model depends on just one 

design variable. In our case this is the temperature of combustion gases after heat exchange. 

Efficiency and approach temperature are fixed parameters. See Table 1 for all the relevant data 

for boilers. 

As in the case of gas turbines the model is slightly noisy, and it can be used as is, because it is 

possible to get accurate derivatives by a finite difference approximation. However, it is much 

more efficient, from a numerical point of view, to use a polynomial or cubic spline interpolation 

for which the error is negligible and we have analytical derivatives. This is the approach we use 

in this work.  

Conceptually, the model for the boiler can be written as follows: 

( ), , ,

( ) 1900 (º )

Steam Steam Gas
Boiler Boiler Boiler Boiler Boiler

Gas
Steamdew Boiler Boiler

F T Boiler T Fuel P

T P T T C

  =  
+ ∆ ≤ ≤

     (11) 

where: 

BoilerP   Steam pressure in the boiler 



BoilerFuel   Mass flow rate of fuel consumed by the boiler 

Gas
BoilerT   Temperature of the gases exiting from the boiler 

Steam
BoilerT   Boiler steam temperature 

Steam
BoilerF   Boiler steam mass flow rate 

 

Steam Turbines 

A steam turbine converts steam energy into power. The total power of the expansion is further 

split into power used by the shaft and energy losses (mechanical friction, heat losses and 

kinetic losses). The three main factors affecting turbine performance are the turbine size 

(maximum power), the pressure drop across the turbine, and the operating load.  

An ideal steam turbine assumes an isentropic expansion. Any model of an actual turbine 

captures its real behavior by means of the isentropic efficiency: 

in out
IS

in IS

H H

H H
η

−
=

−
         (12) 

In the literature there are different correlations that capture the isentropic efficiency in terms of 

the actual load and pressure difference [12, 72, 74]. These correlations vary depending on the 

manufacturer and the turbine size and model. However, according to Varbanov et al [74] 

although the machine efficiency varies noticeably in a non-linear way with the load, it retains 

relatively high values, that go from 88% for smaller turbines to 96% for the larger ones. Bruno et 

al. [72] presented correlations for turbines working at their maximum load that relates the steam 

turbine efficiency to the inlet pressure, the shaft power and exhaust conditions (condensing and 

non-condensing turbines). In this work we include those correlations plus a fixed 0.95 efficiency 

to take into account a possible deviation from full load operation. 

For calculating the ideal turbine we can use a turbine model as implemented in Aspen Hysys or 

using Aspen Hysys as a thermodynamic calculator server. We follow the second approach 



because it affords us better control over the model and we do need to interact with the Aspen 

Hysys graphical interface, which slows down the calculations. 

A complex turbine can be decomposed into its basic components including simple turbine units, 

splitters and mixers. Any minor differences between the extraction turbine and the decomposed 

model can be compensated for later in the design by small adjustments in the specification in 

terms of efficiency [12].  

For condensation turbines, we use cooling water as cold utility. Therefore, the pressure of the 

vacuum header is fixed to allow enough of a temperature difference between the condensing 

steam and the cooling water. 

Conceptually, the model for a turbine can be written as follows: 

( ), , , , , , ,
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 (13)  

where 

SteamIn
TurbineF   Mass steam flow rate entering the turbine 

SteamIn
TurbineP   Pressure of the inlet steam 

SteamIn
TurbineT   Temperature of the inlet steam 

kout

TurbineP   Pressure of each of the output streams 

Type  Type of steam turbine: back pressure or condensing 

TurbineW   Turbine power 

kSteamOut

TurbineF   Mass steam flow rate in each turbine output 



kSteamOut

TurbineT   Temperature of each output stream 

condQ   Condenser heat load (only for condensing turbines) 

 

Vapor Headers 

A vapor header combines the steam (water) flows coming from different sources: Boilers, 

HRSG, steam turbines, letdown valves, etc at different temperatures but at the same pressure 

and distributes steam to where it is needed (process, steam turbines, letdown valves, 

deaerator,…). 

The header conditions (temperature if the pressure is fixed) can be calculated just from mass 

and energy balances on all the streams entering the header (it is equivalent to a mixer). The 

enthalpy of each stream is either determined from the unit that is generated or calculated by 

Aspen Hysys.  

Finally, a simple mass balance relates the input streams to the output streams (including 

process demands) in each header. 

Valves 

A letdown valve is simulated as an iso-enthalpic expansion between two pressure levels. The 

inlet conditions are calculated by the corresponding header. Therefore, the only computation 

needed is the calculation of the outlet temperature for a given pressure and enthalpy (PH-flash). 

De-aerator 

To simulate the de-aerator we follow the approach described by Smith [12]. The mass flow and 

conditions (temperature or enthalpy) of the following water (steam) streams are known: water 

returned from the process, water coming from the atmospheric or vacuum headers and water 

leaving from the de-aerator to the boilers or HRSG.  



Assuming that the de-aerator works with LP steam extracted from the LP main, and that a fixed 

percentage (5%) of the steam is vented, we can calculate the treated water makeup and the LP 

steam requirements (See Figure 6) by mass and energy balances 
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where F makes reference to mass flow rates. H makes reference to specific enthalpies. 

TM   Reference to Treated Water Makeup 

Water Return 
Set of all the water flows returning to the Power plant: condensate, 

from process, etc. 

α   Fraction of LP steam vented. 

Note that enthalpies of the water going to boilers (and HRSG) and Vent streams are calculated 

with reference to the de-aerator operating conditions.  

 

Figure 6. Scheme of a de-aerator. 



To perform the economic evaluation we use the total annualized cost (TAC). To annualize the 

capital costs we use the following relationship [12]: 

 

( )

(1 )

(1 ) 1

N

N

TAC OperatingCosts f CapitalCost

i i
f

i

= +

+
=

+ −

      (15) 

where i  is the interest rate per year and n is the number of years. Fuel, cooling water and other 

cost data are given in Table 2. To estimate the capital costs we use the correlations in Turton el 

al [13], except for the gas turbine whose purchased cost was correlated from manufacturing 

data, supplied by Nye Thermodynamics Corporation [77]: 

( ) ( )
0.7395

$ 0.7886 ( )GT GTGasTurbineCost M W W in MW=      (16) 

The final model consists of an objective function (TAC minimization) subject to fixed equipment 

equations: vapor headers, letdown valves and de-aerator. Note that the valves do not require a 

disjunction because the flow passing through a valve takes a zero value if the valve does not 

exist. Conditional equipment equations included as two term disjunctions are: Gas Turbine (

GTY ), HRSG ( HRSGY ) , Boilers (
kBoilerY ) and Steam Turbines ( STY ). Where Y makes 

reference to the boolean variable of each unit. 

We must include the following logical relationships: 

• If the HRSG exists then the gas turbine must exist: 

HRSG GTY Y⇒           (17) 

• If a gas turbine is not selected then the HRSG cannot be selected 

GT HRSGY Y¬ ⇒ ¬           (18) 

• At least the HRSG or a boiler must be selected 

( )
kHRSG Boiler

k Boilers
Y Y

∈
∨ ∨          (19) 



The mechanical power must be supplied by a given equipment unit (Steam turbines or electric 

motors). In that case, we need to allocate the power among the available equipment. To that 

end we define a new boolean variable: 

,eq pdZ   True if equipment 'eq' satisfies the demand 'pd ' 

The following disjunctions explicitly enforce that relationship 

,eq pd

eq pd

Z

W PowerDemand

    =  
       (20) 

The following logical relationships correctly ensure feasible assignments: 

• If the mechanical power demand 'pd' is assigned to equipment unit 'eq' then unit 'eq' 

must be selected: 

,eq pd eqZ Y⇒         (21) 

• Each mechanical power demand must be assigned to some equipment unit 

( ),eq pd
pd
Z eq∨ ∀           (22) 

Although it is not strictly necessary, if we want to guarantee that a given unit of equipment be 

assigned to a single mechanical power demand we can include the following relationship: 

( ),eq pd

eq

at most Z pd∀        (23) 

Note that steam demands are included in the mass balances on each steam header, and 

therefore it is not explicitly necessary to allocate a Boolean variable to every steam demand. 

As a final remark, it is worth mentioning that adding new equipment (i.e. more gas turbines, or 

boilers) does not modify the equations of existing equipment units; thus, adding another is 

straightforward. Due to the modular approach, modifying equipment, or adding or removing 

alternatives does not modify the structure of the rest of the model. 



 

5. Examples 

Here we present three instances of the model that illustrates the versatility of both the case 

study and the modeling framework. All the relevant data for each of the three instances are 

given in Table 3 

The first case is a power plant with high power (electricity) demand (50 MW) and different 

demands of VHP (100 bar) stream 1 t/h; HP (40 bar) steam 20 t/h; MP steam (20 bar) 5 t/h and 

LP steam (3 bar) 10 t/h. In this first case there is no mechanical power demand. The optimal 

solution includes a gas turbine with HRSG, and four steam turbines working between different 

pressure levels. See Figure 7. 

 

Figure 7. Optimal solution for case study, instance 1. 

Notice the perfect steam balance in this example. The operating conditions of the gas turbine 

and HRSG are optimized in such a way that the steam produced in the HRSG is used, without 



any excess, for supplying the steam demands (including the LP steam in the de-aerator) and 

the extra power demand not satisfied by the gas turbine. Table 4 shows with detail the results of 

this example. 

From a computational point of view, the most complex non-linear problem, that in which all the 

units exist (used for initialization since it is a feasible solution, although of course not the optimal 

one) is solved in around 60 seconds of CPU time, although this time depends on the initial 

values. The remaining the NLP sub-problems are solved typically in CPU times that range 

between 5 and 20 seconds. (Intel(R) Core(TM)2Quad CPU 2.4GHz 2.39 GHz. RAM 8 GB under Windows 7). 

The MILPs where solved in all the cases in less than 1 second of CPU time. Table 5  

All the numerical tests we have performed show that for a given problem with a fixed 

configuration, the optimal solution that is obtained is not too sensitive to the initial values. In 

other words, there is reasonable evidence that the solution is the global optimum (although of 

course we cannot guarantee it). However, in the master problem slack variables become active 

during the initial iterations, and as a consequence we cannot guarantee that the solution is 

indeed the global optimum. Nevertheless, numerical tests allowing a large number of major 

iterations (i.e. 25 major iterations) show that the solution obtained, if not optimal, is at least a 

good solution (error smaller than 10-15% in the worst cases).  

In the second instance there are mechanical power demands (three rotating units of equipment 

requiring 2000, 2500 and 3500 kW, respectively) that must be satisfied by steam turbines, and a 

power (electricity) demand of 5 MW. Moreover, the process plant requires 10 t/h of HP steam 

and 5 t/h of LP steam. 

The optimal solution includes a gas turbine, a HRSG, and three steam turbines to provide 

mechanical power (one of these is a condensing turbine).See Figure 8 and Table6. In contrast 

to the first example, the steam needed to drive the turbines and satisfy process demands, 

generates more electricity than is required, and can be fed in and sold to the power grid.  



 

Figure 8. Optimal solution for case study, instance 2. 

The computational performance in this case is similar to that observed in the first instance. 

Nevertheless, it is interesting to note that because of the initialization it is not practical to solve a 

set of feasible NLPs that includes all the alternatives at least once. Due to the assignment 

equations linking turbines to mechanical demands, the number of alternatives is too large. 

However, what we really need to initialize are the steam turbines. Therefore, to initialize the 

MILP master problem we simply assume that all the steam turbines exist subject to the 

condition that the power generated by all of them exceeds the total power (mechanical + 

electricity).  

The third instance is similar to the second but the mechanical power demands (500 kW, 1000 

kW) and electricity demand (600 kW) are lower. There are also demands for HP steam (2 t/h) 

and LP steam (5 t/h). The optimal solution includes a Boiler, 2 backpressure steam turbines, a 

condensing turbine, and the de-aerator. There are also two letdown valves to distribute the 

steam among the steam mains and the steam turbines. In this case, the reduced demand for 



electricity does not justify the high gas turbine cost. See Figure 9 and Table 7 for a detailed 

summary of the results. 

 

Figure 9. Optimal solution for case study, instance 3. 

6. Conclusions 

This paper describes how models from very different sources and with different numerical 

behavior can be incorporated as modules in a general synthesis framework that is able to 

capture their numerical performance and implement numerical approaches tailored to the need 

of each model. Some of the capabilities of the proposed approach are the following: 

• Structural analysis of the input-output structure of each model for selecting design 

variables and limiting as much as possible the extent of the recycle structure of the 

problem. 

• Determination of the sparsity pattern of each model to accelerate the calculation of the 

Jacobian matrix. 



• Different approaches for calculating the derivative information that includes analytical, 

complex variables based differentiation, and finite differences. 

• Possibility for dealing with noisy systems through adaptive surrogate models (kriging). 

• Disjunctive modeling that facilitates the conceptual modeling. 

• Soft and hard logic relations can be easily introduced in the model 

The final result is a hybrid system that includes implicit models coming from different sources 

exhibiting different numerical behavior, and models or constraints in equation form. The basic 

idea is that the 'best available' model can be used in a rigorous synthesis framework when 

shortcut models are inadequate. Even though some of the previous characteristics are included 

in different algebraic modeling systems, as far as we know the combination of all of them in a 

Generalized Disjunctive Programming environment is new.  

It has been shown that the synthesis problem can be written as a General Disjunctive 

Programming problem and solved without MINLP reformulation using the logic based outer 

approximation or LP/NLP based branch and bound. Conceptually, the GDP approach allows 

easy model formulation by the final user and at the same time encapsulates each sub-model, 

facilitating numerical study of its characteristics. 

The synthesis of a utility system, in which each of the components has been treated as a sub-

model of different characteristics, has been used as a case study. The objectives were twofold, 

first we have proved the efficiency and robustness of the proposed framework and second we 

develop a new tool to the preliminary design of utility systems. Future work will concentrate on 

producing a new design and synthesis tool that can be applied to many processes. 
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Appendix A. 

Logic Based Algorithms with implicit sub-models 



The specific disjunctive model we solve in this paper can be written as follows. 
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where xD is a vector of dependent variables (e.g calculated by the implicit models) over which 

the designer has no direct control.  xI is a vector of independent variables over which the user 

has complete control. The index "I" makes reference to implicit equations calculated by external 

modules (Process Simulator, property estimation modules, etc) and the index "E" makes 

reference to explicit equations. Note that we have introduced dependent variables in explicit 

equations (for example in ( , ) ; ( , )or= ≤E D I E D Ir x x 0 s x x 0 ), associated with a given 

topology implicitly this formulation involves sequential function evaluation, first the implicit 

models and then the explicit equations. An alternative approach consists of adding a new 

subset of independent variables and explicitly including the relationship with the dependent 

variables : j j=I Dx x . In this work we follow the first approach. 

In the model given by equation (A.1) we only allow two term disjunctions which is the case of 

process networks and synthesis problems. This is not a major limitation because an N term 

disjunction can be reformulated as N disjunctions with 2 terms. 

Initial and primal subproblems 

To solve the problem given by equation (A.1) we use a version of the logic based outer 

approximation algorithm [43] or a logic version of the LP-NLP based branch and bound 

algorithm [50]. The first step consists of initializing all the units (sub-models) inside the 



disjunctions. Here there are different alternatives. The first one consists of selecting a basic 

feasible flow sheet, optimizing it and then performing a sub-lagrangian optimization of the non-

existing units in that initial flow sheet. This constitutes the Modeling and Decomposition (MD) 

strategy [19]. The second approach consists of selecting a minimum set of feasible flow sheets 

in such a way that all the disjunctions are true at least once. This sub-set can be selected by 

solving a set covering problem [43] with the constraints given in form of logic relationships in 

equation (A.1). In some situations the sub-lagrangian optimization cannot be easily performed. 

This is the case, for example, of distillation columns in a process simulator, in which the 

optimization of non-existing trays is equivalent to optimizing the complete column. In that case, 

Caballero et al [23] proposed performing a simulation of the non-existing configurations using 

the optimal values of the initial base case, and adding an extra term in the master problem that 

takes into account the eventual existence of those units. Brunet et al [30, 31, 78] extended this 

approach to other systems but not distillation columns. 

During iteration k only a feasible NLP problem is solved, one that corresponds to fixed values of 

boolean variables given by the master problem. The major difference between the logic 

versions of the Outer Approximation and LP-NLP based BB is that in the first the master is 

solved to optimality, however, in the second the NLP is solved when an integer solution is 

found. In the latter case, the tree generated by the master problem is updated with new 

linearizations from the last NLP. 

It is worth remarking that when a given configuration (a set of Boolean variables that produce a 

feasible solution) is selected the NLP involves only the common variables and the variables 

inside the existing disjunctions. The remaining variables are ignored. Mathematically the non-

existing variables are set to zero, but that is done a posteriori, and therefore the solver is only 

viewing a reduced set of variables, which increases the robustness of the optimization. 

Master subproblem. 

The objective of the master problem is to provide a new set of Boolean variables that likely 

produce better results than a previous solution. Here we present a tailored master linear 

disjunctive problem.  



We define the following index set for iteration k in the algorithm: 
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  (A.2) 

The disjunction model (A.2) is obtained by linearization in terms of independent variables in the 

optimal solution provided by the NLP solver, either in the initialization or in a given iteration k. 

The term k
mobj∆  corresponds to the difference between the objective function at a given 

iteration k of the NLP and the objective function associated with a given topology. The terms 

; ;k k
m m∆ ∆E Er s  , ,;k k

i m i m∆ ∆E Eh g  are the differences between the values of a given constraint 

for the new topology and their value in the original NLP
k
 problem. These terms are not needed 

(fixed to zero) if the modeling and decomposition or the logic based outer approximation are 

used. Only in the third alternative, when no sub-optimization of non-existing disjunctions is 

used, must these terms be included. 

Variables 'u' are positive slack variables, that appear as penalties in the objective function using 

an exact penalty (Π  is the penalty factor). These variables are introduced to ensure that the an 



infeasible master problem could only be the result of logical relationships, and at the same time 

is a heuristic to try to minimize the effect of non-convexities [25].  

The disjunctive master problem in (A.2) can be solved as a MILP problem using the convex hull 

reformulation [45]. 

If the original problem is convex, the master problem in the MD and logic OA base versions 

yields a lower bound to the optimal solution. Therefore, the optimal solution is found when at a 

given iteration, the optimal solution of the primal and master problems are within a given 

tolerance of each other (or when they cross each other if a canonical cut is added in each 

master problem [43]). In non-convex problems, like those solved in this work, we cannot 

guarantee that the master problem will yield a lower bound. Therefore, the search is terminated 

when after two consecutive iterations the NLP does not obtain an improvement [25]. This is just 

a heuristic based on experience. To improve the quality of the solution in non-convex problems, 

one could perform a fixed number of iterations (e.g. 10) but at the price of increasing the 

computational time to solve the problem.  
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Table 1. Summary of operating parameters 

Unit Operating Parameters 

Headers VHP Pressure 100 bar 

 HP Pressure 40 bar 

 MP Pressure 20 bar 

 LP Pressure 3 bar 

 Condenser Pressure 1.01325 bar (1 atm) 

 Vacuum Pressure 0.1 bar (10 kPa) 

 Vacuum Temperature 46.01 ºC 

Gas Turbine Compression ratio (r) 10 15r≤ ≤   

 Combustion temperature   1200ºout
combustionT C≤  

 Exhaust gas temperature 600ºExhaustT C≤  

 Thermodynamics 
Peng Robinson (combustion chamber) 

ASME Steam for steam lines. 

HRSG 
Min approach 

temperature 
30 ºC 

 Stack temperature 160 ºC 

Boilers Efficiency 90 % 

 Approach temperature 30 ºC 

 Blowdown rate 3 % 

 Excess combustion air 10 % 

 Thermodynamics 

Peng Robinson Hysys default (combustion 

chamber) 

ASME Steam for steam lines. 

Steam Turbines Efficiency 0.95t
is

t

a W
c
b W

η

 −  =    + 
    (W in kW) 

 Backpressure 

40 ; 427.0992; 865.5034 ; 0.8217;

20 ; 378.0419; 758.8181; 0.8223;

1 ; 181.9821; 381.1312; 0.8150;

in

in

in

P bar a b c

P bar a b c

P bar a b c

≥ = − = =−

≥ = − = =−

≥ = − = =−

 

 

 Condensation 

40 ; 313.3561; 648.2201; 0.7714;

20 ; 244.8585; 528.1410; 0.7769;

1 ; 142.4190; 323.1106; 0.7700;

in

in

in

P bar a b c

P bar a b c

P bar a b c

≥ = − = =−

≥ = = =

≥ = − = =−

 

Deaerator Pressure 1.01325 bar (1 atm) 

 Vent 5% LP introduced 

  



 

 

Table 2. Utilities Data. 

Utility   

Fuel Natural Gas  

 Composition (wt fraction) 

          Methane 

          Ethane 

          Propane 

          n-Butane 

          Ethylene 

 

0.8405 

0.1278 

0.0203 

0.0033 

0.0081 

 Temperature 25 ºC 

 Pressure 101.325 kPa (1 atm) 

 Cost  0.23 $/(m
3
-std) = 2.5792 M$ /(year·tone fuel)

+
 

Cooling Water Temperature  25 - 35 ºC 

 Pressure 101.325 kPa (1 atm) 

 Cost 19.1952 10
-6

 M$/(kW·year) 

Demineralized Water Temperature  25 

 Pressure 101.325 kPa (1 atm) 

 Cost 0.02 M$/(t/h year) 

   

+
Calculated for 8000 h of operation year ( 30.7134 / ( )Fuel stdkg mρ = ). 

 

 

  



Table 3. Data for examples 

 Instance 1 Instance 2 Instance 3 

VHP Steam Demand (t/h) 1 --- --- 

HP Steam Demand (t/h) 20 10 2 

MP Steam Demand (t/h) 5 --- --- 

LP Steam Demand (t/h) 10 5 5 

Water Returned from process (t/h) 10.8 4.5 2.1 

Electricity demand (MW) 50 5  0.6 

Drivers demands (kW) --- 
2000 
2500 
3500 

500 
1000 

 

  



 

Table 4. Results for example 1 

Equipment   

Gas Turbine Power (MW) 39.1 
 Fuel (t/h) 8.13 
 Compression ratio 1.5 
 Air to fuel ratio 50.0 
 Exhaust gas temperature  (ºC) 592.9 
 Installed cost (M$) 41.5 

HRSG Water inlet temperature (ºC) 80 
 Steam mass flow rate (t/h) 63.59 
 Installed cost (M$) 3.23 

Backpressure turbine 1 PIn – Pout (bar) VHP(100) – HP (40) 
 Work (kW) 2637 
 Efficiency 0.781 
 Steam Flow (t/h) 40.8 
 Installed cost (M$) 1.81 

Backpressure turbine 2 PIn – Pout (bar) VHP(100) – MP (20) 
 Work (kW) 2298 
 Efficiency 0.780 
 Steam Flow (t/h) 21.80 
 Installed cost (M$) 1.76 

Backpressure turbine 3 PIn – Pout (bar) HP (40) – LP(3) 
 Work (kW) 2733 
 Efficiency 0.78 
 Steam Flow (t/h) 20.80 
 Installed cost (M$) 1.83 

Condensing Turbine PIn – Pout (bar) MP (20) – Vacuum (0.1) 
 Work (kW) 3219 
 Efficiency 0.738 
 Steam Flow (t/h) 16.80 
 Installed cost (M$) 1.89 
 Condenser heat load (MW) 10.63 
 Condenser Installed cost (M$) 0.33 

Deaerator LP Steam flow rate (t/h) 10.80 
 Fresh water makeup (t/h) 25.74 
 Vent (t/h) 0.539 
 Water from atm. header (t/h) 16.80 
 Installed cost (M$) 0.067 

Costs Total installed Cost (M$) 52.45 

 Annualizing factor (f)  
(8 years 10% interest) 

0.1874 

 Fuel Cost (M$/year) 20.97 
 Fresh water cost (M$/year) 0.515 
 Cooling water cost (M$/year) 0.108 

 Total utilities cost (M$/year) 21.59 

 TAC (M$/year) 31.42 

Note: cost of pipes, pumps and valves is not included.  



 

Table 5. Numerical statistics for the three instance. 

 Instance 1 Instance 2 Instance 3 

Nº of Boolean variables 15 48 37 

Nº of independent variables 25 25 25 

Nº of linear explicit equations
(1)

 25 25 25 

Nº of non-linear explicit equations
(2)

 8 41 30 

Nº of implicit blocks 24 24 24 

Detailed iterations for instance 1
(3)

    

Iterations  

 

Objective 

 

CPU time 

(seconds) 

Solver 

 

Initialization (all units exist). NLP 37.99 55.3 CONOPT 

MILP Master  29.14 0.047 CEPLEX 

Iteration 2: NLP 31.85 29.6 CONOPT 

Iteration 2: Master-MILP 30.21 0.28 CEPLEX 

Iteration 3: NLP 33.66 7.7 CONOPT 

Iteration 3: Master-MILP 34.62 0.14 CEPLEX 

Iteration 4: NLP 31.42 14.1 CONOPT 

Iteration 4: Master-MILP 35.01 0.29 CEPLEX 

Iteration 5: NLP 33.24 6.1 CONOPT 

Iteration 5: Master-MILP 35.07 0.16 CEPLEX 

Iteration 6: NLP 54.73 24.9 CONOPT 

Iteration 6: Master-MILP 96.11 0.34 CEPLEX 

Iteration 7: NLP 32.08 22.6 CONOPT 

Iteration 7: Master-MILP 189.06 0.16 CEPLEX 

Iteration 8: NLP 32.58 8.4 CONOPT 

(1) Logical relationships not included 
(2) Includes both independent and dependent variables. 
(3) Numerical performance for instances 2 and 3 is similar. 
(4) Fixed number of iterations to 8. Note also that the Master is not providing lower bounds due to slack variables. 
(Intel(R) Core(TM)2Quad CPU 2.4GHz 2.39 GHz. RAM 8 GB under Windows 7) 

 

  

 

  



 

Table 6. Results for example 2 

Equipment   

Gas Turbine Power (MW) 20.86 
 Fuel (t/h) 4.80 
 Compression ratio 10 
 Air to fuel ratio 52.04 
 Exhaust gas temperature  (ºC) 600 
 Installed cost (M$) 26.09 

HRSG Water inlet temperature (ºC) 80 
 Steam mass flow rate (t/h) 39.44 
 Installed cost (M$) 2.15 

Extraction turbine 1 PIn – Pout (bar) VHP(100) – HP(40) – MP (20) 
 Work (kW) 2500 
 Steam Flow In(t/h) 33.74 
 Stem Flow Out (t/h) 26.99 – 6.75 
 Efficiency 0.781 – 0.784 
 Installed cost (M$) 2.50 

Extraction turbine 2 PIn – Pout (bar) HP(40) – MP(20) – LP(3) 
 Work (kW) 2000 
 Steam Flow In (t/h) 19.71 
 Stem Flow Out (t/h) 8.02-11.70 
 Efficiency 0.781 - 0.782 
 Installed cost (M$) 2.70 

Condensing Turbine PIn – Pout (bar) MP(20) – Vacuum (0.1) 
 Work (kW) 3500 
 Steam Flow (t/h) 17.75 
 Efficiency 0.738 
 Installed cost (M$) 1.92 
 Condenser heat load (MW) 11.40 
 Condenser Installed cost (M$) 0.348 

Deaerator LP Steam flow rate (t/h) 6.70 
 Fresh water makeup (t/h) 10.84 
 Vent (t/h) 0.33 
 Water from atm. header (t/h) 22.25 
 Installed cost (M$) 0.052 

Costs Total installed Cost (M$) 35.77 

 Annualizing factor (f)  
(8 years 10% interest) 

0.1874 

 Fuel Cost (M$/year) 10.53 
 Fresh water cost (M$/year) 0.216 
 Cooling water cost (M$/year) 0.116 

 Total utilities cost (M$/year) 10.862 

 TAC (M$/year) 19.43 

 

  



Table 7. Results for example 3 

Equipment   

Boiler Fuel (t/h) 1.28 
 Temperature steam (ºC) 502.6 
 Heat load (MW) 13.47 
 Steam flow rate (t/h) 14.43 
 Blowdown flow rate (t/h) 0.43 
 Installed Cost 0.942 

Back pressure turbine 1 PIn – Pout (bar) VHP(100) – HP (40) 
 Work (kW) 600 
 Steam Flow In(t/h) 10.27 
 Efficiency 0.782 
 Installed cost (M$) 1.08 

Back pressure turbine 2 PIn – Pout (bar) MP(20) – LP(3) 
 Work (kW) 1000  
 Steam Flow In (t/h) 10.15 
 Efficiency 0.782 
 Installed cost (M$) 1.36 

Condensing Turbine PIn – Pout (bar) HP(40) – vacuum (0.1) 
 Work (kW) 500 
 Steam Flow (t/h) 2.29 
 Efficiency 0.734 
 Installed cost (M$) 1.01 
 Condenser heat load (MW) 1.44 
 Condenser Installed cost (M$) 0.124 

Deaerator LP Steam flow rate (t/h) 2.45 
 Fresh water makeup (t/h) 5.02 
 Vent (t/h) 0.12 
 Water from atm. header (t/h) 7.09 
 Installed cost (M$) 0.0317 

Costs Total installed Cost (M$) 4.56 

 Annualizing factor (f)  
(8 years 10% interest) 

0.1874 

 Fuel Cost (M$/year) 3.30 
 Fresh water cost (M$/year) 0.101 
 Cooling water cost (M$/year) 0.015 

 Total utilities cost (M$/year) 3.42 

 TAC (M$/year) 4.27 

 

 

 


