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Abstract 

 

 In this paper we investigate the stability and the onset of chaotic oscillations 

around the pointing-up position for a simple inverted pendulum that is driven by a 

control torque and is harmonically excited in the vertical and horizontal directions. The 

driven control torque is defined as a proportional plus integral plus derivative (PID) 

control of the deviation angle with respect to the pointing-down equilibrium position. 

The parameters of the PID controller are tuned by using the Routh criterion to obtain a 

stable weak focus around the pointing-up position, whose stability is investigated by 

using the normal form theory. The normal form theory is also used to deduce a 

simplified mathematical model that can be resolved analytically and compared with the 

numerical simulation of the complete mathematical model. From the harmonic 

prescribed motions for the pendulum base, necessary conditions for chaotic motion are 

deduced by means of the Melnikov function. When the pendulum is close to the 

unstable pointing-up position, the PID parameters are changed and the chaotic motion is 

destroyed, which is achieved by employing very small control signals even in the 

presence of random noise. The results of the analytical calculations are verified by full 

numerical simulations. 
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1. Introduction 

 

 The problem of stability and dynamical behavior of an inverted pendulum 

subjected to harmonic vibrations in the suspension point is related to many fields of 

physics and engineering, such as vibrations of oscillatory chains, control theory, 

bifurcations, normal form theory and chaos, among others. The analysis of the 

dynamical behavior of a simple inverted pendulum has been studied in connection with 

stability problems, both from a theoretical and experimental viewpoint and with delay 

[1-6]. However, analytical solutions of the problem assuming oscillations in the 

suspension point are only considered under certain simplifications in the problem, as it 

appears in Ref [2]. 

 

On the other hand, the problem of swinging up and controlling a pendulum has 

been considered in the classical Refs [7-8]. Other more complex control strategies 

reveal the great interest of the inverted pendulum in the field of control, as it is the case 

of control strategies based on space-state methods [9-11], control stabilization around 

homoclinic orbits [12], energy methods [13], passivity control [14] and bounded control 

[15] among others. However, the use of a simple control law to obtain chaotic behavior 

has been less used. This is probably due to the difficulty in determining whether a 

pendulum with harmonic base excitations can exhibit chaotic dynamics [16-20].  

 

The aim of this paper is to investigate the stability and dynamical behavior 

around the pointing-up position for a simple inverted pendulum that is driven by a 

control torque and is harmonically excited in the vertical and horizontal directions. It is 

known that a dissipative pendulum subjected to vertical and horizontal harmonic 

disturbances of high frequency can be driven to several equilibrium points apart from 

the stable pointing-down position (examples can be found in Refs [21-26]).  

Consequently, for a pendulum with high-frequency vertical oscillations in the 

suspension point, the unstable pointing-up position transforms into a stable one, 

whereas the pendulum can reach a stable tilt angle below π/2 for high-frequency 

horizontal oscillations. In these cases, the required forces in the suspension point to 

maintain these equilibriums can be very large. What is more important, these 

equilibrium points depend on the initial conditions, and the presence of random noise 
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could to destroy them. The previous reasoning will be used to justify the application of 

a simple control law based on a PID controller to swing-up and maintain the pendulum 

in the pointing-up position. 

 

In the first part of this paper we assume that there are no harmonic disturbances, 

and the parameters values of the PID controller which lead to a weak focus in the 

pointing-up position are deduced from the Routh stability criterion. The stability of this 

weak focus is studied through the normal form theory, from which it is possible to 

deduce the system equations in normal form and compare them with the numerical 

simulations of the system. For this purpose, the method developed by Bruno [27-32] 

will be applied (other approaches can be found in refs. [33-36]). Once the system is 

reduced to its normal form, the stability properties associated to the parameter variations 

of the PID controller will be investigated.  

 

  The conditions which result in chaotic behavior for the pendulum without 

control torque when a harmonic motion is applied to the suspension point have also 

been analyzed through the Melnikov function [33-38]. The chaotic motion and the 

appearance of strange attractors are verified by means of the sensitive dependence, 

Lyapunov exponents, power spectral density and Poincaré sections [33-36], [38]. 

Taking into account the heteroclinic tangle in a strange attractor, there will always be 

trajectories in the phase plane that will be very close to the up right position. For such 

trajectories, the PID parameter values are properly changed so that the chaotic motion is 

destroyed and the pendulum is maintained around the pointing-up equilibrium position 

with small oscillations, even in the presence of random noise. 

 

2. Mathematical model and statement of the problem 

 

 Fig. 1 shows the layout of the pendulum system as well as the notation used to 

deduce the Lagrangian of the system. The pendulum is modeled by a mass m hanging at 

the end of a rod of negligible mass and length l, which is fixed to a support O [4-6], [7-

16]. Let O’XY be an inertial frame and  0xF t ,  0yF t  the forces applied at the 

suspension point O’ in the OX and OY directions, which respectively produce the 

accelerations given by  0x t  and  0y t . 
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 Figure 1 

 

The kinetic and potential energies of the system can be written as follows: 

 

   0 2 2 2 2

0 0 0 0

0

sin 1
2 cos sin

cos 2

x x l
T m x y l l x y

y y l


   



  
          

          (1) 

  0cosV mg l l mgy                                               (2) 

 

From Eqs (1) and (2) the Lagrange function is obtained as: 

 

     2 2 2

0 0 0 0 0

1 1
cos sin cos

2 2
L T V m x y ml ml x y mg l l mgy               (3) 

 

 Assuming a Rayleigh dissipation function 2 2rF b  associated to the angular 

variable , and taking into account the control torque u(t) as well as the forces Fx0 and 

Fy0 applied at the suspension point O’, the mathematical model of the system can be 

obtained from the Lagrange equations as: 

 

   2

0 0sin cos sinml mgl b ml x y u t                               (4) 

 

2

0 0cos sin xmx ml ml F                                             (5) 

 

2

0 0sin cos ymy ml ml mg F                                          (6) 

 

The term  0 0cos sinml x y   in Eq (4) is considered as an external disturbance, 

since it is assumed that the accelerations 0x  and 0y  of the mobile suspension point O’ 

are defined through the following harmonic motion: 

 

   2

0 0

2

0 0

sin sin

sin sin

x x x x x

y y y y y

x A t x A t

y A t y A t

    

  

      
 

    
                            (7) 
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where Ax is the amplitude of the horizontal displacement of O’, x is the frequency of 

the horizontal motion component of O’ and  is an arbitrary phase shift, whereas Ay and 

y are the vertical displacement and the frequency of the vertical motion component for 

O’ respectively. It should be noticed that Eq (4) can be numerically solved from a 

specified control torque u(t), and the forces Fx0 and Fy0 can be obtained from Eqs (5)-

(7). Next, it is assumed that the control torque is a PID controller, i.e. it is defined by 

[39]: 

     
 

0

1
t

p d

i

d t
u t K t d

dt


      



 
            
  

                    (8) 

 

where Kp, i and d are the proportional action constant, the reset time and the derivative 

time respectively [39]. From Eqs (4) and (8), the mathematical model of the pendulum 

with harmonic base excitation and PID control can be written as follows: 

 

 
 

 
     

 
 

   

2

2

0 0 02

2

2

1
sin cos sin

         
p

p p d

i

d t d t
t x t y t u t

dt dt l

Kdu t d t d t
t K K

dt dt dt

 
     

 
  



      

      

             (9) 

 

where the following notation has been introduced: 

 

2

0 2 2

1
  ;    ;  

g b

l ml ml
                                          (10) 

 

 Now we are going to analyze the advantages and appropriateness of the simple 

control law defined by Eq (8). It is well known that the unstable pointing-up position of 

the pendulum can be transformed into a stable one when the suspension point is excited 

in the vertical direction at high frequencies [21-26]. Consequently, it is possible to make 

stable the pointing-up position by varying the amplitude Ay and the frequency ωy of the 

external disturbances [25-26]. To analyze this effect we shall consider a simplified case 

in which there are only vertical vibrations at O’, i.e x0 = 0. Since the control torque is 

now zero, from Eqs (7) and (9) it is deduced that: 
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 
 

 
 

22

2

02
sin sin sin 0

y y

y

Ad t d t
t t t

dt dt l

 
                         (11) 

 

By introducing the dimensionless time 0t t , Eq(11) can be rewritten as: 

 

 
 

 
 

22

2 2

0 0 0

sin sin sin 0
y y yAd t d t

t t t
dt dt l

  
 

  
                   (12) 

 

By using the averaging method [25], [40] it is possible to separate the high frequency 

motion components from the low frequency motion components to obtain the governing 

equation for the slow motions, which can be expressed in terms of the variable t as [25]: 

 

 
 

 
 

2 22

1 1

1 12 2 2

0 0

1
sin sin 2 0

4

y yAd t d t
t t

dt dt l

 
 

 
                         (13) 

 

where the angle θ1 accounts for the slow motions. In the pointing-up equilibrium 

position of the pendulum, the Jacobian of the system (13) and the corresponding 

eigenvalues are given by: 

1

2 2 2

2 2

1,2 2 2

0 0 02 2

0 0

0 1
1

11
1 2 2 2

2

y y

y y

A
AJ

l
l

 

 
 

  
 



  
                  
 

          (14) 

 

Consequently, the pointing-up equilibrium position will be stable if 0 2y yA l   . 

Similarly, it can be shown that the pointing-down equilibrium position is stable for all 

values of Ay and ωy. To study this issue, Eqs (9) have been simulated assuming that Ax 

= 0, Ay = 0.5 m, l = 1 m, ω0 = 3.1305 m/s
2
 and ωy = 10, so 0 1.597 2y LyA l     (ωLy 

= 8.8544 rad/s is the limit frequency). The initial conditions are θ(0) = 2.9 rad, dθ(0)/dt 

= 0 and u(0) = 0 (i.e. they are close to the pointing-up position) and the simulation 

results are shown in Fig 2. Fig 2 a) shows the time evolution of θ(t), dθ(t)/dt and u(t) ≡ 

0. At t ≈ 15 s the position θ = π is reached, whereas θ(t) and dθ(t)/dt show an irregular 

behavior that suggests chaotic behavior for t < 15 s. To analyze this behavior, Fig 2 b) 

depicts two simulations of Eqs (9) whose initial conditions differ in 10
-7

, which allows 
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to appreciate a clear sensitive dependence as a strong indicator of chaotic behavior. Fig 

2 c) shows the values of the forces F0x and F0y deduced from Eqs (5) and (6), which can 

be regarded as acceptable. On the other hand, we assume the presence of random noise 

in the system that is modeled as follows:  

 

           0.5   ;  d d 0.5na nat t f X t dt t dt f X                         (15)              

 

where X is a random variable that is uniformly distributed between 0 and 1, and fna > 0 

is an amplification factor to obtain a uniformly distributed noise amplitude between –

fna/2 and  fna/2. For θ(0) = 2.9 rad, dθ(0)/dt = 0, u(0) = 0 and fna = 0.2, Fig 2 d) shows 

that the desired set point θe = π cannot be reached. 

 

Figure 2 

 

 To analyze the effect of the PID control law given by Eq (8), Fig 3 shows the 

simulation results of Eqs (9) that have been obtained with the previous values but taking 

Kp = 30 N.m, τi = 1 s and τd = 10
-3

 s, assuming the initial conditions θ(0) = 0.01 rad, 

dθ(0)/dt = 0, u(0) = 0 and considering a noise factor fna = 0.4. Figs 3 a) and 3 b) show 

how the desired set point θe = π is reached even with strong noise and very 

disadvantageous initial conditions due to the PID controller action. Fig 3 c) shows that 

the magnitude of the forces deduced from Eqs (5) and (6) are acceptable even in 

presence of the PID control torque. 

 

Figure 3 

 

It should be noticed that, although the PID parameters Kp, τi, and τd have been 

chosen arbitrarily, the derivative time τd must be small enough to avoid an excessive 

value for u(t) due to the high values of the derivatives caused by the random noise [38-

39]. The effect of the high-frequency horizontal excitation can be analyzed in a similar 

way. In this case, the averaged equation and the Jacobian of the pointing-down 

equilibrium position are given by [25]: 
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 
 

 
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t t
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                         (16) 
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2
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A
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l
l

 

 
 

  
 



   
           
       
 

          (17) 

Therefore, the pointing-down equilibrium position will be unstable if 0 2x xA l   . 

In this case, Eq (16) allows to deduce that two new equilibrium points appear in 

symmetric positions around θ = 0, i.e.: 

2 2

0

2 2

2
cose

x x

l
ar

A






 
   

 
                                               (18)  

 

where the sign of θe depends on the initial conditions [25-26]. Taking θe = 0.8 rad, l = 1 

m, ω0 = 3.1305 rad/s and Ax = 0.035 m, Eq (18) allows to deduce that ωx = 151.54 rad/s. 

As it can be observed in Fig 4 a), the simulation results for Eqs (9) indicate that the tilt 

angle of the pendulum is θe ≈ –0.8 rad, which is very close to the prescribed value. The 

small amplitude around the averaged value is a consequence of the large value for ωx. In 

accordance with Eqs (5) and (6), Fig 4 b) shows the strong forces that must be applied 

to the suspension point O’ to maintain the reference angle for the pendulum. 

 

Figure 4 

 

The previous results allow to conclude that: 

 

 It is possible to obtain chaotic behavior without PID control and with vertical 

excitations of moderate frequency.  

 It is possible to drive the pendulum to the set point θe = π without PID control 

and with vertical excitation, although the initial conditions must be close to the 

set point. 

 Without PID control and with vertical excitation, a small random noise or a 

small change in the initial conditions may destroy the asymptomatically stable 

equilibrium point θe = π (see Fig 2 a)), and the pendulum behavior may become 

oscillatory around θe = π as shown in Fig 2 d). 
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 Without PID control and with horizontal excitations of high frequency, the 

pendulum cannot be driven to the pointing-up position, even with very high 

frequencies or strong forces applied at the suspension point O'.  

 Starting from arbitrary initial conditions, the pendulum can be driven to the 

pointing-up position with PID control and with vertical excitations of high 

frequency, even in the presence of random noise. 

 

Once the need of a PID controller has been clarified, the following deviation 

variables are introduced: 

 

           1 2 3  ;    ;  z t t z t t z t u t                               (19) 

 

Removing the term  2 2d t dt from the second Eqs (9) and taking into account that 

           3 5

1 1 1 1sin 1 3! 1 5!z t z t z t z t       , the mathematical model of the 

pendulum with harmonic oscillations in the axes OX and OY and with PID control can 

be written in matrix form (up to third order terms) as follows: 

 

 

 

     

 

 

 

   

   

         

   

1 1

2

2 0 2

2
3 30

2 3

0 1 0 1 0 1

2 3
00 1

0 1 0

        

1 1

0 0

3! 1 cos sin

c3!

p i d p d p d

p dp d

z t z t

z t z t

z t z tK K K

z t l x t z t y t z t

K l x tK z t

  

      



 

     
    

       
              

 
 
            
 
   
       1 0 1os sinz t y t z t

 
 
 
 

     

    (20) 

 

 The eigenvalues of the matrix A associated to the linear part of Eq (20) can be 

obtained from the Routh criterion [39], and in addition we can investigate admissible 

values for the parameters Kp, τi and τd of the PID controller. Since the system is of third 

order, we pretend to obtain one real negative and two pure imaginary eigenvalues, so a 

weak focus appears around θ = π [34-37]. If such weak focus is stable, the pendulum 

can be maintained around the pointing-up position with smooth oscillations. The 

eigenvalues are obtained as the roots of the characteristic equation of matrix A, i.e.:  
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   3 2 2

0

3 2

2 1 0                       0

p d p p iI A K K K

a a a

          

  

      

    
                  (21) 

where the following conditions must be verified: 

 

  2

1 1 2 0 00 ;  0p p d p p ia K a a a K K K                            (22) 

 

The self-oscillation frequency is given by: 

 

 

 

2

1, 10

             

p d p i

p

i p d

K K i

K

K

       




   

     




                               (23) 

 

and from Eqs (22) and (23) it is deduced that: 

 
2 2 2

0 0 0
p

p p

i p d

K
K K

K


    

   
     


                    (24) 

 

Consequently, if the PID parameters are chosen in accordance with Eq (22), the 

inequality a1 > 0 is fulfilled and the roots of the characteristic equation are 

 0 1, 1 and p dK i           (which can be verified substituting λi for i = 0,1,-1 

into Eq (21)). Therefore, in the unstable pointing-up position we have two pure 

imaginary eigenvalues as well as a real negative one, whose stability will be analyzed in 

the next section.  

 

4 Stability analysis by using the normal form theory 

 

 In accordance with the results of the previous section, we shall determine the 

stability conditions for the weak focus as a function of the parameters of the control law 

given by Eq (8). The stability analysis is carried out by using the normal form theory 

proposed by Bruno [27-31], since it provides a direct connection between the original 

and transformed equations of the system. The first step consists of obtaining the 

(complex) Jordan canonical form of Eqs (20) taking only up to third-order terms. The 

eigenvectors of the matrix given in Eq (20) allow to find the matrix P associated to a 
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linear transformation which transforms the matrix of the linear part into its complex 

Jordan canonical form, i.e.: 

   

 

 

 
 

 

 

 

 

1 1

2 1

3 031 32 33

31 32

2

33 0

1 1 1

     ;  

1
                     

p d

p p

p p d p p d

i i

p d p d

z t x t

z t Px t z t i i K x t

z t x tp p p

K K
p K K i p K K i

p K K

    

   
   

     




    
    

           
        

   
          

   

    
 

               (25) 

 

Taking into account Eqs (25), Eqs (20) are transformed as follows: 

 
 
 

 
 
 

       

       

                  

1 1
31 2

1 1 0 1 1 0

320 0
0 1 1 0

1

0 1 1 0 0 1 1 0

00 0

       0 0 3!

0 0
3!

0

1 cos sin

e
p d

x t i x t

x t i x t P x t x t x t

x t x t
K x t x t x t

P l x t x t x t x t y t x t x t x t



 


 



  





 

 
      
                   
                

            

                   0 1 1 0 0 1 1 0cos sinp dK l x t x t x t x t y t x t x t x t  

 
 
     
 

               

(26) 

where e p dK      is an equivalent damping coefficient and P
-1

 denotes the inverse 

matrix of P, which is given by: 

  

1 1

11 12

1 1 1

21 22

2

0

1
                        

2 2

                          2

                          

e

e

p p i p d

p

p e d p e p d

i

p p i

P p p i

K i K K i i

K
K K K i

p

 

 

     


      

  

 

  

 
 

 
  

  
   
 

   
        

    

2
1 0

11

2 2
1 10 0

12 22

2
1 0

21

 ; 

                      

p

p e d e p p d

i

p p

p e d p p d p e d p p d

i i

p

p e d e p p

i

K
K i K K i

K K
p K K K i p K K K i

K
p K i K K


     

  

 
       

     


    

  



 



   
        

    

   
             

   

 
      

 
d i

  
  

  

(27) 
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Assuming that there are no disturbances at the supporting point O' of the 

pendulum (see Fig 1), the system defined by Eq (26) has the following general form: 

  ;  0, 1  ;  , , 0, 1lmp l m p

dx
x b x x x l m p

dt


                          (28) 

 

where the eigenvalues of the linear part are λ0 = -(δ + αKpτd) ,  λ1 = iω and  λ-1 = -iω. 

The coefficients lmpb  can in general be complex and they are invariant under 

permutations of sub-indices l,m and p. Once the complex Jordan canonical form has 

been obtained, the idea of the formal norm theory is to obtain a simplified version of the 

original system which retains all its dynamical properties [17-18], [32]. The normal 

form is based on a new change of variables called reversible normalizing 

transformation, which is defined as: 

 

  ;  0, 1  ;  , , 0, 1lmp l m px y y y y l m p

                             (29)  

 

Equation (29) considers only terms up to third order and allows to transform the system 

given by Eq (27) into its normal form, which is defined as: 

 

 

0 1 1

0 1 1

, 0

  ;  0, 1
q q q

Q

Q

dy
y y g y y y

dt


    



 

                           (30) 

 

being q0, q1 and q-1 integer numbers that must satisfy the following relations [27-28]: 

 

     0 1 1 0 1 1 0 0 1 1 1 1  ;   ; , 0Q q q q Q q q q                      (31)                                

    0 1 11  ;  0  0, 1   ;  1jq q j q q q                              (32) 

 

 Taking into account Eqs (31) and (32), the relation between the coefficients lmpb  

and lmp

 can be expressed as follows: 

 

  if  0
0, 1  ;  , , 0, 1

0    if  0

lmp

l m p

l m plmp

l m p

b

l m p








   
    

   

 
    

       
 

    

    (33) 
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Equation (30) can be written in similar way as Eqs (28), i.e.: 

 

   ;  0, 1  ;  , , 0, 1lmp l m p

dy
x y y y l m p

dt


                         (34) 

 

where the only non-null coefficients are the ones of the form 
 ,1, 1







 (where  ,1 1   

denote any permutation of the elements ν, 1 and -1), since 
 ,1, 1

0 ; 0, 1


 


    as it 

follows from Eqs (31)-(33). From the previous considerations, Eqs (30) and (34) can be 

expanded as follows [27-28] [32]:  

 

 

 

 

1 11 1
1 1 1 1 1 1 1 1 11,1, 1

1 11 1
1 1 1 1 1 1 1 1 11,1, 1

0 00 0
0 0 1 1 1 0 0 1 11,1, 1

 ; 

e e

dy dy
i y y g y y i y y y y

dt dt

dy dy
i y y g y y i y y y y

dt dt

dy dy
y y g y y y y y y

dt dt

  

  

  

 

  
     

 

 
    

 
 

      
 
 

      
 

             (35) 

 

From Eqs (33) and (35) it is deduced that: 

 

 1 1 1 1 1 0 1 0

1 11 1 11 1 1 1 1 01 1 01 13 3   ;    ;  6 6g b g g g b 




                           (36) 

 

where the asterisk denotes conjugate complex. To calculate the normalizing 

transformation given by Eqs (29), Eq (33) must be applied taking into account that the 

coefficients lmpb  are deduced by identifying terms between Eqs (26)-(28). For this 

purpose, the following cases must be considered: 

 

 Case ν = 1 

In this case all the coefficients lmpb take the form: 

 

2

0

2
1 1 0
11 1 2

0
2.3!

p

p

i

p

e p d p e e p d

i

K
K i

b b
K

K K K



  


      

  



 
  
  

  
     

   

               (37)      
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and from Eq (33) the successive values of lmp

  are obtained as:  

1 11 1
1 1000 111
000 111

0 0 0 1 1 1 1 1

11 1 1
1 1 0011 1 1
1 1 1 001

0 0 0 1 0 0 1 1

1 11
1 100 1 011
00 1 011

0 0 1 1 0

        ;  
3 2

       ;  
4 2

  ;  
2 2

e

e

e

b bb b

i i

bb b b

i

b bb

i

 
          

 
         

 
      

  
  






    
      

     
     

   
    

1

1 1 1

1 11 1
1 10 1 1 001
0 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1
1 01 1
01 1

0 1 1 1

  ;  
3 2

                                

e

e

e

b

i

b bb b

i i

b b

i

    

 
          


     

 
   

   







   

    
       

  
   

      (38) 

 

 Case ν = 0 

In this case all the coefficients lmpb take the form: 

 

2
0 0 0
11 1 2

0
3!

p

i

p

e p d p e e p d

i

K

b b
K

K K K

  


      

  

  
  

     
   

                 (39)      

 

and Eq (33) allows to obtain the successive values of lmp

 as follows:  

 

0 00 0
0 0000 111
000 111

0 0 0 0 1 1 1 0

00 0 0
0 0 0011 1 1
1 1 1 001

0 0 0 0 0 0 1 0

0 00
0 000 1 011
00 1 011

0 0 1 0 0

      ;  
2 2

  ;  
3

      ;  

e e

e e

e

b bb b

i

bb b b

i i

b bb

i

 
          

 
           

 
      

  
  






    
      

    
        

   
    

0

1 1 0

0 00 0
0 00 1 1 001
0 1 1 1 1 1

0 1 1 0 1 1 1 1

0
0 001 1
01 1 0 1 1 0 01 1

0 1 1 0

2

  ;  
2

           ;  0 0

e

b

i

b bb b

i i

b

   

 
          

     
   

 
   

   


  




 

    
      

      
  

      (40) 

 

Taking into account Eqs (29), (38) and (40), the normalizing transformation of the 

variables x1 and x0 can be written as: 
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3 2 23 3

0 0 1 0 11 1

1

1 1 2 2 2

0 1 0 1 0 1 11 1

3 3

3 2 4 2 2 2

3 3 63

3 2

e e e

e e e

y y y y yy y

i i i i
x y b

y y y y y y yy y

i i i i

      

      



 

 
    

   
 
    
     

                           (41) 

 

3 3 3
20 1 1 1
0

2 2
0 2 1 1 1

0 0 0 0 0

1
1 1

Re Re 3 Re
2 3 3

  3 Re 3 Re 3 Re
2 2

                         3 Re

e e e e

e

e

y y y y
y

i i i

y y y
x y b y y y

i i i

y
y y

i

      

   

 






      
         

         
      
          
       
 

  
     



             (42) 

 

Since x0 and y0 are real whereas y1 and y-1 are conjugate complex, the appropriate real 

part of the terms 0 l m pb y y y must be considered to obtain real coefficients in Eq. (42). By 

adding the terms that have the same power of y0 and y1, Eq (42) can be rewritten as 

follows:  

 

3 3
20 1 1
0

0

0 0
2

1 1
0 1 1

2Re 6 Re
2 3

    6 Re 3 Re
2

e e e

e

y y y
y

i i
x y b

y y
y y y

i i

    

  




    
      

      
 

   
     
     

                       (43) 

 

 The normalizing transformations given by Eqs (41) and (43) have been deduced 

up to third-order terms. The inverse transformation (also up to third-order terms) can be 

obtained by removing the variables y0 and y1 from the right hand sides of Eqs (41) and 

(43) and replacing such variables by x0 and x1 inside the braces [18], which leads to: 

 

3 2 23 3

0 0 1 0 11 1

1

1 1 2 2 2
40 1 0 1 0 1 11 1

3 3
    

3 2 4 2 2 2

3 3 63

3 2

e e e

i

e e e

x x x x xx x

i i i i
y x b

x x x x x x xx x
x

i i i i

      

      



 

 
    

   
 
     
     

                   (44) 
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3 3
20 1 1
0

0

0 0
2

41 1
0 1 1

2Re 6 Re
2 3

6 Re 3 Re
2

e e e

i

e

x x x
y

i i
y x b

x x
x x x x

i i

    

  




    
      

      
 

   
    
     

                       (45) 

 

 It should be noted that the numerical solution of the problem given by Eqs (20) 

can be obtained by removing the harmonic disturbances and considering all the terms of 

the Taylor series for the sinus function. Then, the variables x1(t), x-1(t) and x0(t) can be 

obtained by means of Eqs (25) and (27), and an approximate solution for the system in 

normal form can be deduced from Eqs (44) and (45). 

 

 The interest of the system equations in normal form relies on the fact that they 

allow to deduce an exact analytical solution from Eqs (35). For this purpose, 

multiplying by y-1(t) the first equation of (35) and by y1(t) the second one, taking into 

account that  1 1 1

1 1 12Reg g g   and introducing the variable      1 1 1a ap t y t y t , the 

following differential equation can be deduced: 

 

 
   

 
   

2

211 2 1

1 1 1 1 11

1

0
2Re   ;  0 0

1 2Re

a

a

ydp t
p t g p t p y

dt g t
          

         (46) 

 

where the sub-index "a" has been introduced to distinguish the analytical solution from 

the normal form, which has been deduced from the inverse normalizing transformation 

given by Eqs (44)-(45). If we assume that 1

12Re 0g     for t  , Eq (46) allows to 

deduce that the variable p1(t) will eventually be negative, which is impossible since 

       
2

1 1 1 1a a ap t y t y t y t  . On the other hand, if 1

12Re 0g    for t   then 

 1 0p t   and therefore the system will be stable. Consequently, taking into account 

the equations of the system in normal form as well as Eqs (36)-(37), the stability 

condition for the weak focus associated to the pointing-up position of the pendulum can 

be written as follows: 
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2
1 1 0
1 2

0

3

Re Re 3 0
2.3!

p

i

p

e p d p e e p

i

K

g b
K

K K K

  


      

  

           
     

   

      (47) 

 

The inequality given in Eq (47) is verified if: 

 

2
2

02

i
p

i e

K
 

 
  




                                                 (48) 

 

It should be noticed that the inequality (48) is always verified, since starting from the 

hypothesis that there is a weak focus (see Eq (24)) we obtain that 
2 2

0pK    . 

Consequently, the pendulum in the equilibrium point e =  is stable. 

 

 The exact solution for the normal form can be obtained as follows. Taking into 

account that      1 1 1a ap t y t y t , from the first equation of (35) it is deduced that: 

 

 

 
       1 1 1

1 1 1 1 1 1

1
0

0 exp

t

a

a a

a

dy t
i g p t dt y t y i t g p d

y t
   

 
        

  
            (49)  

 

From Eqs (46) and (49), the variable y1(t) can be written as: 

 

       

1
1

1
1

2 1 2Re
1 1 1 10 exp 1 2 0 Re

g

g
a a ay t y i t y g t


 
       

                (50) 

 

where 

 

 

2
1

0 21

1

1

2

02

1 1

2 22Re

1
                     0

2

p i p

p i

p

p i

K K ig
b i

Kg

K
b

K

   

 

 

 

  
      

  

 
   

               (51) 

 

Substituting Eq (51) into Eq (50) we obtain that: 
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 
 

 
  21 2 2

1 1
22

1

2 1

1

0
exp ln 1 0

1 0

                               2Re 0

a

a a

a

y
y t i t b a y t

a y t

a g

    
 



    

                 (52) 

 

where y-1a(t) is the conjugate complex of y1a(t). Following a similar procedure, the value 

of y0(t) can be obtained as [17-18]: 

 

       

0
1

1
1

0
2 1 2Re 1

0 0 1 1 1

1

0 exp 1 2 0 Re   ;  2
2Re

g

g
a a e a

g
y t y t y g t

g



 
            

       (53) 

 

Consequently, Eqs (52) and (53) provide the general analytic solution for the normal 

form (see Eq (35)) with accuracy up to third-order terms. The stability consideration 

deduced from the normal form can also be used to adjust the parameters Kp, τi and τd of 

the PID controller throughout the following steps: 

 

1. From the condition for obtaining a stable weak focus (see Eqs (22)-(24)) it is 

deduced that: 

 

2 2 2 2

0 0 0

1
1 1

p

p p e i

e i e i

K
K K


       

   

 
         

 
          (54) 

 

In accordance with the inequality given by Eq (54), we take  ; 1e i f f    . 

Once the factor f has been chosen, the value of Kp will be given by: 

 

 

2

0

1
p

f
K

f







                                                    (55) 

 

2. Next we choose a value for τd to obtain an appropriate value for the equivalent 

damping coefficient given by 
2

e p d p dK b ml K         . If b  << 1 then 

τd must be large, and on the contrary, τd must be small if b ≈ 1. 
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3. Once the values for Kp and τd are known, the reset time i of the PID controller 

is given by: 

i

e p d

f f

K


   
 


                                                (56)  

  

 After obtaining the normalizing transformations and the parameters of the PID 

controller, we shall analyze the relationship between the variables z’i(t) (i = 1,2,3), x1(t), 

x-1(t), x0(t) and y1(t), y-1(t), y0(t). The values of z’i(t) can be obtained through the 

simulation of Eqs (9) and (19). On the other hand, the variables x1(t), x-1(t) and x0(t) can 

be obtained as functions of z’i(t) (i =1,2,3) from the inverse normalizing transformation, 

which is deduced from Eqs (25), (27), (41) and (42), i.e.: 

 

 

 

     

2

0
1

2

0
2 3

1 2
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2

p

p e d e p p d

i

p

p e d p p d e

i

p

p e d p e p d

i

K
K i K K i z t

K
K K K i z t i z t

x t
K

K K K i


     

  


     

  


      

  

      
         

       
 

    
           

    
   

      
    

       (57) 

 
          1 2 3

0 2

0

2 2 2

2

p p i p d

p

p e d p e p d

i

K i z t K K i z t i z t
x t

K
K K K i

     


      

  

           
   

      
    

        (58) 

 

where x-1(t) is the conjugate complex of x1(t). Taking into account Eqs (44) and (45), 

the variables of the system in normal form y1(t), y-1(t) and y0(t) can be obtained and can 

be compared with Eqs (52) and (53). Consequently, we have deduced a procedure to 

compare the analytical derivations with the numerical simulations for the considered 

parameters of the PID controller given by Eqs (54)-(56).  

 

The parameters of the PID controller have been chosen according to Eqs (54)-

(56) assuming f = 2 to obtain small values for b
1
 and b

0
 (Eqs (37) and (39)), so the 

values for y1(t) and y0(t) will be close to x1(t) and x0(t) respectively. To investigate this 

issue, Fig 5 a) shows the plot of the real and imaginary parts of b
1
 and b

0
 as a function 

of the values for the damping coefficient δ. It should be noted that the coefficients b
1
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and b
0
 are small for large values of δ. However, in accordance with Eq (56), large 

values for δ may lead to a very strong integral action (Kp/ τi in Eq (8)) that can raise 

problems of saturation in the PID controller [14] [39]. For this reason, the values m = 

0.5 kg, l = 1 m, b = 0.5 N.m.s
2
 and δ = 1 will be assumed. Fig 5 b) shows the values of 

the reset and derivative time for f = 2, which allows to appreciate that the derivative 

time τd must be small in comparison with the reset time τi for the selected value δ = 1. 

 

Figure 5 

 

 In order to apply Eqs (44), (45), (52) and (53), the initial conditions for the real 

and imaginary parts of x1(0), y1(0), y0(t) and x0(0) are plotted as function of the 

damping coefficient δ in Figs 6 a), b) and c), taking into account Eqs (57) and (58) and 

assuming that z’1(0) = -π, z’2(0) = 0 and z’3(0) = 0. It should be noticed that the 

differences between xi(0) and yi(0) are small only for large values of δ, which is in 

accordance with the result of Fig 5 and Eqs (44)-(45). On the other hand, the phase of 

y1(t) can be deduced from Eqs (51) and (52) as follows: 

 

 
 

 
1

2

20 1

1 1

1
ln 1 2Re 0

2a

p

y a

p i

K
F t g y t

K

 

 

 
         

                      (59) 

Fig 6 d) shows the plots for the values of  
1y aF t  as a function of the damping 

coefficient δ and for different values of the time t. If  
1y aF t  is close to zero or 2π, the 

phase difference between x1(t) and y1a(t) is small and thus the dynamical behavior of the 

PID controlled pendulum can be predicted from the analysis of the simulation results. 

 

Figure 6 

 

 To corroborate the previous conclusions, the system has been simulated by using 

Eqs (9) and (19) with a damping coefficient δ = 10 and taking f = 10 and τd = 10
-3

 s, 

which in accordance with Eqs (55) and (56) implies that Kp = 5.4444 N.m, τi = 0.9989 s, 

b
0
 = 0.1614 and b

1
 = -0.0807 + 0.0084i. The variables θ(t), dθ(t)/dt and the control 

torque u(t) have been plotted in Fig 7 a) showing that the pendulum remains oscillating 

around the pointing-up position with a small control torque. Fig 7 b) shows that the 

initially unstable equilibrium point θe = π becomes a stable one, whereas Fig 7 c) shows 
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that a stable weak focus appears as a result of an adequate tuning of the PID controller. 

On the other hand, Eqs (57) and (58) allow to deduce the values of x0(t), x1(t) and the 

conjugate complex of x1(t) (i.e. x-1(t)) once the deviation variables z’1(t) i = 1,2,3 are 

known through the simulation of Eqs (9) and (19). Consequently, Eqs (44)-(45) allow to 

calculate y1(t) and y0(t) and compare them with the analytical results obtained from Eqs 

(52)-(53), as it is shown in Fig 8. It should be noted that the values of y1(t) and y0(t) are 

very close to y1a(t) and y0a(t) respectively, in accordance with the previous 

considerations.  

Figure 7 

Figure 8 

 

 Another interesting verification of the analytical and numerical computations 

can be carried out taking into account the following reasoning. From Eqs (19) and (25) 

it is deduced that: 

       

         

1 1 1 0

2 1 1 0

            

p d

z t x t x t x t

z t i x t i x t K x t    





   

    
                       (60) 

 

Taking into account the normalizing transformations given by Eqs (42) and (43) as well 

as their inverse transformations given by Eqs (44) and (45), it is deduced that 

   1 1x t y t  and    0 0x t y t  as long as the coefficients b
0
 and b

1
 are small. In this 

case, by introducing the notation      1 1 10 0 0r ix x x i   and taking into account Eqs 

(60), the squared amplitude of the pendulum in the pointing-up position and the initial 

condition  2

1 0ay  can be approximated as: 

 

       

         

2 2 2 2

1 2 1 1

2 2 2 2 2 2

1 1 1 1 1

             4Re ( ) 4Re ( )

 0 4Re (0) 4Re (0) 4 0 0r i

z t z t x t i x t

y x i x x x



 

   

     

                       (61) 

 

In Eqs (60) and (61) it is assumed that  0 0x t   for a sufficiently large time, which is 

in accordance with Eq (53) once the values for y0(t) have been substituted by the 

corresponding ones for x0(t). Taking into account Eqs (52) and (61), the approximate 

amplitude of the radius for the weak focus shown in Fig 7 c) can be calculated as 

follows: 
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 
   

   

2 2 2

1 1

2
2 2 2 2

1 1

0 0
2

1 0 0

r i

ma

r i

x x
A t

a x x t








   

                                   (62) 

 

The amplitude  maA t  given by Eq (62) can be compared with the amplitude 

     
22

1 10 1 0meA t y a y t  which appears in Eq (52).  

 

The previous reasoning has been corroborated in Figs 9 and 10. In Fig 9 a), the 

amplitudes Ama(t), Ame(t) and the radius rz(t) of the weak focus have been plotted, which 

allows to observe that they are almost coincident. Similarly, Figs 9 b) and c) show that 

the  attenuation of the amplitudes for (t) and d(t)/dt are very close to Ama(t) and 

Ame(t) respectively. Fig 10 a) shows the phase of y1(t) -deduced from Eq (59) taking 

into account the approximations given in Eq (61)- and the phase Fy1(t) obtained from 

the numerical simulations. Figs 10 b), c) and d) show the values of the pendulum state 

variables (obtained through the simulation of Eqs (9) and (19)), which are compared 

with the values zz’i(t) i = 1,2,3  deduced from Eqs (25) and (27) by using the inverse 

normalizing transformations and assuming that    1 1x t y t  and    0 0x t y t . Once 

again, the validity of the analytical calculations as well as the previous hypotheses 

regarding the normal form have been proved. 

Figure 9 

Figure 10 

 

5. Obtaining chaotic behavior on the basis of the Melnikov function 

 

It is known that a pendulum with viscous damping and with an external 

harmonic torque applied at the suspension point can reach chaotic behavior [16-20]. On 

the other hand, in section 2 (see Fig 2) we deduced that the pendulum subjected to a 

vertical oscillation of high frequency can reach chaotic oscillations [34-38].  

 

In this section we shall analyze the conditions to obtain chaotic behavior 

assuming vertical and horizontal harmonic disturbances of low frequency at the 

suspension point (see Fig 1). The main advantage of using low frequencies is that they 

require moderate forces in the OX and OY directions (which would have not been 
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possible with disturbances of high frequency as shown in Fig 4 (b)). To study this issue, 

we consider Eq (4) assuming that the external control torque u(t) is zero. Taking into 

account Eqs (7), Eq (4) can be rewritten as follows:  

 

 
 

 
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2

2
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l m l dt
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
 

 
 

 
  
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 

 
 

            (63) 

 

where the notation  ;  ; x x y yA A A A b b        has been introduced, whereas the 

parameter  is a small scaling factor that has been introduced to research the conditions 

for chaotic dynamics. To obtain the homoclinic orbit it will be assumed that  = 0, for 

which there is no damping, the harmonic disturbances are zero and the unperturbed 

system is Hamiltonian. Consequently, it is possible to deduce the portrait of the phase 

plane by direct integration of Eqs (63). For the sake of simplifying the calculations, the 

following dimensionless parameters are considered: 

 

22

0 2
 ;  ;  ;  ; =   

y yx x
x x x y

AAg l b l
t

l g g g ml g


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 
                (64) 

 

Considering the state variables        1 2 ; x t t x t t    as well as Eqs (63)-(64), the 

following equations are obtained: 

 

   
1 2

2 1 0 1 0 1 2

( ) ( )

( ) sin ( ) sin cos ( ) sin sin ( ) ( )x x x y

x x

x x x x x

 

             



      
 

    (65) 

 

Assuming that  = 0, it is deduced that the only equilibrium points are the origin -which 

is a centre- and the points n (n = 1,2,3,...) -which are saddles-. Integrating Eqs (65), 

the parametric equations of the heteroclinic orbit are found to be: 

 

 1 2( ) 2 sin ( )   ;  ( ) 2sec ( )x arc th x h                                  (66)  
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where the sign plus refers to an heteroclinic trajectory with x4 > 0 whereas the sign 

minus corresponds to an heteroclinic trajectory with x4 < 0. It should be remarked that 

currently there is not any known analytic procedure to deduce whether a nonlinear 

dissipative system governed by three o more differential equations is chaotic. However, 

Melnikov’s method provides necessary conditions for chaotic dynamics (details of this 

method can be found in references [31-35]). Considering Eqs (65) and (66), the 

Melnikov’s function is given by the following integral: 
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                   (67) 

 

where 0 is an arbitrary dimensionless time and the values of x1() and x2() must be 

substituted by the ones given in Eqs (66). For the purposes of this work, and taking into 

account standard procedures of the complex variable [34-35], the Melnikov’s function 

can be written as [38]: 

 

    0 0 0 1 2 0 0 3( ) 2 sin 2 cos 8e x x y xM I I I                          (68)    

where: 
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  It is important to remark that a necessary condition for the occurrence of chaos is 

that the Melnikov’s function given by Eqs (68)-(71) has non-tangential zeros. Since in 

our case the Melnikov’s function consists of a sinusoidal term plus a constant, 

variations on the amplitude and/or the constant must be considered to search necessary 

conditions for chaotic motions. We will analyze the limit case in which M0(τ0) has 
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tangential zeros with the ultimate purpose of bounding the sets of values for the 

amplitudes Ax, Ay and frequencies x, y that may lead to chaotic behavior. In this case, 

the following two possibilities can be considered: 

 

a) Fixing a value for y and determining x so that Me(0) has no sign changes. In 

this case,  the equation: 

2
3

1 2

4 2 y x x
I A

I I g

  



                                           (72) 

 allows to obtain x once a value for Ax has been chosen. 

 

b) Fixing a value for x and determining y so that Me(0) has no sign changes. In 

this case, the equation: 

  
  2

1 2

3

4 y yx
AI I

I g

  
                                        (73) 

  

     allows to calculate y from a fixed value of Ay. 

 

To analyze the previous results, Fig 11 a) shows the variation of Ax as a function 

of the frequency ωx taking ωy = 4.89 rad/s for different amplitudes Ay in accordance 

with Eq (72). Similarly, Fig 11 b) shows the variation of Ay as a function of the 

frequency ωy taking ωx = 3.77 rad/s for different amplitudes Ax taking into account Eq 

(73). It should be noticed that points P1 (3.77, 0.9) and P2 (4.89, 0.8) are above the 

curves for Ax and Ay, i.e. they are in a zone where the Melnikov function has zeros and 

therefore chaotic behavior may occur. However, points P3 (3.77, 0.2) and P4 (4.89, 0.2) 

are below the curves for Ax and Ay, so the Melnikov function has no zeros and thus 

chaotic behavior is impossible. It is interesting to remark that the Melnikov function is 

almost symmetrical around zero for the values indicated at points P1 and P2, regardless 

the values for the angle φ of Eq (68), so the intersection between the stable and unstable 

manifolds is permanent and therefore chaotic behavior appears. 

 

Figure 11 
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 To verify the occurrence of chaotic oscillations in accordance with Fig 11, Eqs 

(9) and (19) have been simulated taking into account the harmonic disturbances at the 

suspension point and the control action, which is applied in an arbitrary time [17-18] 

[38]. The results are plotted in the phase plane θ(t)-dθ(t)/dt as shown in Fig 12. The 

simulation starts with the initial condition θ(0) = 0.4 rad, with harmonic disturbances of 

zero initial velocity and without control. At t = 40 s, harmonic disturbances with ωx = 

3.77 rad/s, Ax = 0.9 m, ωy = 4.89 rad/s and Ay = 0.8 m are applied (points P1 and P2 of 

Fig 11). It should be noted that the angle θ(t) is reduced to its equivalent value between 

0 and 2π and that the velocity seems to oscillate chaotically. 

 

Assuming that the strange attractor of Fig 12 is chaotic, there will always be an 

orbit that is very close to the pointing-up position θe = π. Consequently, when a chaotic 

orbit crosses a predefined capture region Ω around θe, it is possible to drive the motion 

of the pendulum around the weak focus θe = π by applying the PID control defined by 

Eq (8). The capture region Ω is defined through the amplitudes rax and ray of the angle 

θ(t) and the angular velocity dθ(t)/dt respectively. However, it should be pointed out 

that we don’t know a priori the exact moment at which a chaotic orbit will be close to 

the set point, so the capture region must be properly chosen to avoid long waiting times 

before applying the control. 

 

 When the chaotic motion is consolidated, a chaotic orbit may enter a capture 

zone Ω defined by rax = 0.6 rad and ray = 0.6 rad/s from the (arbitrarily chosen) instant tc 

= 320 s. When the PID control law acts at the instant tii = 323.24 s, the chaotic motion is 

destroyed but the pendulum remains with irregular oscillations caused by the harmonic 

disturbances at the suspension point O’. Finally, such harmonic disturbances are 

removed at t = 370 s, and the pendulum remains with a damped regular oscillation 

around the weak focus. 

Figure 12 

 

 Fig 13 shows that the pendulum dynamic is chaotic for the values of the 

harmonic disturbances (at the suspension point) indicated at points P1 and P2 of Fig 11. 

Fig 13 a) shows the sensible dependence for two initial conditions θ(t) and θ1(t) that 

initially differ in 10
-8

. The solutions are completely different from t ≈ 250 s, but they 

become coincident once the chaotic motion has been removed. Fig 13 b) shows the 
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calculation of all Lyapunov exponents based on the algorithm described in refs. [41-42], 

for which a Matlab software has been implemented [43].  

 

It should be noted that the presence of a positive Lyapunov exponent is a typical 

indicator of chaotic behavior. Besides, the sum of the Lyapunov exponents is -1 at 

tc=320 s, i.e. it coincides with the divergence of vector field   1div f      (see Eq 

(20)) and therefore the simulation results can be regarded as correct. In Fig 13 c), the 

power spectral density shows the presence of a continuous non periodic spectrum, 

which is also a typical feature of chaotic motion [36]. On the other hand, Fig 13 d) 

shows the required values of the forces to obtain chaotic motion according to Eqs (5) 

and (6). It should be remarked that these values are similar to the ones shown in Fig 3 c) 

and they are small in comparison with the high-frequency oscillations shown in Fig 4 

b). 

Figure 13 

 

 The system subjected to harmonic excitations at the suspension point is not 

autonomous, so it is convenient to transform it into an autonomous one by introducing 

in Eqs (9) the auxiliary variables zi(t) (i = 1,2,3,4,5) given by: 
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                  (74) 

Figs 14 a) and b) show the auxiliary variable z5(t) defined in Eqs (74) as a function of 

the state variables z1(t) and z2(t), whose Poincaré sections plotted in Figs 14 c) and 14 d) 

with fωy1 = 4 and f ωy2 = 2 show a clear chaotic behavior. The previous results together 

with the necessary conditions deduced from the Melnikov function given by Eqs (68)-

(71) allow us to affirm that the strange attractor of Fig 12 is chaotic.       

                

Figure 14 

   

In section 4 we investigated the conditions under which the analytical results 

deduced from the normal forms are very close to the numerical simulations of the 
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system. The same arguments can now be considered when the chaotic dynamics is 

removed and a weak focus appears in the pointing-up position. In accordance with the 

results of Fig 12, the harmonic disturbances at the suspension point O’ are removed at t 

= 370 s. For Kp = 5.4444 N.m, τi = 0.9989 s and τd 10
-3

 s, Eqs (37)-(39) allow to obtain 

that b
0
 = 0.1536 and b

1
 = -0.0768 + 0.2359i, which can be considered as sufficiently 

small values so that the approximations    1 1x t y t  and    0 0x t y t  are fulfilled 

and thus similar results to the ones of Fig 8 are expected. 

 

To verify this issue, Figs 15 a) and b) show the values of y0(t) and y1(t) deduced 

from the inverse normalizing transformations as well as their comparison with the 

analytical values deduced from Eqs (52)-(53). In Figs 15 c) and d), the values of the 

pendulum state variables deduced from the simulation of Eqs (9) and (19) are compared 

with the values zz’i(t) i = 1,2 deduced from Eqs (25) and (27) by using the inverse 

normalizing transformations. Since the values are very similar, we have obtained 

another confirmation of the hypothesis regarding the choice of the PID controller 

parameters as well as of the analytical derivations and the numerical simulations of the 

system.  

Figure 15 

 

 To investigate a possible application of the chaotic behavior and the robustness 

of the PID controller, Fig 16 shows a strange attractor obtained in a similar way to the 

one of Fig 12. It is assumed that when a chaotic orbit enters a capture zone Ω (rax = 0.5 

rad, ray = 0.5 rad/s) around θe = π, the parameters of the PID controller are changed so 

that the weak focus associated to the pointing-up position is destroyed and θe = π 

becomes an asymptotically stable equilibrium point. It is interesting to remark that the 

attractor can be more or less dense in a neighborhood of θe= depending on the values 

for Ax, ωx, Ay and ωy, so the capture region should be defined accordingly. On the other 

hand, it should be recalled that the system is of third-order once the harmonic 

disturbances are eliminated  0 00, 0x y  , so we can define a settling time ts and a 

new damping coefficient 0 < δn < 1 to obtain a pair of dominant roots in the 

characteristic equation for the Jacobian of Eqs (9), i.e. [42-43]: 
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              (75) 

 

Once ts, δn and n1 have been selected, the roots 1,2 are dominant and the new 

PID parameters are calculated by identifying the coefficients of the characteristic 

equation (Eq (21)) with the corresponding coefficients of Eq (75). Taking Ax = 0.9 m, 

ωx = 3.77 rad/s, Ay = 0.8 m, ωy =4.89 rad/s and f = 1.5, the pendulum reaches chaotic 

behavior. At tc = 320 s, the PID controller is applied assuming Kp = 9.8 N.m, τi = 1.9616 

s and τd = 10
-3

 s, and the chaotic behavior is destroyed when a chaotic trajectory 

intersects the capture zone Ω (point P1 of Fig 16) at the instant t = 322.69 s >  tc = 320 s. 

Nevertheless, the pendulum remains with irregular oscillations around the set point 

because of the harmonic disturbances. Such harmonic disturbances (at the suspension 

point O’) are removed at t = 350 s, when the PID parameters are changed to Kp = 

19.1183 N.m, τi = 1.6850 s, τd = 0.2668 s (ts = 2 s, δn = 0.95, n1 = 5) in accordance with 

Eqs (75).  

 

To verify that the designed control law is robust against measurement 

uncertainties, a uniform random distribution given by Eq (15) has been added to the 

angle and angular velocity for t > 350 s (point P2 of Fig 16) taking fna = 0.5. The 

simulation results for the pendulum stabilization are shown in Fig 16. It should be 

remarked that the pendulum is driven to the set point throughout a disturbance orbit 

without losing its controllability and remaining in the set point with small oscillations. 

Finally, it is interesting to note that the considered random disturbance is much larger 

than the expectable one in measurement instruments, which again corroborates the 

robustness of the control law.  

 

Figure 16 
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6. Conclusions 

 

 The problem of stabilizing a simple pendulum in the pointing-up position under 

a control torque as well as vertical and horizontal harmonic disturbances at the 

suspension point has been researched by using the normal form theory and chaotic 

motion. Due to the harmonic disturbances at the suspension point, the chaotic motion of 

the pendulum in conjunction with the control torque generated by a PID controller can 

be used to swing up and control the pendulum in the pointing-up position, even in 

presence of noise.  

 

 It is known that a pendulum can be stabilized at different angles by applying 

vertical and horizontal excitations of high-frequency at the suspension point. However, 

such procedure has the inconvenience that large accelerations and forces may be 

necessary to stabilize the pendulum in the pointing-up position, which in addition 

depends on the initial conditions and can be destroyed if random disturbances are 

present in the system. This paper has demonstrated that the previous problems can be 

overcome with a control torque applied at the suspension point by means of a PID 

controller.     

 

A dynamical system with a stable weak focus associated to two pure imaginary 

eigenvalues leads to smooth oscillations around the weak focus. To generate this 

motion, this paper has investigated the presence of a weak focus as a function of the 

PID controller parameters by means of the Routh criterion. Assuming that there are no 

harmonic disturbances at the pendulum suspension point, the normal form theory has 

been used to deduce the stability conditions for the weak focus as well as to deduce the 

normal form of the system. It has been demonstrated that the stability conditions are 

fulfilled as long as the parameters of the PID controller are chosen according to the 

Routh criterion.   

 

From the results obtained from the direct and inverse normalizing 

transformations, a procedure to choose the PID parameters has been deduced and 

applied in the numerical simulations. A complete agreement between the numerical 

results and the analytical predictions has been obtained. It has also been shown that 

there is a wide range for the PID parameter values that provides a stable pointing-up 



 31 

equilibrium position, even in presence of harmonic disturbances at the pendulum 

suspension point. This property provides a great flexibility to obtain different smooth 

motions around the pointing-up position. 

 

 The possibility of chaotic behavior for the pendulum has been studied on the 

basis of the Melnikov’s function, which has been calculated analytically from the 

heteroclinic orbit of the unperturbed system. We have deduced necessary conditions for 

chaotic behavior with vertical and horizontal harmonic disturbances of moderate 

frequencies, which require moderate forces at the suspension point. Since currently 

there is not a definitive condition to know whether an irregular oscillating motion is 

chaotic or not, the appearance of strange attractors has been researched in terms of 

sensitive dependence, Lyapunov exponents, power spectral density and Poincaré 

sections to predict chaotic behavior. Once again, the simulation results give clear 

indicators of chaotic dynamics.   

 

The chaotic behavior has been used taking into account that the homoclinic 

tangle associated to a strange attractor implies that a chaotic orbit will be close to the 

pointing-up position. For such orbit, assuming that the harmonic disturbances of the 

suspension point are removed, it is shown that the PID parameter values can be changed 

to generate a control torque that drives the pendulum to the prescribed set point, even in 

presence of random disturbances. This procedure offers the additional advantage of 

driving the pendulum to the pointing-up position by using small control torques. 

 

As a concluding remark, it should be pointed out that the techniques shown in 

this paper can be applied to a wide variety of mechanical systems. The use of the 

normal form theory, the chaotic behavior and the random noise have been presented 

from a unified viewpoint which offers many opportunities for new investigations with 

more elaborated models. For instance, the elastic properties of the pendulum together 

with the normal form theory and the Melnikov method could be used to analyze new 

kind of system motions in the case of disturbances of high frequency. 
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Figure captions 

 

 

Figure 1. Scheme of the pendulum formed by a rod of negligible mass connected to a 

hanging bob. The suspension point is subjected to vertical and horizontal harmonic 

disturbances. The parameter values of the system are m = 0.5 kg, l = 1 m and b = 0.5 or 

5 N·m·s/rad.  

 

Figure 2. Simulation results without control torque and with vertical harmonic 

disturbances. The parameter values are 2

0  = 9.8 m
2
/s

4
, Ay = 0.5 m, ωyL = 8.8544 rad/s 

and ωy = 10 > 8.8544 rad/s. The fourth-order Runge-Kutta integration method with a 

simulation step T = 0.002 s has been used. a) State variables θ(t), dθ(t)/dt and u(t) as a 

function of the time assuming initial conditions θ(0) = 2.9 rad and dθ(0)/dt = 0. b) 

Sensitive dependence for two simulations of θ(t) with initial conditions differing in 10
-7

 

rad. c) Required forces F0x and F0y to produce the movements which appear in graphics 

a) and b). d)  State variables θ(t), dθ(t)/dt and u(t) as a function of the time assuming the 

presence of noise with an amplification factor fna = 0.4 (Eq (15)).  

 

Figure 3. Simulation results with control torque and vertical harmonic disturbances. 

The parameter values of the system are 2

0  = 9.8 m
2
/s

4
, Ay = 0.5 m, ωyL = 8.8544 rad/s 

and ωy = 10 > 8.8544 rad/s. The fourth-order Runge-Kutta integration method with a 

simulation step T = 0.002 s has been used. a) State variables θ(t), dθ(t)/dt and u(t) as a 

function of the time. b) Pendulum position in the presence of noise. c) Required forces 

F0x and F0y to produce the movements that appear in graphics a) and b).  

 

Figure 4. Simulation results without control torque and with horizontal harmonic 

disturbances of high frequency. The parameter values of the system are 2

0  = 9.8 m
2
/s

4
, 

θd = 0.8 rad (desired tilt angle for the pendulum), Axωx = 5.3040 m/s (value to achieve 

stability), Ax = 0.035 m, ωx = 151.5427 rad/s (frequency for stability) and td = 3 s. The 

fourth-order Runge-Kutta integration method with a simulation step T = 0.001 s has 

been used. a) State variable θ(t) as a function of the time assuming initial conditions 

θ(0) = 0.5 and dθ(0)/dt = 0. b) Required forces F0x and F0y to produce the movement that 

appears in graphic a). 

 

Figure 5. a) Values of b
0
, b

1
 = b

1
r + i.b

1
i (b

1
r = Re[b

1
], b

1
i = Im[b

1
]) and | b

1
| as a 

function of the damping coefficient δ. b) Values of the reset time τi and the derivative 

constant τd as a function of the damping coefficient δ. 

 

Figure 6. a) Real values of x1(0) and y1(0) deduced from the normalizing 

transformation and the inverse normalizing transformation as a function of the damping 

coefficient δ. b) Imaginary values of x1(0) and y1(0) deduced from the normalizing 

transformation and the inverse normalizing transformation as a function of the damping 

coefficient δ. c) Values of x0(0) and y0(0) deduced from the normalizing transformation 

and the inverse normalizing transformation as a function of the damping coefficient δ. 

d) Phase Fy1(t) obtained from the analytical expression of y1a(t) as a function of the 

damping coefficient δ. 
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Figure 7. Simulation results with control torque and without harmonic disturbances. 

The parameter values of the system are 2

0  = 9.8 m
2
/s

4
, Ay = 0.5 m, f = 10, Kp = 5.4444 

N.m, τi = 0.9989 s, τd = 10
-3

 s, b
0
 = 0.1614 and b

1
 = -0.084 + 0.0084i. The fourth-order 

Runge-Kutta integration scheme with a simulation step of T = 0.005 s has been used. a) 

State variables θ(t), dθ(t)/dt and u(t) as a function of the time assuming the initial 

conditions θ(0) = 1.4 rad and dθ(0)/dt = 0. b) Oscillation of θ(t) around the pointing-up 

position. c) Stable weak focus in the phase plane θ(t)- dθ(t)/dt. 

 

Figure 8. a) Values of y1(t) deduced from the inverse normalizing transformation and 

numerical results obtained from the simulation of the pendulum equations compared to 

y1a(t). b) Values of y0(t) deduced from the inverse normalizing transformation and 

numerical results obtained from the simulation of the pendulum equations compared to 

y0a(t). The parameter values are indicated in the legend of Fig. 7. 

 

Figure 9. a) Approximate and exact amplitudes for the radius of the weak focus 

depicted in Fig 7 c), which are deduced from the inverse normalizing transformation 

y1(t) and the analytical values of y1a(t) respectively. Time evolution of the radius of the 

weak focus plotted in f Fig 7 c). b) Approximate and exact amplitudes of the deviation 

variable z’1(t) = θ(t) - π as a function of the time. c) Approximate and exact amplitudes 

of the deviation variable z’2(t) = dθ(t)/dt as a function of the time. The parameter values 

are indicated in the legend of Fig. 7. 

 

Figure 10. a) Approximate phases Fy1(t) and exact phases Fy1a(t) deduced from the 

approximations    1 1x t y t  and    0 0x t y t  as well as from the analytical 

expression for y1a(t). b) Deviation variable z’1(t) = θ(t) - π and variable zz’1(t) deduced 

from the variables x1(t), x-1(t) and x0(t), which have been obtained from the normalizing 

transformation as a function of the time. c) Deviation variable z’2(t) = dθ(t)/dt and 

variable zz’2(t) deduced from the variables x1(t), x-1(t) and x0(t), which have been 

obtained from the normalizing transformation as a function of the time. d) Deviation 

variable z’3(t) = u(t) and variable zz’3(t) deduced from the variables x1(t), x-1(t) and 

x0(t), which have been obtained from the normalizing transformation as a function of 

the time. The parameter values are indicated in the legend of Fig. 7. 

 

Figure 11. a) Values of the amplitude Ax as a function of the frequency ωx for different 

values of Ay when the Melnikov function has no zeros. b) Values of the amplitude Ay as 

a function of the frequency ωy for different values of Ax when the Melnikov function 

has no zeros. The values of points P1 and P2 could provide chaotic behavior, since the 

Melnikov function has zeros. However, the values of points P3 and P4 lead to a non-

chaotic behavior since the Melnikov function has no zeros. 

 

Figure 12. Strange attractor in the phase plane θ(t)- dθ(t)/dt. For t < 20 s the pendulum 

exhibits free oscillations. For t > 20 s the harmonic disturbances are activated assuming 

the values Ax = 0.9 m, ωx = 3.77 rad/s, Ay = 0.8 m and ωy = 4.89 rad/s (points P1 and P2 

of Fig 11). At t = 320 s the seek time is initialized, and afterwards a chaotic orbit 

intersects the capture region Ω (rax = 0.5 rad, ray = 0.5 rad/s) at t = 324.32 s. The 

harmonic disturbances are removed at t = 350 s. The parameter values of the system are 

f = 2, Kp = 9.8 N.m, τi = 1.9615 s and τd = 10
-3

 s. The fourth-order Runge-Kutta 

integration method with simulation step T = 0.005 s has been employed.   
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Figure 13. Simulation results obtained through the fourth-order Runge-Kutta method 

taking a simulation time of 450 s and a simulation step of 0.005 s. a) Sensitive 

dependence for θ(t), which has been obtained from two simulations with initial 

conditions differing in 10
-8

. b) Lyapunov exponents as a function of the time, which 

provide an indicator of chaos because of the positive sign of one of them. c) Power 

spectral density of θ(t), which shows a wide band spectrum with the characteristic 

energy decay of chaotic systems. d) Required forces F0x and F0y to produce the 

movement depicted in graphic a). The parameter values are indicated in the legends of 

Fig 12. 

 

Figure 14.  Simulation results obtained through the fourth-order Runge-Kutta method 

taking a simulation time of 50000 s and a simulation step of 0.009 s. The parameter 

values of the system are Ax = 0.9 m, ωx = 3.77 rad/s, Ay = 0.8 m and ωy = 4.89 rad/s 

(points P1 and P2 of Fig 11). a) Angular variable x5 ≡ fωy (0 < fωy < 2π) associated to the 

harmonic vertical disturbance (with frequency ωy) as a function of θ(t). b) Angular 

variable x5 ≡ fωy as a function of dθ(t)/dt. c) Poincaré section for fy1=4. d) Poincaré 

section for fy2=2. 

   

Figure 15. Values of y1(t) deduced from the inverse normalizing transformation and 

numerical results deduced from the simulation of the pendulum equations compared 

against the analytical expression of y1a(t) b) Values of y0(t) deduced from the inverse 

normalizing transformation and numerical results deduced from the simulation of the 

pendulum equations compared against the analytical expression of y0a(t). c) Deviation 

variable z’1(t) = θ(t) - π and variable zz’1(t) deduced from the variables x1(t), x-1(t) and 

x0(t), which have been obtained from the normalizing transformation as a function of 

the time. d) Deviation variable z’2(t) = dθ(t)/dt and variable zz’2(t) deduced from the 

variables x1(t), x-1(t) and x0(t), which have been obtained from the normalizing 

transformation as a function of the time. The parameter values are indicated in the 

legend of Fig 12. 

 

Figure 16. Strange attractor in the phase plane θ(t)- dθ(t)/dt. Simulation results obtained 

through the fourth-order Runge-Kutta method taking a simulation time of 450 s and a 

simulation step of 0.005 s for Ax = 0.9 m, ωx = 3.77 rad/s, Ay = 0.8 m and ωy = 4.89 

rad/s (points P1 and P2 of Fig 11). At t = 320 s the seek time is initialized, and 

afterwards a chaotic orbit intersects the capture region Ω (rax = 0.5 rad, ray = 0.5 rad/s) at 

t = 322.69 s, instant at which the PID parameter values are set to f = 2, Kp = 9.8 N.m, τi 

= 1.9615 s and τd = 10
-3

 s. For t ≥ 350 s the PID parameters are changed to Kp = 18.1183 

N.m, τi = 1.6850 s, τd = 0.2668 s and noise with an amplification factor fna = 0.5 is 

added. 

 


